ob-metaflow-stubs 6.0.7.2__py2.py3-none-any.whl → 6.0.7.4__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +926 -926
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +6 -6
- metaflow-stubs/client/filecache.pyi +1 -1
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/meta_files.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +66 -66
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +5 -5
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/packaging_sys/__init__.pyi +5 -5
- metaflow-stubs/packaging_sys/backend.pyi +2 -2
- metaflow-stubs/packaging_sys/distribution_support.pyi +4 -4
- metaflow-stubs/packaging_sys/tar_backend.pyi +4 -4
- metaflow-stubs/packaging_sys/utils.pyi +1 -1
- metaflow-stubs/packaging_sys/v1.pyi +2 -2
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +14 -14
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/argo/exit_hooks.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/__init__.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/plugins/optuna/__init__.pyi +1 -1
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +5 -5
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +1 -1
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_func.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +1 -1
- metaflow-stubs/plugins/secrets/utils.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +32 -32
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_options.pyi +3 -3
- metaflow-stubs/user_configs/config_parameters.pyi +5 -5
- metaflow-stubs/user_decorators/__init__.pyi +1 -1
- metaflow-stubs/user_decorators/common.pyi +1 -1
- metaflow-stubs/user_decorators/mutable_flow.pyi +4 -4
- metaflow-stubs/user_decorators/mutable_step.pyi +3 -3
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +5 -5
- metaflow-stubs/user_decorators/user_step_decorator.pyi +5 -5
- {ob_metaflow_stubs-6.0.7.2.dist-info → ob_metaflow_stubs-6.0.7.4.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.7.4.dist-info/RECORD +262 -0
- ob_metaflow_stubs-6.0.7.2.dist-info/RECORD +0 -262
- {ob_metaflow_stubs-6.0.7.2.dist-info → ob_metaflow_stubs-6.0.7.4.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.7.2.dist-info → ob_metaflow_stubs-6.0.7.4.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
3
|
# MF version: 2.17.1.0+obcheckpoint(0.2.4);ob(v1) #
|
|
4
|
-
# Generated on 2025-08-
|
|
4
|
+
# Generated on 2025-08-21T17:03:57.569240 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
@@ -39,10 +39,10 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
-
from . import
|
|
42
|
+
from . import events as events
|
|
43
43
|
from . import metaflow_git as metaflow_git
|
|
44
|
+
from . import cards as cards
|
|
44
45
|
from . import tuple_util as tuple_util
|
|
45
|
-
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
@@ -167,46 +167,109 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
167
167
|
"""
|
|
168
168
|
...
|
|
169
169
|
|
|
170
|
-
def
|
|
170
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
171
171
|
"""
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
User code call
|
|
175
|
-
--------------
|
|
176
|
-
@ollama(
|
|
177
|
-
models=[...],
|
|
178
|
-
...
|
|
179
|
-
)
|
|
180
|
-
|
|
181
|
-
Valid backend options
|
|
182
|
-
---------------------
|
|
183
|
-
- 'local': Run as a separate process on the local task machine.
|
|
184
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
185
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
186
|
-
|
|
187
|
-
Valid model options
|
|
188
|
-
-------------------
|
|
189
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
172
|
+
Specifies that this step should execute on Kubernetes.
|
|
190
173
|
|
|
191
174
|
|
|
192
175
|
Parameters
|
|
193
176
|
----------
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
177
|
+
cpu : int, default 1
|
|
178
|
+
Number of CPUs required for this step. If `@resources` is
|
|
179
|
+
also present, the maximum value from all decorators is used.
|
|
180
|
+
memory : int, default 4096
|
|
181
|
+
Memory size (in MB) required for this step. If
|
|
182
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
183
|
+
used.
|
|
184
|
+
disk : int, default 10240
|
|
185
|
+
Disk size (in MB) required for this step. If
|
|
186
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
187
|
+
used.
|
|
188
|
+
image : str, optional, default None
|
|
189
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
190
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
191
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
192
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
193
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
194
|
+
image_pull_secrets: List[str], default []
|
|
195
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
196
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
197
|
+
in Kubernetes.
|
|
198
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
199
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
200
|
+
secrets : List[str], optional, default None
|
|
201
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
202
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
203
|
+
in Metaflow configuration.
|
|
204
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
205
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
206
|
+
Can be passed in as a comma separated string of values e.g.
|
|
207
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
208
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
209
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
210
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
211
|
+
gpu : int, optional, default None
|
|
212
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
213
|
+
the scheduled node should not have GPUs.
|
|
214
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
215
|
+
The vendor of the GPUs to be used for this step.
|
|
216
|
+
tolerations : List[Dict[str,str]], default []
|
|
217
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
218
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
219
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
220
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
221
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
222
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
223
|
+
use_tmpfs : bool, default False
|
|
224
|
+
This enables an explicit tmpfs mount for this step.
|
|
225
|
+
tmpfs_tempdir : bool, default True
|
|
226
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
227
|
+
tmpfs_size : int, optional, default: None
|
|
228
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
229
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
230
|
+
memory allocated for this step.
|
|
231
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
232
|
+
Path to tmpfs mount for this step.
|
|
233
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
234
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
235
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
236
|
+
shared_memory: int, optional
|
|
237
|
+
Shared memory size (in MiB) required for this step
|
|
238
|
+
port: int, optional
|
|
239
|
+
Port number to specify in the Kubernetes job object
|
|
240
|
+
compute_pool : str, optional, default None
|
|
241
|
+
Compute pool to be used for for this step.
|
|
242
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
243
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
244
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
245
|
+
Only applicable when @parallel is used.
|
|
246
|
+
qos: str, default: Burstable
|
|
247
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
248
|
+
|
|
249
|
+
security_context: Dict[str, Any], optional, default None
|
|
250
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
251
|
+
- privileged: bool, optional, default None
|
|
252
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
253
|
+
- run_as_user: int, optional, default None
|
|
254
|
+
- run_as_group: int, optional, default None
|
|
255
|
+
- run_as_non_root: bool, optional, default None
|
|
256
|
+
"""
|
|
257
|
+
...
|
|
258
|
+
|
|
259
|
+
@typing.overload
|
|
260
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
261
|
+
"""
|
|
262
|
+
Internal decorator to support Fast bakery
|
|
263
|
+
"""
|
|
264
|
+
...
|
|
265
|
+
|
|
266
|
+
@typing.overload
|
|
267
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
268
|
+
...
|
|
269
|
+
|
|
270
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
271
|
+
"""
|
|
272
|
+
Internal decorator to support Fast bakery
|
|
210
273
|
"""
|
|
211
274
|
...
|
|
212
275
|
|
|
@@ -262,170 +325,259 @@ def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
|
262
325
|
...
|
|
263
326
|
|
|
264
327
|
@typing.overload
|
|
265
|
-
def
|
|
328
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
266
329
|
"""
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
> Examples
|
|
270
|
-
|
|
271
|
-
- Saving Checkpoints
|
|
272
|
-
|
|
273
|
-
```python
|
|
274
|
-
@checkpoint
|
|
275
|
-
@step
|
|
276
|
-
def train(self):
|
|
277
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
278
|
-
for i in range(self.epochs):
|
|
279
|
-
# some training logic
|
|
280
|
-
loss = model.train(self.dataset)
|
|
281
|
-
if i % 10 == 0:
|
|
282
|
-
model.save(
|
|
283
|
-
current.checkpoint.directory,
|
|
284
|
-
)
|
|
285
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
286
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
287
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
288
|
-
name="epoch_checkpoint",
|
|
289
|
-
metadata={
|
|
290
|
-
"epoch": i,
|
|
291
|
-
"loss": loss,
|
|
292
|
-
}
|
|
293
|
-
)
|
|
294
|
-
```
|
|
295
|
-
|
|
296
|
-
- Using Loaded Checkpoints
|
|
297
|
-
|
|
298
|
-
```python
|
|
299
|
-
@retry(times=3)
|
|
300
|
-
@checkpoint
|
|
301
|
-
@step
|
|
302
|
-
def train(self):
|
|
303
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
304
|
-
# saved a checkpoint
|
|
305
|
-
checkpoint_path = None
|
|
306
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
307
|
-
print("Loaded checkpoint from the previous attempt")
|
|
308
|
-
checkpoint_path = current.checkpoint.directory
|
|
330
|
+
Specifies that the step will success under all circumstances.
|
|
309
331
|
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
332
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
333
|
+
contains the exception raised. You can use it to detect the presence
|
|
334
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
335
|
+
are missing.
|
|
314
336
|
|
|
315
337
|
|
|
316
338
|
Parameters
|
|
317
339
|
----------
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
325
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
326
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
327
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
328
|
-
|
|
329
|
-
temp_dir_root : str, default: None
|
|
330
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
340
|
+
var : str, optional, default None
|
|
341
|
+
Name of the artifact in which to store the caught exception.
|
|
342
|
+
If not specified, the exception is not stored.
