ob-metaflow-stubs 6.0.7.1__py2.py3-none-any.whl → 6.0.7.3__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ob-metaflow-stubs might be problematic. Click here for more details.
- metaflow-stubs/__init__.pyi +1038 -1038
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +5 -5
- metaflow-stubs/client/filecache.pyi +1 -1
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +3 -3
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/meta_files.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +1 -1
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +50 -50
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +5 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/packaging_sys/__init__.pyi +6 -6
- metaflow-stubs/packaging_sys/backend.pyi +3 -3
- metaflow-stubs/packaging_sys/distribution_support.pyi +4 -4
- metaflow-stubs/packaging_sys/tar_backend.pyi +3 -3
- metaflow-stubs/packaging_sys/utils.pyi +1 -1
- metaflow-stubs/packaging_sys/v1.pyi +2 -2
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +12 -11
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/argo/exit_hooks.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +1 -1
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +4 -4
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/__init__.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/plugins/optuna/__init__.pyi +24 -0
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +4 -4
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_func.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +1 -1
- metaflow-stubs/plugins/secrets/utils.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +1 -1
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +4 -4
- metaflow-stubs/runner/deployer_impl.pyi +1 -1
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +1 -1
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +1 -1
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_options.pyi +1 -1
- metaflow-stubs/user_configs/config_parameters.pyi +6 -6
- metaflow-stubs/user_decorators/__init__.pyi +1 -1
- metaflow-stubs/user_decorators/common.pyi +1 -1
- metaflow-stubs/user_decorators/mutable_flow.pyi +3 -3
- metaflow-stubs/user_decorators/mutable_step.pyi +1 -1
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +4 -4
- metaflow-stubs/user_decorators/user_step_decorator.pyi +4 -4
- {ob_metaflow_stubs-6.0.7.1.dist-info → ob_metaflow_stubs-6.0.7.3.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.7.3.dist-info/RECORD +262 -0
- ob_metaflow_stubs-6.0.7.1.dist-info/RECORD +0 -261
- {ob_metaflow_stubs-6.0.7.1.dist-info → ob_metaflow_stubs-6.0.7.3.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.7.1.dist-info → ob_metaflow_stubs-6.0.7.3.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
3
|
# MF version: 2.17.1.0+obcheckpoint(0.2.4);ob(v1) #
|
|
4
|
-
# Generated on 2025-08-
|
|
4
|
+
# Generated on 2025-08-20T21:57:30.472423 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
@@ -39,18 +39,18 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
+
from . import events as events
|
|
43
|
+
from . import tuple_util as tuple_util
|
|
42
44
|
from . import cards as cards
|
|
43
45
|
from . import metaflow_git as metaflow_git
|
|
44
|
-
from . import tuple_util as tuple_util
|
|
45
|
-
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
51
52
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
52
53
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
53
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
54
54
|
from . import client as client
|
|
55
55
|
from .client.core import namespace as namespace
|
|
56
56
|
from .client.core import get_namespace as get_namespace
|
|
@@ -184,249 +184,35 @@ def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[t
|
|
|
184
184
|
...
|
|
185
185
|
|
|
186
186
|
@typing.overload
|
|
187
|
-
def
|
|
188
|
-
"""
|
|
189
|
-
Specifies that the step will success under all circumstances.
|
|
190
|
-
|
|
191
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
192
|
-
contains the exception raised. You can use it to detect the presence
|
|
193
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
194
|
-
are missing.
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
Parameters
|
|
198
|
-
----------
|
|
199
|
-
var : str, optional, default None
|
|
200
|
-
Name of the artifact in which to store the caught exception.
|
|
201
|
-
If not specified, the exception is not stored.
|
|
202
|
-
print_exception : bool, default True
|
|
203
|
-
Determines whether or not the exception is printed to
|
|
204
|
-
stdout when caught.
|
|
205
|
-
"""
|
|
206
|
-
...
|
|
207
|
-
|
|
208
|
-
@typing.overload
|
|
209
|
-
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
210
|
-
...
|
|
211
|
-
|
|
212
|
-
@typing.overload
|
|
213
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
214
|
-
...
|
|
215
|
-
|
|
216
|
-
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
187
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
217
188
|
"""
|
|
218
|
-
Specifies
|
|
219
|
-
|
|
220
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
221
|
-
contains the exception raised. You can use it to detect the presence
|
|
222
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
223
|
-
are missing.
