ob-metaflow-stubs 6.0.7.3__py2.py3-none-any.whl → 6.0.7.4__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +984 -984
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +5 -5
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +5 -5
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +2 -2
- metaflow-stubs/meta_files.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +57 -57
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/packaging_sys/__init__.pyi +5 -5
- metaflow-stubs/packaging_sys/backend.pyi +3 -3
- metaflow-stubs/packaging_sys/distribution_support.pyi +4 -4
- metaflow-stubs/packaging_sys/tar_backend.pyi +5 -5
- metaflow-stubs/packaging_sys/utils.pyi +1 -1
- metaflow-stubs/packaging_sys/v1.pyi +3 -3
- metaflow-stubs/parameters.pyi +2 -2
- metaflow-stubs/plugins/__init__.pyi +12 -12
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +4 -4
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/argo/exit_hooks.pyi +1 -1
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +4 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/__init__.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/optuna/__init__.pyi +1 -1
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +3 -3
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_func.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +1 -1
- metaflow-stubs/plugins/secrets/utils.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +1 -1
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +3 -3
- metaflow-stubs/runner/deployer_impl.pyi +1 -1
- metaflow-stubs/runner/metaflow_runner.pyi +2 -2
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +1 -1
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +5 -5
- metaflow-stubs/user_decorators/__init__.pyi +1 -1
- metaflow-stubs/user_decorators/common.pyi +1 -1
- metaflow-stubs/user_decorators/mutable_flow.pyi +3 -3
- metaflow-stubs/user_decorators/mutable_step.pyi +4 -4
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +3 -3
- metaflow-stubs/user_decorators/user_step_decorator.pyi +5 -5
- {ob_metaflow_stubs-6.0.7.3.dist-info → ob_metaflow_stubs-6.0.7.4.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.7.4.dist-info/RECORD +262 -0
- ob_metaflow_stubs-6.0.7.3.dist-info/RECORD +0 -262
- {ob_metaflow_stubs-6.0.7.3.dist-info → ob_metaflow_stubs-6.0.7.4.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.7.3.dist-info → ob_metaflow_stubs-6.0.7.4.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
3
|
# MF version: 2.17.1.0+obcheckpoint(0.2.4);ob(v1) #
|
|
4
|
-
# Generated on 2025-08-
|
|
4
|
+
# Generated on 2025-08-21T17:03:57.569240 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
8
8
|
|
|
9
9
|
import typing
|
|
10
10
|
if typing.TYPE_CHECKING:
|
|
11
|
-
import typing
|
|
12
11
|
import datetime
|
|
12
|
+
import typing
|
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
|
15
15
|
|
|
@@ -40,16 +40,16 @@ from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
42
|
from . import events as events
|
|
43
|
-
from . import tuple_util as tuple_util
|
|
44
|
-
from . import cards as cards
|
|
45
43
|
from . import metaflow_git as metaflow_git
|
|
44
|
+
from . import cards as cards
|
|
45
|
+
from . import tuple_util as tuple_util
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
52
51
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
52
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
53
53
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
54
54
|
from . import client as client
|
|
55
55
|
from .client.core import namespace as namespace
|
|
@@ -167,145 +167,471 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
167
167
|
"""
|
|
168
168
|
...
|
|
169
169
|
|
|
170
|
-
def
|
|
170
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
171
171
|
"""
|
|
172
|
-
Specifies that this step should execute on
|
|
172
|
+
Specifies that this step should execute on Kubernetes.
|
|
173
173
|
|
|
174
174
|
|
|
175
175
|
Parameters
|
|
176
176
|
----------
|
|
177
|
-
|
|
178
|
-
Number of
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
177
|
+
cpu : int, default 1
|
|
178
|
+
Number of CPUs required for this step. If `@resources` is
|
|
179
|
+
also present, the maximum value from all decorators is used.
|
|
180
|
+
memory : int, default 4096
|
|
181
|
+
Memory size (in MB) required for this step. If
|
|
182
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
183
|
+
used.
|
|
184
|
+
disk : int, default 10240
|
|
185
|
+
Disk size (in MB) required for this step. If
|
|
186
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
187
|
+
used.
|
|
188
|
+
image : str, optional, default None
|
|
189
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
190
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
191
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
192
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
193
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
194
|
+
image_pull_secrets: List[str], default []
|
|
195
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
196
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
197
|
+
in Kubernetes.
|
|
198
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
199
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
200
|
+
secrets : List[str], optional, default None
|
|
201
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
202
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
203
|
+
in Metaflow configuration.
|
|
204
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
205
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
206
|
+
Can be passed in as a comma separated string of values e.g.
|
|
207
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
208
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
209
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
210
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
211
|
+
gpu : int, optional, default None
|
|
212
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
213
|
+
the scheduled node should not have GPUs.
|
|
214
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
215
|
+
The vendor of the GPUs to be used for this step.
|
|
216
|
+
tolerations : List[Dict[str,str]], default []
|
|
217
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
218
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
219
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
220
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
221
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
222
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
223
|
+
use_tmpfs : bool, default False
|
|
224
|
+
This enables an explicit tmpfs mount for this step.
|
|
225
|
+
tmpfs_tempdir : bool, default True
|
|
226
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
227
|
+
tmpfs_size : int, optional, default: None
|
|
228
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
229
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
230
|
+
memory allocated for this step.
|
|
231
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
232
|
+
Path to tmpfs mount for this step.
|
|
233
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
234
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
235
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
236
|
+
shared_memory: int, optional
|
|
237
|
+
Shared memory size (in MiB) required for this step
|
|
238
|
+
port: int, optional
|
|
239
|
+
Port number to specify in the Kubernetes job object
|
|
240
|
+
compute_pool : str, optional, default None
|
|
241
|
+
Compute pool to be used for for this step.
|
|
242
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
243
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
244
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
245
|
+
Only applicable when @parallel is used.
|
|
246
|
+
qos: str, default: Burstable
|
|
247
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
248
|
+
|
|
249
|
+
security_context: Dict[str, Any], optional, default None
|
|
250
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
251
|
+
- privileged: bool, optional, default None
|
|
252
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
253
|
+
- run_as_user: int, optional, default None
|
|
254
|
+
- run_as_group: int, optional, default None
|
|
255
|
+
- run_as_non_root: bool, optional, default None
|
|
183
256
|
"""
|
|
184
257
|
...
|
|
185
258
|
|
|
186
259
|
@typing.overload
|
|
187
|
-
def
|
|
260
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
188
261
|
"""
|
|
189
|
-
|
|
262
|
+
Internal decorator to support Fast bakery
|
|
263
|
+
"""
|
|
264
|
+
...
|
|
265
|
+
|
|
266
|
+
@typing.overload
|
|
267
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
268
|
+
...
|
|
269
|
+
|
|
270
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
271
|
+
"""
|
|
272
|
+
Internal decorator to support Fast bakery
|
|
273
|
+
"""
|
|
274
|
+
...
|
|
275
|
+
|
|
276
|
+
@typing.overload
|
|
277
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
278
|
+
"""
|
|
279
|
+
Specifies the PyPI packages for the step.
|
|
280
|
+
|
|
281
|
+
Information in this decorator will augment any
|
|
282
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
283
|
+
you can use `@pypi_base` to set packages required by all
|
|
284
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
190
285
|
|
|
191
286
|
|
|
192
287
|
Parameters
|
|
193
288
|
----------
|
|
194
|
-
|
|
195
|
-
|
|
289
|
+
packages : Dict[str, str], default: {}
|
|
290
|
+
Packages to use for this step. The key is the name of the package
|
|
291
|
+
and the value is the version to use.
|
|
292
|
+
python : str, optional, default: None
|
|
293
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
294
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
196
295
|
"""
|
|
197
296
|
...
|
|
198
297
|
|
|
199
298
|
@typing.overload
|
|
200
|
-
def
|
|
299
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
201
300
|
...
|
|
202
301
|
|
|
203
302
|
@typing.overload
|
|
204
|
-
def
|
|
303
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
205
304
|
...
|
|
206
305
|
|
|
207
|
-
def
|
|
306
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
208
307
|
"""
|
|
209
|
-
Specifies
|
|
308
|
+
Specifies the PyPI packages for the step.
|
|
309
|
+
|
|
310
|
+
Information in this decorator will augment any
|
|
311
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
312
|
+
you can use `@pypi_base` to set packages required by all
|
|
313
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
210
314
|
|
|
211
315
|
|
|
212
316
|
Parameters
|
|
213
317
|
----------
|
|
214
|
-
|
|
215
|
-
|
|
318
|
+
packages : Dict[str, str], default: {}
|
|
319
|
+
Packages to use for this step. The key is the name of the package
|
|
320
|
+
and the value is the version to use.
|
|
321
|
+
python : str, optional, default: None
|
|
322
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
323
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
216
324
|
"""
|
|
217
325
|
...
|
|
218
326
|
|
|
219
327
|
@typing.overload
|
|
220
|
-
def
|
|
328
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
221
329
|
"""
|
|
222
|
-
Specifies
|
|
223
|
-
|
|
330
|
+
Specifies that the step will success under all circumstances.
|
|
331
|
+
|
|
332
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
333
|
+
contains the exception raised. You can use it to detect the presence
|
|
334
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
335
|
+
are missing.
|
|
224
336
|
|
|
225
337
|
|
|
226
338
|
Parameters
|
|
227
339
|
----------
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
340
|
+
var : str, optional, default None
|
|
341
|
+
Name of the artifact in which to store the caught exception.
|
|
342
|
+
If not specified, the exception is not stored.
|
|
343
|
+
print_exception : bool, default True
|
|
344
|
+
Determines whether or not the exception is printed to
|
|
345
|
+
stdout when caught.
|
|
232
346
|
"""
|
|
233
347
|
...
|
|
234
348
|
|
|
235
349
|
@typing.overload
|
|
236
|
-
def
|
|
350
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
237
351
|
...