|
|
343
|
+
print_exception : bool, default True
|
|
344
|
+
Determines whether or not the exception is printed to
|
|
345
|
+
stdout when caught.
|
|
331
346
|
"""
|
|
332
347
|
...
|
|
333
348
|
|
|
334
349
|
@typing.overload
|
|
335
|
-
def
|
|
350
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
336
351
|
...
|
|
337
352
|
|
|
338
353
|
@typing.overload
|
|
339
|
-
def
|
|
354
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
340
355
|
...
|
|
341
356
|
|
|
342
|
-
def
|
|
357
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
343
358
|
"""
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
> Examples
|
|
347
|
-
|
|
348
|
-
- Saving Checkpoints
|
|
359
|
+
Specifies that the step will success under all circumstances.
|
|
349
360
|
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
355
|
-
for i in range(self.epochs):
|
|
356
|
-
# some training logic
|
|
357
|
-
loss = model.train(self.dataset)
|
|
358
|
-
if i % 10 == 0:
|
|
359
|
-
model.save(
|
|
360
|
-
current.checkpoint.directory,
|
|
361
|
-
)
|
|
362
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
363
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
364
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
365
|
-
name="epoch_checkpoint",
|
|
366
|
-
metadata={
|
|
367
|
-
"epoch": i,
|
|
368
|
-
"loss": loss,
|
|
369
|
-
}
|
|
370
|
-
)
|
|
371
|
-
```
|
|
361
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
362
|
+
contains the exception raised. You can use it to detect the presence
|
|
363
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
364
|
+
are missing.
|
|
372
365
|
|
|
373
|
-
- Using Loaded Checkpoints
|
|
374
366
|
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
367
|
+
Parameters
|
|
368
|
+
----------
|
|
369
|
+
var : str, optional, default None
|
|
370
|
+
Name of the artifact in which to store the caught exception.
|
|
371
|
+
If not specified, the exception is not stored.
|
|
372
|
+
print_exception : bool, default True
|
|
373
|
+
Determines whether or not the exception is printed to
|
|
374
|
+
stdout when caught.
|
|
375
|
+
"""
|
|
376
|
+
...
|
|
377
|
+
|
|
378
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
379
|
+
"""
|
|
380
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
386
381
|
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
|
|
382
|
+
User code call
|
|
383
|
+
--------------
|
|
384
|
+
@vllm(
|
|
385
|
+
model="...",
|
|
386
|
+
...
|
|
387
|
+
)
|
|
388
|
+
|
|
389
|
+
Valid backend options
|
|
390
|
+
---------------------
|
|
391
|
+
- 'local': Run as a separate process on the local task machine.
|
|
392
|
+
|
|
393
|
+
Valid model options
|
|
394
|
+
-------------------
|
|
395
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
396
|
+
|
|
397
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
398
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
391
399
|
|
|
392
400
|
|
|
393
401
|
Parameters
|
|
394
402
|
----------
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
|
|
398
|
-
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
403
|
+
model: str
|
|
404
|
+
HuggingFace model identifier to be served by vLLM.
|
|
405
|
+
backend: str
|
|
406
|
+
Determines where and how to run the vLLM process.
|
|
407
|
+
openai_api_server: bool
|
|
408
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
409
|
+
Default is False (uses native engine).
|
|
410
|
+
Set to True for backward compatibility with existing code.
|
|
411
|
+
debug: bool
|
|
412
|
+
Whether to turn on verbose debugging logs.
|
|
413
|
+
card_refresh_interval: int
|
|
414
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
415
|
+
Only used when openai_api_server=True.
|
|
416
|
+
max_retries: int
|
|
417
|
+
Maximum number of retries checking for vLLM server startup.
|
|
418
|
+
Only used when openai_api_server=True.
|
|
419
|
+
retry_alert_frequency: int
|
|
420
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
421
|
+
Only used when openai_api_server=True.
|
|
422
|
+
engine_args : dict
|
|
423
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
424
|
+
For example, `tensor_parallel_size=2`.
|
|
425
|
+
"""
|
|
426
|
+
...
|
|
427
|
+
|
|
428
|
+
@typing.overload
|
|
429
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
430
|
+
"""
|
|
431
|
+
Specifies the number of times the task corresponding
|
|
432
|
+
to a step needs to be retried.
|
|
405
433
|
|
|
406
|
-
|
|
407
|
-
|
|
434
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
435
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
436
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
437
|
+
|
|
438
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
439
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
440
|
+
ensuring that the flow execution can continue.
|
|
441
|
+
|
|
442
|
+
|
|
443
|
+
Parameters
|
|
444
|
+
----------
|
|
445
|
+
times : int, default 3
|
|
446
|
+
Number of times to retry this task.
|
|
447
|
+
minutes_between_retries : int, default 2
|
|
448
|
+
Number of minutes between retries.
|
|
408
449
|
"""
|
|
409
450
|
...
|
|
410
451
|
|
|
411
452
|
@typing.overload
|
|
412
|
-
def
|
|
453
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
454
|
+
...
|
|
455
|
+
|
|
456
|
+
@typing.overload
|
|
457
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
458
|
+
...
|
|
459
|
+
|
|
460
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
413
461
|
"""
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
|
|
462
|
+
Specifies the number of times the task corresponding
|
|
463
|
+
to a step needs to be retried.
|
|
464
|
+
|
|
465
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
466
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
467
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
468
|
+
|
|
469
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
470
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
471
|
+
ensuring that the flow execution can continue.
|
|
472
|
+
|
|
473
|
+
|
|
474
|
+
Parameters
|
|
475
|
+
----------
|
|
476
|
+
times : int, default 3
|
|
477
|
+
Number of times to retry this task.
|
|
478
|
+
minutes_between_retries : int, default 2
|
|
479
|
+
Number of minutes between retries.
|
|
417
480
|
"""
|
|
418
481
|
...
|
|
419
482
|
|
|
420
483
|
@typing.overload
|
|
421
|
-
def
|
|
484
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
485
|
+
"""
|
|
486
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
487
|
+
|
|
488
|
+
|
|
489
|
+
Parameters
|
|
490
|
+
----------
|
|
491
|
+
vars : Dict[str, str], default {}
|
|
492
|
+
Dictionary of environment variables to set.
|
|
493
|
+
"""
|
|
422
494
|
...
|
|
423
495
|
|
|
424
|
-
|
|
496
|
+
@typing.overload
|
|
497
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
498
|
+
...
|
|
499
|
+
|
|
500
|
+
@typing.overload
|
|
501
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
502
|
+
...
|
|
503
|
+
|
|
504
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
425
505
|
"""
|
|
426
|
-
|
|
427
|
-
|
|
428
|
-
|
|
506
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
507
|
+
|
|
508
|
+
|
|
509
|
+
Parameters
|
|
510
|
+
----------
|
|
511
|
+
vars : Dict[str, str], default {}
|
|
512
|
+
Dictionary of environment variables to set.
|
|
513
|
+
"""
|
|
514
|
+
...
|
|
515
|
+
|
|
516
|
+
@typing.overload
|
|
517
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
518
|
+
"""
|
|
519
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
520
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
521
|
+
"""
|
|
522
|
+
...
|
|
523
|
+
|
|
524
|
+
@typing.overload
|
|
525
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
526
|
+
...
|
|
527
|
+
|
|
528
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
529
|
+
"""
|
|
530
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
531
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
532
|
+
"""
|
|
533
|
+
...
|
|
534
|
+
|
|
535
|
+
@typing.overload
|
|
536
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
537
|
+
"""
|
|
538
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
539
|
+
|
|
540
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
541
|
+
|
|
542
|
+
|
|
543
|
+
Parameters
|
|
544
|
+
----------
|
|
545
|
+
type : str, default 'default'
|
|
546
|
+
Card type.
|
|
547
|
+
id : str, optional, default None
|
|
548
|
+
If multiple cards are present, use this id to identify this card.
|
|
549
|
+
options : Dict[str, Any], default {}
|
|
550
|
+
Options passed to the card. The contents depend on the card type.
|
|
551
|
+
timeout : int, default 45
|
|
552
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
553
|
+
"""
|
|
554
|
+
...
|
|
555
|
+
|
|
556
|
+
@typing.overload
|
|
557
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
558
|
+
...
|
|
559
|
+
|
|
560
|
+
@typing.overload
|
|
561
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
562
|
+
...
|
|
563
|
+
|
|
564
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
565
|
+
"""
|
|
566
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
567
|
+
|
|
568
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
569
|
+
|
|
570
|
+
|
|
571
|
+
Parameters
|
|
572
|
+
----------
|
|
573
|
+
type : str, default 'default'
|
|
574
|
+
Card type.
|
|
575
|
+
id : str, optional, default None
|
|
576
|
+
If multiple cards are present, use this id to identify this card.
|
|
577
|
+
options : Dict[str, Any], default {}
|
|
578
|
+
Options passed to the card. The contents depend on the card type.
|
|
579
|
+
timeout : int, default 45
|
|
580
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
429
581
|
"""
|
|
430
582
|
...