|
|
189
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
224
190
|
|
|
225
191
|
|
|
226
192
|
Parameters
|
|
227
193
|
----------
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
If not specified, the exception is not stored.
|
|
231
|
-
print_exception : bool, default True
|
|
232
|
-
Determines whether or not the exception is printed to
|
|
233
|
-
stdout when caught.
|
|
234
|
-
"""
|
|
235
|
-
...
|
|
236
|
-
|
|
237
|
-
@typing.overload
|
|
238
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
239
|
-
"""
|
|
240
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
241
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
242
|
-
"""
|
|
243
|
-
...
|
|
244
|
-
|
|
245
|
-
@typing.overload
|
|
246
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
247
|
-
...
|
|
248
|
-
|
|
249
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
250
|
-
"""
|
|
251
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
252
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
194
|
+
vars : Dict[str, str], default {}
|
|
195
|
+
Dictionary of environment variables to set.
|
|
253
196
|
"""
|
|
254
197
|
...
|
|
255
198
|
|
|
256
199
|
@typing.overload
|
|
257
|
-
def
|
|
258
|
-
"""
|
|
259
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
260
|
-
to inject a card and render simple markdown content.
|
|
261
|
-
"""
|
|
200
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
262
201
|
...
|
|
263
202
|
|
|
264
203
|
@typing.overload
|
|
265
|
-
def
|
|
266
|
-
...
|
|
267
|
-
|
|
268
|
-
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
269
|
-
"""
|
|
270
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
271
|
-
to inject a card and render simple markdown content.
|
|
272
|
-
"""
|
|
273
|
-
...
|
|
274
|
-
|
|
275
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
276
|
-
"""
|
|
277
|
-
Specifies that this step should execute on Kubernetes.
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
Parameters
|
|
281
|
-
----------
|
|
282
|
-
cpu : int, default 1
|
|
283
|
-
Number of CPUs required for this step. If `@resources` is
|
|
284
|
-
also present, the maximum value from all decorators is used.
|
|
285
|
-
memory : int, default 4096
|
|
286
|
-
Memory size (in MB) required for this step. If
|
|
287
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
288
|
-
used.
|
|
289
|
-
disk : int, default 10240
|
|
290
|
-
Disk size (in MB) required for this step. If
|
|
291
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
292
|
-
used.
|
|
293
|
-
image : str, optional, default None
|
|
294
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
295
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
296
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
297
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
298
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
299
|
-
image_pull_secrets: List[str], default []
|
|
300
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
301
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
302
|
-
in Kubernetes.
|
|
303
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
304
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
305
|
-
secrets : List[str], optional, default None
|
|
306
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
307
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
308
|
-
in Metaflow configuration.
|
|
309
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
310
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
311
|
-
Can be passed in as a comma separated string of values e.g.
|
|
312
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
313
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
314
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
315
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
316
|
-
gpu : int, optional, default None
|
|
317
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
318
|
-
the scheduled node should not have GPUs.
|
|
319
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
320
|
-
The vendor of the GPUs to be used for this step.
|
|
321
|
-
tolerations : List[Dict[str,str]], default []
|
|
322
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
323
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
324
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
325
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
326
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
327
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
328
|
-
use_tmpfs : bool, default False
|
|
329
|
-
This enables an explicit tmpfs mount for this step.
|
|
330
|
-
tmpfs_tempdir : bool, default True
|
|
331
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
332
|
-
tmpfs_size : int, optional, default: None
|
|
333
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
334
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
335
|
-
memory allocated for this step.
|
|
336
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
337
|
-
Path to tmpfs mount for this step.
|
|
338
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
339
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
340
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
341
|
-
shared_memory: int, optional
|
|
342
|
-
Shared memory size (in MiB) required for this step
|
|
343
|
-
port: int, optional
|
|
344
|
-
Port number to specify in the Kubernetes job object
|
|
345
|
-
compute_pool : str, optional, default None
|
|
346
|
-
Compute pool to be used for for this step.
|
|
347
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
348
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
349
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
350
|
-
Only applicable when @parallel is used.