|
|
238
352
|
|
|
239
353
|
@typing.overload
|
|
240
|
-
def
|
|
354
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
241
355
|
...
|
|
242
356
|
|
|
243
|
-
def
|
|
357
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
244
358
|
"""
|
|
245
|
-
Specifies
|
|
246
|
-
|
|
359
|
+
Specifies that the step will success under all circumstances.
|
|
360
|
+
|
|
361
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
362
|
+
contains the exception raised. You can use it to detect the presence
|
|
363
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
364
|
+
are missing.
|
|
247
365
|
|
|
248
366
|
|
|
249
367
|
Parameters
|
|
250
368
|
----------
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
|
|
369
|
+
var : str, optional, default None
|
|
370
|
+
Name of the artifact in which to store the caught exception.
|
|
371
|
+
If not specified, the exception is not stored.
|
|
372
|
+
print_exception : bool, default True
|
|
373
|
+
Determines whether or not the exception is printed to
|
|
374
|
+
stdout when caught.
|
|
255
375
|
"""
|
|
256
376
|
...
|
|
257
377
|
|
|
258
|
-
|
|
259
|
-
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
378
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
260
379
|
"""
|
|
261
|
-
|
|
380
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
262
381
|
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
270
|
-
self.my_model = current.model.save(
|
|
271
|
-
path_to_my_model,
|
|
272
|
-
label="my_model",
|
|
273
|
-
metadata={
|
|
274
|
-
"epochs": 10,
|
|
275
|
-
"batch-size": 32,
|
|
276
|
-
"learning-rate": 0.001,
|
|
277
|
-
}
|
|
278
|
-
)
|
|
279
|
-
self.next(self.test)
|
|
382
|
+
User code call
|
|
383
|
+
--------------
|
|
384
|
+
@vllm(
|
|
385
|
+
model="...",
|
|
386
|
+
...
|
|
387
|
+
)
|
|
280
388
|
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
285
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
286
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
287
|
-
self.next(self.end)
|
|
288
|
-
```
|
|
389
|
+
Valid backend options
|
|
390
|
+
---------------------
|
|
391
|
+
- 'local': Run as a separate process on the local task machine.
|
|
289
392
|
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
self.checkpoint_key,
|
|
297
|
-
)
|
|
298
|
-
model_path = current.model.load(
|
|
299
|
-
self.model,
|
|
300
|
-
)
|
|
301
|
-
self.next(self.test)
|
|
302
|
-
```
|
|
393
|
+
Valid model options
|
|
394
|
+
-------------------
|
|
395
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
396
|
+
|
|
397
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
398
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
303
399
|
|
|
304
400
|
|
|
305
401
|
Parameters
|
|
306
402
|
----------
|
|
307
|
-
|
|
308
|
-
|
|
403
|
+
model: str
|
|
404
|
+
HuggingFace model identifier to be served by vLLM.
|
|
405
|
+
backend: str
|
|
406
|
+
Determines where and how to run the vLLM process.
|
|
407
|
+
openai_api_server: bool
|
|
408
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
409
|
+
Default is False (uses native engine).
|
|
410
|
+
Set to True for backward compatibility with existing code.
|
|
411
|
+
debug: bool
|
|
412
|
+
Whether to turn on verbose debugging logs.
|
|
413
|
+
card_refresh_interval: int
|
|
414
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
415
|
+
Only used when openai_api_server=True.
|
|
416
|
+
max_retries: int
|
|
417
|
+
Maximum number of retries checking for vLLM server startup.
|
|
418
|
+
Only used when openai_api_server=True.
|
|
419
|
+
retry_alert_frequency: int
|
|
420
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
421
|
+
Only used when openai_api_server=True.
|
|
422
|
+
engine_args : dict
|
|
423
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
424
|
+
For example, `tensor_parallel_size=2`.
|
|
425
|
+
"""
|
|
426
|
+
...
|
|
427
|
+
|
|
428
|
+
@typing.overload
|
|
429
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
430
|
+
"""
|
|
431
|
+
Specifies the number of times the task corresponding
|
|
432
|
+
to a step needs to be retried.
|
|
433
|
+
|
|
434
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
435
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
436
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
437
|
+
|
|
438
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
439
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
440
|
+
ensuring that the flow execution can continue.
|
|
441
|
+
|
|
442
|
+
|
|
443
|
+
Parameters
|
|
444
|
+
----------
|
|
445
|
+
times : int, default 3
|
|
446
|
+
Number of times to retry this task.
|
|
447
|
+
minutes_between_retries : int, default 2
|
|
448
|
+
Number of minutes between retries.
|
|
449
|
+
"""
|
|
450
|
+
...
|
|
451
|
+
|
|
452
|
+
@typing.overload
|
|
453
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
454
|
+
...
|
|
455
|
+
|
|
456
|
+
@typing.overload
|
|
457
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
458
|
+
...
|
|
459
|
+
|
|
460
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
461
|
+
"""
|
|
462
|
+
Specifies the number of times the task corresponding
|
|
463
|
+
to a step needs to be retried.
|
|
464
|
+
|
|
465
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
466
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
467
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
468
|
+
|
|
469
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
470
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
471
|
+
ensuring that the flow execution can continue.
|
|
472
|
+
|
|
473
|
+
|
|
474
|
+
Parameters
|
|
475
|
+
----------
|
|
476
|
+
times : int, default 3
|
|
477
|
+
Number of times to retry this task.
|
|
478
|
+
minutes_between_retries : int, default 2
|
|
479
|
+
Number of minutes between retries.
|
|
480
|
+
"""
|
|
481
|
+
...
|
|
482
|
+
|
|
483
|
+
@typing.overload
|
|
484
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
485
|
+
"""
|
|
486
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
487
|
+
|
|
488
|
+
|
|
489
|
+
Parameters
|
|
490
|
+
----------
|
|
491
|
+
vars : Dict[str, str], default {}
|
|
492
|
+
Dictionary of environment variables to set.
|
|
493
|
+
"""
|
|
494
|
+
...
|
|
495
|
+
|
|
496
|
+
@typing.overload
|
|
497
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
498
|
+
...
|
|
499
|
+
|
|
500
|
+
@typing.overload
|
|
501
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
502
|
+
...
|
|
503
|
+
|
|
504
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
505
|
+
"""
|
|
506
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
507
|
+
|
|
508
|
+
|
|
509
|
+
Parameters
|
|
510
|
+
----------
|
|
511
|
+
vars : Dict[str, str], default {}
|
|
512
|
+
Dictionary of environment variables to set.
|
|
513
|
+
"""
|
|
514
|
+
...
|
|
515
|
+
|
|
516
|
+
@typing.overload
|
|
517
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
518
|
+
"""
|
|
519
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
520
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
521
|
+
"""
|
|
522
|
+
...
|
|
523
|
+
|
|
524
|
+
@typing.overload
|
|
525
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
526
|
+
...
|
|
527
|
+
|
|
528
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
529
|
+
"""
|
|
530
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
531
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
532
|
+
"""
|
|
533
|
+
...
|
|
534
|
+
|
|
535
|
+
@typing.overload
|
|
536
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
537
|
+
"""
|
|
538
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
539
|
+
|
|
540
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
541
|
+
|
|
542
|
+
|
|
543
|
+
Parameters
|
|
544
|
+
----------
|
|
545
|
+
type : str, default 'default'
|
|
546
|
+
Card type.
|
|
547
|
+
id : str, optional, default None
|
|
548
|
+
If multiple cards are present, use this id to identify this card.
|
|
549
|
+
options : Dict[str, Any], default {}
|
|
550
|
+
Options passed to the card. The contents depend on the card type.
|
|
551
|
+
timeout : int, default 45
|
|
552
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
553
|
+
"""
|
|
554
|
+
...
|
|
555
|
+
|
|
556
|
+
@typing.overload
|
|
557
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
558
|
+
...
|
|
559
|
+
|
|
560
|
+
@typing.overload
|
|
561
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
562
|
+
...
|
|
563
|
+
|
|
564
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
565
|
+
"""
|
|
566
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
567
|
+
|
|
568
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
569
|
+
|
|
570
|
+
|
|
571
|
+
Parameters
|
|
572
|
+
----------
|
|
573
|
+
type : str, default 'default'
|
|
574
|
+
Card type.
|
|
575
|
+
id : str, optional, default None
|
|
576
|
+
If multiple cards are present, use this id to identify this card.
|
|
577
|
+
options : Dict[str, Any], default {}
|
|
578
|
+
Options passed to the card. The contents depend on the card type.
|
|
579
|
+
timeout : int, default 45
|
|
580
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
581
|
+
"""
|
|
582
|
+
...
|
|
583
|
+
|
|
584
|
+
@typing.overload
|
|
585
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
586
|
+
"""
|
|
587
|
+
Enables loading / saving of models within a step.
|
|
588
|
+
|
|
589
|
+
> Examples
|
|
590
|
+
- Saving Models
|
|
591
|
+
```python
|
|
592
|
+
@model
|
|
593
|
+
@step
|
|
594
|
+
def train(self):
|
|
595
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
596
|
+
self.my_model = current.model.save(
|
|
597
|
+
path_to_my_model,
|
|
598
|
+
label="my_model",
|
|
599
|
+
metadata={
|
|
600
|
+
"epochs": 10,
|
|
601
|
+
"batch-size": 32,
|
|
602
|
+
"learning-rate": 0.001,
|
|
603
|
+
}
|
|
604
|
+
)
|
|
605
|
+
self.next(self.test)
|
|
606
|
+
|
|
607
|
+
@model(load="my_model")
|
|
608
|
+
@step
|
|
609
|
+
def test(self):
|
|
610
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
611
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
612
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
613
|
+
self.next(self.end)
|
|
614
|
+
```
|
|
615
|
+
|
|
616
|
+
- Loading models
|
|
617
|
+
```python
|
|
618
|
+
@step
|
|
619
|
+
def train(self):
|
|
620
|
+
# current.model.load returns the path to the model loaded
|
|
621
|
+
checkpoint_path = current.model.load(
|
|
622
|
+
self.checkpoint_key,
|
|
623
|
+
)
|
|
624
|
+
model_path = current.model.load(
|
|
625
|
+
self.model,
|
|
626
|
+
)
|
|
627
|
+
self.next(self.test)
|
|
628
|
+
```
|
|
629
|
+
|
|
630
|
+
|
|
631
|
+
Parameters
|
|
632
|
+
----------
|
|
633
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
634
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
309
635
|
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
310
636
|
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
311
637
|
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
@@ -384,156 +710,103 @@ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
384
710
|
"""
|
|
385
711
|
...