|
|
431
583
|
|
|
@@ -559,138 +711,166 @@ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
559
711
|
...
|
|
560
712
|
|
|
561
713
|
@typing.overload
|
|
562
|
-
def
|
|
714
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
563
715
|
"""
|
|
564
|
-
|
|
565
|
-
|
|
566
|
-
a Neo Cloud like Nebius.
|
|
716
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
717
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
567
718
|
"""
|
|
568
719
|
...
|
|
569
720
|
|
|
570
721
|
@typing.overload
|
|
571
|
-
def
|
|
722
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
572
723
|
...
|
|
573
724
|
|
|
574
|
-
def
|
|
725
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
575
726
|
"""
|
|
576
|
-
|
|
577
|
-
|
|
578
|
-
a Neo Cloud like Nebius.
|
|
727
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
728
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
579
729
|
"""
|
|
580
730
|
...
|
|
581
731
|
|
|
582
|
-
def
|
|
732
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
583
733
|
"""
|
|
584
|
-
|
|
734
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
585
735
|
|
|
586
736
|
|
|
587
737
|
Parameters
|
|
588
738
|
----------
|
|
589
|
-
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
|
|
593
|
-
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
|
|
599
|
-
|
|
600
|
-
|
|
601
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
602
|
-
to inject a card and render simple markdown content.
|
|
739
|
+
integration_name : str, optional
|
|
740
|
+
Name of the S3 proxy integration. If not specified, will use the only
|
|
741
|
+
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
742
|
+
write_mode : str, optional
|
|
743
|
+
The desired behavior during write operations to target (origin) S3 bucket.
|
|
744
|
+
allowed options are:
|
|
745
|
+
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
746
|
+
storage
|
|
747
|
+
"origin" -> only write to the target S3 bucket
|
|
748
|
+
"cache" -> only write to the object storage service used for caching
|
|
749
|
+
debug : bool, optional
|
|
750
|
+
Enable debug logging for proxy operations.
|
|
603
751
|
"""
|
|
604
752
|
...
|
|
605
753
|
|
|
606
754
|
@typing.overload
|
|
607
|
-
def
|
|
608
|
-
...
|
|
609
|
-
|
|
610
|
-
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
755
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
611
756
|
"""
|
|
612
|
-
|
|
613
|
-
|
|
757
|
+
Specifies the Conda environment for the step.
|
|
758
|
+
|
|
759
|
+
Information in this decorator will augment any
|
|
760
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
761
|
+
you can use `@conda_base` to set packages required by all
|
|
762
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
763
|
+
|
|
764
|
+
|
|
765
|
+
Parameters
|
|
766
|
+
----------
|
|
767
|
+
packages : Dict[str, str], default {}
|
|
768
|
+
Packages to use for this step. The key is the name of the package
|
|
769
|
+
and the value is the version to use.
|
|
770
|
+
libraries : Dict[str, str], default {}
|
|
771
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
772
|
+
python : str, optional, default None
|
|
773
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
774
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
775
|
+
disabled : bool, default False
|
|
776
|
+
If set to True, disables @conda.
|
|
614
777
|
"""
|
|
615
778
|
...
|
|
616
779
|
|
|
617
|
-
|
|
780
|
+
@typing.overload
|
|
781
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
782
|
+
...
|
|
783
|
+
|
|
784
|
+
@typing.overload
|
|
785
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
786
|
+
...
|
|
787
|
+
|
|
788
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
618
789
|
"""
|
|
619
|
-
|
|
790
|
+
Specifies the Conda environment for the step.
|
|
620
791
|
|
|
621
|
-
|
|
792
|
+
Information in this decorator will augment any
|
|
793
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
794
|
+
you can use `@conda_base` to set packages required by all
|
|
795
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
622
796
|
|
|
623
|
-
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
|
624
|
-
```python
|
|
625
|
-
@huggingface_hub
|
|
626
|
-
@step
|
|
627
|
-
def pull_model_from_huggingface(self):
|
|
628
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
629
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
630
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
631
|
-
# value of the function is a reference to the model in the backend storage.
|
|
632
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
633
797
|
|
|
634
|
-
|
|
635
|
-
|
|
636
|
-
|
|
637
|
-
|
|
638
|
-
|
|
639
|
-
|
|
640
|
-
|
|
798
|
+
Parameters
|
|
799
|
+
----------
|
|
800
|
+
packages : Dict[str, str], default {}
|
|
801
|
+
Packages to use for this step. The key is the name of the package
|
|
802
|
+
and the value is the version to use.
|
|
803
|
+
libraries : Dict[str, str], default {}
|
|
804
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
805
|
+
python : str, optional, default None
|
|
806
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
807
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
808
|
+
disabled : bool, default False
|
|
809
|
+
If set to True, disables @conda.
|
|
810
|
+
"""
|
|
811
|
+
...
|
|
812
|
+
|
|
813
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
814
|
+
"""
|
|
815
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
641
816
|
|
|
642
|
-
|
|
643
|
-
|
|
644
|
-
|
|
645
|
-
|
|
646
|
-
|
|
647
|
-
|
|
648
|
-
```
|
|
817
|
+
User code call
|
|
818
|
+
--------------
|
|
819
|
+
@ollama(
|
|
820
|
+
models=[...],
|
|
821
|
+
...
|
|
822
|
+
)
|
|
649
823
|
|
|
650
|
-
|
|
651
|
-
|
|
652
|
-
|
|
653
|
-
|
|
654
|
-
|
|
655
|
-
# path_to_model will be /my-directory
|
|
656
|
-
```
|
|
824
|
+
Valid backend options
|
|
825
|
+
---------------------
|
|
826
|
+
- 'local': Run as a separate process on the local task machine.
|
|
827
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
828
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
657
829
|
|
|
658
|
-
|
|
659
|
-
|
|
660
|
-
|
|
661
|
-
@huggingface_hub(load=[
|
|
662
|
-
{
|
|
663
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
664
|
-
},
|
|
665
|
-
{
|
|
666
|
-
"repo_id": "myorg/mistral-lora",
|
|
667
|
-
"repo_type": "model",
|
|
668
|
-
},
|
|
669
|
-
])
|
|
670
|
-
@step
|
|
671
|
-
def finetune_model(self):
|
|
672
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
673
|
-
# path_to_model will be /my-directory
|
|
674
|
-
```
|
|
830
|
+
Valid model options
|
|
831
|
+
-------------------
|
|
832
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
675
833
|
|
|
676
834
|
|
|
677
835
|
Parameters
|
|
678
836
|
----------
|
|
679
|
-
|
|
680
|
-
|
|
681
|
-
|
|
682
|
-
|
|
683
|
-
|
|
684
|
-
|
|
685
|
-
|
|
686
|
-
|
|
687
|
-
|
|
688
|
-
|
|
689
|
-
|
|
690
|
-
|
|
691
|
-
|
|
692
|
-
|
|
693
|
-
|
|
837
|
+
models: list[str]
|
|
838
|
+
List of Ollama containers running models in sidecars.
|
|
839
|
+
backend: str
|
|
840
|
+
Determines where and how to run the Ollama process.
|
|
841
|
+
force_pull: bool
|
|
842
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
843
|
+
cache_update_policy: str
|
|
844
|
+
Cache update policy: "auto", "force", or "never".
|
|
845
|
+
force_cache_update: bool
|
|
846
|
+
Simple override for "force" cache update policy.
|
|
847
|
+
debug: bool
|
|
848
|
+
Whether to turn on verbose debugging logs.
|
|
849
|
+
circuit_breaker_config: dict
|
|
850
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
851
|
+
timeout_config: dict
|
|
852
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
853
|
+
"""
|
|
854
|
+
...
|
|
855
|
+
|
|
856
|
+
@typing.overload
|
|
857
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
858
|
+
"""
|
|
859
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
860
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
861
|
+
a Neo Cloud like Nebius.
|
|
862
|
+
"""
|
|
863
|
+
...
|
|
864
|
+
|
|
865
|
+
@typing.overload
|
|
866
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
867
|
+
...
|
|
868
|
+
|
|
869
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
870
|
+
"""
|
|
871
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
872
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
873
|
+
a Neo Cloud like Nebius.
|
|
694
874
|
"""
|
|
695
875
|
...
|
|
696
876
|
|
|
@@ -754,70 +934,249 @@ def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
|
754
934
|
...
|
|
755
935
|
|
|
756
936
|
@typing.overload
|
|
757
|
-
def
|
|
937
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
758
938
|
"""
|
|
759
|
-
|
|
939
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
940
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
941
|
+
a Neo Cloud like CoreWeave.
|
|
942
|
+
"""
|
|
943
|
+
...
|
|
944
|
+
|
|
945
|
+
@typing.overload
|
|
946
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
947
|
+
...
|
|
948
|
+
|
|
949
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
950
|
+
"""
|
|
951
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
952
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
953
|
+
a Neo Cloud like CoreWeave.
|
|
954
|
+
"""
|
|
955
|
+
...
