ob-metaflow-stubs 6.0.7.4__py2.py3-none-any.whl → 6.0.8.2__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +975 -975
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +2 -2
- metaflow-stubs/client/filecache.pyi +1 -1
- metaflow-stubs/events.pyi +1 -1
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +2 -2
- metaflow-stubs/meta_files.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +1 -1
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +56 -56
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/packaging_sys/__init__.pyi +6 -6
- metaflow-stubs/packaging_sys/backend.pyi +3 -3
- metaflow-stubs/packaging_sys/distribution_support.pyi +3 -3
- metaflow-stubs/packaging_sys/tar_backend.pyi +1 -1
- metaflow-stubs/packaging_sys/utils.pyi +1 -1
- metaflow-stubs/packaging_sys/v1.pyi +1 -1
- metaflow-stubs/parameters.pyi +2 -2
- metaflow-stubs/plugins/__init__.pyi +13 -13
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +1 -1
- metaflow-stubs/plugins/argo/exit_hooks.pyi +1 -1
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +1 -1
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +1 -1
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +1 -1
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/__init__.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/plugins/optuna/__init__.pyi +1 -1
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_func.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +1 -1
- metaflow-stubs/plugins/secrets/utils.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +1 -1
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +4 -4
- metaflow-stubs/runner/deployer_impl.pyi +1 -1
- metaflow-stubs/runner/metaflow_runner.pyi +2 -2
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +5 -5
- metaflow-stubs/user_decorators/__init__.pyi +1 -1
- metaflow-stubs/user_decorators/common.pyi +1 -1
- metaflow-stubs/user_decorators/mutable_flow.pyi +5 -5
- metaflow-stubs/user_decorators/mutable_step.pyi +4 -4
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +3 -3
- metaflow-stubs/user_decorators/user_step_decorator.pyi +4 -4
- {ob_metaflow_stubs-6.0.7.4.dist-info → ob_metaflow_stubs-6.0.8.2.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.8.2.dist-info/RECORD +262 -0
- ob_metaflow_stubs-6.0.7.4.dist-info/RECORD +0 -262
- {ob_metaflow_stubs-6.0.7.4.dist-info → ob_metaflow_stubs-6.0.8.2.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.7.4.dist-info → ob_metaflow_stubs-6.0.8.2.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
3
|
# MF version: 2.17.1.0+obcheckpoint(0.2.4);ob(v1) #
|
|
4
|
-
# Generated on 2025-08-
|
|
4
|
+
# Generated on 2025-08-22T06:36:31.648602 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
8
8
|
|
|
9
9
|
import typing
|
|
10
10
|
if typing.TYPE_CHECKING:
|
|
11
|
-
import datetime
|
|
12
11
|
import typing
|
|
12
|
+
import datetime
|
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
|
15
15
|
|
|
@@ -39,18 +39,18 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
-
from . import events as events
|
|
43
|
-
from . import metaflow_git as metaflow_git
|
|
44
42
|
from . import cards as cards
|
|
45
43
|
from . import tuple_util as tuple_util
|
|
44
|
+
from . import metaflow_git as metaflow_git
|
|
45
|
+
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
51
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
52
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
53
52
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
53
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
54
54
|
from . import client as client
|
|
55
55
|
from .client.core import namespace as namespace
|
|
56
56
|
from .client.core import get_namespace as get_namespace
|
|
@@ -167,214 +167,6 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
167
167
|
"""
|
|
168
168
|
...
|
|
169
169
|
|
|
170
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
171
|
-
"""
|
|
172
|
-
Specifies that this step should execute on Kubernetes.
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
Parameters
|
|
176
|
-
----------
|
|
177
|
-
cpu : int, default 1
|
|
178
|
-
Number of CPUs required for this step. If `@resources` is
|
|
179
|
-
also present, the maximum value from all decorators is used.
|
|
180
|
-
memory : int, default 4096
|
|
181
|
-
Memory size (in MB) required for this step. If
|
|
182
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
183
|
-
used.
|
|
184
|
-
disk : int, default 10240
|
|
185
|
-
Disk size (in MB) required for this step. If
|
|
186
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
187
|
-
used.
|
|
188
|
-
image : str, optional, default None
|
|
189
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
190
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
191
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
192
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
193
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
194
|
-
image_pull_secrets: List[str], default []
|
|
195
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
196
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
197
|
-
in Kubernetes.
|
|
198
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
199
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
200
|
-
secrets : List[str], optional, default None
|
|
201
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
202
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
203
|
-
in Metaflow configuration.
|
|
204
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
205
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
206
|
-
Can be passed in as a comma separated string of values e.g.
|
|
207
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
208
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
209
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
210
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
211
|
-
gpu : int, optional, default None
|
|
212
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
213
|
-
the scheduled node should not have GPUs.
|
|
214
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
215
|
-
The vendor of the GPUs to be used for this step.
|
|
216
|
-
tolerations : List[Dict[str,str]], default []
|
|
217
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
218
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
219
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
220
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
221
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
222
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
223
|
-
use_tmpfs : bool, default False
|
|
224
|
-
This enables an explicit tmpfs mount for this step.
|
|
225
|
-
tmpfs_tempdir : bool, default True
|
|
226
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
227
|
-
tmpfs_size : int, optional, default: None
|
|
228
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
229
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
230
|
-
memory allocated for this step.
|
|
231
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
232
|
-
Path to tmpfs mount for this step.
|
|
233
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
234
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
235
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
236
|
-
shared_memory: int, optional
|
|
237
|
-
Shared memory size (in MiB) required for this step
|
|
238
|
-
port: int, optional
|
|
239
|
-
Port number to specify in the Kubernetes job object
|
|
240
|
-
compute_pool : str, optional, default None
|
|
241
|
-
Compute pool to be used for for this step.
|
|
242
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
243
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
244
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
245
|
-
Only applicable when @parallel is used.
|
|
246
|
-
qos: str, default: Burstable
|
|
247
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
248
|
-
|
|
249
|
-
security_context: Dict[str, Any], optional, default None
|
|
250
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
251
|
-
- privileged: bool, optional, default None
|
|
252
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
253
|
-
- run_as_user: int, optional, default None
|
|
254
|
-
- run_as_group: int, optional, default None
|
|
255
|
-
- run_as_non_root: bool, optional, default None
|
|
256
|
-
"""
|
|
257
|
-
...
|
|
258
|
-
|
|
259
|
-
@typing.overload
|
|
260
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
261
|
-
"""
|
|
262
|
-
Internal decorator to support Fast bakery
|
|
263
|
-
"""
|
|
264
|
-
...
|
|
265
|
-
|
|
266
|
-
@typing.overload
|
|
267
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
268
|
-
...
|
|
269
|
-
|
|
270
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
271
|
-
"""
|
|
272
|
-
Internal decorator to support Fast bakery
|
|
273
|
-
"""
|
|
274
|
-
...
|
|
275
|
-
|
|
276
|
-
@typing.overload
|
|
277
|
-
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
278
|
-
"""
|
|
279
|
-
Specifies the PyPI packages for the step.
|
|
280
|
-
|
|
281
|
-
Information in this decorator will augment any
|
|
282
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
283
|
-
you can use `@pypi_base` to set packages required by all
|
|
284
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
Parameters
|
|
288
|
-
----------
|
|
289
|
-
packages : Dict[str, str], default: {}
|
|
290
|
-
Packages to use for this step. The key is the name of the package
|
|
291
|
-
and the value is the version to use.
|
|
292
|
-
python : str, optional, default: None
|
|
293
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
294
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
295
|
-
"""
|
|
296
|
-
...
|
|
297
|
-
|
|
298
|
-
@typing.overload
|
|
299
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
300
|
-
...
|
|
301
|
-
|
|
302
|
-
@typing.overload
|
|
303
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
304
|
-
...
|
|
305
|
-
|
|
306
|
-
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
307
|
-
"""
|
|
308
|
-
Specifies the PyPI packages for the step.
|
|
309
|
-
|
|
310
|
-
Information in this decorator will augment any
|
|
311
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
312
|
-
you can use `@pypi_base` to set packages required by all
|
|
313
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
Parameters
|
|
317
|
-
----------
|
|
318
|
-
packages : Dict[str, str], default: {}
|
|
319
|
-
Packages to use for this step. The key is the name of the package
|
|
320
|
-
and the value is the version to use.
|
|
321
|
-
python : str, optional, default: None
|
|
322
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
323
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
324
|
-
"""
|
|
325
|
-
...
|
|
326
|
-
|
|
327
|
-
@typing.overload
|
|
328
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
329
|
-
"""
|
|
330
|
-
Specifies that the step will success under all circumstances.
|
|
331
|
-
|
|
332
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
333
|
-
contains the exception raised. You can use it to detect the presence
|
|
334
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
335
|
-
are missing.
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
Parameters
|
|
339
|
-
----------
|
|
340
|
-
var : str, optional, default None
|
|
341
|
-
Name of the artifact in which to store the caught exception.
|
|
342
|
-
If not specified, the exception is not stored.
|
|
343
|
-
print_exception : bool, default True
|
|
344
|
-
Determines whether or not the exception is printed to
|
|
345
|
-
stdout when caught.
|
|
346
|
-
"""
|
|
347
|
-
...
|
|
348
|
-
|
|
349
|
-
@typing.overload
|
|
350
|
-
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
351
|
-
...
|
|
352
|
-
|
|
353
|
-
@typing.overload
|
|
354
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
355
|
-
...
|
|
356
|
-
|
|
357
|
-
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
358
|
-
"""
|
|
359
|
-
Specifies that the step will success under all circumstances.
|
|
360
|
-
|
|
361
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
362
|
-
contains the exception raised. You can use it to detect the presence
|
|
363
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
364
|
-
are missing.
