ob-metaflow-stubs 6.0.9.1__py2.py3-none-any.whl → 6.0.9.2__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ob-metaflow-stubs might be problematic. Click here for more details.
- metaflow-stubs/__init__.pyi +991 -991
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +4 -4
- metaflow-stubs/client/filecache.pyi +3 -3
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +3 -3
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +2 -2
- metaflow-stubs/meta_files.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +4 -2
- metaflow-stubs/metaflow_current.pyi +51 -51
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/packaging_sys/__init__.pyi +5 -5
- metaflow-stubs/packaging_sys/backend.pyi +4 -4
- metaflow-stubs/packaging_sys/distribution_support.pyi +4 -4
- metaflow-stubs/packaging_sys/tar_backend.pyi +5 -5
- metaflow-stubs/packaging_sys/utils.pyi +2 -2
- metaflow-stubs/packaging_sys/v1.pyi +2 -2
- metaflow-stubs/parameters.pyi +2 -2
- metaflow-stubs/plugins/__init__.pyi +11 -11
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/argo/exit_hooks.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +5 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +4 -4
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +8 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +5 -5
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +5 -5
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +3 -3
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +4 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +3 -3
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +4 -4
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +5 -5
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
- metaflow-stubs/plugins/optuna/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +3 -3
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +5 -5
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +3 -3
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +3 -3
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +3 -3
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +32 -32
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +6 -6
- metaflow-stubs/user_decorators/__init__.pyi +2 -2
- metaflow-stubs/user_decorators/common.pyi +2 -2
- metaflow-stubs/user_decorators/mutable_flow.pyi +5 -5
- metaflow-stubs/user_decorators/mutable_step.pyi +5 -5
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +4 -4
- metaflow-stubs/user_decorators/user_step_decorator.pyi +5 -5
- {ob_metaflow_stubs-6.0.9.1.dist-info → ob_metaflow_stubs-6.0.9.2.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.9.2.dist-info/RECORD +262 -0
- ob_metaflow_stubs-6.0.9.1.dist-info/RECORD +0 -262
- {ob_metaflow_stubs-6.0.9.1.dist-info → ob_metaflow_stubs-6.0.9.2.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.9.1.dist-info → ob_metaflow_stubs-6.0.9.2.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
|
-
# MF version: 2.18.
|
|
4
|
-
# Generated on 2025-08-
|
|
3
|
+
# MF version: 2.18.1.1+obcheckpoint(0.2.4);ob(v1) #
|
|
4
|
+
# Generated on 2025-08-29T18:32:22.531594 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
@@ -40,8 +40,8 @@ from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
42
|
from . import metaflow_git as metaflow_git
|
|
43
|
-
from . import cards as cards
|
|
44
43
|
from . import tuple_util as tuple_util
|
|
44
|
+
from . import cards as cards
|
|
45
45
|
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
@@ -168,96 +168,53 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
168
168
|
...
|
|
169
169
|
|
|
170
170
|
@typing.overload
|
|
171
|
-
def
|
|
171
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
172
172
|
"""
|
|
173
|
-
Specifies the
|
|
173
|
+
Specifies that the step will success under all circumstances.
|
|
174
174
|
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
175
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
176
|
+
contains the exception raised. You can use it to detect the presence
|
|
177
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
178
|
+
are missing.
|
|
179
179
|
|
|
180
180
|
|
|
181
181
|
Parameters
|
|
182
182
|
----------
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
183
|
+
var : str, optional, default None
|
|
184
|
+
Name of the artifact in which to store the caught exception.
|
|
185
|
+
If not specified, the exception is not stored.
|
|
186
|
+
print_exception : bool, default True
|
|
187
|
+
Determines whether or not the exception is printed to
|
|
188
|
+
stdout when caught.
|
|
189
189
|
"""
|
|
190
190
|
...
|
|
191
191
|
|
|
192
192
|
@typing.overload
|
|
193
|
-
def
|
|
193
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
194
194
|
...
|
|
195
195
|
|
|
196
196
|
@typing.overload
|
|
197
|
-
def
|
|
198
|
-
...
|
|
199
|
-
|
|
200
|
-
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
201
|
-
"""
|
|
202
|
-
Specifies the PyPI packages for the step.
|
|
203
|
-
|
|
204
|
-
Information in this decorator will augment any
|
|
205
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
206
|
-
you can use `@pypi_base` to set packages required by all
|
|
207
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
Parameters
|
|
211
|
-
----------
|
|
212
|
-
packages : Dict[str, str], default: {}
|
|
213
|
-
Packages to use for this step. The key is the name of the package
|
|
214
|
-
and the value is the version to use.
|
|
215
|
-
python : str, optional, default: None
|
|
216
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
217
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
218
|
-
"""
|
|
197
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
219
198
|
...
|
|
220
199
|
|
|
221
|
-
def
|
|
200
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
222
201
|
"""
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
User code call
|
|
226
|
-
--------------
|
|
227
|
-
@ollama(
|
|
228
|
-
models=[...],
|
|
229
|
-
...
|
|
230
|
-
)
|
|
231
|
-
|
|
232
|
-
Valid backend options
|
|
233
|
-
---------------------
|
|
234
|
-
- 'local': Run as a separate process on the local task machine.
|
|
235
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
236
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
202
|
+
Specifies that the step will success under all circumstances.
|
|
237
203
|
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
204
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
205
|
+
contains the exception raised. You can use it to detect the presence
|
|
206
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
207
|
+
are missing.
|
|
241
208
|
|
|
242
209
|
|
|
243
210
|
Parameters
|
|
244
211
|
----------
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
cache_update_policy: str
|
|
252
|
-
Cache update policy: "auto", "force", or "never".
|
|
253
|
-
force_cache_update: bool
|
|
254
|
-
Simple override for "force" cache update policy.
|
|
255
|
-
debug: bool
|
|
256
|
-
Whether to turn on verbose debugging logs.
|
|
257
|
-
circuit_breaker_config: dict
|
|
258
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
259
|
-
timeout_config: dict
|
|
260
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
212
|
+
var : str, optional, default None
|
|
213
|
+
Name of the artifact in which to store the caught exception.
|
|
214
|
+
If not specified, the exception is not stored.
|
|
215
|
+
print_exception : bool, default True
|
|
216
|
+
Determines whether or not the exception is printed to
|
|
217
|
+
stdout when caught.
|
|
261
218
|
"""
|
|
262
219
|
...
|
|
263
220
|
|
|
@@ -321,132 +278,131 @@ def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
321
278
|
...
|
|
322
279
|
|
|
323
280
|
@typing.overload
|
|
324
|
-
def
|
|
281
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
325
282
|
"""
|
|
326
|
-
|
|
283
|
+
Enables loading / saving of models within a step.
|
|
284
|
+
|
|
285
|
+
> Examples
|
|
286
|
+
- Saving Models
|
|
287
|
+
```python
|
|
288
|
+
@model
|
|
289
|
+
@step
|
|
290
|
+
def train(self):
|
|
291
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
292
|
+
self.my_model = current.model.save(
|
|
293
|
+
path_to_my_model,
|
|
294
|
+
label="my_model",
|
|
295
|
+
metadata={
|
|
296
|
+
"epochs": 10,
|
|
297
|
+
"batch-size": 32,
|
|
298
|
+
"learning-rate": 0.001,
|
|
299
|
+
}
|
|
300
|
+
)
|
|
301
|
+
self.next(self.test)
|
|
302
|
+
|
|
303
|
+
@model(load="my_model")
|
|
304
|
+
@step
|
|
305
|
+
def test(self):
|
|
306
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
307
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
308
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
309
|
+
self.next(self.end)
|
|
310
|
+
```
|
|
311
|
+
|
|
312
|
+
- Loading models
|
|
313
|
+
```python
|
|
314
|
+
@step
|
|
315
|
+
def train(self):
|
|
316
|
+
# current.model.load returns the path to the model loaded
|
|
317
|
+
checkpoint_path = current.model.load(
|
|
318
|
+
self.checkpoint_key,
|
|
319
|
+
)
|
|
320
|
+
model_path = current.model.load(
|
|
321
|
+
self.model,
|
|
322
|
+
)
|
|
323
|
+
self.next(self.test)
|
|
324
|
+
```
|
|
327
325
|
|
|
328
326
|
|
|
329
327
|
Parameters
|
|
330
328
|
----------
|
|
331
|
-
|
|
332
|
-
|
|
329
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
330
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
331
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
332
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
333
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
334
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
335
|
+
|
|
336
|
+
temp_dir_root : str, default: None
|
|
337
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
333
338
|
"""
|
|
334
339
|
...
|
|
335
340
|
|
|
336
341
|
@typing.overload
|
|
337
|
-
def
|
|
342
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
338
343
|
...
|
|
339
344
|
|
|
340
345
|
@typing.overload
|
|
341
|
-
def
|
|
342
|
-
...
|
|
343
|
-
|
|
344
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
345
|
-
"""
|
|
346
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
Parameters
|
|
350
|
-
----------
|
|
351
|
-
vars : Dict[str, str], default {}
|
|
352
|
-
Dictionary of environment variables to set.
|
|
353
|
-
"""
|
|
346
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
354
347
|
...
|
|
355
348
|
|
|
356
|
-
def
|
|
349
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
|
357
350
|
"""
|
|
358
|
-
|
|
351
|
+
Enables loading / saving of models within a step.