|
|
956
|
+
|
|
957
|
+
@typing.overload
|
|
958
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
959
|
+
"""
|
|
960
|
+
Specifies the resources needed when executing this step.
|
|
760
961
|
|
|
761
|
-
|
|
962
|
+
Use `@resources` to specify the resource requirements
|
|
963
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
964
|
+
|
|
965
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
966
|
+
```
|
|
967
|
+
python myflow.py run --with batch
|
|
968
|
+
```
|
|
969
|
+
or
|
|
970
|
+
```
|
|
971
|
+
python myflow.py run --with kubernetes
|
|
972
|
+
```
|
|
973
|
+
which executes the flow on the desired system using the
|
|
974
|
+
requirements specified in `@resources`.
|
|
762
975
|
|
|
763
976
|
|
|
764
977
|
Parameters
|
|
765
978
|
----------
|
|
766
|
-
|
|
767
|
-
|
|
768
|
-
|
|
769
|
-
|
|
770
|
-
|
|
771
|
-
|
|
772
|
-
|
|
773
|
-
|
|
979
|
+
cpu : int, default 1
|
|
980
|
+
Number of CPUs required for this step.
|
|
981
|
+
gpu : int, optional, default None
|
|
982
|
+
Number of GPUs required for this step.
|
|
983
|
+
disk : int, optional, default None
|
|
984
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
985
|
+
memory : int, default 4096
|
|
986
|
+
Memory size (in MB) required for this step.
|
|
987
|
+
shared_memory : int, optional, default None
|
|
988
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
989
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
774
990
|
"""
|
|
775
991
|
...
|
|
776
992
|
|
|
777
993
|
@typing.overload
|
|
778
|
-
def
|
|
994
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
779
995
|
...
|
|
780
996
|
|
|
781
997
|
@typing.overload
|
|
782
|
-
def
|
|
998
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
783
999
|
...
|
|
784
1000
|
|
|
785
|
-
def
|
|
1001
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
786
1002
|
"""
|
|
787
|
-
|
|
1003
|
+
Specifies the resources needed when executing this step.
|
|
788
1004
|
|
|
789
|
-
|
|
1005
|
+
Use `@resources` to specify the resource requirements
|
|
1006
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1007
|
+
|
|
1008
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1009
|
+
```
|
|
1010
|
+
python myflow.py run --with batch
|
|
1011
|
+
```
|
|
1012
|
+
or
|
|
1013
|
+
```
|
|
1014
|
+
python myflow.py run --with kubernetes
|
|
1015
|
+
```
|
|
1016
|
+
which executes the flow on the desired system using the
|
|
1017
|
+
requirements specified in `@resources`.
|
|
790
1018
|
|
|
791
1019
|
|
|
792
1020
|
Parameters
|
|
793
1021
|
----------
|
|
794
|
-
|
|
795
|
-
|
|
796
|
-
|
|
797
|
-
|
|
798
|
-
|
|
799
|
-
|
|
800
|
-
|
|
801
|
-
|
|
1022
|
+
cpu : int, default 1
|
|
1023
|
+
Number of CPUs required for this step.
|
|
1024
|
+
gpu : int, optional, default None
|
|
1025
|
+
Number of GPUs required for this step.
|
|
1026
|
+
disk : int, optional, default None
|
|
1027
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1028
|
+
memory : int, default 4096
|
|
1029
|
+
Memory size (in MB) required for this step.
|
|
1030
|
+
shared_memory : int, optional, default None
|
|
1031
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1032
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
802
1033
|
"""
|
|
803
1034
|
...
|
|
804
1035
|
|
|
805
1036
|
@typing.overload
|
|
806
|
-
def
|
|
1037
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
807
1038
|
"""
|
|
808
|
-
|
|
809
|
-
|
|
1039
|
+
Enables checkpointing for a step.
|
|
1040
|
+
|
|
1041
|
+
> Examples
|
|
1042
|
+
|
|
1043
|
+
- Saving Checkpoints
|
|
1044
|
+
|
|
1045
|
+
```python
|
|
1046
|
+
@checkpoint
|
|
1047
|
+
@step
|
|
1048
|
+
def train(self):
|
|
1049
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
1050
|
+
for i in range(self.epochs):
|
|
1051
|
+
# some training logic
|
|
1052
|
+
loss = model.train(self.dataset)
|
|
1053
|
+
if i % 10 == 0:
|
|
1054
|
+
model.save(
|
|
1055
|
+
current.checkpoint.directory,
|
|
1056
|
+
)
|
|
1057
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1058
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1059
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
1060
|
+
name="epoch_checkpoint",
|
|
1061
|
+
metadata={
|
|
1062
|
+
"epoch": i,
|
|
1063
|
+
"loss": loss,
|
|
1064
|
+
}
|
|
1065
|
+
)
|
|
1066
|
+
```
|
|
1067
|
+
|
|
1068
|
+
- Using Loaded Checkpoints
|
|
1069
|
+
|
|
1070
|
+
```python
|
|
1071
|
+
@retry(times=3)
|
|
1072
|
+
@checkpoint
|
|
1073
|
+
@step
|
|
1074
|
+
def train(self):
|
|
1075
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1076
|
+
# saved a checkpoint
|
|
1077
|
+
checkpoint_path = None
|
|
1078
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1079
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1080
|
+
checkpoint_path = current.checkpoint.directory
|
|
1081
|
+
|
|
1082
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1083
|
+
for i in range(self.epochs):
|
|
1084
|
+
...
|
|
1085
|
+
```
|
|
1086
|
+
|
|
1087
|
+
|
|
1088
|
+
Parameters
|
|
1089
|
+
----------
|
|
1090
|
+
load_policy : str, default: "fresh"
|
|
1091
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1092
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1093
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1094
|
+
will be loaded at the start of the task.
|
|
1095
|
+
- "none": Do not load any checkpoint
|
|
1096
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1097
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1098
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1099
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1100
|
+
|
|
1101
|
+
temp_dir_root : str, default: None
|
|
1102
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
810
1103
|
"""
|
|
811
1104
|
...
|
|
812
1105
|
|
|
813
1106
|
@typing.overload
|
|
814
|
-
def
|
|
1107
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
815
1108
|
...
|
|
816
1109
|
|
|
817
|
-
|
|
1110
|
+
@typing.overload
|
|
1111
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1112
|
+
...
|
|
1113
|
+
|
|
1114
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
818
1115
|
"""
|
|
819
|
-
|
|
820
|
-
|
|
1116
|
+
Enables checkpointing for a step.
|
|
1117
|
+
|
|
1118
|
+
> Examples
|
|
1119
|
+
|
|
1120
|
+
- Saving Checkpoints
|
|
1121
|
+
|
|
1122
|
+
```python
|
|
1123
|
+
@checkpoint
|
|
1124
|
+
@step
|
|
1125
|
+
def train(self):
|
|
1126
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
1127
|
+
for i in range(self.epochs):
|
|
1128
|
+
# some training logic
|
|
1129
|
+
loss = model.train(self.dataset)
|
|
1130
|
+
if i % 10 == 0:
|
|
1131
|
+
model.save(
|
|
1132
|
+
current.checkpoint.directory,
|
|
1133
|
+
)
|
|
1134
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1135
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1136
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
1137
|
+
name="epoch_checkpoint",
|
|
1138
|
+
metadata={
|
|
1139
|
+
"epoch": i,
|
|
1140
|
+
"loss": loss,
|
|
1141
|
+
}
|
|
1142
|
+
)
|
|
1143
|
+
```
|
|
1144
|
+
|
|
1145
|
+
- Using Loaded Checkpoints
|
|
1146
|
+
|
|
1147
|
+
```python
|
|
1148
|
+
@retry(times=3)
|
|
1149
|
+
@checkpoint
|
|
1150
|
+
@step
|
|
1151
|
+
def train(self):
|
|
1152
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1153
|
+
# saved a checkpoint
|
|
1154
|
+
checkpoint_path = None
|
|
1155
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1156
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1157
|
+
checkpoint_path = current.checkpoint.directory
|
|
1158
|
+
|
|
1159
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1160
|
+
for i in range(self.epochs):
|
|
1161
|
+
...
|
|
1162
|
+
```
|
|
1163
|
+
|
|
1164
|
+
|
|
1165
|
+
Parameters
|
|
1166
|
+
----------
|
|
1167
|
+
load_policy : str, default: "fresh"
|
|
1168
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1169
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1170
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1171
|
+
will be loaded at the start of the task.
|
|
1172
|
+
- "none": Do not load any checkpoint
|
|
1173
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1174
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1175
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1176
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1177
|
+
|
|
1178
|
+
temp_dir_root : str, default: None
|
|
1179
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
821
1180
|
"""
|
|
822
1181
|
...
|
|
823
1182
|
|
|
@@ -861,145 +1220,117 @@ def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
|
861
1220
|
...