|
|
386
712
|
|
|
387
|
-
|
|
713
|
+
@typing.overload
|
|
714
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
388
715
|
"""
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
Parameters
|
|
393
|
-
----------
|
|
394
|
-
gpu : int
|
|
395
|
-
Number of GPUs to use.
|
|
396
|
-
gpu_type : str
|
|
397
|
-
Type of Nvidia GPU to use.
|
|
716
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
717
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
398
718
|
"""
|
|
399
719
|
...
|
|
400
720
|
|
|
401
|
-
|
|
721
|
+
@typing.overload
|
|
722
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
723
|
+
...
|
|
724
|
+
|
|
725
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
402
726
|
"""
|
|
403
|
-
Decorator
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
def pull_model_from_huggingface(self):
|
|
412
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
413
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
414
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
415
|
-
# value of the function is a reference to the model in the backend storage.
|
|
416
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
417
|
-
|
|
418
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
419
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
420
|
-
repo_id=self.model_id,
|
|
421
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
422
|
-
)
|
|
423
|
-
self.next(self.train)
|
|
424
|
-
```
|
|
425
|
-
|
|
426
|
-
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
|
427
|
-
```python
|
|
428
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
429
|
-
@step
|
|
430
|
-
def pull_model_from_huggingface(self):
|
|
431
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
432
|
-
```
|
|
433
|
-
|
|
434
|
-
```python
|
|
435
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
|
436
|
-
@step
|
|
437
|
-
def finetune_model(self):
|
|
438
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
439
|
-
# path_to_model will be /my-directory
|
|
440
|
-
```
|
|
441
|
-
|
|
442
|
-
```python
|
|
443
|
-
# Takes all the arguments passed to `snapshot_download`
|
|
444
|
-
# except for `local_dir`
|
|
445
|
-
@huggingface_hub(load=[
|
|
446
|
-
{
|
|
447
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
448
|
-
},
|
|
449
|
-
{
|
|
450
|
-
"repo_id": "myorg/mistral-lora",
|
|
451
|
-
"repo_type": "model",
|
|
452
|
-
},
|
|
453
|
-
])
|
|
454
|
-
@step
|
|
455
|
-
def finetune_model(self):
|
|
456
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
457
|
-
# path_to_model will be /my-directory
|
|
458
|
-
```
|
|
727
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
728
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
729
|
+
"""
|
|
730
|
+
...
|
|
731
|
+
|
|
732
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
733
|
+
"""
|
|
734
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
459
735
|
|
|
460
736
|
|
|
461
737
|
Parameters
|
|
462
738
|
----------
|
|
463
|
-
|
|
464
|
-
|
|
465
|
-
|
|
466
|
-
|
|
467
|
-
The
|
|
468
|
-
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
|
|
476
|
-
- If repo is found in the datastore:
|
|
477
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
739
|
+
integration_name : str, optional
|
|
740
|
+
Name of the S3 proxy integration. If not specified, will use the only
|
|
741
|
+
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
742
|
+
write_mode : str, optional
|
|
743
|
+
The desired behavior during write operations to target (origin) S3 bucket.
|
|
744
|
+
allowed options are:
|
|
745
|
+
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
746
|
+
storage
|
|
747
|
+
"origin" -> only write to the target S3 bucket
|
|
748
|
+
"cache" -> only write to the object storage service used for caching
|
|
749
|
+
debug : bool, optional
|
|
750
|
+
Enable debug logging for proxy operations.
|
|
478
751
|
"""
|
|
479
752
|
...
|
|
480
753
|
|
|
481
754
|
@typing.overload
|
|
482
|
-
def
|
|
755
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
483
756
|
"""
|
|
484
|
-
Specifies
|
|
485
|
-
|
|
486
|
-
This decorator is useful if this step may hang indefinitely.
|
|
487
|
-
|
|
488
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
489
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
490
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
757
|
+
Specifies the Conda environment for the step.
|
|
491
758
|
|
|
492
|
-
|
|
493
|
-
|
|
759
|
+
Information in this decorator will augment any
|
|
760
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
761
|
+
you can use `@conda_base` to set packages required by all
|
|
762
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
494
763
|
|
|
495
764
|
|
|
496
765
|
Parameters
|
|
497
766
|
----------
|
|
498
|
-
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
767
|
+
packages : Dict[str, str], default {}
|
|
768
|
+
Packages to use for this step. The key is the name of the package
|
|
769
|
+
and the value is the version to use.
|
|
770
|
+
libraries : Dict[str, str], default {}
|
|
771
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
772
|
+
python : str, optional, default None
|
|
773
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
774
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
775
|
+
disabled : bool, default False
|
|
776
|
+
If set to True, disables @conda.
|
|
504
777
|
"""
|
|
505
778
|
...
|
|
506
779
|
|
|
507
780
|
@typing.overload
|
|
508
|
-
def
|
|
781
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
509
782
|
...
|
|
510
783
|
|
|
511
784
|
@typing.overload
|
|
512
|
-
def
|
|
785
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
513
786
|
...
|
|
514
787
|
|
|
515
|
-
def
|
|
788
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
516
789
|
"""
|
|
517
|
-
Specifies
|
|
518
|
-
|
|
519
|
-
This decorator is useful if this step may hang indefinitely.
|
|
520
|
-
|
|
521
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
522
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
523
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
790
|
+
Specifies the Conda environment for the step.
|
|
524
791
|
|
|
525
|
-
|
|
526
|
-
|
|
792
|
+
Information in this decorator will augment any
|
|
793
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
794
|
+
you can use `@conda_base` to set packages required by all
|
|
795
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
527
796
|
|
|
528
797
|
|
|
529
798
|
Parameters
|
|
530
799
|
----------
|
|
531
|
-
|
|
532
|
-
|
|
533
|
-
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
|
|
800
|
+
packages : Dict[str, str], default {}
|
|
801
|
+
Packages to use for this step. The key is the name of the package
|
|
802
|
+
and the value is the version to use.
|
|
803
|
+
libraries : Dict[str, str], default {}
|
|
804
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
805
|
+
python : str, optional, default None
|
|
806
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
807
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
808
|
+
disabled : bool, default False
|
|
809
|
+
If set to True, disables @conda.
|
|
537
810
|
"""
|
|
538
811
|
...
|
|
539
812
|
|
|
@@ -580,346 +853,194 @@ def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy:
|
|
|
580
853
|
"""
|
|
581
854
|
...
|
|
582
855
|
|
|
583
|
-
|
|
856
|
+
@typing.overload
|
|
857
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
584
858
|
"""
|
|
585
|
-
|
|
586
|
-
|
|
587
|
-
|
|
588
|
-
Parameters
|
|
589
|
-
----------
|
|
590
|
-
cpu : int, default 1
|
|
591
|
-
Number of CPUs required for this step. If `@resources` is
|
|
592
|
-
also present, the maximum value from all decorators is used.
|
|
593
|
-
memory : int, default 4096
|
|
594
|
-
Memory size (in MB) required for this step. If
|
|
595
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
596
|
-
used.
|
|
597
|
-
disk : int, default 10240
|
|
598
|
-
Disk size (in MB) required for this step. If
|
|
599
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
600
|
-
used.
|
|
601
|
-
image : str, optional, default None
|
|
602
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
603
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
604
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
605
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
606
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
607
|
-
image_pull_secrets: List[str], default []
|
|
608
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
609
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
610
|
-
in Kubernetes.
|
|
611
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
612
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
613
|
-
secrets : List[str], optional, default None
|
|
614
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
615
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
616
|
-
in Metaflow configuration.
|
|
617
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
618
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
619
|
-
Can be passed in as a comma separated string of values e.g.
|
|
620
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
621
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
622
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
623
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
624
|
-
gpu : int, optional, default None
|
|
625
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
626
|
-
the scheduled node should not have GPUs.
|
|
627
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
628
|
-
The vendor of the GPUs to be used for this step.
|
|
629
|
-
tolerations : List[Dict[str,str]], default []
|
|
630
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
631
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
632
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
633
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
634
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
635
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
636
|
-
use_tmpfs : bool, default False
|
|
637
|
-
This enables an explicit tmpfs mount for this step.
|
|
638
|
-
tmpfs_tempdir : bool, default True
|
|
639
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
640
|
-
tmpfs_size : int, optional, default: None
|
|
641
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
642
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
643
|
-
memory allocated for this step.
|
|
644
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
645
|
-
Path to tmpfs mount for this step.
|
|
646
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
647
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
648
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
649
|
-
shared_memory: int, optional
|
|
650
|
-
Shared memory size (in MiB) required for this step
|
|
651
|
-
port: int, optional
|
|
652
|
-
Port number to specify in the Kubernetes job object
|
|
653
|
-
compute_pool : str, optional, default None
|
|
654
|
-
Compute pool to be used for for this step.
|
|
655
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
656
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
657
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
658
|
-
Only applicable when @parallel is used.
|
|
659
|
-
qos: str, default: Burstable
|
|
660
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
661
|
-
|
|
662
|
-
security_context: Dict[str, Any], optional, default None
|
|
663
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
664
|
-
- privileged: bool, optional, default None
|
|
665
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
666
|
-
- run_as_user: int, optional, default None
|
|
667
|
-
- run_as_group: int, optional, default None
|
|
668
|
-
- run_as_non_root: bool, optional, default None
|
|
859
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
860
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
861
|
+
a Neo Cloud like Nebius.