|
|
359
352
|
|
|
360
353
|
> Examples
|
|
361
|
-
|
|
362
|
-
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
|
363
|
-
```python
|
|
364
|
-
@huggingface_hub
|
|
365
|
-
@step
|
|
366
|
-
def pull_model_from_huggingface(self):
|
|
367
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
368
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
369
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
370
|
-
# value of the function is a reference to the model in the backend storage.
|
|
371
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
372
|
-
|
|
373
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
374
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
375
|
-
repo_id=self.model_id,
|
|
376
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
377
|
-
)
|
|
378
|
-
self.next(self.train)
|
|
379
|
-
```
|
|
380
|
-
|
|
381
|
-
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
|
354
|
+
- Saving Models
|
|
382
355
|
```python
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
356
|
+
@model
|
|
357
|
+
@step
|
|
358
|
+
def train(self):
|
|
359
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
360
|
+
self.my_model = current.model.save(
|
|
361
|
+
path_to_my_model,
|
|
362
|
+
label="my_model",
|
|
363
|
+
metadata={
|
|
364
|
+
"epochs": 10,
|
|
365
|
+
"batch-size": 32,
|
|
366
|
+
"learning-rate": 0.001,
|
|
367
|
+
}
|
|
368
|
+
)
|
|
369
|
+
self.next(self.test)
|
|
388
370
|
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
|
|
371
|
+
@model(load="my_model")
|
|
372
|
+
@step
|
|
373
|
+
def test(self):
|
|
374
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
375
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
376
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
377
|
+
self.next(self.end)
|
|
395
378
|
```
|
|
396
379
|
|
|
380
|
+
- Loading models
|
|
397
381
|
```python
|
|
398
|
-
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
])
|
|
409
|
-
@step
|
|
410
|
-
def finetune_model(self):
|
|
411
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
412
|
-
# path_to_model will be /my-directory
|
|
382
|
+
@step
|
|
383
|
+
def train(self):
|
|
384
|
+
# current.model.load returns the path to the model loaded
|
|
385
|
+
checkpoint_path = current.model.load(
|
|
386
|
+
self.checkpoint_key,
|
|
387
|
+
)
|
|
388
|
+
model_path = current.model.load(
|
|
389
|
+
self.model,
|
|
390
|
+
)
|
|
391
|
+
self.next(self.test)
|
|
413
392
|
```
|
|
414
393
|
|
|
415
394
|
|
|
416
395
|
Parameters
|
|
417
396
|
----------
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
|
|
424
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
425
|
-
|
|
426
|
-
- If repo (model/dataset) is not found in the datastore:
|
|
427
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
428
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
429
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
397
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
398
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
399
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
400
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
401
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
402
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
430
403
|
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
"""
|
|
434
|
-
...
|
|
435
|
-
|
|
436
|
-
@typing.overload
|
|
437
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
438
|
-
"""
|
|
439
|
-
Internal decorator to support Fast bakery
|
|
440
|
-
"""
|
|
441
|
-
...
|
|
442
|
-
|
|
443
|
-
@typing.overload
|
|
444
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
445
|
-
...
|
|
446
|
-
|
|
447
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
448
|
-
"""
|
|
449
|
-
Internal decorator to support Fast bakery
|
|
404
|
+
temp_dir_root : str, default: None
|
|
405
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
450
406
|
"""
|
|
451
407
|
...
|
|
452
408
|
|
|
@@ -512,151 +468,26 @@ def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
|
512
468
|
...
|
|
513
469
|
|
|
514
470
|
@typing.overload
|
|
515
|
-
def
|
|
471
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
516
472
|
"""
|
|
517
|
-
|
|
518
|
-
to a
|
|
519
|
-
|
|
520
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
|
521
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
522
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
523
|
-
|
|
524
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
525
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
|
526
|
-
ensuring that the flow execution can continue.
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
Parameters
|
|
530
|
-
----------
|
|
531
|
-
times : int, default 3
|
|
532
|
-
Number of times to retry this task.
|
|
533
|
-
minutes_between_retries : int, default 2
|
|
534
|
-
Number of minutes between retries.
|
|
473
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
474
|
+
to inject a card and render simple markdown content.
|
|
535
475
|
"""
|
|
536
476
|
...
|
|
537
477
|
|
|
538
478
|
@typing.overload
|
|
539
|
-
def
|
|
540
|
-
...
|
|
541
|
-
|
|
542
|
-
@typing.overload
|
|
543
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
544
|
-
...
|
|
545
|
-
|
|
546
|
-
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
547
|
-
"""
|
|
548
|
-
Specifies the number of times the task corresponding
|
|
549
|
-
to a step needs to be retried.
|
|
550
|
-
|
|
551
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
|
552
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
553
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
554
|
-
|
|
555
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
556
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
|
557
|
-
ensuring that the flow execution can continue.
|
|
558
|
-
|
|
559
|
-
|
|
560
|
-
Parameters
|
|
561
|
-
----------
|
|
562
|
-
times : int, default 3
|
|
563
|
-
Number of times to retry this task.
|
|
564
|
-
minutes_between_retries : int, default 2
|
|
565
|
-
Number of minutes between retries.
|
|
566
|
-
"""
|
|
479
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
567
480
|
...
|
|
568
481
|
|
|
569
|
-
def
|
|
482
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
570
483
|
"""
|
|
571
|
-
|
|
572
|
-
|
|
573
|
-
|
|
574
|
-
Parameters
|
|
575
|
-
----------
|
|
576
|
-
cpu : int, default 1
|
|
577
|
-
Number of CPUs required for this step. If `@resources` is
|
|
578
|
-
also present, the maximum value from all decorators is used.
|
|
579
|
-
memory : int, default 4096
|
|
580
|
-
Memory size (in MB) required for this step. If
|
|
581
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
582
|
-
used.
|
|
583
|
-
disk : int, default 10240
|
|
584
|
-
Disk size (in MB) required for this step. If
|
|
585
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
586
|
-
used.
|
|
587
|
-
image : str, optional, default None
|
|
588
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
589
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
590
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
591
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
592
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
593
|
-
image_pull_secrets: List[str], default []
|
|
594
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
595
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
596
|
-
in Kubernetes.
|
|
597
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
598
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
599
|
-
secrets : List[str], optional, default None
|
|
600
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
601
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
602
|
-
in Metaflow configuration.
|
|
603
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
604
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
605
|
-
Can be passed in as a comma separated string of values e.g.
|
|
606
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
607
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
608
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
609
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
610
|
-
gpu : int, optional, default None
|
|
611
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
612
|
-
the scheduled node should not have GPUs.
|
|
613
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
614
|
-
The vendor of the GPUs to be used for this step.
|
|
615
|
-
tolerations : List[Dict[str,str]], default []
|
|
616
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
617
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
618
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
619
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
620
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
621
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
622
|
-
use_tmpfs : bool, default False
|
|
623
|
-
This enables an explicit tmpfs mount for this step.
|
|
624
|
-
tmpfs_tempdir : bool, default True
|
|
625
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
626
|
-
tmpfs_size : int, optional, default: None
|
|
627
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
628
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
629
|
-
memory allocated for this step.
|
|
630
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
631
|
-
Path to tmpfs mount for this step.
|
|
632
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
633
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
634
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
635
|
-
shared_memory: int, optional
|
|
636
|
-
Shared memory size (in MiB) required for this step
|
|
637
|
-
port: int, optional
|
|
638
|
-
Port number to specify in the Kubernetes job object
|
|
639
|
-
compute_pool : str, optional, default None
|
|
640
|
-
Compute pool to be used for for this step.
|
|
641
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
642
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
643
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
644
|
-
Only applicable when @parallel is used.
|
|
645
|
-
qos: str, default: Burstable
|
|
646
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
647
|
-
|
|
648
|
-
security_context: Dict[str, Any], optional, default None
|
|
649
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
650
|
-
- privileged: bool, optional, default None
|
|
651
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
652
|
-
- run_as_user: int, optional, default None
|
|
653
|
-
- run_as_group: int, optional, default None
|
|
654
|
-
- run_as_non_root: bool, optional, default None
|
|
484
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
485
|
+
to inject a card and render simple markdown content.
|
|
655
486
|
"""
|
|
656
487
|
...
|
|
657
488
|
|
|
658
489
|
@typing.overload
|
|
659
|
-
def
|
|
490
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
660
491
|
"""
|
|
661
492
|
Decorator prototype for all step decorators. This function gets specialized
|
|
662
493
|
and imported for all decorators types by _import_plugin_decorators().
|
|
@@ -664,16 +495,30 @@ def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.
|
|
|
664
495
|
...
|
|
665
496
|
|
|
666
497
|
@typing.overload
|
|
667
|
-
def
|
|
498
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
668
499
|
...
|
|
669
500
|
|
|
670
|
-
def
|
|
501
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
671
502
|
"""
|
|
672
503
|
Decorator prototype for all step decorators. This function gets specialized
|
|
673
504
|
and imported for all decorators types by _import_plugin_decorators().
|
|
674
505
|
"""
|
|
675
506
|
...
|
|
676
507
|
|
|
508
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
509
|
+
"""
|
|
510
|
+
Specifies that this step should execute on DGX cloud.
|
|
511
|
+
|
|
512
|
+
|
|
513
|
+
Parameters
|
|
514
|
+
----------
|
|
515
|
+
gpu : int
|
|
516
|
+
Number of GPUs to use.
|
|
517
|
+
gpu_type : str
|
|
518
|
+
Type of Nvidia GPU to use.
|
|
519
|
+
"""
|
|
520
|
+
...
|
|
521
|
+
|
|
677
522
|
@typing.overload
|
|
678
523
|
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
679
524
|
"""
|
|
@@ -724,668 +569,860 @@ def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
|
724
569
|
...
|
|
725
570
|
|
|
726
571
|
@typing.overload
|
|
727
|
-
def
|
|
572
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
728
573
|
"""
|
|
729
|
-
|
|
730
|
-
|
|
731
|
-
|
|
732
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
733
|
-
|
|
734
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
735
|
-
```
|
|
736
|
-
python myflow.py run --with batch
|
|
737
|
-
```
|
|
738
|
-
or
|
|
739
|
-
```
|
|
740
|
-
python myflow.py run --with kubernetes
|
|
741
|
-
```
|
|
742
|
-
which executes the flow on the desired system using the
|
|
743
|
-
requirements specified in `@resources`.
|
|
744
|
-
|
|
745
|
-
|
|
746
|
-
Parameters
|
|
747
|
-
----------
|
|
748
|
-
cpu : int, default 1
|
|
749
|
-
Number of CPUs required for this step.
|
|
750
|
-
gpu : int, optional, default None
|
|
751
|
-
Number of GPUs required for this step.