|
|
862
1221
|
|
|
863
1222
|
@typing.overload
|
|
864
|
-
def
|
|
1223
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
865
1224
|
"""
|
|
866
|
-
|
|
867
|
-
|
|
868
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
869
|
-
contains the exception raised. You can use it to detect the presence
|
|
870
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
871
|
-
are missing.
|
|
872
|
-
|
|
873
|
-
|
|
874
|
-
Parameters
|
|
875
|
-
----------
|
|
876
|
-
var : str, optional, default None
|
|
877
|
-
Name of the artifact in which to store the caught exception.
|
|
878
|
-
If not specified, the exception is not stored.
|
|
879
|
-
print_exception : bool, default True
|
|
880
|
-
Determines whether or not the exception is printed to
|
|
881
|
-
stdout when caught.
|
|
1225
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1226
|
+
to inject a card and render simple markdown content.
|
|
882
1227
|
"""
|
|
883
1228
|
...
|
|
884
1229
|
|
|
885
1230
|
@typing.overload
|
|
886
|
-
def
|
|
887
|
-
...
|
|
888
|
-
|
|
889
|
-
@typing.overload
|
|
890
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1231
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
891
1232
|
...
|
|
892
1233
|
|
|
893
|
-
def
|
|
1234
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
894
1235
|
"""
|
|
895
|
-
|
|
896
|
-
|
|
897
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
898
|
-
contains the exception raised. You can use it to detect the presence
|
|
899
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
900
|
-
are missing.
|
|
901
|
-
|
|
902
|
-
|
|
903
|
-
Parameters
|
|
904
|
-
----------
|
|
905
|
-
var : str, optional, default None
|
|
906
|
-
Name of the artifact in which to store the caught exception.
|
|
907
|
-
If not specified, the exception is not stored.
|
|
908
|
-
print_exception : bool, default True
|
|
909
|
-
Determines whether or not the exception is printed to
|
|
910
|
-
stdout when caught.
|
|
1236
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1237
|
+
to inject a card and render simple markdown content.
|
|
911
1238
|
"""
|
|
912
1239
|
...
|
|
913
1240
|
|
|
914
|
-
|
|
915
|
-
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1241
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
916
1242
|
"""
|
|
917
|
-
Specifies
|
|
1243
|
+
Specifies that this step should execute on DGX cloud.
|
|
918
1244
|
|
|
919
1245
|
|
|
920
1246
|
Parameters
|
|
921
1247
|
----------
|
|
922
|
-
|
|
923
|
-
|
|
1248
|
+
gpu : int
|
|
1249
|
+
Number of GPUs to use.
|
|
1250
|
+
gpu_type : str
|
|
1251
|
+
Type of Nvidia GPU to use.
|
|
1252
|
+
queue_timeout : int
|
|
1253
|
+
Time to keep the job in NVCF's queue.
|
|
924
1254
|
"""
|
|
925
1255
|
...
|
|
926
1256
|
|
|
927
|
-
|
|
928
|
-
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
929
|
-
...
|
|
930
|
-
|
|
931
|
-
@typing.overload
|
|
932
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
933
|
-
...
|
|
934
|
-
|
|
935
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
1257
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
936
1258
|
"""
|
|
937
|
-
|
|
1259
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
|
938
1260
|
|
|
1261
|
+
> Examples
|
|
939
1262
|
|
|
940
|
-
|
|
941
|
-
|
|
942
|
-
|
|
943
|
-
|
|
944
|
-
|
|
945
|
-
|
|
946
|
-
|
|
947
|
-
|
|
948
|
-
|
|
949
|
-
|
|
950
|
-
Specifies the Conda environment for the step.
|
|
1263
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
|
1264
|
+
```python
|
|
1265
|
+
@huggingface_hub
|
|
1266
|
+
@step
|
|
1267
|
+
def pull_model_from_huggingface(self):
|
|
1268
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
1269
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
1270
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
1271
|
+
# value of the function is a reference to the model in the backend storage.
|
|
1272
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
951
1273
|
|
|
952
|
-
|
|
953
|
-
|
|
954
|
-
|
|
955
|
-
|
|
1274
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
1275
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
1276
|
+
repo_id=self.model_id,
|
|
1277
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
1278
|
+
)
|
|
1279
|
+
self.next(self.train)
|
|
1280
|
+
```
|
|
956
1281
|
|
|
1282
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
|
1283
|
+
```python
|
|
1284
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
1285
|
+
@step
|
|
1286
|
+
def pull_model_from_huggingface(self):
|
|
1287
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1288
|
+
```
|
|
957
1289
|
|
|
958
|
-
|
|
959
|
-
|
|
960
|
-
|
|
961
|
-
|
|
962
|
-
|
|
963
|
-
|
|
964
|
-
|
|
965
|
-
python : str, optional, default None
|
|
966
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
967
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
968
|
-
disabled : bool, default False
|
|
969
|
-
If set to True, disables @conda.
|
|
970
|
-
"""
|
|
971
|
-
...
|
|
972
|
-
|
|
973
|
-
@typing.overload
|
|
974
|
-
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
975
|
-
...
|
|
976
|
-
|
|
977
|
-
@typing.overload
|
|
978
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
979
|
-
...
|
|
980
|
-
|
|
981
|
-
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
982
|
-
"""
|
|
983
|
-
Specifies the Conda environment for the step.
|
|
1290
|
+
```python
|
|
1291
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
|
1292
|
+
@step
|
|
1293
|
+
def finetune_model(self):
|
|
1294
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1295
|
+
# path_to_model will be /my-directory
|
|
1296
|
+
```
|
|
984
1297
|
|
|
985
|
-
|
|
986
|
-
|
|
987
|
-
|
|
988
|
-
|
|
1298
|
+
```python
|
|
1299
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
1300
|
+
# except for `local_dir`
|
|
1301
|
+
@huggingface_hub(load=[
|
|
1302
|
+
{
|
|
1303
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
1304
|
+
},
|
|
1305
|
+
{
|
|
1306
|
+
"repo_id": "myorg/mistral-lora",
|
|
1307
|
+
"repo_type": "model",
|
|
1308
|
+
},
|
|
1309
|
+
])
|
|
1310
|
+
@step
|
|
1311
|
+
def finetune_model(self):
|
|
1312
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1313
|
+
# path_to_model will be /my-directory
|
|
1314
|
+
```
|
|
989
1315
|
|
|
990
1316
|
|
|
991
1317
|
Parameters
|
|
992
1318
|
----------
|
|
993
|
-
|
|
994
|
-
|
|
995
|
-
|
|
996
|
-
|
|
997
|
-
|
|
998
|
-
|
|
999
|
-
|
|
1000
|
-
|
|
1001
|
-
|
|
1002
|
-
|
|
1319
|
+
temp_dir_root : str, optional
|
|
1320
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
1321
|
+
|
|
1322
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
1323
|
+
The list of repos (models/datasets) to load.
|
|
1324
|
+
|
|
1325
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
1326
|
+
|
|
1327
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
1328
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
1329
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
1330
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
1331
|
+
|
|
1332
|
+
- If repo is found in the datastore:
|
|
1333
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
1003
1334
|
"""
|
|
1004
1335
|
...
|
|
1005
1336
|
|
|
@@ -1017,334 +1348,216 @@ def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Cal
|
|
|
1017
1348
|
"""
|
|
1018
1349
|
...
|
|
1019
1350
|
|
|
1020
|
-
|
|
1021
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1022
|
-
"""
|
|
1023
|
-
Internal decorator to support Fast bakery
|
|
1024
|
-
"""
|
|
1025
|
-
...
|
|
1026
|
-
|
|
1027
|
-
@typing.overload
|
|
1028
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1029
|
-
...
|
|
1030
|
-
|
|
1031
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1032
|
-
"""
|
|
1033
|
-
Internal decorator to support Fast bakery
|
|
1034
|
-
"""
|
|
1035
|
-
...
|
|
1036
|
-
|
|
1037
|
-
@typing.overload
|
|
1038
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1351
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1039
1352
|
"""
|
|
1040
|
-
|
|
1041
|
-
|
|
1042
|
-
|
|
1043
|
-
|
|
1044
|
-
|
|
1045
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
1046
|
-
|
|
1047
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
1048
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
|
1049
|
-
ensuring that the flow execution can continue.
|
|
1353
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1354
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1355
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1356
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1357
|
+
starts only after all sensors finish.
|
|
1050
1358
|
|
|
1051
1359
|
|
|
1052
1360
|
Parameters
|
|
1053
1361
|
----------
|
|
1054
|
-
|
|
1055
|
-
|
|
1056
|
-
|
|
1057
|
-
|
|
1362
|
+
timeout : int
|
|
1363
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1364
|
+
poke_interval : int
|
|
1365
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1366
|
+
mode : str
|
|
1367
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1368
|
+
exponential_backoff : bool
|
|
1369
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1370
|
+
pool : str
|
|
1371
|
+
the slot pool this task should run in,
|
|
1372
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1373
|
+
soft_fail : bool
|
|
1374
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1375
|
+
name : str
|
|
1376
|
+
Name of the sensor on Airflow
|
|
1377
|
+
description : str
|
|
1378
|
+
Description of sensor in the Airflow UI
|
|
1379
|
+
bucket_key : Union[str, List[str]]
|
|
1380
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1381
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1382
|
+
bucket_name : str
|
|
1383
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1384
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1385
|
+
wildcard_match : bool
|
|
1386
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1387
|
+
aws_conn_id : str
|
|
1388
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1389
|
+
verify : bool
|
|
1390
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1058
1391
|
"""
|
|
1059
1392
|
...