|
|
669
862
|
"""
|
|
670
863
|
...
|
|
671
864
|
|
|
672
865
|
@typing.overload
|
|
673
|
-
def
|
|
866
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
867
|
+
...
|
|
868
|
+
|
|
869
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
674
870
|
"""
|
|
675
|
-
|
|
676
|
-
|
|
677
|
-
|
|
678
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
679
|
-
you can use `@pypi_base` to set packages required by all
|
|
680
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
681
|
-
|
|
682
|
-
|
|
683
|
-
Parameters
|
|
684
|
-
----------
|
|
685
|
-
packages : Dict[str, str], default: {}
|
|
686
|
-
Packages to use for this step. The key is the name of the package
|
|
687
|
-
and the value is the version to use.
|
|
688
|
-
python : str, optional, default: None
|
|
689
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
690
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
871
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
872
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
873
|
+
a Neo Cloud like Nebius.
|
|
691
874
|
"""
|
|
692
875
|
...
|
|
693
876
|
|
|
694
877
|
@typing.overload
|
|
695
|
-
def
|
|
696
|
-
...
|
|
697
|
-
|
|
698
|
-
@typing.overload
|
|
699
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
700
|
-
...
|
|
701
|
-
|
|
702
|
-
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
878
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
703
879
|
"""
|
|
704
|
-
Specifies
|
|
880
|
+
Specifies a timeout for your step.
|
|
705
881
|
|
|
706
|
-
|
|
707
|
-
|
|
708
|
-
|
|
709
|
-
|
|
882
|
+
This decorator is useful if this step may hang indefinitely.
|
|
883
|
+
|
|
884
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
885
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
886
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
887
|
+
|
|
888
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
889
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
710
890
|
|
|
711
891
|
|
|
712
892
|
Parameters
|
|
713
893
|
----------
|
|
714
|
-
|
|
715
|
-
|
|
716
|
-
|
|
717
|
-
|
|
718
|
-
|
|
719
|
-
|
|
720
|
-
"""
|
|
721
|
-
...
|
|
722
|
-
|
|
723
|
-
@typing.overload
|
|
724
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
725
|
-
"""
|
|
726
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
727
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
728
|
-
"""
|
|
729
|
-
...
|
|
730
|
-
|
|
731
|
-
@typing.overload
|
|
732
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
733
|
-
...
|
|
734
|
-
|
|
735
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
736
|
-
"""
|
|
737
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
738
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
894
|
+
seconds : int, default 0
|
|
895
|
+
Number of seconds to wait prior to timing out.
|
|
896
|
+
minutes : int, default 0
|
|
897
|
+
Number of minutes to wait prior to timing out.
|
|
898
|
+
hours : int, default 0
|
|
899
|
+
Number of hours to wait prior to timing out.
|
|
739
900
|
"""
|
|
740
901
|
...
|
|
741
902
|
|
|
742
903
|
@typing.overload
|
|
743
|
-
def
|
|
744
|
-
"""
|
|
745
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
746
|
-
to inject a card and render simple markdown content.
|
|
747
|
-
"""
|
|
904
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
748
905
|
...
|
|
749
906
|
|
|
750
907
|
@typing.overload
|
|
751
|
-
def
|
|
908
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
752
909
|
...
|
|
753
910
|
|
|
754
|
-
def
|
|
911
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
755
912
|
"""
|
|
756
|
-
|
|
757
|
-
|
|
913
|
+
Specifies a timeout for your step.
|
|
914
|
+
|
|
915
|
+
This decorator is useful if this step may hang indefinitely.
|
|
916
|
+
|
|
917
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
918
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
919
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
920
|
+
|
|
921
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
922
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
923
|
+
|
|
924
|
+
|
|
925
|
+
Parameters
|
|
926
|
+
----------
|
|
927
|
+
seconds : int, default 0
|
|
928
|
+
Number of seconds to wait prior to timing out.
|
|
929
|
+
minutes : int, default 0
|
|
930
|
+
Number of minutes to wait prior to timing out.
|
|
931
|
+
hours : int, default 0
|
|
932
|
+
Number of hours to wait prior to timing out.
|
|
758
933
|
"""
|
|
759
934
|
...
|
|
760
935
|
|
|
761
936
|
@typing.overload
|
|
762
|
-
def
|
|
937
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
763
938
|
"""
|
|
764
|
-
|
|
939
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
765
940
|
It exists to make it easier for users to know that this decorator should only be used with
|
|
766
|
-
a Neo Cloud like
|
|
941
|
+
a Neo Cloud like CoreWeave.
|
|
767
942
|
"""
|
|
768
943
|
...
|
|
769
944
|
|
|
770
945
|
@typing.overload
|
|
771
|
-
def
|
|
946
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
772
947
|
...
|
|
773
948
|
|
|
774
|
-
def
|
|
949
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
775
950
|
"""
|
|
776
|
-
|
|
951
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
777
952
|
It exists to make it easier for users to know that this decorator should only be used with
|
|
778
|
-
a Neo Cloud like
|
|
953
|
+
a Neo Cloud like CoreWeave.
|
|
779
954
|
"""
|
|
780
955
|
...
|
|
781
956
|
|
|
782
957
|
@typing.overload
|
|
783
|
-
def
|
|
958
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
784
959
|
"""
|
|
785
|
-
Specifies the
|
|
786
|
-
to a step needs to be retried.
|
|
960
|
+
Specifies the resources needed when executing this step.
|
|
787
961
|
|
|
788
|
-
|
|
789
|
-
|
|
790
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
962
|
+
Use `@resources` to specify the resource requirements
|
|
963
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
791
964
|
|
|
792
|
-
|
|
793
|
-
|
|
794
|
-
|
|
965
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
966
|
+
```
|
|
967
|
+
python myflow.py run --with batch
|
|
968
|
+
```
|
|
969
|
+
or
|
|
970
|
+
```
|
|
971
|
+
python myflow.py run --with kubernetes
|
|
972
|
+
```
|
|
973
|
+
which executes the flow on the desired system using the
|
|
974
|
+
requirements specified in `@resources`.
|
|
795
975
|
|
|
796
976
|
|
|
797
977
|
Parameters
|
|
798
978
|
----------
|
|
799
|
-
|
|
800
|
-
Number of
|
|
801
|
-
|
|
802
|
-
Number of
|
|
979
|
+
cpu : int, default 1
|
|
980
|
+
Number of CPUs required for this step.
|
|
981
|
+
gpu : int, optional, default None
|
|
982
|
+
Number of GPUs required for this step.
|
|
983
|
+
disk : int, optional, default None
|
|
984
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
985
|
+
memory : int, default 4096
|
|
986
|
+
Memory size (in MB) required for this step.
|
|
987
|
+
shared_memory : int, optional, default None
|
|
988
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
989
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
803
990
|
"""
|
|
804
991
|
...
|
|
805
992
|
|
|
806
993
|
@typing.overload
|
|
807
|
-
def
|
|
994
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
808
995
|
...
|
|
809
996
|
|
|
810
997
|
@typing.overload
|
|
811
|
-
def
|
|
998
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
812
999
|
...
|
|
813
1000
|
|
|
814
|
-
def
|
|
1001
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
815
1002
|
"""
|
|
816
|
-
Specifies the
|
|
817
|
-
to a step needs to be retried.
|
|
818
|
-
|
|
819
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
|
820
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
821
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
822
|
-
|
|
823
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
824
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
|
825
|
-
ensuring that the flow execution can continue.
|
|
826
|
-
|
|
1003
|
+
Specifies the resources needed when executing this step.
|
|
827
1004
|
|
|
828
|
-
|
|
829
|
-
|
|
830
|
-
times : int, default 3
|
|
831
|
-
Number of times to retry this task.
|
|
832
|
-
minutes_between_retries : int, default 2
|
|
833
|
-
Number of minutes between retries.
|
|
834
|
-
"""
|
|
835
|
-
...
|
|
836
|
-
|
|
837
|
-
@typing.overload
|
|
838
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
839
|
-
"""
|
|
840
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
841
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
842
|
-
"""
|
|
843
|
-
...
|
|
844
|
-
|
|
845
|
-
@typing.overload
|
|
846
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
847
|
-
...
|
|
848
|
-
|
|
849
|
-
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
850
|
-
"""
|
|
851
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
852
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
853
|
-
"""
|
|
854
|
-
...
|
|
855
|
-
|
|
856
|
-
@typing.overload
|
|
857
|
-
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
858
|
-
"""
|
|
859
|
-
Specifies the Conda environment for the step.
|
|
1005
|
+
Use `@resources` to specify the resource requirements
|
|
1006
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
860
1007
|
|
|
861
|
-
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
|
|
1008
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1009
|
+
```
|
|
1010
|
+
python myflow.py run --with batch
|
|
1011
|
+
```
|
|
1012
|
+
or
|
|
1013
|
+
```
|
|
1014
|
+
python myflow.py run --with kubernetes
|
|
1015
|
+
```
|
|
1016
|
+
which executes the flow on the desired system using the
|
|
1017
|
+
requirements specified in `@resources`.
|
|
865
1018
|
|
|
866
1019
|
|
|
867
1020
|
Parameters
|
|
868
1021
|
----------
|
|
869
|
-
|
|
870
|
-
|
|
871
|
-
|
|
872
|
-
|
|
873
|
-
|
|
874
|
-
|
|
875
|
-
|
|
876
|
-
|
|
877
|
-
|
|
878
|
-
|
|
1022
|
+
cpu : int, default 1
|
|
1023
|
+
Number of CPUs required for this step.
|
|
1024
|
+
gpu : int, optional, default None
|
|
1025
|
+
Number of GPUs required for this step.
|
|
1026
|
+
disk : int, optional, default None
|
|
1027
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1028
|
+
memory : int, default 4096
|
|
1029
|
+
Memory size (in MB) required for this step.