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
Parameters
|
|
368
|
-
----------
|
|
369
|
-
var : str, optional, default None
|
|
370
|
-
Name of the artifact in which to store the caught exception.
|
|
371
|
-
If not specified, the exception is not stored.
|
|
372
|
-
print_exception : bool, default True
|
|
373
|
-
Determines whether or not the exception is printed to
|
|
374
|
-
stdout when caught.
|
|
375
|
-
"""
|
|
376
|
-
...
|
|
377
|
-
|
|
378
170
|
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
379
171
|
"""
|
|
380
172
|
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
@@ -425,58 +217,119 @@ def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card
|
|
|
425
217
|
"""
|
|
426
218
|
...
|
|
427
219
|
|
|
428
|
-
|
|
429
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
220
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
430
221
|
"""
|
|
431
|
-
|
|
432
|
-
to a step needs to be retried.
|
|
222
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
|
433
223
|
|
|
434
|
-
|
|
435
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
436
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
224
|
+
> Examples
|
|
437
225
|
|
|
438
|
-
|
|
439
|
-
|
|
440
|
-
|
|
226
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
|
227
|
+
```python
|
|
228
|
+
@huggingface_hub
|
|
229
|
+
@step
|
|
230
|
+
def pull_model_from_huggingface(self):
|
|
231
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
232
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
233
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
234
|
+
# value of the function is a reference to the model in the backend storage.
|
|
235
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
441
236
|
|
|
237
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
238
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
239
|
+
repo_id=self.model_id,
|
|
240
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
241
|
+
)
|
|
242
|
+
self.next(self.train)
|
|
243
|
+
```
|
|
442
244
|
|
|
443
|
-
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
...
|
|
451
|
-
|
|
452
|
-
@typing.overload
|
|
453
|
-
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
454
|
-
...
|
|
455
|
-
|
|
456
|
-
@typing.overload
|
|
457
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
458
|
-
...
|
|
459
|
-
|
|
460
|
-
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
461
|
-
"""
|
|
462
|
-
Specifies the number of times the task corresponding
|
|
463
|
-
to a step needs to be retried.
|
|
245
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
|
246
|
+
```python
|
|
247
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
248
|
+
@step
|
|
249
|
+
def pull_model_from_huggingface(self):
|
|
250
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
251
|
+
```
|
|
464
252
|
|
|
465
|
-
|
|
466
|
-
|
|
467
|
-
|
|
253
|
+
```python
|
|
254
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
|
255
|
+
@step
|
|
256
|
+
def finetune_model(self):
|
|
257
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
258
|
+
# path_to_model will be /my-directory
|
|
259
|
+
```
|
|
468
260
|
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
|
|
261
|
+
```python
|
|
262
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
263
|
+
# except for `local_dir`
|
|
264
|
+
@huggingface_hub(load=[
|
|
265
|
+
{
|
|
266
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
267
|
+
},
|
|
268
|
+
{
|
|
269
|
+
"repo_id": "myorg/mistral-lora",
|
|
270
|
+
"repo_type": "model",
|
|
271
|
+
},
|
|
272
|
+
])
|
|
273
|
+
@step
|
|
274
|
+
def finetune_model(self):
|
|
275
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
276
|
+
# path_to_model will be /my-directory
|
|
277
|
+
```
|
|
472
278
|
|
|
473
279
|
|
|
474
280
|
Parameters
|
|
475
281
|
----------
|
|
476
|
-
|
|
477
|
-
|
|
478
|
-
|
|
479
|
-
|
|
282
|
+
temp_dir_root : str, optional
|
|
283
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
284
|
+
|
|
285
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
286
|
+
The list of repos (models/datasets) to load.
|
|
287
|
+
|
|
288
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
289
|
+
|
|
290
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
291
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
292
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
293
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
294
|
+
|
|
295
|
+
- If repo is found in the datastore:
|
|
296
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
297
|
+
"""
|
|
298
|
+
...
|
|
299
|
+
|
|
300
|
+
@typing.overload
|
|
301
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
302
|
+
"""
|
|
303
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
304
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
305
|
+
"""
|
|
306
|
+
...
|
|
307
|
+
|
|
308
|
+
@typing.overload
|
|
309
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
310
|
+
...
|
|
311
|
+
|
|
312
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
313
|
+
"""
|
|
314
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
315
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
316
|
+
"""
|
|
317
|
+
...
|
|
318
|
+
|
|
319
|
+
@typing.overload
|
|
320
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
321
|
+
"""
|
|
322
|
+
Internal decorator to support Fast bakery
|
|
323
|
+
"""
|
|
324
|
+
...
|
|
325
|
+
|
|
326
|
+
@typing.overload
|
|
327
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
328
|
+
...
|
|
329
|
+
|
|
330
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
331
|
+
"""
|
|
332
|
+
Internal decorator to support Fast bakery
|
|
480
333
|
"""
|
|
481
334
|
...
|
|
482
335
|
|
|
@@ -513,71 +366,70 @@ def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], Non
|
|
|
513
366
|
"""
|
|
514
367
|
...
|
|
515
368
|
|
|
516
|
-
|
|
517
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
518
|
-
"""
|
|
519
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
520
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
521
|
-
"""
|
|
522
|
-
...
|
|
523
|
-
|
|
524
|
-
@typing.overload
|
|
525
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
526
|
-
...
|
|
527
|
-
|
|
528
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
369
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
529
370
|
"""
|
|
530
|
-
|
|
531
|
-
|
|
371
|
+
Specifies that this step should execute on DGX cloud.
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
Parameters
|
|
375
|
+
----------
|
|
376
|
+
gpu : int
|
|
377
|
+
Number of GPUs to use.
|
|
378
|
+
gpu_type : str
|
|
379
|
+
Type of Nvidia GPU to use.
|
|
380
|
+
queue_timeout : int
|
|
381
|
+
Time to keep the job in NVCF's queue.
|
|
532
382
|
"""
|
|
533
383
|
...
|
|
534
384
|
|
|
535
385
|
@typing.overload
|
|
536
|
-
def
|
|
386
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
537
387
|
"""
|
|
538
|
-
|
|
388
|
+
Specifies the PyPI packages for the step.
|
|
539
389
|
|
|
540
|
-
|
|
390
|
+
Information in this decorator will augment any
|
|
391
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
392
|
+
you can use `@pypi_base` to set packages required by all
|
|
393
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
541
394
|
|
|
542
395
|
|
|
543
396
|
Parameters
|
|
544
397
|
----------
|
|
545
|
-
|
|
546
|
-
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
|
|
550
|
-
|
|
551
|
-
timeout : int, default 45
|
|
552
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
398
|
+
packages : Dict[str, str], default: {}
|
|
399
|
+
Packages to use for this step. The key is the name of the package
|
|
400
|
+
and the value is the version to use.
|
|
401
|
+
python : str, optional, default: None
|
|
402
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
403
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
553
404
|
"""
|
|
554
405
|
...
|
|
555
406
|
|
|
556
407
|
@typing.overload
|
|
557
|
-
def
|
|
408
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
558
409
|
...
|
|
559
410
|
|
|
560
411
|
@typing.overload
|
|
561
|
-
def
|
|
412
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
562
413
|
...
|
|
563
414
|
|
|
564
|
-
def
|
|
415
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
565
416
|
"""
|
|
566
|
-
|
|
417
|
+
Specifies the PyPI packages for the step.
|
|
567
418
|
|
|
568
|
-
|
|
419
|
+
Information in this decorator will augment any
|
|
420
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
421
|
+
you can use `@pypi_base` to set packages required by all
|
|
422
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
569
423
|
|
|
570
424
|
|
|
571
425
|
Parameters
|
|
572
426
|
----------
|
|
573
|
-
|
|
574
|
-
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
|
|
578
|
-
|
|
579
|
-
timeout : int, default 45
|
|
580
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
427
|
+
packages : Dict[str, str], default: {}
|
|
428
|
+
Packages to use for this step. The key is the name of the package
|
|
429
|
+
and the value is the version to use.
|
|
430
|
+
python : str, optional, default: None
|
|
431
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
432
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
581
433
|
"""
|
|
582
434
|
...
|
|
583
435
|
|
|
@@ -710,22 +562,17 @@ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
710
562
|
"""
|
|
711
563
|
...
|
|
712
564
|
|
|
713
|
-
|
|
714
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
715
|
-
"""
|
|
716
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
717
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
718
|
-
"""
|
|
719
|
-
...
|
|
720
|
-
|
|
721
|
-
@typing.overload
|
|
722
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
723
|
-
...
|
|
724
|
-
|
|
725
|
-
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
565
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
726
566
|
"""
|
|
727
|
-
|
|
728
|
-
|
|
567
|
+
Specifies that this step should execute on DGX cloud.
|
|
568
|
+
|
|
569
|
+
|
|
570
|
+
Parameters
|
|
571
|
+
----------
|
|
572
|
+
gpu : int
|
|
573
|
+
Number of GPUs to use.
|
|
574
|
+
gpu_type : str
|
|
575
|
+
Type of Nvidia GPU to use.
|
|
729
576
|
"""
|
|
730
577
|
...
|
|
731
578
|
|
|
@@ -751,105 +598,92 @@ def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typin
|
|
|
751
598
|
"""
|
|
752
599
|
...
|
|
753
600
|
|
|
754
|
-
|
|
755
|
-
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
756
|
-
"""
|
|
757
|
-
Specifies the Conda environment for the step.
|
|
758
|
-
|
|
759
|
-
Information in this decorator will augment any
|
|
760
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
761
|
-
you can use `@conda_base` to set packages required by all
|
|
762
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
763
|
-
|
|
764
|
-
|
|
765
|
-
Parameters
|
|
766
|
-
----------
|
|
767
|
-
packages : Dict[str, str], default {}
|
|
768
|
-
Packages to use for this step. The key is the name of the package
|
|
769
|
-
and the value is the version to use.