|
|
1060
1393
|
|
|
1061
1394
|
@typing.overload
|
|
1062
|
-
def
|
|
1063
|
-
...
|
|
1064
|
-
|
|
1065
|
-
@typing.overload
|
|
1066
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1067
|
-
...
|
|
1068
|
-
|
|
1069
|
-
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
1070
|
-
"""
|
|
1071
|
-
Specifies the number of times the task corresponding
|
|
1072
|
-
to a step needs to be retried.
|
|
1073
|
-
|
|
1074
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
|
1075
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
1076
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
1077
|
-
|
|
1078
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
1079
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
|
1080
|
-
ensuring that the flow execution can continue.
|
|
1081
|
-
|
|
1082
|
-
|
|
1083
|
-
Parameters
|
|
1084
|
-
----------
|
|
1085
|
-
times : int, default 3
|
|
1086
|
-
Number of times to retry this task.
|
|
1087
|
-
minutes_between_retries : int, default 2
|
|
1088
|
-
Number of minutes between retries.
|
|
1089
|
-
"""
|
|
1090
|
-
...
|
|
1091
|
-
|
|
1092
|
-
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1093
|
-
"""
|
|
1094
|
-
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1095
|
-
|
|
1096
|
-
|
|
1097
|
-
Parameters
|
|
1098
|
-
----------
|
|
1099
|
-
integration_name : str, optional
|
|
1100
|
-
Name of the S3 proxy integration. If not specified, will use the only
|
|
1101
|
-
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
1102
|
-
write_mode : str, optional
|
|
1103
|
-
The desired behavior during write operations to target (origin) S3 bucket.
|
|
1104
|
-
allowed options are:
|
|
1105
|
-
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
1106
|
-
storage
|
|
1107
|
-
"origin" -> only write to the target S3 bucket
|
|
1108
|
-
"cache" -> only write to the object storage service used for caching
|
|
1109
|
-
debug : bool, optional
|
|
1110
|
-
Enable debug logging for proxy operations.
|
|
1111
|
-
"""
|
|
1112
|
-
...
|
|
1113
|
-
|
|
1114
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1395
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1115
1396
|
"""
|
|
1116
|
-
Specifies
|
|
1397
|
+
Specifies the times when the flow should be run when running on a
|
|
1398
|
+
production scheduler.
|
|
1117
1399
|
|
|
1118
1400
|
|
|
1119
1401
|
Parameters
|
|
1120
|
-
----------
|
|
1121
|
-
|
|
1122
|
-
|
|
1123
|
-
|
|
1124
|
-
|
|
1125
|
-
|
|
1126
|
-
|
|
1127
|
-
|
|
1128
|
-
|
|
1129
|
-
|
|
1130
|
-
|
|
1131
|
-
|
|
1132
|
-
|
|
1133
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
1134
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
1135
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
1136
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
1137
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
1138
|
-
image_pull_secrets: List[str], default []
|
|
1139
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
1140
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
1141
|
-
in Kubernetes.
|
|
1142
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
1143
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
1144
|
-
secrets : List[str], optional, default None
|
|
1145
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
1146
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
1147
|
-
in Metaflow configuration.
|
|
1148
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
1149
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
1150
|
-
Can be passed in as a comma separated string of values e.g.
|
|
1151
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
1152
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
1153
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
1154
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
1155
|
-
gpu : int, optional, default None
|
|
1156
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
1157
|
-
the scheduled node should not have GPUs.
|
|
1158
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
1159
|
-
The vendor of the GPUs to be used for this step.
|
|
1160
|
-
tolerations : List[Dict[str,str]], default []
|
|
1161
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
1162
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
1163
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
1164
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
1165
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
1166
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
1167
|
-
use_tmpfs : bool, default False
|
|
1168
|
-
This enables an explicit tmpfs mount for this step.
|
|
1169
|
-
tmpfs_tempdir : bool, default True
|
|
1170
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
1171
|
-
tmpfs_size : int, optional, default: None
|
|
1172
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
1173
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
1174
|
-
memory allocated for this step.
|
|
1175
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
1176
|
-
Path to tmpfs mount for this step.
|
|
1177
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
1178
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
1179
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
1180
|
-
shared_memory: int, optional
|
|
1181
|
-
Shared memory size (in MiB) required for this step
|
|
1182
|
-
port: int, optional
|
|
1183
|
-
Port number to specify in the Kubernetes job object
|
|
1184
|
-
compute_pool : str, optional, default None
|
|
1185
|
-
Compute pool to be used for for this step.
|
|
1186
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
1187
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
1188
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
1189
|
-
Only applicable when @parallel is used.
|
|
1190
|
-
qos: str, default: Burstable
|
|
1191
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
1192
|
-
|
|
1193
|
-
security_context: Dict[str, Any], optional, default None
|
|
1194
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
1195
|
-
- privileged: bool, optional, default None
|
|
1196
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
1197
|
-
- run_as_user: int, optional, default None
|
|
1198
|
-
- run_as_group: int, optional, default None
|
|
1199
|
-
- run_as_non_root: bool, optional, default None
|
|
1402
|
+
----------
|
|
1403
|
+
hourly : bool, default False
|
|
1404
|
+
Run the workflow hourly.
|
|
1405
|
+
daily : bool, default True
|
|
1406
|
+
Run the workflow daily.
|
|
1407
|
+
weekly : bool, default False
|
|
1408
|
+
Run the workflow weekly.
|
|
1409
|
+
cron : str, optional, default None
|
|
1410
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1411
|
+
specified by this expression.
|
|
1412
|
+
timezone : str, optional, default None
|
|
1413
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1414
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1200
1415
|
"""
|
|
1201
1416
|
...
|
|
1202
1417
|
|
|
1203
|
-
|
|
1418
|
+
@typing.overload
|
|
1419
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1420
|
+
...
|
|
1421
|
+
|
|
1422
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1204
1423
|
"""
|
|
1205
|
-
|
|
1206
|
-
|
|
1207
|
-
User code call
|
|
1208
|
-
--------------
|
|
1209
|
-
@vllm(
|
|
1210
|
-
model="...",
|
|
1211
|
-
...
|
|
1212
|
-
)
|
|
1213
|
-
|
|
1214
|
-
Valid backend options
|
|
1215
|
-
---------------------
|
|
1216
|
-
- 'local': Run as a separate process on the local task machine.
|
|
1217
|
-
|
|
1218
|
-
Valid model options
|
|
1219
|
-
-------------------
|
|
1220
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
1221
|
-
|
|
1222
|
-
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
1223
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
|
1424
|
+
Specifies the times when the flow should be run when running on a
|
|
1425
|
+
production scheduler.
|
|
1224
1426
|
|
|
1225
1427
|
|
|
1226
1428
|
Parameters
|
|
1227
1429
|
----------
|
|
1228
|
-
|
|
1229
|
-
|
|
1230
|
-
|
|
1231
|
-
|
|
1232
|
-
|
|
1233
|
-
|
|
1234
|
-
|
|
1235
|
-
|
|
1236
|
-
|
|
1237
|
-
|
|
1238
|
-
|
|
1239
|
-
|
|
1240
|
-
Only used when openai_api_server=True.
|
|
1241
|
-
max_retries: int
|
|
1242
|
-
Maximum number of retries checking for vLLM server startup.
|
|
1243
|
-
Only used when openai_api_server=True.
|
|
1244
|
-
retry_alert_frequency: int
|
|
1245
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
1246
|
-
Only used when openai_api_server=True.
|
|
1247
|
-
engine_args : dict
|
|
1248
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
1249
|
-
For example, `tensor_parallel_size=2`.
|
|
1430
|
+
hourly : bool, default False
|
|
1431
|
+
Run the workflow hourly.
|
|
1432
|
+
daily : bool, default True
|
|
1433
|
+
Run the workflow daily.
|
|
1434
|
+
weekly : bool, default False
|
|
1435
|
+
Run the workflow weekly.
|
|
1436
|
+
cron : str, optional, default None
|
|
1437
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1438
|
+
specified by this expression.
|
|
1439
|
+
timezone : str, optional, default None
|
|
1440
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1441
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1250
1442
|
"""
|
|
1251
1443
|
...