|
|
1030
|
+
shared_memory : int, optional, default None
|
|
1031
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1032
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
879
1033
|
"""
|
|
880
1034
|
...
|
|
881
1035
|
|
|
882
1036
|
@typing.overload
|
|
883
|
-
def
|
|
884
|
-
...
|
|
885
|
-
|
|
886
|
-
@typing.overload
|
|
887
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
888
|
-
...
|
|
889
|
-
|
|
890
|
-
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1037
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
891
1038
|
"""
|
|
892
|
-
|
|
1039
|
+
Enables checkpointing for a step.
|
|
893
1040
|
|
|
894
|
-
|
|
895
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
896
|
-
you can use `@conda_base` to set packages required by all
|
|
897
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
1041
|
+
> Examples
|
|
898
1042
|
|
|
899
|
-
|
|
900
|
-
Parameters
|
|
901
|
-
----------
|
|
902
|
-
packages : Dict[str, str], default {}
|
|
903
|
-
Packages to use for this step. The key is the name of the package
|
|
904
|
-
and the value is the version to use.
|
|
905
|
-
libraries : Dict[str, str], default {}
|
|
906
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
907
|
-
python : str, optional, default None
|
|
908
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
909
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
910
|
-
disabled : bool, default False
|
|
911
|
-
If set to True, disables @conda.
|
|
912
|
-
"""
|
|
913
|
-
...
|
|
914
|
-
|
|
915
|
-
@typing.overload
|
|
916
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
917
|
-
"""
|
|
918
|
-
Enables checkpointing for a step.
|
|
919
|
-
|
|
920
|
-
> Examples
|
|
921
|
-
|
|
922
|
-
- Saving Checkpoints
|
|
1043
|
+
- Saving Checkpoints
|
|
923
1044
|
|
|
924
1045
|
```python
|
|
925
1046
|
@checkpoint
|
|
@@ -1059,477 +1180,214 @@ def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
|
1059
1180
|
"""
|
|
1060
1181
|
...
|
|
1061
1182
|
|
|
1062
|
-
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1063
|
-
"""
|
|
1064
|
-
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1065
|
-
|
|
1066
|
-
|
|
1067
|
-
Parameters
|
|
1068
|
-
----------
|
|
1069
|
-
integration_name : str, optional
|
|
1070
|
-
Name of the S3 proxy integration. If not specified, will use the only
|
|
1071
|
-
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
1072
|
-
write_mode : str, optional
|
|
1073
|
-
The desired behavior during write operations to target (origin) S3 bucket.
|
|
1074
|
-
allowed options are:
|
|
1075
|
-
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
1076
|
-
storage
|
|
1077
|
-
"origin" -> only write to the target S3 bucket
|
|
1078
|
-
"cache" -> only write to the object storage service used for caching
|
|
1079
|
-
debug : bool, optional
|
|
1080
|
-
Enable debug logging for proxy operations.
|
|
1081
|
-
"""
|
|
1082
|
-
...
|
|
1083
|
-
|
|
1084
|
-
@typing.overload
|
|
1085
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1086
|
-
"""
|
|
1087
|
-
Specifies that the step will success under all circumstances.
|
|
1088
|
-
|
|
1089
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
1090
|
-
contains the exception raised. You can use it to detect the presence
|
|
1091
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
1092
|
-
are missing.
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
|
-
Parameters
|
|
1096
|
-
----------
|
|
1097
|
-
var : str, optional, default None
|
|
1098
|
-
Name of the artifact in which to store the caught exception.
|
|
1099
|
-
If not specified, the exception is not stored.
|
|
1100
|
-
print_exception : bool, default True
|
|
1101
|
-
Determines whether or not the exception is printed to
|
|
1102
|
-
stdout when caught.
|
|
1103
|
-
"""
|
|
1104
|
-
...
|
|
1105
|
-
|
|
1106
|
-
@typing.overload
|
|
1107
|
-
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1108
|
-
...
|
|
1109
|
-
|
|
1110
|
-
@typing.overload
|
|
1111
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1112
|
-
...
|
|
1113
|
-
|
|
1114
|
-
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
1115
|
-
"""
|
|
1116
|
-
Specifies that the step will success under all circumstances.
|
|
1117
|
-
|
|
1118
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
1119
|
-
contains the exception raised. You can use it to detect the presence
|
|
1120
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
1121
|
-
are missing.
|
|
1122
|
-
|
|
1123
|
-
|
|
1124
|
-
Parameters
|
|
1125
|
-
----------
|
|
1126
|
-
var : str, optional, default None
|
|
1127
|
-
Name of the artifact in which to store the caught exception.
|
|
1128
|
-
If not specified, the exception is not stored.
|
|
1129
|
-
print_exception : bool, default True
|
|
1130
|
-
Determines whether or not the exception is printed to
|
|
1131
|
-
stdout when caught.
|
|
1132
|
-
"""
|
|
1133
|
-
...
|
|
1134
|
-
|
|
1135
1183
|
@typing.overload
|
|
1136
|
-
def
|
|
1137
|
-
"""
|
|
1138
|
-
Internal decorator to support Fast bakery
|
|
1139
|
-
"""
|
|
1140
|
-
...
|
|
1141
|
-
|
|
1142
|
-
@typing.overload
|
|
1143
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1144
|
-
...
|
|
1145
|
-
|
|
1146
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1147
|
-
"""
|
|
1148
|
-
Internal decorator to support Fast bakery
|
|
1149
|
-
"""
|
|
1150
|
-
...
|
|
1151
|
-
|
|
1152
|
-
@typing.overload
|
|
1153
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1154
|
-
"""
|
|
1155
|
-
Specifies the resources needed when executing this step.
|
|
1156
|
-
|
|
1157
|
-
Use `@resources` to specify the resource requirements
|
|
1158
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1159
|
-
|
|
1160
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
1161
|
-
```
|
|
1162
|
-
python myflow.py run --with batch
|
|
1163
|
-
```
|
|
1164
|
-
or
|
|
1165
|
-
```
|
|
1166
|
-
python myflow.py run --with kubernetes
|
|
1167
|
-
```
|
|
1168
|
-
which executes the flow on the desired system using the
|
|
1169
|
-
requirements specified in `@resources`.
|
|
1170
|
-
|
|
1171
|
-
|
|
1172
|
-
Parameters
|
|
1173
|
-
----------
|
|
1174
|
-
cpu : int, default 1
|
|
1175
|
-
Number of CPUs required for this step.
|
|
1176
|
-
gpu : int, optional, default None
|
|
1177
|
-
Number of GPUs required for this step.
|
|
1178
|
-
disk : int, optional, default None
|
|
1179
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1180
|
-
memory : int, default 4096
|
|
1181
|
-
Memory size (in MB) required for this step.
|
|
1182
|
-
shared_memory : int, optional, default None
|
|
1183
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1184
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
1185
|
-
"""
|
|
1186
|
-
...
|
|
1187
|
-
|
|
1188
|
-
@typing.overload
|
|
1189
|
-
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1190
|
-
...
|
|
1191
|
-
|
|
1192
|
-
@typing.overload
|
|
1193
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1194
|
-
...
|
|
1195
|
-
|
|
1196
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
1197
|
-
"""
|
|
1198
|
-
Specifies the resources needed when executing this step.
|
|
1199
|
-
|
|
1200
|
-
Use `@resources` to specify the resource requirements
|
|
1201
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1202
|
-
|
|
1203
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
1204
|
-
```
|
|
1205
|
-
python myflow.py run --with batch
|
|
1206
|
-
```
|
|
1207
|
-
or
|
|
1208
|
-
```
|
|
1209
|
-
python myflow.py run --with kubernetes
|
|
1210
|
-
```
|
|
1211
|
-
which executes the flow on the desired system using the
|
|
1212
|
-
requirements specified in `@resources`.
|
|
1213
|
-
|
|
1214
|
-
|
|
1215
|
-
Parameters
|
|
1216
|
-
----------
|
|
1217
|
-
cpu : int, default 1
|
|
1218
|
-
Number of CPUs required for this step.
|
|
1219
|
-
gpu : int, optional, default None
|
|
1220
|
-
Number of GPUs required for this step.
|
|
1221
|
-
disk : int, optional, default None
|
|
1222
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1223
|
-
memory : int, default 4096
|
|
1224
|
-
Memory size (in MB) required for this step.
|
|
1225
|
-
shared_memory : int, optional, default None
|
|
1226
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1227
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
1228
|
-
"""
|
|
1229
|
-
...
|
|
1230
|
-
|
|
1231
|
-
@typing.overload
|
|
1232
|
-
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1184
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1233
1185
|
"""
|
|
1234
|
-
|
|
1235
|
-
|
|
1236
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1186
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
1187
|
+
the execution of a step.
|
|
1237
1188
|
|
|
1238
1189
|
|
|
1239
1190
|
Parameters
|
|
1240
1191
|
----------
|
|
1241
|
-
|
|
1242
|
-
|
|
1243
|
-
|
|
1244
|
-
|
|
1245
|
-
options : Dict[str, Any], default {}
|
|
1246
|
-
Options passed to the card. The contents depend on the card type.
|
|
1247
|
-
timeout : int, default 45
|
|
1248
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
1192
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1193
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
1194
|
+
role : str, optional, default: None
|
|
1195
|
+
Role to use for fetching secrets
|
|
1249
1196
|
"""
|
|
1250
1197
|
...
|
|
1251
1198
|
|
|
1252
1199
|
@typing.overload
|
|
1253
|
-
def
|
|
1200
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1254
1201
|
...
|
|
1255
1202
|
|
|
1256
1203
|
@typing.overload
|
|
1257
|
-
def
|
|
1204
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1258
1205
|
...
|
|
1259
1206
|
|
|
1260
|
-
def
|
|
1207
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
1261
1208
|
"""
|
|
1262
|
-
|
|
1263
|
-
|
|
1264
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1209
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
1210
|
+
the execution of a step.