|
|
770
|
-
libraries : Dict[str, str], default {}
|
|
771
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
772
|
-
python : str, optional, default None
|
|
773
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
774
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
775
|
-
disabled : bool, default False
|
|
776
|
-
If set to True, disables @conda.
|
|
777
|
-
"""
|
|
778
|
-
...
|
|
779
|
-
|
|
780
|
-
@typing.overload
|
|
781
|
-
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
782
|
-
...
|
|
783
|
-
|
|
784
|
-
@typing.overload
|
|
785
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
786
|
-
...
|
|
787
|
-
|
|
788
|
-
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
601
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
789
602
|
"""
|
|
790
|
-
Specifies
|
|
791
|
-
|
|
792
|
-
Information in this decorator will augment any
|
|
793
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
794
|
-
you can use `@conda_base` to set packages required by all
|
|
795
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
603
|
+
Specifies that this step should execute on Kubernetes.
|
|
796
604
|
|
|
797
605
|
|
|
798
606
|
Parameters
|
|
799
607
|
----------
|
|
800
|
-
|
|
801
|
-
|
|
802
|
-
|
|
803
|
-
|
|
804
|
-
|
|
805
|
-
|
|
806
|
-
|
|
807
|
-
|
|
808
|
-
|
|
809
|
-
|
|
810
|
-
|
|
811
|
-
|
|
812
|
-
|
|
813
|
-
|
|
814
|
-
|
|
815
|
-
|
|
816
|
-
|
|
817
|
-
|
|
818
|
-
|
|
819
|
-
|
|
820
|
-
|
|
821
|
-
|
|
822
|
-
|
|
823
|
-
|
|
824
|
-
|
|
825
|
-
|
|
826
|
-
|
|
827
|
-
|
|
828
|
-
|
|
829
|
-
|
|
830
|
-
|
|
831
|
-
|
|
832
|
-
|
|
833
|
-
|
|
608
|
+
cpu : int, default 1
|
|
609
|
+
Number of CPUs required for this step. If `@resources` is
|
|
610
|
+
also present, the maximum value from all decorators is used.
|
|
611
|
+
memory : int, default 4096
|
|
612
|
+
Memory size (in MB) required for this step. If
|
|
613
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
614
|
+
used.
|
|
615
|
+
disk : int, default 10240
|
|
616
|
+
Disk size (in MB) required for this step. If
|
|
617
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
618
|
+
used.
|
|
619
|
+
image : str, optional, default None
|
|
620
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
621
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
622
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
623
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
624
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
625
|
+
image_pull_secrets: List[str], default []
|
|
626
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
627
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
628
|
+
in Kubernetes.
|
|
629
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
630
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
631
|
+
secrets : List[str], optional, default None
|
|
632
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
633
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
634
|
+
in Metaflow configuration.
|
|
635
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
636
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
637
|
+
Can be passed in as a comma separated string of values e.g.
|
|
638
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
639
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
640
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
641
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
642
|
+
gpu : int, optional, default None
|
|
643
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
644
|
+
the scheduled node should not have GPUs.
|
|
645
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
646
|
+
The vendor of the GPUs to be used for this step.
|
|
647
|
+
tolerations : List[Dict[str,str]], default []
|
|
648
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
649
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
650
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
651
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
652
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
653
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
654
|
+
use_tmpfs : bool, default False
|
|
655
|
+
This enables an explicit tmpfs mount for this step.
|
|
656
|
+
tmpfs_tempdir : bool, default True
|
|
657
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
658
|
+
tmpfs_size : int, optional, default: None
|
|
659
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
660
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
661
|
+
memory allocated for this step.
|
|
662
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
663
|
+
Path to tmpfs mount for this step.
|
|
664
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
665
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
666
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
667
|
+
shared_memory: int, optional
|
|
668
|
+
Shared memory size (in MiB) required for this step
|
|
669
|
+
port: int, optional
|
|
670
|
+
Port number to specify in the Kubernetes job object
|
|
671
|
+
compute_pool : str, optional, default None
|
|
672
|
+
Compute pool to be used for for this step.
|
|
673
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
674
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
675
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
676
|
+
Only applicable when @parallel is used.
|
|
677
|
+
qos: str, default: Burstable
|
|
678
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
834
679
|
|
|
835
|
-
|
|
836
|
-
|
|
837
|
-
|
|
838
|
-
|
|
839
|
-
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
843
|
-
cache_update_policy: str
|
|
844
|
-
Cache update policy: "auto", "force", or "never".
|
|
845
|
-
force_cache_update: bool
|
|
846
|
-
Simple override for "force" cache update policy.
|
|
847
|
-
debug: bool
|
|
848
|
-
Whether to turn on verbose debugging logs.
|
|
849
|
-
circuit_breaker_config: dict
|
|
850
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
851
|
-
timeout_config: dict
|
|
852
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
680
|
+
security_context: Dict[str, Any], optional, default None
|
|
681
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
682
|
+
- privileged: bool, optional, default None
|
|
683
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
684
|
+
- run_as_user: int, optional, default None
|
|
685
|
+
- run_as_group: int, optional, default None
|
|
686
|
+
- run_as_non_root: bool, optional, default None
|
|
853
687
|
"""
|
|
854
688
|
...
|
|
855
689
|
|
|
@@ -934,630 +768,583 @@ def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
|
934
768
|
...
|
|
935
769
|
|
|
936
770
|
@typing.overload
|
|
937
|
-
def
|
|
938
|
-
"""
|
|
939
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
940
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
941
|
-
a Neo Cloud like CoreWeave.
|
|
942
|
-
"""
|
|
943
|
-
...
|
|
944
|
-
|
|
945
|
-
@typing.overload
|
|
946
|
-
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
947
|
-
...
|
|
948
|
-
|
|
949
|
-
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
950
|
-
"""
|
|
951
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
952
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
953
|
-
a Neo Cloud like CoreWeave.
|
|
954
|
-
"""
|
|
955
|
-
...
|
|
956
|
-
|
|
957
|
-
@typing.overload
|
|
958
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
771
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
959
772
|
"""
|
|
960
|
-
Specifies the
|
|
961
|
-
|
|
962
|
-
Use `@resources` to specify the resource requirements
|
|
963
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
773
|
+
Specifies that the step will success under all circumstances.
|
|
964
774
|
|
|
965
|
-
|
|
966
|
-
|
|
967
|
-
|
|
968
|
-
|
|
969
|
-
or
|
|
970
|
-
```
|
|
971
|
-
python myflow.py run --with kubernetes
|
|
972
|
-
```
|
|
973
|
-
which executes the flow on the desired system using the
|
|
974
|
-
requirements specified in `@resources`.
|
|
775
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
776
|
+
contains the exception raised. You can use it to detect the presence
|
|
777
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
778
|
+
are missing.
|
|
975
779
|
|
|
976
780
|
|
|
977
781
|
Parameters
|
|
978
782
|
----------
|
|
979
|
-
|
|
980
|
-
|
|
981
|
-
|
|
982
|
-
|
|
983
|
-
|
|
984
|
-
|
|
985
|
-
memory : int, default 4096
|
|
986
|
-
Memory size (in MB) required for this step.
|
|
987
|
-
shared_memory : int, optional, default None
|
|
988
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
989
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
783
|
+
var : str, optional, default None
|
|
784
|
+
Name of the artifact in which to store the caught exception.
|
|
785
|
+
If not specified, the exception is not stored.
|
|
786
|
+
print_exception : bool, default True
|
|
787
|
+
Determines whether or not the exception is printed to
|
|
788
|
+
stdout when caught.
|
|
990
789
|
"""
|
|
991
790
|
...
|
|
992
791
|
|
|
993
792
|
@typing.overload
|
|
994
|
-
def
|
|
793
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
995
794
|
...
|
|
996
795
|
|
|
997
796
|
@typing.overload
|
|
998
|
-
def
|
|
797
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
999
798
|
...
|
|
1000
799
|
|
|
1001
|
-
def
|
|
800
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
1002
801
|
"""
|
|
1003
|
-
Specifies the
|
|
1004
|
-
|
|
1005
|
-
Use `@resources` to specify the resource requirements
|
|
1006
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
802
|
+
Specifies that the step will success under all circumstances.
|
|
1007
803
|
|
|
1008
|
-
|
|
1009
|
-
|
|
1010
|
-
|
|
1011
|
-
|
|
1012
|
-
or
|
|
1013
|
-
```
|
|
1014
|
-
python myflow.py run --with kubernetes
|
|
1015
|
-
```
|
|
1016
|
-
which executes the flow on the desired system using the
|
|
1017
|
-
requirements specified in `@resources`.
|
|
804
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
805
|
+
contains the exception raised. You can use it to detect the presence
|
|
806
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
807
|
+
are missing.
|
|
1018
808
|
|
|
1019
809
|
|
|
1020
810
|
Parameters
|
|
1021
811
|
----------
|
|
1022
|
-
|
|
1023
|
-
|
|
1024
|
-
|
|
1025
|
-
|
|
1026
|
-
|
|
1027
|
-
|
|
1028
|
-
memory : int, default 4096
|
|
1029
|
-
Memory size (in MB) required for this step.
|
|
1030
|
-
shared_memory : int, optional, default None
|
|
1031
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1032
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
812
|
+
var : str, optional, default None
|
|
813
|
+
Name of the artifact in which to store the caught exception.
|
|
814
|
+
If not specified, the exception is not stored.
|
|
815
|
+
print_exception : bool, default True
|
|
816
|
+
Determines whether or not the exception is printed to
|
|
817
|
+
stdout when caught.