|
|
752
|
-
disk : int, optional, default None
|
|
753
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
754
|
-
memory : int, default 4096
|
|
755
|
-
Memory size (in MB) required for this step.
|
|
756
|
-
shared_memory : int, optional, default None
|
|
757
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
758
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
574
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
575
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
576
|
+
a Neo Cloud like CoreWeave.
|
|
759
577
|
"""
|
|
760
578
|
...
|
|
761
579
|
|
|
762
580
|
@typing.overload
|
|
763
|
-
def
|
|
581
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
764
582
|
...
|
|
765
583
|
|
|
766
|
-
|
|
767
|
-
|
|
584
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
585
|
+
"""
|
|
586
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
587
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
588
|
+
a Neo Cloud like CoreWeave.
|
|
589
|
+
"""
|
|
768
590
|
...
|
|
769
591
|
|
|
770
|
-
def
|
|
592
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
771
593
|
"""
|
|
772
|
-
Specifies
|
|
773
|
-
|
|
774
|
-
Use `@resources` to specify the resource requirements
|
|
775
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
776
|
-
|
|
777
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
778
|
-
```
|
|
779
|
-
python myflow.py run --with batch
|
|
780
|
-
```
|
|
781
|
-
or
|
|
782
|
-
```
|
|
783
|
-
python myflow.py run --with kubernetes
|
|
784
|
-
```
|
|
785
|
-
which executes the flow on the desired system using the
|
|
786
|
-
requirements specified in `@resources`.
|
|
594
|
+
Specifies that this step should execute on DGX cloud.
|
|
787
595
|
|
|
788
596
|
|
|
789
597
|
Parameters
|
|
790
598
|
----------
|
|
791
|
-
|
|
792
|
-
Number of
|
|
793
|
-
|
|
794
|
-
|
|
795
|
-
|
|
796
|
-
|
|
797
|
-
memory : int, default 4096
|
|
798
|
-
Memory size (in MB) required for this step.
|
|
799
|
-
shared_memory : int, optional, default None
|
|
800
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
801
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
599
|
+
gpu : int
|
|
600
|
+
Number of GPUs to use.
|
|
601
|
+
gpu_type : str
|
|
602
|
+
Type of Nvidia GPU to use.
|
|
603
|
+
queue_timeout : int
|
|
604
|
+
Time to keep the job in NVCF's queue.
|
|
802
605
|
"""
|
|
803
606
|
...
|
|
804
607
|
|
|
805
608
|
@typing.overload
|
|
806
|
-
def
|
|
609
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
807
610
|
"""
|
|
808
|
-
|
|
809
|
-
|
|
611
|
+
Enables checkpointing for a step.
|
|
612
|
+
|
|
613
|
+
> Examples
|
|
614
|
+
|
|
615
|
+
- Saving Checkpoints
|
|
616
|
+
|
|
617
|
+
```python
|
|
618
|
+
@checkpoint
|
|
619
|
+
@step
|
|
620
|
+
def train(self):
|
|
621
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
622
|
+
for i in range(self.epochs):
|
|
623
|
+
# some training logic
|
|
624
|
+
loss = model.train(self.dataset)
|
|
625
|
+
if i % 10 == 0:
|
|
626
|
+
model.save(
|
|
627
|
+
current.checkpoint.directory,
|
|
628
|
+
)
|
|
629
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
630
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
631
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
632
|
+
name="epoch_checkpoint",
|
|
633
|
+
metadata={
|
|
634
|
+
"epoch": i,
|
|
635
|
+
"loss": loss,
|
|
636
|
+
}
|
|
637
|
+
)
|
|
638
|
+
```
|
|
639
|
+
|
|
640
|
+
- Using Loaded Checkpoints
|
|
641
|
+
|
|
642
|
+
```python
|
|
643
|
+
@retry(times=3)
|
|
644
|
+
@checkpoint
|
|
645
|
+
@step
|
|
646
|
+
def train(self):
|
|
647
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
648
|
+
# saved a checkpoint
|
|
649
|
+
checkpoint_path = None
|
|
650
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
651
|
+
print("Loaded checkpoint from the previous attempt")
|
|
652
|
+
checkpoint_path = current.checkpoint.directory
|
|
653
|
+
|
|
654
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
655
|
+
for i in range(self.epochs):
|
|
656
|
+
...
|
|
657
|
+
```
|
|
658
|
+
|
|
659
|
+
|
|
660
|
+
Parameters
|
|
661
|
+
----------
|
|
662
|
+
load_policy : str, default: "fresh"
|
|
663
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
664
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
665
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
666
|
+
will be loaded at the start of the task.
|
|
667
|
+
- "none": Do not load any checkpoint
|
|
668
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
669
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
670
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
671
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
672
|
+
|
|
673
|
+
temp_dir_root : str, default: None
|
|
674
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
810
675
|
"""
|
|
811
676
|
...
|
|
812
677
|
|
|
813
678
|
@typing.overload
|
|
814
|
-
def
|
|
679
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
815
680
|
...
|
|
816
681
|
|
|
817
|
-
|
|
682
|
+
@typing.overload
|
|
683
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
684
|
+
...
|
|
685
|
+
|
|
686
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
818
687
|
"""
|
|
819
|
-
|
|
820
|
-
|
|
688
|
+
Enables checkpointing for a step.
|
|
689
|
+
|
|
690
|
+
> Examples
|
|
691
|
+
|
|
692
|
+
- Saving Checkpoints
|
|
693
|
+
|
|
694
|
+
```python
|
|
695
|
+
@checkpoint
|
|
696
|
+
@step
|
|
697
|
+
def train(self):
|
|
698
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
699
|
+
for i in range(self.epochs):
|
|
700
|
+
# some training logic
|
|
701
|
+
loss = model.train(self.dataset)
|
|
702
|
+
if i % 10 == 0:
|
|
703
|
+
model.save(
|
|
704
|
+
current.checkpoint.directory,
|
|
705
|
+
)
|
|
706
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
707
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
708
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
709
|
+
name="epoch_checkpoint",
|
|
710
|
+
metadata={
|
|
711
|
+
"epoch": i,
|
|
712
|
+
"loss": loss,
|
|
713
|
+
}
|
|
714
|
+
)
|
|
715
|
+
```
|
|
716
|
+
|
|
717
|
+
- Using Loaded Checkpoints
|
|
718
|
+
|
|
719
|
+
```python
|
|
720
|
+
@retry(times=3)
|
|
721
|
+
@checkpoint
|
|
722
|
+
@step
|
|
723
|
+
def train(self):
|
|
724
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
725
|
+
# saved a checkpoint
|
|
726
|
+
checkpoint_path = None
|
|
727
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
728
|
+
print("Loaded checkpoint from the previous attempt")
|
|
729
|
+
checkpoint_path = current.checkpoint.directory
|
|
730
|
+
|
|
731
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
732
|
+
for i in range(self.epochs):
|
|
733
|
+
...
|
|
734
|
+
```
|
|
735
|
+
|
|
736
|
+
|
|
737
|
+
Parameters
|
|
738
|
+
----------
|
|
739
|
+
load_policy : str, default: "fresh"
|
|
740
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
741
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
742
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
743
|
+
will be loaded at the start of the task.
|
|
744
|
+
- "none": Do not load any checkpoint
|
|
745
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
746
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
747
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
748
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
749
|
+
|
|
750
|
+
temp_dir_root : str, default: None
|
|
751
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
821
752
|
"""
|
|
822
753
|
...
|
|
823
754
|
|
|
824
755
|
@typing.overload
|
|
825
|
-
def
|
|
756
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
826
757
|
"""
|
|
827
|
-
|
|
828
|
-
|
|
829
|
-
|
|
758
|
+
Specifies the PyPI packages for the step.
|
|
759
|
+
|
|
760
|
+
Information in this decorator will augment any
|
|
761
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
762
|
+
you can use `@pypi_base` to set packages required by all
|
|
763
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
764
|
+
|
|
765
|
+
|
|
766
|
+
Parameters
|
|
767
|
+
----------
|
|
768
|
+
packages : Dict[str, str], default: {}
|
|
769
|
+
Packages to use for this step. The key is the name of the package
|
|
770
|
+
and the value is the version to use.
|
|
771
|
+
python : str, optional, default: None
|
|
772
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
773
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
830
774
|
"""
|
|
831
775
|
...
|
|
832
776
|
|
|
833
777
|
@typing.overload
|
|
834
|
-
def
|
|
778
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
835
779
|
...
|
|
836
780
|
|
|
837
|
-
|
|
838
|
-
|
|
839
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
840
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
841
|
-
a Neo Cloud like CoreWeave.
|
|
842
|
-
"""
|
|
781
|
+
@typing.overload
|
|
782
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
843
783
|
...
|
|
844
784
|
|
|
845
|
-
def
|
|
785
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
846
786
|
"""
|
|
847
|
-
|
|
848
|
-
|
|
849
|
-
User code call
|
|
850
|
-
--------------
|
|
851
|
-
@vllm(
|
|
852
|
-
model="...",
|
|
853
|
-
...
|
|
854
|
-
)
|
|
855
|
-
|
|
856
|
-
Valid backend options
|
|
857
|
-
---------------------
|
|
858
|
-
- 'local': Run as a separate process on the local task machine.
|
|
859
|
-
|
|
860
|
-
Valid model options
|
|
861
|
-
-------------------
|
|
862
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
787
|
+
Specifies the PyPI packages for the step.
|
|
863
788
|
|
|
864
|
-
|
|
865
|
-
|
|
789
|
+
Information in this decorator will augment any
|
|
790
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
791
|
+
you can use `@pypi_base` to set packages required by all
|
|
792
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
866
793
|
|
|
867
794
|
|
|
868
795
|
Parameters
|
|
869
796
|
----------
|
|
870
|
-
|
|
871
|
-
|
|
872
|
-
|
|
873
|
-
|
|
874
|
-
|
|
875
|
-
|
|
876
|
-
Default is False (uses native engine).
|
|
877
|
-
Set to True for backward compatibility with existing code.
|
|
878
|
-
debug: bool
|
|
879
|
-
Whether to turn on verbose debugging logs.