|
|
351
|
-
qos: str, default: Burstable
|
|
352
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
353
|
-
|
|
354
|
-
security_context: Dict[str, Any], optional, default None
|
|
355
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
356
|
-
- privileged: bool, optional, default None
|
|
357
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
358
|
-
- run_as_user: int, optional, default None
|
|
359
|
-
- run_as_group: int, optional, default None
|
|
360
|
-
- run_as_non_root: bool, optional, default None
|
|
361
|
-
"""
|
|
204
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
362
205
|
...
|
|
363
206
|
|
|
364
|
-
def
|
|
207
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
365
208
|
"""
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
User code call
|
|
369
|
-
--------------
|
|
370
|
-
@vllm(
|
|
371
|
-
model="...",
|
|
372
|
-
...
|
|
373
|
-
)
|
|
374
|
-
|
|
375
|
-
Valid backend options
|
|
376
|
-
---------------------
|
|
377
|
-
- 'local': Run as a separate process on the local task machine.
|
|
378
|
-
|
|
379
|
-
Valid model options
|
|
380
|
-
-------------------
|
|
381
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
382
|
-
|
|
383
|
-
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
384
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
|
209
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
385
210
|
|
|
386
211
|
|
|
387
212
|
Parameters
|
|
388
213
|
----------
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
backend: str
|
|
392
|
-
Determines where and how to run the vLLM process.
|
|
393
|
-
openai_api_server: bool
|
|
394
|
-
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
395
|
-
Default is False (uses native engine).
|
|
396
|
-
Set to True for backward compatibility with existing code.
|
|
397
|
-
debug: bool
|
|
398
|
-
Whether to turn on verbose debugging logs.
|
|
399
|
-
card_refresh_interval: int
|
|
400
|
-
Interval in seconds for refreshing the vLLM status card.
|
|
401
|
-
Only used when openai_api_server=True.
|
|
402
|
-
max_retries: int
|
|
403
|
-
Maximum number of retries checking for vLLM server startup.
|
|
404
|
-
Only used when openai_api_server=True.
|
|
405
|
-
retry_alert_frequency: int
|
|
406
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
407
|
-
Only used when openai_api_server=True.
|
|
408
|
-
engine_args : dict
|
|
409
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
410
|
-
For example, `tensor_parallel_size=2`.
|
|
411
|
-
"""
|
|
412
|
-
...
|
|
413
|
-
|
|
414
|
-
@typing.overload
|
|
415
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
416
|
-
"""
|
|
417
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
418
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
419
|
-
"""
|
|
420
|
-
...
|
|
421
|
-
|
|
422
|
-
@typing.overload
|
|
423
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
424
|
-
...
|
|
425
|
-
|
|
426
|
-
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
427
|
-
"""
|
|
428
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
429
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
214
|
+
vars : Dict[str, str], default {}
|
|
215
|
+
Dictionary of environment variables to set.
|
|
430
216
|
"""
|
|
431
217
|
...
|
|
432
218
|
|
|
@@ -470,132 +256,225 @@ def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
|
470
256
|
...
|
|
471
257
|
|
|
472
258
|
@typing.overload
|
|
473
|
-
def
|
|
259
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
474
260
|
"""
|
|
475
|
-
|
|
476
|
-
|
|
477
|
-
Information in this decorator will augment any
|
|
478
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
479
|
-
you can use `@pypi_base` to set packages required by all
|
|
480
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
481
|
-
|
|
261
|
+
Enables loading / saving of models within a step.
|
|
482
262
|
|
|
483
|
-
|
|
484
|
-
|
|
485
|
-
|
|
486
|
-
|
|
487
|
-
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
263
|
+
> Examples
|
|
264
|
+
- Saving Models
|
|
265
|
+
```python
|
|
266
|
+
@model
|
|
267
|
+
@step
|
|
268
|
+
def train(self):
|
|
269
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
270
|
+
self.my_model = current.model.save(
|
|
271
|
+
path_to_my_model,
|
|
272
|
+
label="my_model",
|
|
273
|
+
metadata={
|
|
274
|
+
"epochs": 10,
|
|
275
|
+
"batch-size": 32,
|
|
276
|
+
"learning-rate": 0.001,
|
|
277
|
+
}
|
|
278
|
+
)
|
|
279
|
+
self.next(self.test)
|
|
280
|
+
|
|
281
|
+
@model(load="my_model")
|
|
282
|
+
@step
|
|
283
|
+
def test(self):
|
|
284
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
285
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
286
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
287
|
+
self.next(self.end)
|
|
288
|
+
```
|
|
289
|
+
|
|
290
|
+
- Loading models
|
|
291
|
+
```python
|
|
292
|
+
@step
|
|
293
|
+
def train(self):
|
|
294
|
+
# current.model.load returns the path to the model loaded
|
|
295
|
+
checkpoint_path = current.model.load(
|
|
296
|
+
self.checkpoint_key,
|
|
297
|
+
)
|
|
298
|
+
model_path = current.model.load(
|
|
299
|
+
self.model,
|
|
300
|
+
)
|
|
301
|
+
self.next(self.test)
|
|
302
|
+
```
|
|
303
|
+
|
|
304
|
+
|
|
305
|
+
Parameters
|
|
306
|
+
----------
|
|
307
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
308
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
309
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
310
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
311
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
312
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
313
|
+
|
|
314
|
+
temp_dir_root : str, default: None
|
|
315
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
491
316
|
"""
|
|
492
317
|
...