|
|
1033
818
|
"""
|
|
1034
819
|
...
|
|
1035
820
|
|
|
1036
|
-
|
|
1037
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
821
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1038
822
|
"""
|
|
1039
|
-
|
|
823
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
1040
824
|
|
|
1041
|
-
|
|
825
|
+
User code call
|
|
826
|
+
--------------
|
|
827
|
+
@ollama(
|
|
828
|
+
models=[...],
|
|
829
|
+
...
|
|
830
|
+
)
|
|
1042
831
|
|
|
1043
|
-
|
|
832
|
+
Valid backend options
|
|
833
|
+
---------------------
|
|
834
|
+
- 'local': Run as a separate process on the local task machine.
|
|
835
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
836
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
1044
837
|
|
|
1045
|
-
|
|
1046
|
-
|
|
1047
|
-
|
|
1048
|
-
def train(self):
|
|
1049
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
1050
|
-
for i in range(self.epochs):
|
|
1051
|
-
# some training logic
|
|
1052
|
-
loss = model.train(self.dataset)
|
|
1053
|
-
if i % 10 == 0:
|
|
1054
|
-
model.save(
|
|
1055
|
-
current.checkpoint.directory,
|
|
1056
|
-
)
|
|
1057
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1058
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1059
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
1060
|
-
name="epoch_checkpoint",
|
|
1061
|
-
metadata={
|
|
1062
|
-
"epoch": i,
|
|
1063
|
-
"loss": loss,
|
|
1064
|
-
}
|
|
1065
|
-
)
|
|
1066
|
-
```
|
|
838
|
+
Valid model options
|
|
839
|
+
-------------------
|
|
840
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
1067
841
|
|
|
1068
|
-
- Using Loaded Checkpoints
|
|
1069
842
|
|
|
1070
|
-
|
|
1071
|
-
|
|
1072
|
-
|
|
1073
|
-
|
|
1074
|
-
|
|
1075
|
-
|
|
1076
|
-
|
|
1077
|
-
|
|
1078
|
-
|
|
1079
|
-
|
|
1080
|
-
|
|
843
|
+
Parameters
|
|
844
|
+
----------
|
|
845
|
+
models: list[str]
|
|
846
|
+
List of Ollama containers running models in sidecars.
|
|
847
|
+
backend: str
|
|
848
|
+
Determines where and how to run the Ollama process.
|
|
849
|
+
force_pull: bool
|
|
850
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
851
|
+
cache_update_policy: str
|
|
852
|
+
Cache update policy: "auto", "force", or "never".
|
|
853
|
+
force_cache_update: bool
|
|
854
|
+
Simple override for "force" cache update policy.
|
|
855
|
+
debug: bool
|
|
856
|
+
Whether to turn on verbose debugging logs.
|
|
857
|
+
circuit_breaker_config: dict
|
|
858
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
859
|
+
timeout_config: dict
|
|
860
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
861
|
+
"""
|
|
862
|
+
...
|
|
863
|
+
|
|
864
|
+
@typing.overload
|
|
865
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
866
|
+
"""
|
|
867
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1081
868
|
|
|
1082
|
-
|
|
1083
|
-
for i in range(self.epochs):
|
|
1084
|
-
...
|
|
1085
|
-
```
|
|
869
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1086
870
|
|
|
1087
871
|
|
|
1088
872
|
Parameters
|
|
1089
873
|
----------
|
|
1090
|
-
|
|
1091
|
-
|
|
1092
|
-
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
|
-
|
|
1096
|
-
|
|
1097
|
-
|
|
1098
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1099
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
1100
|
-
|
|
1101
|
-
temp_dir_root : str, default: None
|
|
1102
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
874
|
+
type : str, default 'default'
|
|
875
|
+
Card type.
|
|
876
|
+
id : str, optional, default None
|
|
877
|
+
If multiple cards are present, use this id to identify this card.
|
|
878
|
+
options : Dict[str, Any], default {}
|
|
879
|
+
Options passed to the card. The contents depend on the card type.
|
|
880
|
+
timeout : int, default 45
|
|
881
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1103
882
|
"""
|
|
1104
883
|
...
|
|
1105
884
|
|
|
1106
885
|
@typing.overload
|
|
1107
|
-
def
|
|
886
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1108
887
|
...
|
|
1109
888
|
|
|
1110
889
|
@typing.overload
|
|
1111
|
-
def
|
|
890
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1112
891
|
...
|
|
1113
892
|
|
|
1114
|
-
def
|
|
893
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
1115
894
|
"""
|
|
1116
|
-
|
|
1117
|
-
|
|
1118
|
-
> Examples
|
|
1119
|
-
|
|
1120
|
-
- Saving Checkpoints
|
|
1121
|
-
|
|
1122
|
-
```python
|
|
1123
|
-
@checkpoint
|
|
1124
|
-
@step
|
|
1125
|
-
def train(self):
|
|
1126
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
1127
|
-
for i in range(self.epochs):
|
|
1128
|
-
# some training logic
|
|
1129
|
-
loss = model.train(self.dataset)
|
|
1130
|
-
if i % 10 == 0:
|
|
1131
|
-
model.save(
|
|
1132
|
-
current.checkpoint.directory,
|
|
1133
|
-
)
|
|
1134
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1135
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1136
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
1137
|
-
name="epoch_checkpoint",
|
|
1138
|
-
metadata={
|
|
1139
|
-
"epoch": i,
|
|
1140
|
-
"loss": loss,
|
|
1141
|
-
}
|
|
1142
|
-
)
|
|
1143
|
-
```
|
|
1144
|
-
|
|
1145
|
-
- Using Loaded Checkpoints
|
|
1146
|
-
|
|
1147
|
-
```python
|
|
1148
|
-
@retry(times=3)
|
|
1149
|
-
@checkpoint
|
|
1150
|
-
@step
|
|
1151
|
-
def train(self):
|
|
1152
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
1153
|
-
# saved a checkpoint
|
|
1154
|
-
checkpoint_path = None
|
|
1155
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1156
|
-
print("Loaded checkpoint from the previous attempt")
|
|
1157
|
-
checkpoint_path = current.checkpoint.directory
|
|
895
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1158
896
|
|
|
1159
|
-
|
|
1160
|
-
for i in range(self.epochs):
|
|
1161
|
-
...
|
|
1162
|
-
```
|
|
897
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1163
898
|
|
|
1164
899
|
|
|
1165
900
|
Parameters
|
|
1166
901
|
----------
|
|
1167
|
-
|
|
1168
|
-
|
|
1169
|
-
|
|
1170
|
-
|
|
1171
|
-
|
|
1172
|
-
|
|
1173
|
-
|
|
1174
|
-
|
|
1175
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1176
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
1177
|
-
|
|
1178
|
-
temp_dir_root : str, default: None
|
|
1179
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
902
|
+
type : str, default 'default'
|
|
903
|
+
Card type.
|
|
904
|
+
id : str, optional, default None
|
|
905
|
+
If multiple cards are present, use this id to identify this card.
|
|
906
|
+
options : Dict[str, Any], default {}
|
|
907
|
+
Options passed to the card. The contents depend on the card type.
|
|
908
|
+
timeout : int, default 45
|
|
909
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1180
910
|
"""
|
|
1181
911
|
...
|
|
1182
912
|
|
|
1183
913
|
@typing.overload
|
|
1184
|
-
def
|
|
914
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1185
915
|
"""
|
|
1186
|
-
|
|
1187
|
-
|
|
1188
|
-
|
|
1189
|
-
|
|
1190
|
-
Parameters
|
|
1191
|
-
----------
|
|
1192
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1193
|
-
List of secret specs, defining how the secrets are to be retrieved
|
|
1194
|
-
role : str, optional, default: None
|
|
1195
|
-
Role to use for fetching secrets
|
|
916
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
917
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
918
|
+
a Neo Cloud like CoreWeave.
|
|
1196
919
|
"""
|
|
1197
920
|
...
|
|
1198
921
|
|
|
1199
922
|
@typing.overload
|
|
1200
|
-
def
|
|
1201
|
-
...
|
|
1202
|
-
|
|
1203
|
-
@typing.overload
|
|
1204
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
923
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1205
924
|
...
|
|
1206
925
|
|
|
1207
|
-
def
|
|
926
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1208
927
|
"""
|
|
1209
|
-
|
|
1210
|
-
|
|
1211
|
-
|
|
1212
|
-
|
|
1213
|
-
Parameters
|
|
1214
|
-
----------
|
|
1215
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1216
|
-
List of secret specs, defining how the secrets are to be retrieved
|
|
1217
|
-
role : str, optional, default: None
|
|
1218
|
-
Role to use for fetching secrets
|
|
928
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
929
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
930
|
+
a Neo Cloud like CoreWeave.
|
|
1219
931
|
"""
|
|
1220
932
|
...
|
|
1221
933
|
|
|
1222
934
|
@typing.overload
|
|
1223
|
-
def
|
|
935
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1224
936
|
"""
|
|
1225
|
-
|
|
1226
|
-
|
|
937
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
938
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1227
939
|
"""
|
|
1228
940
|
...
|
|
1229
941
|
|
|
1230
942
|
@typing.overload
|
|
1231
|
-
def
|
|
943
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1232
944
|
...
|
|
1233
945
|
|
|
1234
|
-
def
|
|
946
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1235
947
|
"""
|
|
1236
|
-
|
|
1237
|
-
|
|
948
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
949
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1238
950
|
"""
|
|
1239
951
|
...
|
|
1240
952
|
|
|
1241
|
-
|
|
953
|
+
@typing.overload
|
|
954
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1242
955
|
"""
|
|
1243
|
-
Specifies
|
|
956
|
+
Specifies the number of times the task corresponding
|
|
957
|
+
to a step needs to be retried.