|
|
880
|
-
card_refresh_interval: int
|
|
881
|
-
Interval in seconds for refreshing the vLLM status card.
|
|
882
|
-
Only used when openai_api_server=True.
|
|
883
|
-
max_retries: int
|
|
884
|
-
Maximum number of retries checking for vLLM server startup.
|
|
885
|
-
Only used when openai_api_server=True.
|
|
886
|
-
retry_alert_frequency: int
|
|
887
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
888
|
-
Only used when openai_api_server=True.
|
|
889
|
-
engine_args : dict
|
|
890
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
891
|
-
For example, `tensor_parallel_size=2`.
|
|
797
|
+
packages : Dict[str, str], default: {}
|
|
798
|
+
Packages to use for this step. The key is the name of the package
|
|
799
|
+
and the value is the version to use.
|
|
800
|
+
python : str, optional, default: None
|
|
801
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
802
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
892
803
|
"""
|
|
893
804
|
...
|
|
894
805
|
|
|
895
806
|
@typing.overload
|
|
896
|
-
def
|
|
807
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
897
808
|
"""
|
|
898
|
-
|
|
899
|
-
|
|
809
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
810
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
811
|
+
a Neo Cloud like Nebius.
|
|
900
812
|
"""
|
|
901
813
|
...
|
|
902
814
|
|
|
903
815
|
@typing.overload
|
|
904
|
-
def
|
|
816
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
905
817
|
...
|
|
906
818
|
|
|
907
|
-
def
|
|
819
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
820
|
+
"""
|
|
821
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
822
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
823
|
+
a Neo Cloud like Nebius.
|
|
824
|
+
"""
|
|
825
|
+
...
|
|
826
|
+
|
|
827
|
+
@typing.overload
|
|
828
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
908
829
|
"""
|
|
909
830
|
Decorator prototype for all step decorators. This function gets specialized
|
|
910
831
|
and imported for all decorators types by _import_plugin_decorators().
|
|
911
832
|
"""
|
|
912
833
|
...
|
|
913
834
|
|
|
914
|
-
|
|
835
|
+
@typing.overload
|
|
836
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
837
|
+
...
|
|
838
|
+
|
|
839
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
915
840
|
"""
|
|
916
|
-
|
|
917
|
-
|
|
918
|
-
|
|
919
|
-
Parameters
|
|
920
|
-
----------
|
|
921
|
-
gpu : int
|
|
922
|
-
Number of GPUs to use.
|
|
923
|
-
gpu_type : str
|
|
924
|
-
Type of Nvidia GPU to use.
|
|
925
|
-
queue_timeout : int
|
|
926
|
-
Time to keep the job in NVCF's queue.
|
|
841
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
842
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
927
843
|
"""
|
|
928
844
|
...
|
|
929
845
|
|
|
930
846
|
@typing.overload
|
|
931
|
-
def
|
|
847
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
932
848
|
"""
|
|
933
|
-
Specifies
|
|
934
|
-
|
|
935
|
-
This decorator is useful if this step may hang indefinitely.
|
|
936
|
-
|
|
937
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
938
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
939
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
940
|
-
|
|
941
|
-
Note that all the values specified in parameters are added together so if you specify
|
|
942
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
849
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
943
850
|
|
|
944
851
|
|
|
945
852
|
Parameters
|
|
946
853
|
----------
|
|
947
|
-
|
|
948
|
-
|
|
949
|
-
minutes : int, default 0
|
|
950
|
-
Number of minutes to wait prior to timing out.
|
|
951
|
-
hours : int, default 0
|
|
952
|
-
Number of hours to wait prior to timing out.
|
|
854
|
+
vars : Dict[str, str], default {}
|
|
855
|
+
Dictionary of environment variables to set.
|
|
953
856
|
"""
|
|
954
857
|
...
|
|
955
858
|
|
|
956
859
|
@typing.overload
|
|
957
|
-
def
|
|
860
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
958
861
|
...
|
|
959
862
|
|
|
960
863
|
@typing.overload
|
|
961
|
-
def
|
|
864
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
962
865
|
...
|
|
963
866
|
|
|
964
|
-
def
|
|
867
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
965
868
|
"""
|
|
966
|
-
Specifies
|
|
869
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
967
870
|
|
|
968
|
-
This decorator is useful if this step may hang indefinitely.
|
|
969
871
|
|
|
970
|
-
|
|
971
|
-
|
|
972
|
-
|
|
872
|
+
Parameters
|
|
873
|
+
----------
|
|
874
|
+
vars : Dict[str, str], default {}
|
|
875
|
+
Dictionary of environment variables to set.
|
|
876
|
+
"""
|
|
877
|
+
...
|
|
878
|
+
|
|
879
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
880
|
+
"""
|
|
881
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
973
882
|
|
|
974
|
-
|
|
975
|
-
|
|
883
|
+
User code call
|
|
884
|
+
--------------
|
|
885
|
+
@ollama(
|
|
886
|
+
models=[...],
|
|
887
|
+
...
|
|
888
|
+
)
|
|
889
|
+
|
|
890
|
+
Valid backend options
|
|
891
|
+
---------------------
|
|
892
|
+
- 'local': Run as a separate process on the local task machine.
|
|
893
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
894
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
895
|
+
|
|
896
|
+
Valid model options
|
|
897
|
+
-------------------
|
|
898
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
976
899
|
|
|
977
900
|
|
|
978
901
|
Parameters
|
|
979
902
|
----------
|
|
980
|
-
|
|
981
|
-
|
|
982
|
-
|
|
983
|
-
|
|
984
|
-
|
|
985
|
-
|
|
903
|
+
models: list[str]
|
|
904
|
+
List of Ollama containers running models in sidecars.
|
|
905
|
+
backend: str
|
|
906
|
+
Determines where and how to run the Ollama process.
|
|
907
|
+
force_pull: bool
|
|
908
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
909
|
+
cache_update_policy: str
|
|
910
|
+
Cache update policy: "auto", "force", or "never".
|
|
911
|
+
force_cache_update: bool
|
|
912
|
+
Simple override for "force" cache update policy.
|
|
913
|
+
debug: bool
|
|
914
|
+
Whether to turn on verbose debugging logs.
|
|
915
|
+
circuit_breaker_config: dict
|
|
916
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
917
|
+
timeout_config: dict
|
|
918
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
986
919
|
"""
|
|
987
920
|
...
|
|
988
921
|
|
|
989
922
|
@typing.overload
|
|
990
|
-
def
|
|
923
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
991
924
|
"""
|
|
992
|
-
|
|
925
|
+
Internal decorator to support Fast bakery
|
|
926
|
+
"""
|
|
927
|
+
...
|
|
928
|
+
|
|
929
|
+
@typing.overload
|
|
930
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
931
|
+
...
|
|
932
|
+
|
|
933
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
934
|
+
"""
|
|
935
|
+
Internal decorator to support Fast bakery
|
|
936
|
+
"""
|
|
937
|
+
...
|
|
938
|
+
|
|
939
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
940
|
+
"""
|
|
941
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
|
993
942
|
|
|
994
943
|
> Examples
|
|
995
|
-
|
|
944
|
+
|
|
945
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
|
996
946
|
```python
|
|
997
|
-
|
|
998
|
-
|
|
999
|
-
|
|
1000
|
-
|
|
1001
|
-
|
|
1002
|
-
|
|
1003
|
-
|
|
1004
|
-
|
|
1005
|
-
"epochs": 10,
|
|
1006
|
-
"batch-size": 32,
|
|
1007
|
-
"learning-rate": 0.001,
|
|
1008
|
-
}
|
|
1009
|
-
)
|
|
1010
|
-
self.next(self.test)
|
|
947
|
+
@huggingface_hub
|
|
948
|
+
@step
|
|
949
|
+
def pull_model_from_huggingface(self):
|
|
950
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
951
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
952
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
953
|
+
# value of the function is a reference to the model in the backend storage.
|
|
954
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
1011
955
|
|
|
1012
|
-
|
|
1013
|
-
|
|
1014
|
-
|
|
1015
|
-
|
|
1016
|
-
|
|
1017
|
-
|
|
1018
|
-
self.next(self.end)
|
|
956
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
957
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
958
|
+
repo_id=self.model_id,
|
|
959
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
960
|
+
)
|
|
961
|
+
self.next(self.train)
|
|
1019
962
|
```
|
|
1020
963
|
|
|
1021
|
-
|
|
964
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
|
1022
965
|
```python
|
|
1023
|
-
|
|
1024
|
-
|
|
1025
|
-
|
|
1026
|
-
|
|
1027
|
-
|
|
1028
|
-
|
|
1029
|
-
|
|
1030
|
-
|
|
1031
|
-
|
|
1032
|
-
|
|
966
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
967
|
+
@step
|
|
968
|
+
def pull_model_from_huggingface(self):
|
|
969
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
970
|
+
```
|
|
971
|
+
|
|
972
|
+
```python
|
|
973
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
|
974
|
+
@step
|
|
975
|
+
def finetune_model(self):
|
|
976
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
977
|
+
# path_to_model will be /my-directory
|
|
978
|
+
```
|
|
979
|
+
|
|
980
|
+
```python
|
|
981
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
982
|
+
# except for `local_dir`
|
|
983
|
+
@huggingface_hub(load=[
|
|
984
|
+
{
|
|
985
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
986
|
+
},
|
|
987
|
+
{
|
|
988
|
+
"repo_id": "myorg/mistral-lora",
|
|
989
|
+
"repo_type": "model",
|
|
990
|
+
},
|
|
991
|
+
])
|
|
992
|
+
@step
|
|
993
|
+
def finetune_model(self):
|
|
994
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
995
|
+
# path_to_model will be /my-directory
|
|
1033
996
|
```
|
|
1034
997
|
|
|
1035
998
|
|
|
1036
999
|
Parameters
|
|
1037
1000
|
----------
|
|
1038
|
-
|
|
1039
|
-
|
|
1040
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
1041
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
1042
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
1043
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
1001
|
+
temp_dir_root : str, optional
|
|
1002
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
1044
1003
|
|
|
1045
|
-
|
|
1046
|
-
The
|
|
1004
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
1005
|
+
The list of repos (models/datasets) to load.