|
|
1265
1211
|
|
|
1266
1212
|
|
|
1267
1213
|
Parameters
|
|
1268
1214
|
----------
|
|
1269
|
-
|
|
1270
|
-
|
|
1271
|
-
|
|
1272
|
-
|
|
1273
|
-
options : Dict[str, Any], default {}
|
|
1274
|
-
Options passed to the card. The contents depend on the card type.
|
|
1275
|
-
timeout : int, default 45
|
|
1276
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
1215
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1216
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
1217
|
+
role : str, optional, default: None
|
|
1218
|
+
Role to use for fetching secrets
|
|
1277
1219
|
"""
|
|
1278
1220
|
...
|
|
1279
1221
|
|
|
1280
1222
|
@typing.overload
|
|
1281
|
-
def
|
|
1223
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1282
1224
|
"""
|
|
1283
|
-
|
|
1284
|
-
|
|
1285
|
-
a Neo Cloud like CoreWeave.
|
|
1225
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1226
|
+
to inject a card and render simple markdown content.
|
|
1286
1227
|
"""
|
|
1287
1228
|
...
|
|
1288
1229
|
|
|
1289
1230
|
@typing.overload
|
|
1290
|
-
def
|
|
1231
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1291
1232
|
...
|
|
1292
1233
|
|
|
1293
|
-
def
|
|
1234
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1294
1235
|
"""
|
|
1295
|
-
|
|
1296
|
-
|
|
1297
|
-
a Neo Cloud like CoreWeave.
|
|
1236
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1237
|
+
to inject a card and render simple markdown content.
|
|
1298
1238
|
"""
|
|
1299
1239
|
...
|
|
1300
1240
|
|
|
1301
|
-
def
|
|
1241
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1302
1242
|
"""
|
|
1303
|
-
|
|
1304
|
-
|
|
1305
|
-
User code call
|
|
1306
|
-
--------------
|
|
1307
|
-
@vllm(
|
|
1308
|
-
model="...",
|
|
1309
|
-
...
|
|
1310
|
-
)
|
|
1311
|
-
|
|
1312
|
-
Valid backend options
|
|
1313
|
-
---------------------
|
|
1314
|
-
- 'local': Run as a separate process on the local task machine.
|
|
1315
|
-
|
|
1316
|
-
Valid model options
|
|
1317
|
-
-------------------
|
|
1318
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
1319
|
-
|
|
1320
|
-
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
1321
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
|
1243
|
+
Specifies that this step should execute on DGX cloud.
|
|
1322
1244
|
|
|
1323
1245
|
|
|
1324
1246
|
Parameters
|
|
1325
1247
|
----------
|
|
1326
|
-
|
|
1327
|
-
|
|
1328
|
-
|
|
1329
|
-
|
|
1330
|
-
|
|
1331
|
-
|
|
1332
|
-
Default is False (uses native engine).
|
|
1333
|
-
Set to True for backward compatibility with existing code.
|
|
1334
|
-
debug: bool
|
|
1335
|
-
Whether to turn on verbose debugging logs.
|
|
1336
|
-
card_refresh_interval: int
|
|
1337
|
-
Interval in seconds for refreshing the vLLM status card.
|
|
1338
|
-
Only used when openai_api_server=True.
|
|
1339
|
-
max_retries: int
|
|
1340
|
-
Maximum number of retries checking for vLLM server startup.
|
|
1341
|
-
Only used when openai_api_server=True.
|
|
1342
|
-
retry_alert_frequency: int
|
|
1343
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
1344
|
-
Only used when openai_api_server=True.
|
|
1345
|
-
engine_args : dict
|
|
1346
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
1347
|
-
For example, `tensor_parallel_size=2`.
|
|
1248
|
+
gpu : int
|
|
1249
|
+
Number of GPUs to use.
|
|
1250
|
+
gpu_type : str
|
|
1251
|
+
Type of Nvidia GPU to use.
|
|
1252
|
+
queue_timeout : int
|
|
1253
|
+
Time to keep the job in NVCF's queue.
|
|
1348
1254
|
"""
|
|
1349
1255
|
...
|
|
1350
1256
|
|
|
1351
|
-
|
|
1352
|
-
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1257
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1353
1258
|
"""
|
|
1354
|
-
|
|
1355
|
-
|
|
1356
|
-
```
|
|
1357
|
-
@trigger(event='foo')
|
|
1358
|
-
```
|
|
1359
|
-
or
|
|
1360
|
-
```
|
|
1361
|
-
@trigger(events=['foo', 'bar'])
|
|
1362
|
-
```
|
|
1363
|
-
|
|
1364
|
-
Additionally, you can specify the parameter mappings
|
|
1365
|
-
to map event payload to Metaflow parameters for the flow.
|
|
1366
|
-
```
|
|
1367
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1368
|
-
```
|
|
1369
|
-
or
|
|
1370
|
-
```
|
|
1371
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1372
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1373
|
-
```
|
|
1374
|
-
|
|
1375
|
-
'parameters' can also be a list of strings and tuples like so:
|
|
1376
|
-
```
|
|
1377
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1378
|
-
```
|
|
1379
|
-
This is equivalent to:
|
|
1380
|
-
```
|
|
1381
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1382
|
-
```
|
|
1259
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
|
1383
1260
|
|
|
1261
|
+
> Examples
|
|
1384
1262
|
|
|
1385
|
-
|
|
1386
|
-
|
|
1387
|
-
|
|
1388
|
-
|
|
1389
|
-
|
|
1390
|
-
|
|
1391
|
-
|
|
1392
|
-
|
|
1393
|
-
|
|
1394
|
-
|
|
1395
|
-
|
|
1396
|
-
@typing.overload
|
|
1397
|
-
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1398
|
-
...
|
|
1399
|
-
|
|
1400
|
-
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1401
|
-
"""
|
|
1402
|
-
Specifies the event(s) that this flow depends on.
|
|
1263
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
|
1264
|
+
```python
|
|
1265
|
+
@huggingface_hub
|
|
1266
|
+
@step
|
|
1267
|
+
def pull_model_from_huggingface(self):
|
|
1268
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
1269
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
1270
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
1271
|
+
# value of the function is a reference to the model in the backend storage.
|
|
1272
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
1403
1273
|
|
|
1404
|
-
|
|
1405
|
-
|
|
1406
|
-
|
|
1407
|
-
|
|
1408
|
-
|
|
1409
|
-
|
|
1274
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
1275
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
1276
|
+
repo_id=self.model_id,
|
|
1277
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
1278
|
+
)
|
|
1279
|
+
self.next(self.train)
|
|
1410
1280
|
```
|
|
1411
1281
|
|
|
1412
|
-
|
|
1413
|
-
|
|
1414
|
-
|
|
1415
|
-
|
|
1416
|
-
|
|
1417
|
-
|
|
1418
|
-
```
|
|
1419
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1420
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1282
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
|
1283
|
+
```python
|
|
1284
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
1285
|
+
@step
|
|
1286
|
+
def pull_model_from_huggingface(self):
|
|
1287
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1421
1288
|
```
|
|
1422
1289
|
|
|
1423
|
-
|
|
1424
|
-
|
|
1425
|
-
|
|
1426
|
-
|
|
1427
|
-
|
|
1428
|
-
|
|
1429
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1290
|
+
```python
|
|
1291
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
|
1292
|
+
@step
|
|
1293
|
+
def finetune_model(self):
|
|
1294
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1295
|
+
# path_to_model will be /my-directory
|
|
1430
1296
|
```
|
|
1431
1297
|
|
|
1432
|
-
|
|
1433
|
-
|
|
1434
|
-
|
|
1435
|
-
|
|
1436
|
-
|
|
1437
|
-
|
|
1438
|
-
|
|
1439
|
-
|
|
1440
|
-
|
|
1441
|
-
|
|
1442
|
-
|
|
1443
|
-
|
|
1444
|
-
@
|
|
1445
|
-
def
|
|
1446
|
-
|
|
1447
|
-
|
|
1448
|
-
|
|
1449
|
-
Use `@conda_base` to set common libraries required by all
|
|
1450
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1298
|
+
```python
|
|
1299
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
1300
|
+
# except for `local_dir`
|
|
1301
|
+
@huggingface_hub(load=[
|
|
1302
|
+
{
|
|
1303
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
1304
|
+
},
|
|
1305
|
+
{
|
|
1306
|
+
"repo_id": "myorg/mistral-lora",
|
|
1307
|
+
"repo_type": "model",
|
|
1308
|
+
},
|
|
1309
|
+
])
|
|
1310
|
+
@step
|
|
1311
|
+
def finetune_model(self):
|
|
1312
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1313
|
+
# path_to_model will be /my-directory
|
|
1314
|
+
```
|
|
1451
1315
|
|
|
1452
1316
|
|
|
1453
1317
|
Parameters
|
|
1454
1318
|
----------
|
|
1455
|
-
|
|
1456
|
-
|
|
1457
|
-
and the value is the version to use.
|
|
1458
|
-
libraries : Dict[str, str], default {}
|
|
1459
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1460
|
-
python : str, optional, default None
|
|
1461
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1462
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1463
|
-
disabled : bool, default False
|
|
1464
|
-
If set to True, disables Conda.
|
|
1465
|
-
"""
|
|
1466
|
-
...
|
|
1467
|
-
|
|
1468
|
-
@typing.overload
|
|
1469
|
-
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1470
|
-
...
|
|
1471
|
-
|
|
1472
|
-
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1473
|
-
"""
|
|
1474
|
-
Specifies the Conda environment for all steps of the flow.
|
|
1319
|
+
temp_dir_root : str, optional
|
|
1320
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
1475
1321
|
|
|
1476
|
-
|
|
1477
|
-
|
|
1322
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
1323
|
+
The list of repos (models/datasets) to load.
|
|
1478
1324
|
|
|
1325
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
1479
1326
|
|
|
1480
|
-
|
|
1481
|
-
|
|
1482
|
-
|
|
1483
|
-
|
|
1484
|
-
|
|
1485
|
-
|
|
1486
|
-
|
|
1487
|
-
python : str, optional, default None
|
|
1488
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1489
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1490
|
-
disabled : bool, default False
|
|
1491
|
-
If set to True, disables Conda.