|
|
958
|
+
|
|
959
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
960
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
961
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
962
|
+
|
|
963
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
964
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
965
|
+
ensuring that the flow execution can continue.
|
|
1244
966
|
|
|
1245
967
|
|
|
1246
968
|
Parameters
|
|
1247
969
|
----------
|
|
1248
|
-
|
|
1249
|
-
Number of
|
|
1250
|
-
|
|
1251
|
-
|
|
1252
|
-
queue_timeout : int
|
|
1253
|
-
Time to keep the job in NVCF's queue.
|
|
970
|
+
times : int, default 3
|
|
971
|
+
Number of times to retry this task.
|
|
972
|
+
minutes_between_retries : int, default 2
|
|
973
|
+
Number of minutes between retries.
|
|
1254
974
|
"""
|
|
1255
975
|
...
|
|
1256
976
|
|
|
1257
|
-
|
|
977
|
+
@typing.overload
|
|
978
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
979
|
+
...
|
|
980
|
+
|
|
981
|
+
@typing.overload
|
|
982
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
983
|
+
...
|
|
984
|
+
|
|
985
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
1258
986
|
"""
|
|
1259
|
-
|
|
987
|
+
Specifies the number of times the task corresponding
|
|
988
|
+
to a step needs to be retried.
|
|
1260
989
|
|
|
1261
|
-
|
|
990
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
991
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
992
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
1262
993
|
|
|
1263
|
-
|
|
1264
|
-
|
|
1265
|
-
|
|
1266
|
-
@step
|
|
1267
|
-
def pull_model_from_huggingface(self):
|
|
1268
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
1269
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
1270
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
1271
|
-
# value of the function is a reference to the model in the backend storage.
|
|
1272
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
1273
|
-
|
|
1274
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
1275
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
1276
|
-
repo_id=self.model_id,
|
|
1277
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
1278
|
-
)
|
|
1279
|
-
self.next(self.train)
|
|
1280
|
-
```
|
|
1281
|
-
|
|
1282
|
-
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
|
1283
|
-
```python
|
|
1284
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
1285
|
-
@step
|
|
1286
|
-
def pull_model_from_huggingface(self):
|
|
1287
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1288
|
-
```
|
|
1289
|
-
|
|
1290
|
-
```python
|
|
1291
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
|
1292
|
-
@step
|
|
1293
|
-
def finetune_model(self):
|
|
1294
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1295
|
-
# path_to_model will be /my-directory
|
|
1296
|
-
```
|
|
1297
|
-
|
|
1298
|
-
```python
|
|
1299
|
-
# Takes all the arguments passed to `snapshot_download`
|
|
1300
|
-
# except for `local_dir`
|
|
1301
|
-
@huggingface_hub(load=[
|
|
1302
|
-
{
|
|
1303
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
1304
|
-
},
|
|
1305
|
-
{
|
|
1306
|
-
"repo_id": "myorg/mistral-lora",
|
|
1307
|
-
"repo_type": "model",
|
|
1308
|
-
},
|
|
1309
|
-
])
|
|
1310
|
-
@step
|
|
1311
|
-
def finetune_model(self):
|
|
1312
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1313
|
-
# path_to_model will be /my-directory
|
|
1314
|
-
```
|
|
994
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
995
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
996
|
+
ensuring that the flow execution can continue.
|
|
1315
997
|
|
|
1316
998
|
|
|
1317
999
|
Parameters
|
|
1318
1000
|
----------
|
|
1319
|
-
|
|
1320
|
-
|
|
1321
|
-
|
|
1322
|
-
|
|
1323
|
-
The list of repos (models/datasets) to load.
|
|
1324
|
-
|
|
1325
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
1326
|
-
|
|
1327
|
-
- If repo (model/dataset) is not found in the datastore:
|
|
1328
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
1329
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
1330
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
1331
|
-
|
|
1332
|
-
- If repo is found in the datastore:
|
|
1333
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
1001
|
+
times : int, default 3
|
|
1002
|
+
Number of times to retry this task.
|
|
1003
|
+
minutes_between_retries : int, default 2
|
|
1004
|
+
Number of minutes between retries.
|
|
1334
1005
|
"""
|
|
1335
1006
|
...
|
|
1336
1007
|
|
|
1337
|
-
|
|
1008
|
+
@typing.overload
|
|
1009
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1338
1010
|
"""
|
|
1339
|
-
Specifies
|
|
1011
|
+
Specifies the Conda environment for the step.
|
|
1012
|
+
|
|
1013
|
+
Information in this decorator will augment any
|
|
1014
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1015
|
+
you can use `@conda_base` to set packages required by all
|
|
1016
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
1340
1017
|
|
|
1341
1018
|
|
|
1342
1019
|
Parameters
|
|
1343
1020
|
----------
|
|
1344
|
-
|
|
1345
|
-
|
|
1346
|
-
|
|
1347
|
-
|
|
1021
|
+
packages : Dict[str, str], default {}
|
|
1022
|
+
Packages to use for this step. The key is the name of the package
|
|
1023
|
+
and the value is the version to use.
|
|
1024
|
+
libraries : Dict[str, str], default {}
|
|
1025
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1026
|
+
python : str, optional, default None
|
|
1027
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1028
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1029
|
+
disabled : bool, default False
|
|
1030
|
+
If set to True, disables @conda.
|
|
1348
1031
|
"""
|
|
1349
1032
|
...
|
|
1350
1033
|
|
|
1351
|
-
|
|
1034
|
+
@typing.overload
|
|
1035
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1036
|
+
...
|
|
1037
|
+
|
|
1038
|
+
@typing.overload
|
|
1039
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1040
|
+
...
|
|
1041
|
+
|
|
1042
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1352
1043
|
"""
|
|
1353
|
-
|
|
1354
|
-
|
|
1355
|
-
|
|
1356
|
-
|
|
1357
|
-
|
|
1044
|
+
Specifies the Conda environment for the step.
|
|
1045
|
+
|
|
1046
|
+
Information in this decorator will augment any
|
|
1047
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1048
|
+
you can use `@conda_base` to set packages required by all
|
|
1049
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
1358
1050
|
|
|
1359
1051
|
|
|
1360
1052
|
Parameters
|
|
1361
1053
|
----------
|
|
1362
|
-
|
|
1363
|
-
|
|
1364
|
-
|
|
1365
|
-
|
|
1366
|
-
|
|
1367
|
-
|
|
1368
|
-
|
|
1369
|
-
|
|
1370
|
-
|
|
1371
|
-
|
|
1372
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1373
|
-
soft_fail : bool
|
|
1374
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1375
|
-
name : str
|
|
1376
|
-
Name of the sensor on Airflow
|
|
1377
|
-
description : str
|
|
1378
|
-
Description of sensor in the Airflow UI
|
|
1379
|
-
bucket_key : Union[str, List[str]]
|
|
1380
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1381
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1382
|
-
bucket_name : str
|
|
1383
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1384
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1385
|
-
wildcard_match : bool
|
|
1386
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1387
|
-
aws_conn_id : str
|
|
1388
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
|
1389
|
-
verify : bool
|
|
1390
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1054
|
+
packages : Dict[str, str], default {}
|
|
1055
|
+
Packages to use for this step. The key is the name of the package
|
|
1056
|
+
and the value is the version to use.
|
|
1057
|
+
libraries : Dict[str, str], default {}
|
|
1058
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1059
|
+
python : str, optional, default None
|
|
1060
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1061
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1062
|
+
disabled : bool, default False
|
|
1063
|
+
If set to True, disables @conda.
|
|
1391
1064
|
"""
|
|
1392
1065
|
...
|
|
1393
1066
|
|
|
1394
1067
|
@typing.overload
|
|
1395
|
-
def
|
|
1068
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1396
1069
|
"""
|
|
1397
|
-
Specifies
|
|
1398
|
-
|
|
1070
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
1071
|
+
the execution of a step.
|
|
1399
1072
|
|
|
1400
1073
|
|
|
1401
1074
|
Parameters
|
|
1402
1075
|
----------
|
|
1403
|
-
|
|
1404
|
-
|
|
1405
|
-
|
|
1406
|
-
|
|
1407
|
-
weekly : bool, default False
|
|
1408
|
-
Run the workflow weekly.
|
|
1409
|
-
cron : str, optional, default None
|
|
1410
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1411
|
-
specified by this expression.
|
|
1412
|
-
timezone : str, optional, default None
|
|
1413
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1414
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1076
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1077
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
1078
|
+
role : str, optional, default: None
|
|
1079
|
+
Role to use for fetching secrets
|
|
1415
1080
|
"""
|
|
1416
1081
|
...
|
|
1417
1082
|
|
|
1418
1083
|
@typing.overload
|
|
1419
|
-
def
|
|
1084
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1420
1085
|
...
|
|
1421
1086
|
|
|
1422
|
-
|
|
1087
|
+
@typing.overload
|
|
1088
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1089
|
+
...
|
|
1090
|
+
|
|
1091
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
1423
1092
|
"""
|
|
1424
|
-
Specifies
|
|
1425
|
-
|
|
1093
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
1094
|
+
the execution of a step.
|
|
1426
1095
|
|
|
1427
1096
|
|
|
1428
1097
|
Parameters
|
|
1429
1098
|
----------
|
|
1430
|
-
|
|
1431
|
-
|
|
1432
|
-
|
|
1433
|
-
|
|
1434
|
-
weekly : bool, default False
|
|
1435
|
-
Run the workflow weekly.
|
|
1436
|
-
cron : str, optional, default None
|
|
1437
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1438
|
-
specified by this expression.