|
|
1006
|
+
|
|
1007
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
1008
|
+
|
|
1009
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
1010
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
1011
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
1012
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
1013
|
+
|
|
1014
|
+
- If repo is found in the datastore:
|
|
1015
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
1016
|
+
"""
|
|
1017
|
+
...
|
|
1018
|
+
|
|
1019
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1020
|
+
"""
|
|
1021
|
+
Specifies that this step should execute on Kubernetes.
|
|
1022
|
+
|
|
1023
|
+
|
|
1024
|
+
Parameters
|
|
1025
|
+
----------
|
|
1026
|
+
cpu : int, default 1
|
|
1027
|
+
Number of CPUs required for this step. If `@resources` is
|
|
1028
|
+
also present, the maximum value from all decorators is used.
|
|
1029
|
+
memory : int, default 4096
|
|
1030
|
+
Memory size (in MB) required for this step. If
|
|
1031
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
1032
|
+
used.
|
|
1033
|
+
disk : int, default 10240
|
|
1034
|
+
Disk size (in MB) required for this step. If
|
|
1035
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
1036
|
+
used.
|
|
1037
|
+
image : str, optional, default None
|
|
1038
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
1039
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
1040
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
1041
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
1042
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
1043
|
+
image_pull_secrets: List[str], default []
|
|
1044
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
1045
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
1046
|
+
in Kubernetes.
|
|
1047
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
1048
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
1049
|
+
secrets : List[str], optional, default None
|
|
1050
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
1051
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
1052
|
+
in Metaflow configuration.
|
|
1053
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
1054
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
1055
|
+
Can be passed in as a comma separated string of values e.g.
|
|
1056
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
1057
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
1058
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
1059
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
1060
|
+
gpu : int, optional, default None
|
|
1061
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
1062
|
+
the scheduled node should not have GPUs.
|
|
1063
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
1064
|
+
The vendor of the GPUs to be used for this step.
|
|
1065
|
+
tolerations : List[Dict[str,str]], default []
|
|
1066
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
1067
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
1068
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
1069
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
1070
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
1071
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
1072
|
+
use_tmpfs : bool, default False
|
|
1073
|
+
This enables an explicit tmpfs mount for this step.
|
|
1074
|
+
tmpfs_tempdir : bool, default True
|
|
1075
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
1076
|
+
tmpfs_size : int, optional, default: None
|
|
1077
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
1078
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
1079
|
+
memory allocated for this step.
|
|
1080
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
1081
|
+
Path to tmpfs mount for this step.
|
|
1082
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
1083
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
1084
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
1085
|
+
shared_memory: int, optional
|
|
1086
|
+
Shared memory size (in MiB) required for this step
|
|
1087
|
+
port: int, optional
|
|
1088
|
+
Port number to specify in the Kubernetes job object
|
|
1089
|
+
compute_pool : str, optional, default None
|
|
1090
|
+
Compute pool to be used for for this step.
|
|
1091
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
1092
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
1093
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
1094
|
+
Only applicable when @parallel is used.
|
|
1095
|
+
qos: str, default: Burstable
|
|
1096
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
1097
|
+
|
|
1098
|
+
security_context: Dict[str, Any], optional, default None
|
|
1099
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
1100
|
+
- privileged: bool, optional, default None
|
|
1101
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
1102
|
+
- run_as_user: int, optional, default None
|
|
1103
|
+
- run_as_group: int, optional, default None
|
|
1104
|
+
- run_as_non_root: bool, optional, default None
|
|
1047
1105
|
"""
|
|
1048
1106
|
...
|
|
1049
1107
|
|
|
1050
1108
|
@typing.overload
|
|
1051
|
-
def
|
|
1109
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1110
|
+
"""
|
|
1111
|
+
Specifies the number of times the task corresponding
|
|
1112
|
+
to a step needs to be retried.
|
|
1113
|
+
|
|
1114
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
1115
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
1116
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
1117
|
+
|
|
1118
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
1119
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
1120
|
+
ensuring that the flow execution can continue.
|
|
1121
|
+
|
|
1122
|
+
|
|
1123
|
+
Parameters
|
|
1124
|
+
----------
|
|
1125
|
+
times : int, default 3
|
|
1126
|
+
Number of times to retry this task.
|
|
1127
|
+
minutes_between_retries : int, default 2
|
|
1128
|
+
Number of minutes between retries.
|
|
1129
|
+
"""
|
|
1052
1130
|
...
|
|
1053
1131
|
|
|
1054
1132
|
@typing.overload
|
|
1055
|
-
def
|
|
1133
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1056
1134
|
...
|
|
1057
1135
|
|
|
1058
|
-
|
|
1136
|
+
@typing.overload
|
|
1137
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1138
|
+
...
|
|
1139
|
+
|
|
1140
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
1059
1141
|
"""
|
|
1060
|
-
|
|
1061
|
-
|
|
1062
|
-
> Examples
|
|
1063
|
-
- Saving Models
|
|
1064
|
-
```python
|
|
1065
|
-
@model
|
|
1066
|
-
@step
|
|
1067
|
-
def train(self):
|
|
1068
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
1069
|
-
self.my_model = current.model.save(
|
|
1070
|
-
path_to_my_model,
|
|
1071
|
-
label="my_model",
|
|
1072
|
-
metadata={
|
|
1073
|
-
"epochs": 10,
|
|
1074
|
-
"batch-size": 32,
|
|
1075
|
-
"learning-rate": 0.001,
|
|
1076
|
-
}
|
|
1077
|
-
)
|
|
1078
|
-
self.next(self.test)
|
|
1142
|
+
Specifies the number of times the task corresponding
|
|
1143
|
+
to a step needs to be retried.
|
|
1079
1144
|
|
|
1080
|
-
|
|
1081
|
-
|
|
1082
|
-
|
|
1083
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
1084
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
1085
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
1086
|
-
self.next(self.end)
|
|
1087
|
-
```
|
|
1145
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
1146
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
1147
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
1088
1148
|
|
|
1089
|
-
|
|
1090
|
-
|
|
1091
|
-
|
|
1092
|
-
def train(self):
|
|
1093
|
-
# current.model.load returns the path to the model loaded
|
|
1094
|
-
checkpoint_path = current.model.load(
|
|
1095
|
-
self.checkpoint_key,
|
|
1096
|
-
)
|
|
1097
|
-
model_path = current.model.load(
|
|
1098
|
-
self.model,
|
|
1099
|
-
)
|
|
1100
|
-
self.next(self.test)
|
|
1101
|
-
```
|
|
1149
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
1150
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
1151
|
+
ensuring that the flow execution can continue.
|
|
1102
1152
|
|
|
1103
1153
|
|
|
1104
1154
|
Parameters
|
|
1105
1155
|
----------
|
|
1106
|
-
|
|
1107
|
-
|
|
1108
|
-
|
|
1109
|
-
|
|
1110
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
1111
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
1112
|
-
|
|
1113
|
-
temp_dir_root : str, default: None
|
|
1114
|
-
The root directory under which `current.model.loaded` will store loaded models
|
|
1156
|
+
times : int, default 3
|
|
1157
|
+
Number of times to retry this task.
|
|
1158
|
+
minutes_between_retries : int, default 2
|
|
1159
|
+
Number of minutes between retries.
|
|
1115
1160
|
"""
|
|
1116
1161
|
...
|
|
1117
1162
|
|
|
1118
1163
|
@typing.overload
|
|
1119
|
-
def
|
|
1164
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1120
1165
|
"""
|
|
1121
|
-
Specifies
|
|
1166
|
+
Specifies the resources needed when executing this step.
|
|
1122
1167
|
|
|
1123
|
-
|
|
1124
|
-
|
|
1125
|
-
|
|
1126
|
-
|
|
1168
|
+
Use `@resources` to specify the resource requirements
|
|
1169
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1170
|
+
|
|
1171
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1172
|
+
```
|
|
1173
|
+
python myflow.py run --with batch
|
|
1174
|
+
```
|
|
1175
|
+
or
|
|
1176
|
+
```
|
|
1177
|
+
python myflow.py run --with kubernetes
|
|
1178
|
+
```
|
|
1179
|
+
which executes the flow on the desired system using the
|
|
1180
|
+
requirements specified in `@resources`.
|
|
1127
1181
|
|
|
1128
1182
|
|
|
1129
1183
|
Parameters
|
|
1130
1184
|
----------
|
|
1131
|
-
|
|
1132
|
-
|
|
1133
|
-
|
|
1134
|
-
|
|
1135
|
-
|
|
1136
|
-
|
|
1185
|
+
cpu : int, default 1
|
|
1186
|
+
Number of CPUs required for this step.
|
|
1187
|
+
gpu : int, optional, default None
|
|
1188
|
+
Number of GPUs required for this step.
|
|
1189
|
+
disk : int, optional, default None
|
|
1190
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1191
|
+
memory : int, default 4096
|
|
1192
|
+
Memory size (in MB) required for this step.
|
|
1193
|
+
shared_memory : int, optional, default None
|
|
1194
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1195
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1137
1196
|
"""
|
|
1138
1197
|
...
|
|
1139
1198
|
|
|
1140
1199
|
@typing.overload
|
|
1141
|
-
def
|
|
1200
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1142
1201
|
...
|
|
1143
1202
|
|
|
1144
1203
|
@typing.overload
|
|
1145
|
-
def
|
|
1204
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1146
1205
|
...
|
|
1147
1206
|
|
|
1148
|
-
def
|
|
1207
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
1149
1208
|
"""
|
|
1150
|
-
Specifies
|
|
1209
|
+
Specifies the resources needed when executing this step.
|
|
1151
1210
|
|
|
1152
|
-
|
|
1153
|
-
|
|
1154
|
-
|
|
1155
|
-
|
|
1211
|
+
Use `@resources` to specify the resource requirements
|
|
1212
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1213
|
+
|
|
1214
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1215
|
+
```
|
|
1216
|
+
python myflow.py run --with batch
|
|
1217
|
+
```
|
|
1218
|
+
or
|
|
1219
|
+
```
|
|
1220
|
+
python myflow.py run --with kubernetes
|
|
1221
|
+
```
|
|
1222
|
+
which executes the flow on the desired system using the
|
|
1223
|
+
requirements specified in `@resources`.