|
|
1252
1444
|
|
|
1253
1445
|
@typing.overload
|
|
1254
|
-
def
|
|
1446
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1255
1447
|
"""
|
|
1256
|
-
Specifies the
|
|
1257
|
-
|
|
1258
|
-
Use `@resources` to specify the resource requirements
|
|
1259
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1260
|
-
|
|
1261
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
1262
|
-
```
|
|
1263
|
-
python myflow.py run --with batch
|
|
1264
|
-
```
|
|
1265
|
-
or
|
|
1266
|
-
```
|
|
1267
|
-
python myflow.py run --with kubernetes
|
|
1268
|
-
```
|
|
1269
|
-
which executes the flow on the desired system using the
|
|
1270
|
-
requirements specified in `@resources`.
|
|
1448
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1271
1449
|
|
|
1450
|
+
Use `@pypi_base` to set common packages required by all
|
|
1451
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1272
1452
|
|
|
1273
1453
|
Parameters
|
|
1274
1454
|
----------
|
|
1275
|
-
|
|
1276
|
-
|
|
1277
|
-
|
|
1278
|
-
|
|
1279
|
-
|
|
1280
|
-
|
|
1281
|
-
memory : int, default 4096
|
|
1282
|
-
Memory size (in MB) required for this step.
|
|
1283
|
-
shared_memory : int, optional, default None
|
|
1284
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1285
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
1455
|
+
packages : Dict[str, str], default: {}
|
|
1456
|
+
Packages to use for this flow. The key is the name of the package
|
|
1457
|
+
and the value is the version to use.
|
|
1458
|
+
python : str, optional, default: None
|
|
1459
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1460
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1286
1461
|
"""
|
|
1287
1462
|
...
|
|
1288
1463
|
|
|
1289
1464
|
@typing.overload
|
|
1290
|
-
def
|
|
1291
|
-
...
|
|
1292
|
-
|
|
1293
|
-
@typing.overload
|
|
1294
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1465
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1295
1466
|
...
|
|
1296
1467
|
|
|
1297
|
-
def
|
|
1468
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1298
1469
|
"""
|
|
1299
|
-
Specifies the
|
|
1300
|
-
|
|
1301
|
-
Use `@resources` to specify the resource requirements
|
|
1302
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1303
|
-
|
|
1304
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
1305
|
-
```
|
|
1306
|
-
python myflow.py run --with batch
|
|
1307
|
-
```
|
|
1308
|
-
or
|
|
1309
|
-
```
|
|
1310
|
-
python myflow.py run --with kubernetes
|
|
1311
|
-
```
|
|
1312
|
-
which executes the flow on the desired system using the
|
|
1313
|
-
requirements specified in `@resources`.
|
|
1470
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1314
1471
|
|
|
1472
|
+
Use `@pypi_base` to set common packages required by all
|
|
1473
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1315
1474
|
|
|
1316
1475
|
Parameters
|
|
1317
1476
|
----------
|
|
1318
|
-
|
|
1319
|
-
|
|
1320
|
-
|
|
1321
|
-
|
|
1322
|
-
|
|
1323
|
-
|
|
1324
|
-
memory : int, default 4096
|
|
1325
|
-
Memory size (in MB) required for this step.
|
|
1326
|
-
shared_memory : int, optional, default None
|
|
1327
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1328
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
1477
|
+
packages : Dict[str, str], default: {}
|
|
1478
|
+
Packages to use for this flow. The key is the name of the package
|
|
1479
|
+
and the value is the version to use.
|
|
1480
|
+
python : str, optional, default: None
|
|
1481
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1482
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1329
1483
|
"""
|
|
1330
1484
|
...
|
|
1331
1485
|
|
|
1332
|
-
|
|
1333
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1486
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1334
1487
|
"""
|
|
1335
|
-
|
|
1336
|
-
and
|
|
1488
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
1489
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1490
|
+
|
|
1491
|
+
|
|
1492
|
+
Parameters
|
|
1493
|
+
----------
|
|
1494
|
+
timeout : int
|
|
1495
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1496
|
+
poke_interval : int
|
|
1497
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1498
|
+
mode : str
|
|
1499
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1500
|
+
exponential_backoff : bool
|
|
1501
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1502
|
+
pool : str
|
|
1503
|
+
the slot pool this task should run in,
|
|
1504
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1505
|
+
soft_fail : bool
|
|
1506
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1507
|
+
name : str
|
|
1508
|
+
Name of the sensor on Airflow
|
|
1509
|
+
description : str
|
|
1510
|
+
Description of sensor in the Airflow UI
|
|
1511
|
+
external_dag_id : str
|
|
1512
|
+
The dag_id that contains the task you want to wait for.
|
|
1513
|
+
external_task_ids : List[str]
|
|
1514
|
+
The list of task_ids that you want to wait for.
|
|
1515
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1516
|
+
allowed_states : List[str]
|
|
1517
|
+
Iterable of allowed states, (Default: ['success'])
|
|
1518
|
+
failed_states : List[str]
|
|
1519
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
|
1520
|
+
execution_delta : datetime.timedelta
|
|
1521
|
+
time difference with the previous execution to look at,
|
|
1522
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1523
|
+
check_existence: bool
|
|
1524
|
+
Set to True to check if the external task exists or check if
|
|
1525
|
+
the DAG to wait for exists. (Default: True)
|
|
1337
1526
|
"""
|
|
1338
1527
|
...
|
|
1339
1528
|
|
|
1340
|
-
|
|
1341
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1342
|
-
...
|
|
1343
|
-
|
|
1344
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1529
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1345
1530
|
"""
|
|
1346
|
-
|
|
1347
|
-
|
|
1531
|
+
Specifies what flows belong to the same project.
|
|
1532
|
+
|
|
1533
|
+
A project-specific namespace is created for all flows that
|
|
1534
|
+
use the same `@project(name)`.
|
|
1535
|
+
|
|
1536
|
+
|
|
1537
|
+
Parameters
|
|
1538
|
+
----------
|
|
1539
|
+
name : str
|
|
1540
|
+
Project name. Make sure that the name is unique amongst all
|
|
1541
|
+
projects that use the same production scheduler. The name may
|
|
1542
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
1543
|
+
|
|
1544
|
+
branch : Optional[str], default None
|
|
1545
|
+
The branch to use. If not specified, the branch is set to
|
|
1546
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
1547
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
1548
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
1549
|
+
|
|
1550
|
+
production : bool, default False
|
|
1551
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
1552
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
1553
|
+
`production` in the decorator and on the command line.
|
|
1554
|
+
The project branch name will be:
|
|
1555
|
+
- if `branch` is specified:
|
|
1556
|
+
- if `production` is True: `prod.<branch>`
|
|
1557
|
+
- if `production` is False: `test.<branch>`
|
|
1558
|
+
- if `branch` is not specified:
|
|
1559
|
+
- if `production` is True: `prod`
|
|
1560
|
+
- if `production` is False: `user.<username>`
|
|
1348
1561
|
"""
|
|
1349
1562
|
...
|
|
1350
1563
|
|
|
@@ -1564,53 +1777,53 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1564
1777
|
...
|
|
1565
1778
|
|
|
1566
1779
|
@typing.overload
|
|
1567
|
-
def
|
|
1780
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1568
1781
|
"""
|
|
1569
|
-
Specifies the
|
|
1570
|
-
|
|
1782
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1783
|
+
|
|
1784
|
+
Use `@conda_base` to set common libraries required by all
|
|
1785
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1571
1786
|
|
|
1572
1787
|
|
|
1573
1788
|
Parameters
|
|
1574
|
-
----------
|
|
1575
|
-
|
|
1576
|
-
|
|
1577
|
-
|
|
1578
|
-
|
|
1579
|
-
|
|
1580
|
-
|
|
1581
|
-
|
|
1582
|
-
|
|
1583
|
-
|
|
1584
|
-
|
|
1585
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1586
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1789
|
+
----------
|
|
1790
|
+
packages : Dict[str, str], default {}
|
|
1791
|
+
Packages to use for this flow. The key is the name of the package
|
|
1792
|
+
and the value is the version to use.
|
|
1793
|
+
libraries : Dict[str, str], default {}
|
|
1794
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1795
|
+
python : str, optional, default None
|
|
1796
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1797
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1798
|
+
disabled : bool, default False
|
|
1799
|
+
If set to True, disables Conda.
|
|
1587
1800
|
"""
|
|
1588
1801
|
...
|
|
1589
1802
|
|
|
1590
1803
|
@typing.overload
|
|
1591
|
-
def
|
|
1804
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1592
1805
|
...
|
|
1593
1806
|
|
|
1594
|
-
def
|
|
1807
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1595
1808
|
"""
|
|
1596
|
-
Specifies the
|
|
1597
|
-
|
|
1809
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1810
|
+
|
|
1811
|
+
Use `@conda_base` to set common libraries required by all
|
|
1812
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1598
1813
|
|
|
1599
1814
|
|
|
1600
1815
|
Parameters
|
|
1601
1816
|
----------
|
|
1602
|
-
|
|
1603
|
-
|
|
1604
|
-
|
|
1605
|
-
|
|
1606
|
-
|
|
1607
|
-
|
|
1608
|
-
|
|
1609
|
-
|
|
1610
|
-
|
|
1611
|
-
|
|
1612
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1613
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1817
|
+
packages : Dict[str, str], default {}
|
|
1818
|
+
Packages to use for this flow. The key is the name of the package
|
|
1819
|
+
and the value is the version to use.