|
|
493
318
|
|
|
494
319
|
@typing.overload
|
|
495
|
-
def
|
|
320
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
496
321
|
...
|
|
497
322
|
|
|
498
323
|
@typing.overload
|
|
499
|
-
def
|
|
324
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
500
325
|
...
|
|
501
326
|
|
|
502
|
-
def
|
|
327
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
|
503
328
|
"""
|
|
504
|
-
|
|
329
|
+
Enables loading / saving of models within a step.
|
|
505
330
|
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
|
|
509
|
-
|
|
331
|
+
> Examples
|
|
332
|
+
- Saving Models
|
|
333
|
+
```python
|
|
334
|
+
@model
|
|
335
|
+
@step
|
|
336
|
+
def train(self):
|
|
337
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
338
|
+
self.my_model = current.model.save(
|
|
339
|
+
path_to_my_model,
|
|
340
|
+
label="my_model",
|
|
341
|
+
metadata={
|
|
342
|
+
"epochs": 10,
|
|
343
|
+
"batch-size": 32,
|
|
344
|
+
"learning-rate": 0.001,
|
|
345
|
+
}
|
|
346
|
+
)
|
|
347
|
+
self.next(self.test)
|
|
348
|
+
|
|
349
|
+
@model(load="my_model")
|
|
350
|
+
@step
|
|
351
|
+
def test(self):
|
|
352
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
353
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
354
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
355
|
+
self.next(self.end)
|
|
356
|
+
```
|
|
357
|
+
|
|
358
|
+
- Loading models
|
|
359
|
+
```python
|
|
360
|
+
@step
|
|
361
|
+
def train(self):
|
|
362
|
+
# current.model.load returns the path to the model loaded
|
|
363
|
+
checkpoint_path = current.model.load(
|
|
364
|
+
self.checkpoint_key,
|
|
365
|
+
)
|
|
366
|
+
model_path = current.model.load(
|
|
367
|
+
self.model,
|
|
368
|
+
)
|
|
369
|
+
self.next(self.test)
|
|
370
|
+
```
|
|
510
371
|
|
|
511
372
|
|
|
512
373
|
Parameters
|
|
513
374
|
----------
|
|
514
|
-
|
|
515
|
-
|
|
516
|
-
|
|
517
|
-
|
|
518
|
-
|
|
519
|
-
|
|
375
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
376
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
377
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
378
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
379
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
380
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
381
|
+
|
|
382
|
+
temp_dir_root : str, default: None
|
|
383
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
520
384
|
"""
|
|
521
385
|
...
|
|
522
386
|
|
|
523
|
-
|
|
524
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
387
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
525
388
|
"""
|
|
526
|
-
Specifies
|
|
527
|
-
|
|
528
|
-
Use `@resources` to specify the resource requirements
|
|
529
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
530
|
-
|
|
531
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
532
|
-
```
|
|
533
|
-
python myflow.py run --with batch
|
|
534
|
-
```
|
|
535
|
-
or
|
|
536
|
-
```
|
|
537
|
-
python myflow.py run --with kubernetes
|
|
538
|
-
```
|
|
539
|
-
which executes the flow on the desired system using the
|
|
540
|
-
requirements specified in `@resources`.
|
|
389
|
+
Specifies that this step should execute on DGX cloud.