|
|
1156
1224
|
|
|
1157
1225
|
|
|
1158
1226
|
Parameters
|
|
1159
1227
|
----------
|
|
1160
|
-
|
|
1161
|
-
|
|
1162
|
-
|
|
1163
|
-
|
|
1164
|
-
|
|
1165
|
-
|
|
1228
|
+
cpu : int, default 1
|
|
1229
|
+
Number of CPUs required for this step.
|
|
1230
|
+
gpu : int, optional, default None
|
|
1231
|
+
Number of GPUs required for this step.
|
|
1232
|
+
disk : int, optional, default None
|
|
1233
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1234
|
+
memory : int, default 4096
|
|
1235
|
+
Memory size (in MB) required for this step.
|
|
1236
|
+
shared_memory : int, optional, default None
|
|
1237
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1238
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1166
1239
|
"""
|
|
1167
1240
|
...
|
|
1168
1241
|
|
|
1169
1242
|
@typing.overload
|
|
1170
|
-
def
|
|
1243
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1171
1244
|
"""
|
|
1172
|
-
|
|
1173
|
-
|
|
1174
|
-
> Examples
|
|
1175
|
-
|
|
1176
|
-
- Saving Checkpoints
|
|
1177
|
-
|
|
1178
|
-
```python
|
|
1179
|
-
@checkpoint
|
|
1180
|
-
@step
|
|
1181
|
-
def train(self):
|
|
1182
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
1183
|
-
for i in range(self.epochs):
|
|
1184
|
-
# some training logic
|
|
1185
|
-
loss = model.train(self.dataset)
|
|
1186
|
-
if i % 10 == 0:
|
|
1187
|
-
model.save(
|
|
1188
|
-
current.checkpoint.directory,
|
|
1189
|
-
)
|
|
1190
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1191
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1192
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
1193
|
-
name="epoch_checkpoint",
|
|
1194
|
-
metadata={
|
|
1195
|
-
"epoch": i,
|
|
1196
|
-
"loss": loss,
|
|
1197
|
-
}
|
|
1198
|
-
)
|
|
1199
|
-
```
|
|
1245
|
+
Specifies a timeout for your step.
|
|
1200
1246
|
|
|
1201
|
-
|
|
1247
|
+
This decorator is useful if this step may hang indefinitely.
|
|
1202
1248
|
|
|
1203
|
-
|
|
1204
|
-
|
|
1205
|
-
|
|
1206
|
-
@step
|
|
1207
|
-
def train(self):
|
|
1208
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
1209
|
-
# saved a checkpoint
|
|
1210
|
-
checkpoint_path = None
|
|
1211
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1212
|
-
print("Loaded checkpoint from the previous attempt")
|
|
1213
|
-
checkpoint_path = current.checkpoint.directory
|
|
1249
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1250
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1251
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1214
1252
|
|
|
1215
|
-
|
|
1216
|
-
|
|
1217
|
-
...
|
|
1218
|
-
```
|
|
1253
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
1254
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
1219
1255
|
|
|
1220
1256
|
|
|
1221
1257
|
Parameters
|
|
1222
1258
|
----------
|
|
1223
|
-
|
|
1224
|
-
|
|
1225
|
-
|
|
1226
|
-
|
|
1227
|
-
|
|
1228
|
-
|
|
1229
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1230
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1231
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1232
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
1233
|
-
|
|
1234
|
-
temp_dir_root : str, default: None
|
|
1235
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
1259
|
+
seconds : int, default 0
|
|
1260
|
+
Number of seconds to wait prior to timing out.
|
|
1261
|
+
minutes : int, default 0
|
|
1262
|
+
Number of minutes to wait prior to timing out.
|
|
1263
|
+
hours : int, default 0
|
|
1264
|
+
Number of hours to wait prior to timing out.
|
|
1236
1265
|
"""
|
|
1237
1266
|
...
|
|
1238
1267
|
|
|
1239
1268
|
@typing.overload
|
|
1240
|
-
def
|
|
1269
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1241
1270
|
...
|
|
1242
1271
|
|
|
1243
1272
|
@typing.overload
|
|
1244
|
-
def
|
|
1273
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1245
1274
|
...
|
|
1246
1275
|
|
|
1247
|
-
def
|
|
1276
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
1248
1277
|
"""
|
|
1249
|
-
|
|
1250
|
-
|
|
1251
|
-
> Examples
|
|
1252
|
-
|
|
1253
|
-
- Saving Checkpoints
|
|
1254
|
-
|
|
1255
|
-
```python
|
|
1256
|
-
@checkpoint
|
|
1257
|
-
@step
|
|
1258
|
-
def train(self):
|
|
1259
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
1260
|
-
for i in range(self.epochs):
|
|
1261
|
-
# some training logic
|
|
1262
|
-
loss = model.train(self.dataset)
|
|
1263
|
-
if i % 10 == 0:
|
|
1264
|
-
model.save(
|
|
1265
|
-
current.checkpoint.directory,
|
|
1266
|
-
)
|
|
1267
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1268
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1269
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
1270
|
-
name="epoch_checkpoint",
|
|
1271
|
-
metadata={
|
|
1272
|
-
"epoch": i,
|
|
1273
|
-
"loss": loss,
|
|
1274
|
-
}
|
|
1275
|
-
)
|
|
1276
|
-
```
|
|
1278
|
+
Specifies a timeout for your step.
|
|
1277
1279
|
|
|
1278
|
-
|
|
1280
|
+
This decorator is useful if this step may hang indefinitely.
|
|
1279
1281
|
|
|
1280
|
-
|
|
1281
|
-
|
|
1282
|
-
|
|
1283
|
-
@step
|
|
1284
|
-
def train(self):
|
|
1285
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
1286
|
-
# saved a checkpoint
|
|
1287
|
-
checkpoint_path = None
|
|
1288
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1289
|
-
print("Loaded checkpoint from the previous attempt")
|
|
1290
|
-
checkpoint_path = current.checkpoint.directory
|
|
1282
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1283
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1284
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1291
1285
|
|
|
1292
|
-
|
|
1293
|
-
|
|
1294
|
-
...
|
|
1295
|
-
```
|
|
1286
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
1287
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
1296
1288
|
|
|
1297
1289
|
|
|
1298
1290
|
Parameters
|
|
1299
1291
|
----------
|
|
1300
|
-
|
|
1301
|
-
|
|
1302
|
-
|
|
1303
|
-
|
|
1304
|
-
|
|
1305
|
-
|
|
1306
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1307
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1308
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1309
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
1310
|
-
|
|
1311
|
-
temp_dir_root : str, default: None
|
|
1312
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
1313
|
-
"""
|
|
1314
|
-
...
|
|
1315
|
-
|
|
1316
|
-
@typing.overload
|
|
1317
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1318
|
-
"""
|
|
1319
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1320
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1321
|
-
a Neo Cloud like Nebius.
|
|
1292
|
+
seconds : int, default 0
|
|
1293
|
+
Number of seconds to wait prior to timing out.
|
|
1294
|
+
minutes : int, default 0
|
|
1295
|
+
Number of minutes to wait prior to timing out.
|
|
1296
|
+
hours : int, default 0
|
|
1297
|
+
Number of hours to wait prior to timing out.
|
|
1322
1298
|
"""
|
|
1323
1299
|
...
|
|
1324
1300
|
|
|
1325
|
-
|
|
1326
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1327
|
-
...
|
|
1328
|
-
|
|
1329
|
-
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1301
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1330
1302
|
"""
|
|
1331
|
-
|
|
1332
|
-
|
|
1333
|
-
|
|
1303
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
1304
|
+
|
|
1305
|
+
User code call
|
|
1306
|
+
--------------
|
|
1307
|
+
@vllm(
|
|
1308
|
+
model="...",
|
|
1309
|
+
...
|
|
1310
|
+
)
|
|
1311
|
+
|
|
1312
|
+
Valid backend options
|
|
1313
|
+
---------------------
|
|
1314
|
+
- 'local': Run as a separate process on the local task machine.
|
|
1315
|
+
|
|
1316
|
+
Valid model options
|
|
1317
|
+
-------------------
|
|
1318
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
1319
|
+
|
|
1320
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
1321
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
1322
|
+
|
|
1323
|
+
|
|
1324
|
+
Parameters
|
|
1325
|
+
----------
|
|
1326
|
+
model: str
|
|
1327
|
+
HuggingFace model identifier to be served by vLLM.
|
|
1328
|
+
backend: str
|
|
1329
|
+
Determines where and how to run the vLLM process.
|
|
1330
|
+
openai_api_server: bool
|
|
1331
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
1332
|
+
Default is False (uses native engine).
|
|
1333
|
+
Set to True for backward compatibility with existing code.
|
|
1334
|
+
debug: bool
|
|
1335
|
+
Whether to turn on verbose debugging logs.
|
|
1336
|
+
card_refresh_interval: int
|
|
1337
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
1338
|
+
Only used when openai_api_server=True.
|
|
1339
|
+
max_retries: int
|
|
1340
|
+
Maximum number of retries checking for vLLM server startup.
|
|
1341
|
+
Only used when openai_api_server=True.
|
|
1342
|
+
retry_alert_frequency: int
|
|
1343
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
1344
|
+
Only used when openai_api_server=True.
|
|
1345
|
+
engine_args : dict
|
|
1346
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
1347
|
+
For example, `tensor_parallel_size=2`.
|
|
1334
1348
|
"""
|
|
1335
1349
|
...
|
|
1336
1350
|
|
|
1337
|
-
def
|
|
1351
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1338
1352
|
"""
|
|
1339
|
-
Specifies
|
|
1353
|
+
Specifies what flows belong to the same project.
|
|
1354
|
+
|
|
1355
|
+
A project-specific namespace is created for all flows that
|
|
1356
|
+
use the same `@project(name)`.