|
|
1327
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
1328
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
1329
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
1330
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
1331
|
+
|
|
1332
|
+
- If repo is found in the datastore:
|
|
1333
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
1492
1334
|
"""
|
|
1493
1335
|
...
|
|
1494
1336
|
|
|
1495
|
-
|
|
1496
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1337
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1497
1338
|
"""
|
|
1498
|
-
Specifies
|
|
1339
|
+
Specifies that this step should execute on DGX cloud.
|
|
1499
1340
|
|
|
1500
|
-
Use `@pypi_base` to set common packages required by all
|
|
1501
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1502
1341
|
|
|
1503
1342
|
Parameters
|
|
1504
1343
|
----------
|
|
1505
|
-
|
|
1506
|
-
|
|
1507
|
-
|
|
1508
|
-
|
|
1509
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1510
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1344
|
+
gpu : int
|
|
1345
|
+
Number of GPUs to use.
|
|
1346
|
+
gpu_type : str
|
|
1347
|
+
Type of Nvidia GPU to use.
|
|
1511
1348
|
"""
|
|
1512
1349
|
...
|
|
1513
1350
|
|
|
1514
|
-
|
|
1515
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1516
|
-
...
|
|
1517
|
-
|
|
1518
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1351
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1519
1352
|
"""
|
|
1520
|
-
|
|
1353
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1354
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1355
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1356
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1357
|
+
starts only after all sensors finish.
|
|
1521
1358
|
|
|
1522
|
-
Use `@pypi_base` to set common packages required by all
|
|
1523
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1524
1359
|
|
|
1525
1360
|
Parameters
|
|
1526
1361
|
----------
|
|
1527
|
-
|
|
1528
|
-
|
|
1529
|
-
|
|
1530
|
-
|
|
1531
|
-
|
|
1532
|
-
|
|
1362
|
+
timeout : int
|
|
1363
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1364
|
+
poke_interval : int
|
|
1365
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1366
|
+
mode : str
|
|
1367
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1368
|
+
exponential_backoff : bool
|
|
1369
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1370
|
+
pool : str
|
|
1371
|
+
the slot pool this task should run in,
|
|
1372
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1373
|
+
soft_fail : bool
|
|
1374
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1375
|
+
name : str
|
|
1376
|
+
Name of the sensor on Airflow
|
|
1377
|
+
description : str
|
|
1378
|
+
Description of sensor in the Airflow UI
|
|
1379
|
+
bucket_key : Union[str, List[str]]
|
|
1380
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1381
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1382
|
+
bucket_name : str
|
|
1383
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1384
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1385
|
+
wildcard_match : bool
|
|
1386
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1387
|
+
aws_conn_id : str
|
|
1388
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1389
|
+
verify : bool
|
|
1390
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1533
1391
|
"""
|
|
1534
1392
|
...
|
|
1535
1393
|
|
|
@@ -1584,6 +1442,90 @@ def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly:
|
|
|
1584
1442
|
"""
|
|
1585
1443
|
...
|
|
1586
1444
|
|
|
1445
|
+
@typing.overload
|
|
1446
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1447
|
+
"""
|
|
1448
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1449
|
+
|
|
1450
|
+
Use `@pypi_base` to set common packages required by all
|
|
1451
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1452
|
+
|
|
1453
|
+
Parameters
|
|
1454
|
+
----------
|
|
1455
|
+
packages : Dict[str, str], default: {}
|
|
1456
|
+
Packages to use for this flow. The key is the name of the package
|
|
1457
|
+
and the value is the version to use.
|
|
1458
|
+
python : str, optional, default: None
|
|
1459
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1460
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1461
|
+
"""
|
|
1462
|
+
...
|
|
1463
|
+
|
|
1464
|
+
@typing.overload
|
|
1465
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1466
|
+
...
|
|
1467
|
+
|
|
1468
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1469
|
+
"""
|
|
1470
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1471
|
+
|
|
1472
|
+
Use `@pypi_base` to set common packages required by all
|
|
1473
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1474
|
+
|
|
1475
|
+
Parameters
|
|
1476
|
+
----------
|
|
1477
|
+
packages : Dict[str, str], default: {}
|
|
1478
|
+
Packages to use for this flow. The key is the name of the package
|
|
1479
|
+
and the value is the version to use.
|
|
1480
|
+
python : str, optional, default: None
|
|
1481
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1482
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1483
|
+
"""
|
|
1484
|
+
...
|
|
1485
|
+
|
|
1486
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1487
|
+
"""
|
|
1488
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
1489
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1490
|
+
|
|
1491
|
+
|
|
1492
|
+
Parameters
|
|
1493
|
+
----------
|
|
1494
|
+
timeout : int
|
|
1495
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1496
|
+
poke_interval : int
|
|
1497
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1498
|
+
mode : str
|
|
1499
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1500
|
+
exponential_backoff : bool
|
|
1501
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1502
|
+
pool : str
|
|
1503
|
+
the slot pool this task should run in,
|
|
1504
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1505
|
+
soft_fail : bool
|
|
1506
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1507
|
+
name : str
|
|
1508
|
+
Name of the sensor on Airflow
|
|
1509
|
+
description : str
|
|
1510
|
+
Description of sensor in the Airflow UI
|
|
1511
|
+
external_dag_id : str
|
|
1512
|
+
The dag_id that contains the task you want to wait for.
|
|
1513
|
+
external_task_ids : List[str]
|
|
1514
|
+
The list of task_ids that you want to wait for.
|
|
1515
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1516
|
+
allowed_states : List[str]
|
|
1517
|
+
Iterable of allowed states, (Default: ['success'])
|
|
1518
|
+
failed_states : List[str]
|
|
1519
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
|
1520
|
+
execution_delta : datetime.timedelta
|
|
1521
|
+
time difference with the previous execution to look at,
|
|
1522
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1523
|
+
check_existence: bool
|
|
1524
|
+
Set to True to check if the external task exists or check if
|
|
1525
|
+
the DAG to wait for exists. (Default: True)
|
|
1526
|
+
"""
|
|
1527
|
+
...
|
|
1528
|
+
|
|
1587
1529
|
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1588
1530
|
"""
|
|
1589
1531
|
Specifies what flows belong to the same project.
|
|
@@ -1619,46 +1561,104 @@ def project(*, name: str, branch: typing.Optional[str] = None, production: bool
|
|
|
1619
1561
|
"""
|
|
1620
1562
|
...
|
|
1621
1563
|
|
|
1622
|
-
|
|
1564
|
+
@typing.overload
|
|
1565
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1566
|
+
"""
|
|
1567
|
+
Specifies the flow(s) that this flow depends on.
|
|
1568
|
+
|
|
1569
|
+
```
|
|
1570
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1571
|
+
```
|
|
1572
|
+
or
|
|
1573
|
+
```
|
|
1574
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1575
|
+
```
|
|
1576
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1577
|
+
when upstream runs within the same namespace complete successfully
|
|
1578
|
+
|
|
1579
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1580
|
+
by specifying the fully qualified project_flow_name.
|
|
1581
|
+
```
|
|
1582
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1583
|
+
```
|
|
1584
|
+
or
|
|
1585
|
+
```
|
|
1586
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1587
|
+
```
|
|
1588
|
+
|
|
1589
|
+
You can also specify just the project or project branch (other values will be
|
|
1590
|
+
inferred from the current project or project branch):
|
|
1591
|
+
```
|
|
1592
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1593
|
+
```
|
|
1594
|
+
|
|
1595
|
+
Note that `branch` is typically one of:
|
|
1596
|
+
- `prod`
|
|
1597
|
+
- `user.bob`
|
|
1598
|
+
- `test.my_experiment`
|
|
1599
|
+
- `prod.staging`
|
|
1600
|
+
|
|
1601
|
+
|
|
1602
|
+
Parameters
|
|
1603
|
+
----------
|
|
1604
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1605
|
+
Upstream flow dependency for this flow.
|
|
1606
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1607
|
+
Upstream flow dependencies for this flow.
|
|
1608
|
+
options : Dict[str, Any], default {}
|
|
1609
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1610
|
+
"""
|
|
1611
|
+
...
|
|
1612
|
+
|
|
1613
|
+
@typing.overload
|
|
1614
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1615
|
+
...
|
|
1616
|
+
|
|
1617
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1623
1618
|
"""
|
|
1624
|
-
|
|
1625
|
-
|
|
1626
|
-
|
|
1627
|
-
|
|
1628
|
-
|
|
1619
|
+
Specifies the flow(s) that this flow depends on.
|
|
1620
|
+
|
|
1621
|
+
```
|
|
1622
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1623
|
+
```
|
|
1624
|
+
or
|
|
1625
|
+
```
|
|
1626
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1627
|
+
```
|
|
1628
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1629
|
+
when upstream runs within the same namespace complete successfully
|
|
1630
|
+
|
|
1631
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1632
|
+
by specifying the fully qualified project_flow_name.