|
|
1820
|
+
libraries : Dict[str, str], default {}
|
|
1821
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1822
|
+
python : str, optional, default None
|
|
1823
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1824
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1825
|
+
disabled : bool, default False
|
|
1826
|
+
If set to True, disables Conda.
|
|
1614
1827
|
"""
|
|
1615
1828
|
...
|
|
1616
1829
|
|
|
@@ -1707,218 +1920,5 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
|
1707
1920
|
"""
|
|
1708
1921
|
...
|
|
1709
1922
|
|
|
1710
|
-
@typing.overload
|
|
1711
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1712
|
-
"""
|
|
1713
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1714
|
-
|
|
1715
|
-
Use `@pypi_base` to set common packages required by all
|
|
1716
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1717
|
-
|
|
1718
|
-
Parameters
|
|
1719
|
-
----------
|
|
1720
|
-
packages : Dict[str, str], default: {}
|
|
1721
|
-
Packages to use for this flow. The key is the name of the package
|
|
1722
|
-
and the value is the version to use.
|
|
1723
|
-
python : str, optional, default: None
|
|
1724
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1725
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1726
|
-
"""
|
|
1727
|
-
...
|
|
1728
|
-
|
|
1729
|
-
@typing.overload
|
|
1730
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1731
|
-
...
|
|
1732
|
-
|
|
1733
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1734
|
-
"""
|
|
1735
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1736
|
-
|
|
1737
|
-
Use `@pypi_base` to set common packages required by all
|
|
1738
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1739
|
-
|
|
1740
|
-
Parameters
|
|
1741
|
-
----------
|
|
1742
|
-
packages : Dict[str, str], default: {}
|
|
1743
|
-
Packages to use for this flow. The key is the name of the package
|
|
1744
|
-
and the value is the version to use.
|
|
1745
|
-
python : str, optional, default: None
|
|
1746
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1747
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1748
|
-
"""
|
|
1749
|
-
...
|
|
1750
|
-
|
|
1751
|
-
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1752
|
-
"""
|
|
1753
|
-
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
1754
|
-
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1755
|
-
|
|
1756
|
-
|
|
1757
|
-
Parameters
|
|
1758
|
-
----------
|
|
1759
|
-
timeout : int
|
|
1760
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1761
|
-
poke_interval : int
|
|
1762
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1763
|
-
mode : str
|
|
1764
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1765
|
-
exponential_backoff : bool
|
|
1766
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1767
|
-
pool : str
|
|
1768
|
-
the slot pool this task should run in,
|
|
1769
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1770
|
-
soft_fail : bool
|
|
1771
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1772
|
-
name : str
|
|
1773
|
-
Name of the sensor on Airflow
|
|
1774
|
-
description : str
|
|
1775
|
-
Description of sensor in the Airflow UI
|
|
1776
|
-
external_dag_id : str
|
|
1777
|
-
The dag_id that contains the task you want to wait for.
|
|
1778
|
-
external_task_ids : List[str]
|
|
1779
|
-
The list of task_ids that you want to wait for.
|
|
1780
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1781
|
-
allowed_states : List[str]
|
|
1782
|
-
Iterable of allowed states, (Default: ['success'])
|
|
1783
|
-
failed_states : List[str]
|
|
1784
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
|
1785
|
-
execution_delta : datetime.timedelta
|
|
1786
|
-
time difference with the previous execution to look at,
|
|
1787
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1788
|
-
check_existence: bool
|
|
1789
|
-
Set to True to check if the external task exists or check if
|
|
1790
|
-
the DAG to wait for exists. (Default: True)
|
|
1791
|
-
"""
|
|
1792
|
-
...
|
|
1793
|
-
|
|
1794
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1795
|
-
"""
|
|
1796
|
-
Specifies what flows belong to the same project.
|
|
1797
|
-
|
|
1798
|
-
A project-specific namespace is created for all flows that
|
|
1799
|
-
use the same `@project(name)`.
|
|
1800
|
-
|
|
1801
|
-
|
|
1802
|
-
Parameters
|
|
1803
|
-
----------
|
|
1804
|
-
name : str
|
|
1805
|
-
Project name. Make sure that the name is unique amongst all
|
|
1806
|
-
projects that use the same production scheduler. The name may
|
|
1807
|
-
contain only lowercase alphanumeric characters and underscores.
|
|
1808
|
-
|
|
1809
|
-
branch : Optional[str], default None
|
|
1810
|
-
The branch to use. If not specified, the branch is set to
|
|
1811
|
-
`user.<username>` unless `production` is set to `True`. This can
|
|
1812
|
-
also be set on the command line using `--branch` as a top-level option.
|
|
1813
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
|
1814
|
-
|
|
1815
|
-
production : bool, default False
|
|
1816
|
-
Whether or not the branch is the production branch. This can also be set on the
|
|
1817
|
-
command line using `--production` as a top-level option. It is an error to specify
|
|
1818
|
-
`production` in the decorator and on the command line.
|
|
1819
|
-
The project branch name will be:
|
|
1820
|
-
- if `branch` is specified:
|
|
1821
|
-
- if `production` is True: `prod.<branch>`
|
|
1822
|
-
- if `production` is False: `test.<branch>`
|
|
1823
|
-
- if `branch` is not specified:
|
|
1824
|
-
- if `production` is True: `prod`
|
|
1825
|
-
- if `production` is False: `user.<username>`
|
|
1826
|
-
"""
|
|
1827
|
-
...
|
|
1828
|
-
|
|
1829
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1830
|
-
"""
|
|
1831
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1832
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1833
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1834
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1835
|
-
starts only after all sensors finish.
|
|
1836
|
-
|
|
1837
|
-
|
|
1838
|
-
Parameters
|
|
1839
|
-
----------
|
|
1840
|
-
timeout : int
|
|
1841
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1842
|
-
poke_interval : int
|
|
1843
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1844
|
-
mode : str
|
|
1845
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1846
|
-
exponential_backoff : bool
|
|
1847
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1848
|
-
pool : str
|
|
1849
|
-
the slot pool this task should run in,
|
|
1850
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1851
|
-
soft_fail : bool
|
|
1852
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1853
|
-
name : str
|
|
1854
|
-
Name of the sensor on Airflow
|
|
1855
|
-
description : str
|
|
1856
|
-
Description of sensor in the Airflow UI
|
|
1857
|
-
bucket_key : Union[str, List[str]]
|
|
1858
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1859
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1860
|
-
bucket_name : str
|
|
1861
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1862
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1863
|
-
wildcard_match : bool
|
|
1864
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1865
|
-
aws_conn_id : str
|
|
1866
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
|
1867
|
-
verify : bool
|
|
1868
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1869
|
-
"""
|
|
1870
|
-
...
|
|
1871
|
-
|
|
1872
|
-
@typing.overload
|
|
1873
|
-
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1874
|
-
"""
|
|
1875
|
-
Specifies the Conda environment for all steps of the flow.
|
|
1876
|
-
|
|
1877
|
-
Use `@conda_base` to set common libraries required by all
|
|
1878
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1879
|
-
|
|
1880
|
-
|
|
1881
|
-
Parameters
|
|
1882
|
-
----------
|
|
1883
|
-
packages : Dict[str, str], default {}
|
|
1884
|
-
Packages to use for this flow. The key is the name of the package
|
|
1885
|
-
and the value is the version to use.
|
|
1886
|
-
libraries : Dict[str, str], default {}
|
|
1887
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1888
|
-
python : str, optional, default None
|
|
1889
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1890
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1891
|
-
disabled : bool, default False
|
|
1892
|
-
If set to True, disables Conda.
|
|
1893
|
-
"""
|
|
1894
|
-
...
|
|
1895
|
-
|
|
1896
|
-
@typing.overload
|
|
1897
|
-
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1898
|
-
...
|
|
1899
|
-
|
|
1900
|
-
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1901
|
-
"""
|
|
1902
|
-
Specifies the Conda environment for all steps of the flow.
|
|
1903
|
-
|
|
1904
|
-
Use `@conda_base` to set common libraries required by all
|
|
1905
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1906
|
-
|
|
1907
|
-
|
|
1908
|
-
Parameters
|
|
1909
|
-
----------
|
|
1910
|
-
packages : Dict[str, str], default {}
|
|
1911
|
-
Packages to use for this flow. The key is the name of the package
|
|
1912
|
-
and the value is the version to use.
|
|
1913
|
-
libraries : Dict[str, str], default {}
|
|
1914
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1915
|
-
python : str, optional, default None
|
|
1916
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1917
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1918
|
-
disabled : bool, default False
|
|
1919
|
-
If set to True, disables Conda.
|
|
1920
|
-
"""
|
|
1921
|
-
...
|
|
1922
|
-
|
|
1923
1923
|
pkg_name: str
|
|
1924
1924
|
|