|
|
1439
|
-
timezone : str, optional, default None
|
|
1440
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1441
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1099
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1100
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
1101
|
+
role : str, optional, default: None
|
|
1102
|
+
Role to use for fetching secrets
|
|
1442
1103
|
"""
|
|
1443
1104
|
...
|
|
1444
1105
|
|
|
1445
1106
|
@typing.overload
|
|
1446
|
-
def
|
|
1107
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1447
1108
|
"""
|
|
1448
|
-
|
|
1109
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1110
|
+
to inject a card and render simple markdown content.
|
|
1111
|
+
"""
|
|
1112
|
+
...
|
|
1113
|
+
|
|
1114
|
+
@typing.overload
|
|
1115
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1116
|
+
...
|
|
1117
|
+
|
|
1118
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1119
|
+
"""
|
|
1120
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1121
|
+
to inject a card and render simple markdown content.
|
|
1122
|
+
"""
|
|
1123
|
+
...
|
|
1124
|
+
|
|
1125
|
+
@typing.overload
|
|
1126
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1127
|
+
"""
|
|
1128
|
+
Enables checkpointing for a step.
|
|
1129
|
+
|
|
1130
|
+
> Examples
|
|
1131
|
+
|
|
1132
|
+
- Saving Checkpoints
|
|
1133
|
+
|
|
1134
|
+
```python
|
|
1135
|
+
@checkpoint
|
|
1136
|
+
@step
|
|
1137
|
+
def train(self):
|
|
1138
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
1139
|
+
for i in range(self.epochs):
|
|
1140
|
+
# some training logic
|
|
1141
|
+
loss = model.train(self.dataset)
|
|
1142
|
+
if i % 10 == 0:
|
|
1143
|
+
model.save(
|
|
1144
|
+
current.checkpoint.directory,
|
|
1145
|
+
)
|
|
1146
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1147
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1148
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
1149
|
+
name="epoch_checkpoint",
|
|
1150
|
+
metadata={
|
|
1151
|
+
"epoch": i,
|
|
1152
|
+
"loss": loss,
|
|
1153
|
+
}
|
|
1154
|
+
)
|
|
1155
|
+
```
|
|
1156
|
+
|
|
1157
|
+
- Using Loaded Checkpoints
|
|
1158
|
+
|
|
1159
|
+
```python
|
|
1160
|
+
@retry(times=3)
|
|
1161
|
+
@checkpoint
|
|
1162
|
+
@step
|
|
1163
|
+
def train(self):
|
|
1164
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1165
|
+
# saved a checkpoint
|
|
1166
|
+
checkpoint_path = None
|
|
1167
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1168
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1169
|
+
checkpoint_path = current.checkpoint.directory
|
|
1170
|
+
|
|
1171
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1172
|
+
for i in range(self.epochs):
|
|
1173
|
+
...
|
|
1174
|
+
```
|
|
1449
1175
|
|
|
1450
|
-
Use `@pypi_base` to set common packages required by all
|
|
1451
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1452
1176
|
|
|
1453
1177
|
Parameters
|
|
1454
1178
|
----------
|
|
1455
|
-
|
|
1456
|
-
|
|
1457
|
-
|
|
1458
|
-
|
|
1459
|
-
|
|
1460
|
-
|
|
1179
|
+
load_policy : str, default: "fresh"
|
|
1180
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1181
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1182
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1183
|
+
will be loaded at the start of the task.
|
|
1184
|
+
- "none": Do not load any checkpoint
|
|
1185
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1186
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1187
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1188
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1189
|
+
|
|
1190
|
+
temp_dir_root : str, default: None
|
|
1191
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1461
1192
|
"""
|
|
1462
1193
|
...
|
|
1463
1194
|
|
|
1464
1195
|
@typing.overload
|
|
1465
|
-
def
|
|
1196
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1466
1197
|
...
|
|
1467
1198
|
|
|
1468
|
-
|
|
1199
|
+
@typing.overload
|
|
1200
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1201
|
+
...
|
|
1202
|
+
|
|
1203
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
1469
1204
|
"""
|
|
1470
|
-
|
|
1205
|
+
Enables checkpointing for a step.
|
|
1206
|
+
|
|
1207
|
+
> Examples
|
|
1208
|
+
|
|
1209
|
+
- Saving Checkpoints
|
|
1210
|
+
|
|
1211
|
+
```python
|
|
1212
|
+
@checkpoint
|
|
1213
|
+
@step
|
|
1214
|
+
def train(self):
|
|
1215
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
1216
|
+
for i in range(self.epochs):
|
|
1217
|
+
# some training logic
|
|
1218
|
+
loss = model.train(self.dataset)
|
|
1219
|
+
if i % 10 == 0:
|
|
1220
|
+
model.save(
|
|
1221
|
+
current.checkpoint.directory,
|
|
1222
|
+
)
|
|
1223
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1224
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1225
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
1226
|
+
name="epoch_checkpoint",
|
|
1227
|
+
metadata={
|
|
1228
|
+
"epoch": i,
|
|
1229
|
+
"loss": loss,
|
|
1230
|
+
}
|
|
1231
|
+
)
|
|
1232
|
+
```
|
|
1233
|
+
|
|
1234
|
+
- Using Loaded Checkpoints
|
|
1235
|
+
|
|
1236
|
+
```python
|
|
1237
|
+
@retry(times=3)
|
|
1238
|
+
@checkpoint
|
|
1239
|
+
@step
|
|
1240
|
+
def train(self):
|
|
1241
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1242
|
+
# saved a checkpoint
|
|
1243
|
+
checkpoint_path = None
|
|
1244
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1245
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1246
|
+
checkpoint_path = current.checkpoint.directory
|
|
1247
|
+
|
|
1248
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1249
|
+
for i in range(self.epochs):
|
|
1250
|
+
...
|
|
1251
|
+
```
|
|
1471
1252
|
|
|
1472
|
-
Use `@pypi_base` to set common packages required by all
|
|
1473
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1474
1253
|
|
|
1475
1254
|
Parameters
|
|
1476
1255
|
----------
|
|
1477
|
-
|
|
1478
|
-
|
|
1479
|
-
|
|
1480
|
-
|
|
1481
|
-
|
|
1482
|
-
|
|
1256
|
+
load_policy : str, default: "fresh"
|
|
1257
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1258
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1259
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1260
|
+
will be loaded at the start of the task.
|
|
1261
|
+
- "none": Do not load any checkpoint
|
|
1262
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1263
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1264
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1265
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1266
|
+
|
|
1267
|
+
temp_dir_root : str, default: None
|
|
1268
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1483
1269
|
"""
|
|
1484
1270
|
...
|
|
1485
1271
|
|
|
1486
|
-
|
|
1272
|
+
@typing.overload
|
|
1273
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1487
1274
|
"""
|
|
1488
|
-
|
|
1489
|
-
|
|
1275
|
+
Specifies the resources needed when executing this step.
|
|
1276
|
+
|
|
1277
|
+
Use `@resources` to specify the resource requirements
|
|
1278
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1279
|
+
|
|
1280
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1281
|
+
```
|
|
1282
|
+
python myflow.py run --with batch
|
|
1283
|
+
```
|
|
1284
|
+
or
|
|
1285
|
+
```
|
|
1286
|
+
python myflow.py run --with kubernetes
|
|
1287
|
+
```
|
|
1288
|
+
which executes the flow on the desired system using the
|
|
1289
|
+
requirements specified in `@resources`.
|
|
1490
1290
|
|
|
1491
1291
|
|
|
1492
1292
|
Parameters
|
|
1493
1293
|
----------
|
|
1494
|
-
|
|
1495
|
-
|
|
1496
|
-
|
|
1497
|
-
|
|
1498
|
-
|
|
1499
|
-
|
|
1500
|
-
|
|
1501
|
-
|
|
1502
|
-
|
|
1503
|
-
the
|
|
1504
|
-
|
|
1505
|
-
soft_fail : bool
|
|
1506
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1507
|
-
name : str
|
|
1508
|
-
Name of the sensor on Airflow
|
|
1509
|
-
description : str
|
|
1510
|
-
Description of sensor in the Airflow UI
|
|
1511
|
-
external_dag_id : str
|
|
1512
|
-
The dag_id that contains the task you want to wait for.
|
|
1513
|
-
external_task_ids : List[str]
|
|
1514
|
-
The list of task_ids that you want to wait for.
|
|
1515
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1516
|
-
allowed_states : List[str]
|
|
1517
|
-
Iterable of allowed states, (Default: ['success'])
|
|
1518
|
-
failed_states : List[str]
|
|
1519
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
|
1520
|
-
execution_delta : datetime.timedelta
|
|
1521
|
-
time difference with the previous execution to look at,
|
|
1522
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1523
|
-
check_existence: bool
|
|
1524
|
-
Set to True to check if the external task exists or check if
|
|
1525
|
-
the DAG to wait for exists. (Default: True)
|
|
1294
|
+
cpu : int, default 1
|
|
1295
|
+
Number of CPUs required for this step.
|
|
1296
|
+
gpu : int, optional, default None
|
|
1297
|
+
Number of GPUs required for this step.
|
|
1298
|
+
disk : int, optional, default None
|
|
1299
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1300
|
+
memory : int, default 4096
|
|
1301
|
+
Memory size (in MB) required for this step.
|
|
1302
|
+
shared_memory : int, optional, default None
|
|
1303
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1304
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1526
1305
|
"""
|
|
1527
1306
|
...
|
|
1528
1307
|
|
|
1529
|
-
|
|
1308
|
+
@typing.overload
|
|
1309
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1310
|
+
...
|
|
1311
|
+
|
|
1312
|
+
@typing.overload
|
|
1313
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1314
|
+
...