|
|
1633
|
+
```
|
|
1634
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1635
|
+
```
|
|
1636
|
+
or
|
|
1637
|
+
```
|
|
1638
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1639
|
+
```
|
|
1640
|
+
|
|
1641
|
+
You can also specify just the project or project branch (other values will be
|
|
1642
|
+
inferred from the current project or project branch):
|
|
1643
|
+
```
|
|
1644
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1645
|
+
```
|
|
1646
|
+
|
|
1647
|
+
Note that `branch` is typically one of:
|
|
1648
|
+
- `prod`
|
|
1649
|
+
- `user.bob`
|
|
1650
|
+
- `test.my_experiment`
|
|
1651
|
+
- `prod.staging`
|
|
1629
1652
|
|
|
1630
1653
|
|
|
1631
1654
|
Parameters
|
|
1632
1655
|
----------
|
|
1633
|
-
|
|
1634
|
-
|
|
1635
|
-
|
|
1636
|
-
|
|
1637
|
-
|
|
1638
|
-
|
|
1639
|
-
exponential_backoff : bool
|
|
1640
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1641
|
-
pool : str
|
|
1642
|
-
the slot pool this task should run in,
|
|
1643
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1644
|
-
soft_fail : bool
|
|
1645
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1646
|
-
name : str
|
|
1647
|
-
Name of the sensor on Airflow
|
|
1648
|
-
description : str
|
|
1649
|
-
Description of sensor in the Airflow UI
|
|
1650
|
-
bucket_key : Union[str, List[str]]
|
|
1651
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1652
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1653
|
-
bucket_name : str
|
|
1654
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1655
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1656
|
-
wildcard_match : bool
|
|
1657
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1658
|
-
aws_conn_id : str
|
|
1659
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
|
1660
|
-
verify : bool
|
|
1661
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1656
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1657
|
+
Upstream flow dependency for this flow.
|
|
1658
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1659
|
+
Upstream flow dependencies for this flow.
|
|
1660
|
+
options : Dict[str, Any], default {}
|
|
1661
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1662
1662
|
"""
|
|
1663
1663
|
...
|
|
1664
1664
|
|
|
@@ -1777,148 +1777,148 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1777
1777
|
...
|
|
1778
1778
|
|
|
1779
1779
|
@typing.overload
|
|
1780
|
-
def
|
|
1780
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1781
1781
|
"""
|
|
1782
|
-
Specifies the
|
|
1782
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1783
|
+
|
|
1784
|
+
Use `@conda_base` to set common libraries required by all
|
|
1785
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1786
|
+
|
|
1787
|
+
|
|
1788
|
+
Parameters
|
|
1789
|
+
----------
|
|
1790
|
+
packages : Dict[str, str], default {}
|
|
1791
|
+
Packages to use for this flow. The key is the name of the package
|
|
1792
|
+
and the value is the version to use.
|
|
1793
|
+
libraries : Dict[str, str], default {}
|
|
1794
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1795
|
+
python : str, optional, default None
|
|
1796
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1797
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1798
|
+
disabled : bool, default False
|
|
1799
|
+
If set to True, disables Conda.
|
|
1800
|
+
"""
|
|
1801
|
+
...
|
|
1802
|
+
|
|
1803
|
+
@typing.overload
|
|
1804
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1805
|
+
...
|
|
1806
|
+
|
|
1807
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1808
|
+
"""
|
|
1809
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1810
|
+
|
|
1811
|
+
Use `@conda_base` to set common libraries required by all
|
|
1812
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1813
|
+
|
|
1814
|
+
|
|
1815
|
+
Parameters
|
|
1816
|
+
----------
|
|
1817
|
+
packages : Dict[str, str], default {}
|
|
1818
|
+
Packages to use for this flow. The key is the name of the package
|
|
1819
|
+
and the value is the version to use.
|
|
1820
|
+
libraries : Dict[str, str], default {}
|
|
1821
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1822
|
+
python : str, optional, default None
|
|
1823
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1824
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1825
|
+
disabled : bool, default False
|
|
1826
|
+
If set to True, disables Conda.
|
|
1827
|
+
"""
|
|
1828
|
+
...
|
|
1829
|
+
|
|
1830
|
+
@typing.overload
|
|
1831
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1832
|
+
"""
|
|
1833
|
+
Specifies the event(s) that this flow depends on.
|
|
1783
1834
|
|
|
1784
1835
|
```
|
|
1785
|
-
@
|
|
1836
|
+
@trigger(event='foo')
|
|
1786
1837
|
```
|
|
1787
1838
|
or
|
|
1788
1839
|
```
|
|
1789
|
-
@
|
|
1840
|
+
@trigger(events=['foo', 'bar'])
|
|
1790
1841
|
```
|
|
1791
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1792
|
-
when upstream runs within the same namespace complete successfully
|
|
1793
1842
|
|
|
1794
|
-
Additionally, you can specify
|
|
1795
|
-
|
|
1843
|
+
Additionally, you can specify the parameter mappings
|
|
1844
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1796
1845
|
```
|
|
1797
|
-
@
|
|
1846
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1798
1847
|
```
|
|
1799
1848
|
or
|
|
1800
1849
|
```
|
|
1801
|
-
@
|
|
1850
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1851
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1802
1852
|
```
|
|
1803
1853
|
|
|
1804
|
-
|
|
1805
|
-
inferred from the current project or project branch):
|
|
1854
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1806
1855
|
```
|
|
1807
|
-
@
|
|
1856
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1857
|
+
```
|
|
1858
|
+
This is equivalent to:
|
|
1859
|
+
```
|
|
1860
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1808
1861
|
```
|
|
1809
|
-
|
|
1810
|
-
Note that `branch` is typically one of:
|
|
1811
|
-
- `prod`
|
|
1812
|
-
- `user.bob`
|
|
1813
|
-
- `test.my_experiment`
|
|
1814
|
-
- `prod.staging`
|
|
1815
1862
|
|
|
1816
1863
|
|
|
1817
1864
|
Parameters
|
|
1818
1865
|
----------
|
|
1819
|
-
|
|
1820
|
-
|
|
1821
|
-
|
|
1822
|
-
|
|
1866
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1867
|
+
Event dependency for this flow.
|
|
1868
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1869
|
+
Events dependency for this flow.
|
|
1823
1870
|
options : Dict[str, Any], default {}
|
|
1824
1871
|
Backend-specific configuration for tuning eventing behavior.
|
|
1825
1872
|
"""
|
|
1826
1873
|
...
|
|
1827
1874
|
|
|
1828
1875
|
@typing.overload
|
|
1829
|
-
def
|
|
1876
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1830
1877
|
...
|
|
1831
1878
|
|
|
1832
|
-
def
|
|
1879
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1833
1880
|
"""
|
|
1834
|
-
Specifies the
|
|
1881
|
+
Specifies the event(s) that this flow depends on.
|
|
1835
1882
|
|
|
1836
1883
|
```
|
|
1837
|
-
@
|
|
1884
|
+
@trigger(event='foo')
|
|
1838
1885
|
```
|
|
1839
1886
|
or
|
|
1840
1887
|
```
|
|
1841
|
-
@
|
|
1888
|
+
@trigger(events=['foo', 'bar'])
|
|
1842
1889
|
```
|
|
1843
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1844
|
-
when upstream runs within the same namespace complete successfully
|
|
1845
1890
|
|
|
1846
|
-
Additionally, you can specify
|
|
1847
|
-
|
|
1891
|
+
Additionally, you can specify the parameter mappings
|
|
1892
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1848
1893
|
```
|
|
1849
|
-
@
|
|
1894
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1850
1895
|
```
|
|
1851
1896
|
or
|
|
1852
1897
|
```
|
|
1853
|
-
@
|
|
1898
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1899
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1854
1900
|
```
|
|
1855
1901
|
|
|
1856
|
-
|
|
1857
|
-
inferred from the current project or project branch):
|
|
1902
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1858
1903
|
```
|
|
1859
|
-
@
|
|
1904
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1905
|
+
```
|
|
1906
|
+
This is equivalent to:
|
|
1907
|
+
```
|
|
1908
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1860
1909
|
```
|
|
1861
|
-
|
|
1862
|
-
Note that `branch` is typically one of:
|
|
1863
|
-
- `prod`
|
|
1864
|
-
- `user.bob`
|
|
1865
|
-
- `test.my_experiment`
|
|
1866
|
-
- `prod.staging`
|
|
1867
1910
|
|
|
1868
1911
|
|
|
1869
1912
|
Parameters
|
|
1870
1913
|
----------
|
|
1871
|
-
|
|
1872
|
-
|
|
1873
|
-
|
|
1874
|
-
|
|
1914
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1915
|
+
Event dependency for this flow.
|
|
1916
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1917
|
+
Events dependency for this flow.
|
|
1875
1918
|
options : Dict[str, Any], default {}
|
|
1876
1919
|
Backend-specific configuration for tuning eventing behavior.
|
|
1877
1920
|
"""
|
|
1878
1921
|
...
|
|
1879
1922
|
|
|
1880
|
-
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1881
|
-
"""
|
|
1882
|
-
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
1883
|
-
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1884
|
-
|
|
1885
|
-
|
|
1886
|
-
Parameters
|
|
1887
|
-
----------
|
|
1888
|
-
timeout : int
|
|
1889
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1890
|
-
poke_interval : int
|
|
1891
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1892
|
-
mode : str
|
|
1893
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1894
|
-
exponential_backoff : bool
|
|
1895
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1896
|
-
pool : str
|
|
1897
|
-
the slot pool this task should run in,
|
|
1898
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1899
|
-
soft_fail : bool
|
|
1900
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1901
|
-
name : str
|
|
1902
|
-
Name of the sensor on Airflow
|
|
1903
|
-
description : str
|
|
1904
|
-
Description of sensor in the Airflow UI
|
|
1905
|
-
external_dag_id : str
|
|
1906
|
-
The dag_id that contains the task you want to wait for.
|
|
1907
|
-
external_task_ids : List[str]
|
|
1908
|
-
The list of task_ids that you want to wait for.
|
|
1909
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1910
|
-
allowed_states : List[str]
|
|
1911
|
-
Iterable of allowed states, (Default: ['success'])
|
|
1912
|
-
failed_states : List[str]
|
|
1913
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
|
1914
|
-
execution_delta : datetime.timedelta
|
|
1915
|
-
time difference with the previous execution to look at,
|
|
1916
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1917
|
-
check_existence: bool
|
|
1918
|
-
Set to True to check if the external task exists or check if
|
|
1919
|
-
the DAG to wait for exists. (Default: True)
|
|
1920
|
-
"""
|
|
1921
|
-
...
|
|
1922
|
-
|
|
1923
1923
|
pkg_name: str
|
|
1924
1924
|
|