|
|
541
390
|
|
|
542
391
|
|
|
543
392
|
Parameters
|
|
544
393
|
----------
|
|
545
|
-
|
|
546
|
-
Number of
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
disk : int, optional, default None
|
|
550
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
551
|
-
memory : int, default 4096
|
|
552
|
-
Memory size (in MB) required for this step.
|
|
553
|
-
shared_memory : int, optional, default None
|
|
554
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
555
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
394
|
+
gpu : int
|
|
395
|
+
Number of GPUs to use.
|
|
396
|
+
gpu_type : str
|
|
397
|
+
Type of Nvidia GPU to use.
|
|
556
398
|
"""
|
|
557
399
|
...
|
|
558
400
|
|
|
559
|
-
|
|
560
|
-
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
561
|
-
...
|
|
562
|
-
|
|
563
|
-
@typing.overload
|
|
564
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
565
|
-
...
|
|
566
|
-
|
|
567
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
401
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
568
402
|
"""
|
|
569
|
-
|
|
403
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
|
570
404
|
|
|
571
|
-
|
|
572
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
405
|
+
> Examples
|
|
573
406
|
|
|
574
|
-
|
|
407
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
|
408
|
+
```python
|
|
409
|
+
@huggingface_hub
|
|
410
|
+
@step
|
|
411
|
+
def pull_model_from_huggingface(self):
|
|
412
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
413
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
414
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
415
|
+
# value of the function is a reference to the model in the backend storage.
|
|
416
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
417
|
+
|
|
418
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
419
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
420
|
+
repo_id=self.model_id,
|
|
421
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
422
|
+
)
|
|
423
|
+
self.next(self.train)
|
|
575
424
|
```
|
|
576
|
-
|
|
425
|
+
|
|
426
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
|
427
|
+
```python
|
|
428
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
429
|
+
@step
|
|
430
|
+
def pull_model_from_huggingface(self):
|
|
431
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
577
432
|
```
|
|
578
|
-
|
|
433
|
+
|
|
434
|
+
```python
|
|
435
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
|
436
|
+
@step
|
|
437
|
+
def finetune_model(self):
|
|
438
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
439
|
+
# path_to_model will be /my-directory
|
|
579
440
|
```
|
|
580
|
-
|
|
441
|
+
|
|
442
|
+
```python
|
|
443
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
444
|
+
# except for `local_dir`
|
|
445
|
+
@huggingface_hub(load=[
|
|
446
|
+
{
|
|
447
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
448
|
+
},
|
|
449
|
+
{
|
|
450
|
+
"repo_id": "myorg/mistral-lora",
|
|
451
|
+
"repo_type": "model",
|
|
452
|
+
},
|
|
453
|
+
])
|
|
454
|
+
@step
|
|
455
|
+
def finetune_model(self):
|
|
456
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
457
|
+
# path_to_model will be /my-directory
|
|
581
458
|
```
|
|
582
|
-
which executes the flow on the desired system using the
|
|
583
|
-
requirements specified in `@resources`.
|
|
584
459
|
|
|
585
460
|
|
|
586
461
|
Parameters
|
|
587
462
|
----------
|
|
588
|
-
|
|
589
|
-
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
|
|
593
|
-
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
|
|
463
|
+
temp_dir_root : str, optional
|
|
464
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
465
|
+
|
|
466
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
467
|
+
The list of repos (models/datasets) to load.
|
|
468
|
+
|
|
469
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
470
|
+
|
|
471
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
472
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
473
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
474
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
475
|
+
|
|
476
|
+
- If repo is found in the datastore:
|
|
477
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
599
478
|
"""
|
|
600
479
|
...
|
|
601
480
|
|
|
@@ -658,20 +537,245 @@ def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
|
658
537
|
"""
|
|
659
538
|
...
|
|
660
539
|
|
|
661
|
-
|
|
662
|
-
|
|
663
|
-
|
|
664
|
-
|
|
540
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
541
|
+
"""
|
|
542
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
543
|
+
|
|
544
|
+
User code call
|
|
545
|
+
--------------
|
|
546
|
+
@ollama(
|
|
547
|
+
models=[...],
|
|
548
|
+
...
|
|
549
|
+
)
|
|
550
|
+
|
|
551
|
+
Valid backend options
|
|
552
|
+
---------------------
|
|
553
|
+
- 'local': Run as a separate process on the local task machine.