|
|
1315
|
+
|
|
1316
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
1530
1317
|
"""
|
|
1531
|
-
Specifies
|
|
1318
|
+
Specifies the resources needed when executing this step.
|
|
1532
1319
|
|
|
1533
|
-
|
|
1534
|
-
|
|
1320
|
+
Use `@resources` to specify the resource requirements
|
|
1321
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1322
|
+
|
|
1323
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1324
|
+
```
|
|
1325
|
+
python myflow.py run --with batch
|
|
1326
|
+
```
|
|
1327
|
+
or
|
|
1328
|
+
```
|
|
1329
|
+
python myflow.py run --with kubernetes
|
|
1330
|
+
```
|
|
1331
|
+
which executes the flow on the desired system using the
|
|
1332
|
+
requirements specified in `@resources`.
|
|
1535
1333
|
|
|
1536
1334
|
|
|
1537
1335
|
Parameters
|
|
1538
1336
|
----------
|
|
1539
|
-
|
|
1540
|
-
|
|
1541
|
-
|
|
1542
|
-
|
|
1543
|
-
|
|
1544
|
-
|
|
1545
|
-
|
|
1546
|
-
|
|
1547
|
-
|
|
1548
|
-
|
|
1549
|
-
|
|
1550
|
-
production : bool, default False
|
|
1551
|
-
Whether or not the branch is the production branch. This can also be set on the
|
|
1552
|
-
command line using `--production` as a top-level option. It is an error to specify
|
|
1553
|
-
`production` in the decorator and on the command line.
|
|
1554
|
-
The project branch name will be:
|
|
1555
|
-
- if `branch` is specified:
|
|
1556
|
-
- if `production` is True: `prod.<branch>`
|
|
1557
|
-
- if `production` is False: `test.<branch>`
|
|
1558
|
-
- if `branch` is not specified:
|
|
1559
|
-
- if `production` is True: `prod`
|
|
1560
|
-
- if `production` is False: `user.<username>`
|
|
1337
|
+
cpu : int, default 1
|
|
1338
|
+
Number of CPUs required for this step.
|
|
1339
|
+
gpu : int, optional, default None
|
|
1340
|
+
Number of GPUs required for this step.
|
|
1341
|
+
disk : int, optional, default None
|
|
1342
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1343
|
+
memory : int, default 4096
|
|
1344
|
+
Memory size (in MB) required for this step.
|
|
1345
|
+
shared_memory : int, optional, default None
|
|
1346
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1347
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1561
1348
|
"""
|
|
1562
1349
|
...
|
|
1563
1350
|
|
|
@@ -1662,6 +1449,99 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
|
1662
1449
|
"""
|
|
1663
1450
|
...
|
|
1664
1451
|
|
|
1452
|
+
@typing.overload
|
|
1453
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1454
|
+
"""
|
|
1455
|
+
Specifies the event(s) that this flow depends on.
|
|
1456
|
+
|
|
1457
|
+
```
|
|
1458
|
+
@trigger(event='foo')
|
|
1459
|
+
```
|
|
1460
|
+
or
|
|
1461
|
+
```
|
|
1462
|
+
@trigger(events=['foo', 'bar'])
|
|
1463
|
+
```
|
|
1464
|
+
|
|
1465
|
+
Additionally, you can specify the parameter mappings
|
|
1466
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1467
|
+
```
|
|
1468
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1469
|
+
```
|
|
1470
|
+
or
|
|
1471
|
+
```
|
|
1472
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1473
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1474
|
+
```
|
|
1475
|
+
|
|
1476
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1477
|
+
```
|
|
1478
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1479
|
+
```
|
|
1480
|
+
This is equivalent to:
|
|
1481
|
+
```
|
|
1482
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1483
|
+
```
|
|
1484
|
+
|
|
1485
|
+
|
|
1486
|
+
Parameters
|
|
1487
|
+
----------
|
|
1488
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1489
|
+
Event dependency for this flow.
|
|
1490
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1491
|
+
Events dependency for this flow.
|
|
1492
|
+
options : Dict[str, Any], default {}
|
|
1493
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1494
|
+
"""
|
|
1495
|
+
...
|
|
1496
|
+
|
|
1497
|
+
@typing.overload
|
|
1498
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1499
|
+
...
|
|
1500
|
+
|
|
1501
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1502
|
+
"""
|
|
1503
|
+
Specifies the event(s) that this flow depends on.
|
|
1504
|
+
|
|
1505
|
+
```
|
|
1506
|
+
@trigger(event='foo')
|
|
1507
|
+
```
|
|
1508
|
+
or
|
|
1509
|
+
```
|
|
1510
|
+
@trigger(events=['foo', 'bar'])
|
|
1511
|
+
```
|
|
1512
|
+
|
|
1513
|
+
Additionally, you can specify the parameter mappings
|
|
1514
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1515
|
+
```
|
|
1516
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1517
|
+
```
|
|
1518
|
+
or
|
|
1519
|
+
```
|
|
1520
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1521
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1522
|
+
```
|
|
1523
|
+
|
|
1524
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1525
|
+
```
|
|
1526
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1527
|
+
```
|
|
1528
|
+
This is equivalent to:
|
|
1529
|
+
```
|
|
1530
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1531
|
+
```
|
|
1532
|
+
|
|
1533
|
+
|
|
1534
|
+
Parameters
|
|
1535
|
+
----------
|
|
1536
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1537
|
+
Event dependency for this flow.
|
|
1538
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1539
|
+
Events dependency for this flow.
|
|
1540
|
+
options : Dict[str, Any], default {}
|
|
1541
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1542
|
+
"""
|
|
1543
|
+
...
|
|
1544
|
+
|
|
1665
1545
|
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
|
1666
1546
|
"""
|
|
1667
1547
|
Allows setting external datastores to save data for the
|
|
@@ -1728,51 +1608,143 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1728
1608
|
|
|
1729
1609
|
- Accessing objects stored in external datastores after task execution.
|
|
1730
1610
|
|
|
1731
|
-
```python
|
|
1732
|
-
run = Run("CheckpointsTestsFlow/8992")
|
|
1733
|
-
with artifact_store_from(run=run, config={
|
|
1734
|
-
"client_params": {
|
|
1735
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1736
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1737
|
-
},
|
|
1738
|
-
}):
|
|
1739
|
-
with Checkpoint() as cp:
|
|
1740
|
-
latest = cp.list(
|
|
1741
|
-
task=run["start"].task
|
|
1742
|
-
)[0]
|
|
1743
|
-
print(latest)
|
|
1744
|
-
cp.load(
|
|
1745
|
-
latest,
|
|
1746
|
-
"test-checkpoints"
|
|
1747
|
-
)
|
|
1611
|
+
```python
|
|
1612
|
+
run = Run("CheckpointsTestsFlow/8992")
|
|
1613
|
+
with artifact_store_from(run=run, config={
|
|
1614
|
+
"client_params": {
|
|
1615
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1616
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1617
|
+
},
|
|
1618
|
+
}):
|
|
1619
|
+
with Checkpoint() as cp:
|
|
1620
|
+
latest = cp.list(
|
|
1621
|
+
task=run["start"].task
|
|
1622
|
+
)[0]
|
|
1623
|
+
print(latest)
|
|
1624
|
+
cp.load(
|
|
1625
|
+
latest,
|
|
1626
|
+
"test-checkpoints"
|
|
1627
|
+
)
|
|
1628
|
+
|
|
1629
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
|
1630
|
+
with artifact_store_from(run=run, config={
|
|
1631
|
+
"client_params": {
|
|
1632
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1633
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1634
|
+
},
|
|
1635
|
+
}):
|
|
1636
|
+
load_model(
|
|
1637
|
+
task.data.model_ref,
|
|
1638
|
+
"test-models"
|
|
1639
|
+
)
|
|
1640
|
+
```
|
|
1641
|
+
Parameters:
|
|
1642
|
+
----------
|
|
1643
|
+
|
|
1644
|
+
type: str
|
|
1645
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
|
1646
|
+
|
|
1647
|
+
config: dict or Callable
|
|
1648
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
|
1649
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
|
1650
|
+
- example: 's3://bucket-name/path/to/root'
|
|
1651
|
+
- example: 'gs://bucket-name/path/to/root'
|
|
1652
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
|
1653
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
|
1654
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
|
1655
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
|
1656
|
+
"""
|
|
1657
|
+
...
|
|
1658
|
+
|
|
1659
|
+
@typing.overload
|
|
1660
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1661
|
+
"""
|
|
1662
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1663
|
+
|
|
1664
|
+
Use `@pypi_base` to set common packages required by all
|
|
1665
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1666
|
+
|
|
1667
|
+
Parameters
|
|
1668
|
+
----------
|
|
1669
|
+
packages : Dict[str, str], default: {}
|
|
1670
|
+
Packages to use for this flow. The key is the name of the package
|
|
1671
|
+
and the value is the version to use.
|
|
1672
|
+
python : str, optional, default: None
|
|
1673
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1674
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1675
|
+
"""
|
|
1676
|
+
...
|
|
1677
|
+
|
|
1678
|
+
@typing.overload
|
|
1679
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1680
|
+
...
|
|
1681
|
+
|
|
1682
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1683
|
+
"""
|
|
1684
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1685
|
+
|
|
1686
|
+
Use `@pypi_base` to set common packages required by all
|
|
1687
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1688
|
+
|
|
1689
|
+
Parameters
|
|
1690
|
+
----------
|
|
1691
|
+
packages : Dict[str, str], default: {}
|
|
1692
|
+
Packages to use for this flow. The key is the name of the package
|
|
1693
|
+
and the value is the version to use.
|
|
1694
|
+
python : str, optional, default: None
|
|
1695
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1696
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1697
|
+
"""
|
|
1698
|
+
...