|
|
1340
1357
|
|
|
1341
1358
|
|
|
1342
1359
|
Parameters
|
|
1343
1360
|
----------
|
|
1344
|
-
|
|
1345
|
-
|
|
1346
|
-
|
|
1347
|
-
|
|
1348
|
-
"""
|
|
1349
|
-
...
|
|
1350
|
-
|
|
1351
|
-
@typing.overload
|
|
1352
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1353
|
-
"""
|
|
1354
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1361
|
+
name : str
|
|
1362
|
+
Project name. Make sure that the name is unique amongst all
|
|
1363
|
+
projects that use the same production scheduler. The name may
|
|
1364
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
1355
1365
|
|
|
1356
|
-
|
|
1357
|
-
|
|
1366
|
+
branch : Optional[str], default None
|
|
1367
|
+
The branch to use. If not specified, the branch is set to
|
|
1368
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
1369
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
1370
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
1358
1371
|
|
|
1359
|
-
|
|
1360
|
-
|
|
1361
|
-
|
|
1362
|
-
|
|
1363
|
-
|
|
1364
|
-
|
|
1365
|
-
|
|
1366
|
-
|
|
1372
|
+
production : bool, default False
|
|
1373
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
1374
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
1375
|
+
`production` in the decorator and on the command line.
|
|
1376
|
+
The project branch name will be:
|
|
1377
|
+
- if `branch` is specified:
|
|
1378
|
+
- if `production` is True: `prod.<branch>`
|
|
1379
|
+
- if `production` is False: `test.<branch>`
|
|
1380
|
+
- if `branch` is not specified:
|
|
1381
|
+
- if `production` is True: `prod`
|
|
1382
|
+
- if `production` is False: `user.<username>`
|
|
1367
1383
|
"""
|
|
1368
1384
|
...
|
|
1369
1385
|
|
|
1370
|
-
|
|
1371
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1372
|
-
...
|
|
1373
|
-
|
|
1374
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1386
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1375
1387
|
"""
|
|
1376
|
-
|
|
1388
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
1389
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1377
1390
|
|
|
1378
|
-
Use `@pypi_base` to set common packages required by all
|
|
1379
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1380
1391
|
|
|
1381
1392
|
Parameters
|
|
1382
1393
|
----------
|
|
1383
|
-
|
|
1384
|
-
|
|
1385
|
-
|
|
1386
|
-
|
|
1387
|
-
|
|
1388
|
-
|
|
1394
|
+
timeout : int
|
|
1395
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1396
|
+
poke_interval : int
|
|
1397
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1398
|
+
mode : str
|
|
1399
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1400
|
+
exponential_backoff : bool
|
|
1401
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1402
|
+
pool : str
|
|
1403
|
+
the slot pool this task should run in,
|
|
1404
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1405
|
+
soft_fail : bool
|
|
1406
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1407
|
+
name : str
|
|
1408
|
+
Name of the sensor on Airflow
|
|
1409
|
+
description : str
|
|
1410
|
+
Description of sensor in the Airflow UI
|
|
1411
|
+
external_dag_id : str
|
|
1412
|
+
The dag_id that contains the task you want to wait for.
|
|
1413
|
+
external_task_ids : List[str]
|
|
1414
|
+
The list of task_ids that you want to wait for.
|
|
1415
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1416
|
+
allowed_states : List[str]
|
|
1417
|
+
Iterable of allowed states, (Default: ['success'])
|
|
1418
|
+
failed_states : List[str]
|
|
1419
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
|
1420
|
+
execution_delta : datetime.timedelta
|
|
1421
|
+
time difference with the previous execution to look at,
|
|
1422
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1423
|
+
check_existence: bool
|
|
1424
|
+
Set to True to check if the external task exists or check if
|
|
1425
|
+
the DAG to wait for exists. (Default: True)
|
|
1389
1426
|
"""
|
|
1390
1427
|
...
|
|
1391
1428
|
|
|
@@ -1471,202 +1508,73 @@ def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] =
|
|
|
1471
1508
|
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1472
1509
|
```
|
|
1473
1510
|
|
|
1474
|
-
Note that `branch` is typically one of:
|
|
1475
|
-
- `prod`
|
|
1476
|
-
- `user.bob`
|
|
1477
|
-
- `test.my_experiment`
|
|
1478
|
-
- `prod.staging`
|
|
1479
|
-
|
|
1480
|
-
|
|
1481
|
-
Parameters
|
|
1482
|
-
----------
|
|
1483
|
-
flow : Union[str, Dict[str, str]], optional, default None
|
|
1484
|
-
Upstream flow dependency for this flow.
|
|
1485
|
-
flows : List[Union[str, Dict[str, str]]], default []
|
|
1486
|
-
Upstream flow dependencies for this flow.
|
|
1487
|
-
options : Dict[str, Any], default {}
|
|
1488
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
1489
|
-
"""
|
|
1490
|
-
...
|
|
1491
|
-
|
|
1492
|
-
@typing.overload
|
|
1493
|
-
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1494
|
-
...
|
|
1495
|
-
|
|
1496
|
-
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1497
|
-
"""
|
|
1498
|
-
Specifies the flow(s) that this flow depends on.
|
|
1499
|
-
|
|
1500
|
-
```
|
|
1501
|
-
@trigger_on_finish(flow='FooFlow')
|
|
1502
|
-
```
|
|
1503
|
-
or
|
|
1504
|
-
```
|
|
1505
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1506
|
-
```
|
|
1507
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1508
|
-
when upstream runs within the same namespace complete successfully
|
|
1509
|
-
|
|
1510
|
-
Additionally, you can specify project aware upstream flow dependencies
|
|
1511
|
-
by specifying the fully qualified project_flow_name.
|
|
1512
|
-
```
|
|
1513
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1514
|
-
```
|
|
1515
|
-
or
|
|
1516
|
-
```
|
|
1517
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1518
|
-
```
|
|
1519
|
-
|
|
1520
|
-
You can also specify just the project or project branch (other values will be
|
|
1521
|
-
inferred from the current project or project branch):
|
|
1522
|
-
```
|
|
1523
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1524
|
-
```
|
|
1525
|
-
|
|
1526
|
-
Note that `branch` is typically one of:
|
|
1527
|
-
- `prod`
|
|
1528
|
-
- `user.bob`
|
|
1529
|
-
- `test.my_experiment`
|
|
1530
|
-
- `prod.staging`
|
|
1531
|
-
|
|
1532
|
-
|
|
1533
|
-
Parameters
|
|
1534
|
-
----------
|
|
1535
|
-
flow : Union[str, Dict[str, str]], optional, default None
|
|
1536
|
-
Upstream flow dependency for this flow.
|
|
1537
|
-
flows : List[Union[str, Dict[str, str]]], default []
|
|
1538
|
-
Upstream flow dependencies for this flow.
|
|
1539
|
-
options : Dict[str, Any], default {}
|
|
1540
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
1541
|
-
"""
|
|
1542
|
-
...
|
|
1543
|
-
|
|
1544
|
-
@typing.overload
|
|
1545
|
-
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1546
|
-
"""
|
|
1547
|
-
Specifies the Conda environment for all steps of the flow.
|
|
1548
|
-
|
|
1549
|
-
Use `@conda_base` to set common libraries required by all
|
|
1550
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1551
|
-
|
|
1552
|
-
|
|
1553
|
-
Parameters
|
|
1554
|
-
----------
|
|
1555
|
-
packages : Dict[str, str], default {}
|
|
1556
|
-
Packages to use for this flow. The key is the name of the package
|
|
1557
|
-
and the value is the version to use.
|
|
1558
|
-
libraries : Dict[str, str], default {}
|
|
1559
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1560
|
-
python : str, optional, default None
|
|
1561
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1562
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1563
|
-
disabled : bool, default False
|
|
1564
|
-
If set to True, disables Conda.
|
|
1565
|
-
"""
|
|
1566
|
-
...
|
|
1567
|
-
|
|
1568
|
-
@typing.overload
|
|
1569
|
-
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1570
|
-
...
|
|
1571
|
-
|
|
1572
|
-
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1573
|
-
"""
|
|
1574
|
-
Specifies the Conda environment for all steps of the flow.
|
|
1575
|
-
|
|
1576
|
-
Use `@conda_base` to set common libraries required by all
|
|
1577
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1578
|
-
|
|
1579
|
-
|
|
1580
|
-
Parameters
|
|
1581
|
-
----------
|
|
1582
|
-
packages : Dict[str, str], default {}
|
|
1583
|
-
Packages to use for this flow. The key is the name of the package
|
|
1584
|
-
and the value is the version to use.
|
|
1585
|
-
libraries : Dict[str, str], default {}
|
|
1586
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1587
|
-
python : str, optional, default None
|
|
1588
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1589
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1590
|
-
disabled : bool, default False
|
|
1591
|
-
If set to True, disables Conda.
|
|
1592
|
-
"""
|
|
1593
|
-
...
|
|
1594
|
-
|
|
1595
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1596
|
-
"""
|
|
1597
|
-
Specifies what flows belong to the same project.
|
|
1598
|
-
|
|
1599
|
-
A project-specific namespace is created for all flows that
|
|
1600
|
-
use the same `@project(name)`.
|
|
1601
|
-
|
|
1602
|
-
|
|
1603
|
-
Parameters
|
|
1604
|
-
----------
|
|
1605
|
-
name : str
|
|
1606
|
-
Project name. Make sure that the name is unique amongst all
|
|
1607
|
-
projects that use the same production scheduler. The name may
|
|
1608
|
-
contain only lowercase alphanumeric characters and underscores.
|
|
1609
|
-
|
|
1610
|
-
branch : Optional[str], default None
|
|
1611
|
-
The branch to use. If not specified, the branch is set to
|
|
1612
|
-
`user.<username>` unless `production` is set to `True`. This can
|
|
1613
|
-
also be set on the command line using `--branch` as a top-level option.
|
|
1614
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
|
1615
|
-
|
|
1616
|
-
production : bool, default False
|
|
1617
|
-
Whether or not the branch is the production branch. This can also be set on the
|
|
1618
|
-
command line using `--production` as a top-level option. It is an error to specify
|
|
1619
|
-
`production` in the decorator and on the command line.
|
|
1620
|
-
The project branch name will be:
|
|
1621
|
-
- if `branch` is specified:
|
|
1622
|
-
- if `production` is True: `prod.<branch>`
|
|
1623
|
-
- if `production` is False: `test.<branch>`
|
|
1624
|
-
- if `branch` is not specified:
|
|
1625
|
-
- if `production` is True: `prod`
|
|
1626
|
-
- if `production` is False: `user.<username>`
|
|
1511
|
+
Note that `branch` is typically one of:
|
|
1512
|
+
- `prod`
|
|
1513
|
+
- `user.bob`
|
|
1514
|
+
- `test.my_experiment`
|
|
1515
|
+
- `prod.staging`
|
|
1516
|
+
|
|
1517
|
+
|
|
1518
|
+
Parameters
|
|
1519
|
+
----------
|
|
1520
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1521
|
+
Upstream flow dependency for this flow.
|
|
1522
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1523
|
+
Upstream flow dependencies for this flow.
|
|
1524
|
+
options : Dict[str, Any], default {}
|
|
1525
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1627
1526
|
"""
|
|
1628
1527
|
...
|
|
1629
1528
|
|
|
1630
|
-
|
|
1529
|
+
@typing.overload
|
|
1530
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1531
|
+
...
|
|
1532
|
+
|
|
1533
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1631
1534
|
"""
|
|
1632
|
-
|
|
1633
|
-
|
|
1634
|
-
|
|
1635
|
-
|
|
1636
|
-
|
|
1535
|
+
Specifies the flow(s) that this flow depends on.
|
|
1536
|
+
|
|
1537
|
+
```
|
|
1538
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1539
|
+
```
|
|
1540
|
+
or
|
|
1541
|
+
```
|
|
1542
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1543
|
+
```
|
|
1544
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1545
|
+
when upstream runs within the same namespace complete successfully
|
|
1546
|
+
|
|
1547
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1548
|
+
by specifying the fully qualified project_flow_name.
|
|
1549
|
+
```
|
|
1550
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1551
|
+
```
|
|
1552
|
+
or
|
|
1553
|
+
```
|
|
1554
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1555
|
+
```
|
|
1556
|
+
|
|
1557
|
+
You can also specify just the project or project branch (other values will be
|
|
1558
|
+
inferred from the current project or project branch):
|
|
1559
|
+
```
|
|
1560
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1561
|
+
```
|
|
1562
|
+
|
|
1563
|
+
Note that `branch` is typically one of:
|
|
1564
|
+
- `prod`
|
|
1565
|
+
- `user.bob`
|
|
1566
|
+
- `test.my_experiment`
|
|
1567
|
+
- `prod.staging`
|
|
1637
1568
|
|
|
1638
1569
|
|
|
1639
1570
|
Parameters
|
|
1640
1571
|
----------
|
|
1641
|
-
|
|
1642
|
-
|
|
1643
|
-
|
|
1644
|
-
|
|
1645
|
-
|
|
1646
|
-
|
|
1647
|
-
exponential_backoff : bool
|
|
1648
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1649
|
-
pool : str
|
|
1650
|
-
the slot pool this task should run in,
|
|
1651
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1652
|
-
soft_fail : bool
|
|
1653
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1654
|
-
name : str
|
|
1655
|
-
Name of the sensor on Airflow
|
|
1656
|
-
description : str
|
|
1657
|
-
Description of sensor in the Airflow UI
|
|
1658
|
-
bucket_key : Union[str, List[str]]
|
|
1659
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1660
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1661
|
-
bucket_name : str
|
|
1662
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1663
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1664
|
-
wildcard_match : bool
|
|
1665
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1666
|
-
aws_conn_id : str
|
|
1667
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
|
1668
|
-
verify : bool
|
|
1669
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1572
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1573
|
+
Upstream flow dependency for this flow.
|
|
1574
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1575
|
+
Upstream flow dependencies for this flow.
|
|
1576
|
+
options : Dict[str, Any], default {}
|
|
1577
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1670
1578
|
"""
|
|
1671
1579
|
...
|
|
1672
1580
|
|
|
@@ -1784,6 +1692,49 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1784
1692
|
"""
|
|
1785
1693
|
...
|
|
1786
1694
|
|
|
1695
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1696
|
+
"""
|
|
1697
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1698
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1699
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1700
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1701
|
+
starts only after all sensors finish.
|
|
1702
|
+
|
|
1703
|
+
|
|
1704
|
+
Parameters
|
|
1705
|
+
----------
|
|
1706
|
+
timeout : int
|
|
1707
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1708
|
+
poke_interval : int
|
|
1709
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1710
|
+
mode : str
|
|
1711
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1712
|
+
exponential_backoff : bool
|
|
1713
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1714
|
+
pool : str
|
|
1715
|
+
the slot pool this task should run in,
|
|
1716
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1717
|
+
soft_fail : bool
|
|
1718
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1719
|
+
name : str
|
|
1720
|
+
Name of the sensor on Airflow
|
|
1721
|
+
description : str
|
|
1722
|
+
Description of sensor in the Airflow UI
|
|
1723
|
+
bucket_key : Union[str, List[str]]
|
|
1724
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1725
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1726
|
+
bucket_name : str
|
|
1727
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1728
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1729
|
+
wildcard_match : bool
|
|
1730
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1731
|
+
aws_conn_id : str
|
|
1732
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1733
|
+
verify : bool
|
|
1734
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1735
|
+
"""
|
|
1736
|
+
...
|
|
1737
|
+
|
|
1787
1738
|
@typing.overload
|
|
1788
1739
|
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1789
1740
|
"""
|
|
@@ -1877,46 +1828,95 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
|
1877
1828
|
"""
|
|
1878
1829
|
...
|
|
1879
1830
|
|
|
1880
|
-
|
|
1831
|
+
@typing.overload
|
|
1832
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1881
1833
|
"""
|
|
1882
|
-
|
|
1883
|
-
|
|
1834
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1835
|
+
|
|
1836
|
+
Use `@conda_base` to set common libraries required by all
|
|
1837
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1884
1838
|
|
|
1885
1839
|
|
|
1886
1840
|
Parameters
|
|
1887
1841
|
----------
|
|
1888
|
-
|
|
1889
|
-
|
|
1890
|
-
|
|
1891
|
-
|
|
1892
|
-
|
|
1893
|
-
|
|
1894
|
-
|
|
1895
|
-
|
|
1896
|
-
|
|
1897
|
-
|
|
1898
|
-
|
|
1899
|
-
|
|
1900
|
-
|
|
1901
|
-
|
|
1902
|
-
|
|
1903
|
-
|
|
1904
|
-
|
|
1905
|
-
|
|
1906
|
-
|
|
1907
|
-
|
|
1908
|
-
|
|
1909
|
-
|
|
1910
|
-
|
|
1911
|
-
|
|
1912
|
-
|
|
1913
|
-
|
|
1914
|
-
|
|
1915
|
-
|
|
1916
|
-
|
|
1917
|
-
|
|
1918
|
-
|
|
1919
|
-
|
|
1842
|
+
packages : Dict[str, str], default {}
|
|
1843
|
+
Packages to use for this flow. The key is the name of the package
|
|
1844
|
+
and the value is the version to use.
|
|
1845
|
+
libraries : Dict[str, str], default {}
|
|
1846
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1847
|
+
python : str, optional, default None
|
|
1848
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1849
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1850
|
+
disabled : bool, default False
|
|
1851
|
+
If set to True, disables Conda.
|
|
1852
|
+
"""
|
|
1853
|
+
...
|
|
1854
|
+
|
|
1855
|
+
@typing.overload
|
|
1856
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1857
|
+
...
|
|
1858
|
+
|
|
1859
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1860
|
+
"""
|
|
1861
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1862
|
+
|
|
1863
|
+
Use `@conda_base` to set common libraries required by all
|
|
1864
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1865
|
+
|
|
1866
|
+
|
|
1867
|
+
Parameters
|
|
1868
|
+
----------
|
|
1869
|
+
packages : Dict[str, str], default {}
|
|
1870
|
+
Packages to use for this flow. The key is the name of the package
|
|
1871
|
+
and the value is the version to use.
|
|
1872
|
+
libraries : Dict[str, str], default {}
|
|
1873
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1874
|
+
python : str, optional, default None
|
|
1875
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1876
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1877
|
+
disabled : bool, default False
|
|
1878
|
+
If set to True, disables Conda.
|
|
1879
|
+
"""
|
|
1880
|
+
...
|
|
1881
|
+
|
|
1882
|
+
@typing.overload
|
|
1883
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1884
|
+
"""
|
|
1885
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1886
|
+
|
|
1887
|
+
Use `@pypi_base` to set common packages required by all
|
|
1888
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1889
|
+
|
|
1890
|
+
Parameters
|
|
1891
|
+
----------
|
|
1892
|
+
packages : Dict[str, str], default: {}
|
|
1893
|
+
Packages to use for this flow. The key is the name of the package
|
|
1894
|
+
and the value is the version to use.
|
|
1895
|
+
python : str, optional, default: None
|
|
1896
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1897
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1898
|
+
"""
|
|
1899
|
+
...
|
|
1900
|
+
|
|
1901
|
+
@typing.overload
|
|
1902
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1903
|
+
...
|
|
1904
|
+
|
|
1905
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1906
|
+
"""
|
|
1907
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1908
|
+
|
|
1909
|
+
Use `@pypi_base` to set common packages required by all
|
|
1910
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1911
|
+
|
|
1912
|
+
Parameters
|
|
1913
|
+
----------
|
|
1914
|
+
packages : Dict[str, str], default: {}
|
|
1915
|
+
Packages to use for this flow. The key is the name of the package
|
|
1916
|
+
and the value is the version to use.
|
|
1917
|
+
python : str, optional, default: None
|
|
1918
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1919
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1920
1920
|
"""
|
|
1921
1921
|
...
|
|
1922
1922
|
|