|
|
1699
|
+
|
|
1700
|
+
@typing.overload
|
|
1701
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1702
|
+
"""
|
|
1703
|
+
Specifies the times when the flow should be run when running on a
|
|
1704
|
+
production scheduler.
|
|
1705
|
+
|
|
1748
1706
|
|
|
1749
|
-
|
|
1750
|
-
with artifact_store_from(run=run, config={
|
|
1751
|
-
"client_params": {
|
|
1752
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1753
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1754
|
-
},
|
|
1755
|
-
}):
|
|
1756
|
-
load_model(
|
|
1757
|
-
task.data.model_ref,
|
|
1758
|
-
"test-models"
|
|
1759
|
-
)
|
|
1760
|
-
```
|
|
1761
|
-
Parameters:
|
|
1707
|
+
Parameters
|
|
1762
1708
|
----------
|
|
1709
|
+
hourly : bool, default False
|
|
1710
|
+
Run the workflow hourly.
|
|
1711
|
+
daily : bool, default True
|
|
1712
|
+
Run the workflow daily.
|
|
1713
|
+
weekly : bool, default False
|
|
1714
|
+
Run the workflow weekly.
|
|
1715
|
+
cron : str, optional, default None
|
|
1716
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1717
|
+
specified by this expression.
|
|
1718
|
+
timezone : str, optional, default None
|
|
1719
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1720
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1721
|
+
"""
|
|
1722
|
+
...
|
|
1723
|
+
|
|
1724
|
+
@typing.overload
|
|
1725
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1726
|
+
...
|
|
1727
|
+
|
|
1728
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1729
|
+
"""
|
|
1730
|
+
Specifies the times when the flow should be run when running on a
|
|
1731
|
+
production scheduler.
|
|
1763
1732
|
|
|
1764
|
-
type: str
|
|
1765
|
-
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
|
1766
1733
|
|
|
1767
|
-
|
|
1768
|
-
|
|
1769
|
-
|
|
1770
|
-
|
|
1771
|
-
|
|
1772
|
-
|
|
1773
|
-
|
|
1774
|
-
|
|
1775
|
-
|
|
1734
|
+
Parameters
|
|
1735
|
+
----------
|
|
1736
|
+
hourly : bool, default False
|
|
1737
|
+
Run the workflow hourly.
|
|
1738
|
+
daily : bool, default True
|
|
1739
|
+
Run the workflow daily.
|
|
1740
|
+
weekly : bool, default False
|
|
1741
|
+
Run the workflow weekly.
|
|
1742
|
+
cron : str, optional, default None
|
|
1743
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1744
|
+
specified by this expression.
|
|
1745
|
+
timezone : str, optional, default None
|
|
1746
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1747
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1776
1748
|
"""
|
|
1777
1749
|
...
|
|
1778
1750
|
|
|
@@ -1827,96 +1799,124 @@ def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packa
|
|
|
1827
1799
|
"""
|
|
1828
1800
|
...
|
|
1829
1801
|
|
|
1830
|
-
|
|
1831
|
-
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1802
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1832
1803
|
"""
|
|
1833
|
-
|
|
1834
|
-
|
|
1835
|
-
```
|
|
1836
|
-
@trigger(event='foo')
|
|
1837
|
-
```
|
|
1838
|
-
or
|
|
1839
|
-
```
|
|
1840
|
-
@trigger(events=['foo', 'bar'])
|
|
1841
|
-
```
|
|
1842
|
-
|
|
1843
|
-
Additionally, you can specify the parameter mappings
|
|
1844
|
-
to map event payload to Metaflow parameters for the flow.
|
|
1845
|
-
```
|
|
1846
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1847
|
-
```
|
|
1848
|
-
or
|
|
1849
|
-
```
|
|
1850
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1851
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1852
|
-
```
|
|
1853
|
-
|
|
1854
|
-
'parameters' can also be a list of strings and tuples like so:
|
|
1855
|
-
```
|
|
1856
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1857
|
-
```
|
|
1858
|
-
This is equivalent to:
|
|
1859
|
-
```
|
|
1860
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1861
|
-
```
|
|
1804
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
1805
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1862
1806
|
|
|
1863
1807
|
|
|
1864
1808
|
Parameters
|
|
1865
1809
|
----------
|
|
1866
|
-
|
|
1867
|
-
|
|
1868
|
-
|
|
1869
|
-
|
|
1870
|
-
|
|
1871
|
-
|
|
1810
|
+
timeout : int
|
|
1811
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1812
|
+
poke_interval : int
|
|
1813
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1814
|
+
mode : str
|
|
1815
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1816
|
+
exponential_backoff : bool
|
|
1817
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1818
|
+
pool : str
|
|
1819
|
+
the slot pool this task should run in,
|
|
1820
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1821
|
+
soft_fail : bool
|
|
1822
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1823
|
+
name : str
|
|
1824
|
+
Name of the sensor on Airflow
|
|
1825
|
+
description : str
|
|
1826
|
+
Description of sensor in the Airflow UI
|
|
1827
|
+
external_dag_id : str
|
|
1828
|
+
The dag_id that contains the task you want to wait for.
|
|
1829
|
+
external_task_ids : List[str]
|
|
1830
|
+
The list of task_ids that you want to wait for.
|
|
1831
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1832
|
+
allowed_states : List[str]
|
|
1833
|
+
Iterable of allowed states, (Default: ['success'])
|
|
1834
|
+
failed_states : List[str]
|
|
1835
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
|
1836
|
+
execution_delta : datetime.timedelta
|
|
1837
|
+
time difference with the previous execution to look at,
|
|
1838
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1839
|
+
check_existence: bool
|
|
1840
|
+
Set to True to check if the external task exists or check if
|
|
1841
|
+
the DAG to wait for exists. (Default: True)
|
|
1872
1842
|
"""
|
|
1873
1843
|
...
|
|
1874
1844
|
|
|
1875
|
-
|
|
1876
|
-
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1877
|
-
...
|
|
1878
|
-
|
|
1879
|
-
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1845
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1880
1846
|
"""
|
|
1881
|
-
|
|
1847
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1848
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1849
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1850
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1851
|
+
starts only after all sensors finish.
|
|
1882
1852
|
|
|
1883
|
-
```
|
|
1884
|
-
@trigger(event='foo')
|
|
1885
|
-
```
|
|
1886
|
-
or
|
|
1887
|
-
```
|
|
1888
|
-
@trigger(events=['foo', 'bar'])
|
|
1889
|
-
```
|
|
1890
1853
|
|
|
1891
|
-
|
|
1892
|
-
|
|
1893
|
-
|
|
1894
|
-
|
|
1895
|
-
|
|
1896
|
-
|
|
1897
|
-
|
|
1898
|
-
|
|
1899
|
-
|
|
1900
|
-
|
|
1854
|
+
Parameters
|
|
1855
|
+
----------
|
|
1856
|
+
timeout : int
|
|
1857
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1858
|
+
poke_interval : int
|
|
1859
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1860
|
+
mode : str
|
|
1861
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1862
|
+
exponential_backoff : bool
|
|
1863
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1864
|
+
pool : str
|
|
1865
|
+
the slot pool this task should run in,
|
|
1866
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1867
|
+
soft_fail : bool
|
|
1868
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1869
|
+
name : str
|
|
1870
|
+
Name of the sensor on Airflow
|
|
1871
|
+
description : str
|
|
1872
|
+
Description of sensor in the Airflow UI
|
|
1873
|
+
bucket_key : Union[str, List[str]]
|
|
1874
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1875
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1876
|
+
bucket_name : str
|
|
1877
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1878
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1879
|
+
wildcard_match : bool
|
|
1880
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1881
|
+
aws_conn_id : str
|
|
1882
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1883
|
+
verify : bool
|
|
1884
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1885
|
+
"""
|
|
1886
|
+
...
|
|
1887
|
+
|
|
1888
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1889
|
+
"""
|
|
1890
|
+
Specifies what flows belong to the same project.
|
|
1901
1891
|
|
|
1902
|
-
|
|
1903
|
-
|
|
1904
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1905
|
-
```
|
|
1906
|
-
This is equivalent to:
|
|
1907
|
-
```
|
|
1908
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1909
|
-
```
|
|
1892
|
+
A project-specific namespace is created for all flows that
|
|
1893
|
+
use the same `@project(name)`.
|
|
1910
1894
|
|
|
1911
1895
|
|
|
1912
1896
|
Parameters
|
|
1913
1897
|
----------
|
|
1914
|
-
|
|
1915
|
-
|
|
1916
|
-
|
|
1917
|
-
|
|
1918
|
-
|
|
1919
|
-
|
|
1898
|
+
name : str
|
|
1899
|
+
Project name. Make sure that the name is unique amongst all
|
|
1900
|
+
projects that use the same production scheduler. The name may
|
|
1901
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
1902
|
+
|
|
1903
|
+
branch : Optional[str], default None
|
|
1904
|
+
The branch to use. If not specified, the branch is set to
|
|
1905
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
1906
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
1907
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
1908
|
+
|
|
1909
|
+
production : bool, default False
|
|
1910
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
1911
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
1912
|
+
`production` in the decorator and on the command line.
|
|
1913
|
+
The project branch name will be:
|
|
1914
|
+
- if `branch` is specified:
|
|
1915
|
+
- if `production` is True: `prod.<branch>`
|
|
1916
|
+
- if `production` is False: `test.<branch>`
|
|
1917
|
+
- if `branch` is not specified:
|
|
1918
|
+
- if `production` is True: `prod`
|
|
1919
|
+
- if `production` is False: `user.<username>`
|
|
1920
1920
|
"""
|
|
1921
1921
|
...
|
|
1922
1922
|
|