|
|
554
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
555
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
556
|
+
|
|
557
|
+
Valid model options
|
|
558
|
+
-------------------
|
|
559
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
560
|
+
|
|
561
|
+
|
|
562
|
+
Parameters
|
|
563
|
+
----------
|
|
564
|
+
models: list[str]
|
|
565
|
+
List of Ollama containers running models in sidecars.
|
|
566
|
+
backend: str
|
|
567
|
+
Determines where and how to run the Ollama process.
|
|
568
|
+
force_pull: bool
|
|
569
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
570
|
+
cache_update_policy: str
|
|
571
|
+
Cache update policy: "auto", "force", or "never".
|
|
572
|
+
force_cache_update: bool
|
|
573
|
+
Simple override for "force" cache update policy.
|
|
574
|
+
debug: bool
|
|
575
|
+
Whether to turn on verbose debugging logs.
|
|
576
|
+
circuit_breaker_config: dict
|
|
577
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
578
|
+
timeout_config: dict
|
|
579
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
580
|
+
"""
|
|
581
|
+
...
|
|
582
|
+
|
|
583
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
584
|
+
"""
|
|
585
|
+
Specifies that this step should execute on Kubernetes.
|
|
586
|
+
|
|
587
|
+
|
|
588
|
+
Parameters
|
|
589
|
+
----------
|
|
590
|
+
cpu : int, default 1
|
|
591
|
+
Number of CPUs required for this step. If `@resources` is
|
|
592
|
+
also present, the maximum value from all decorators is used.
|
|
593
|
+
memory : int, default 4096
|
|
594
|
+
Memory size (in MB) required for this step. If
|
|
595
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
596
|
+
used.
|
|
597
|
+
disk : int, default 10240
|
|
598
|
+
Disk size (in MB) required for this step. If
|
|
599
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
600
|
+
used.
|
|
601
|
+
image : str, optional, default None
|
|
602
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
603
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
604
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
605
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
606
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
607
|
+
image_pull_secrets: List[str], default []
|
|
608
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
609
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
610
|
+
in Kubernetes.
|
|
611
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
612
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
613
|
+
secrets : List[str], optional, default None
|
|
614
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
615
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
616
|
+
in Metaflow configuration.
|
|
617
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
618
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
619
|
+
Can be passed in as a comma separated string of values e.g.
|
|
620
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
621
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
622
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
623
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
624
|
+
gpu : int, optional, default None
|
|
625
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
626
|
+
the scheduled node should not have GPUs.
|
|
627
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
628
|
+
The vendor of the GPUs to be used for this step.
|
|
629
|
+
tolerations : List[Dict[str,str]], default []
|
|
630
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
631
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
632
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
633
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
634
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
635
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
636
|
+
use_tmpfs : bool, default False
|
|
637
|
+
This enables an explicit tmpfs mount for this step.
|
|
638
|
+
tmpfs_tempdir : bool, default True
|
|
639
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
640
|
+
tmpfs_size : int, optional, default: None
|
|
641
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
642
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
643
|
+
memory allocated for this step.
|
|
644
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
645
|
+
Path to tmpfs mount for this step.
|
|
646
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
647
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
648
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
649
|
+
shared_memory: int, optional
|
|
650
|
+
Shared memory size (in MiB) required for this step
|
|
651
|
+
port: int, optional
|
|
652
|
+
Port number to specify in the Kubernetes job object
|
|
653
|
+
compute_pool : str, optional, default None
|
|
654
|
+
Compute pool to be used for for this step.
|
|
655
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
656
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
657
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
658
|
+
Only applicable when @parallel is used.
|
|
659
|
+
qos: str, default: Burstable
|
|
660
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
661
|
+
|
|
662
|
+
security_context: Dict[str, Any], optional, default None
|
|
663
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
664
|
+
- privileged: bool, optional, default None
|
|
665
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
666
|
+
- run_as_user: int, optional, default None
|
|
667
|
+
- run_as_group: int, optional, default None
|
|
668
|
+
- run_as_non_root: bool, optional, default None
|
|
665
669
|
"""
|
|
666
670
|
...
|
|
667
671
|
|
|
668
672
|
@typing.overload
|
|
669
|
-
def
|
|
673
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
674
|
+
"""
|
|
675
|
+
Specifies the PyPI packages for the step.
|
|
676
|
+
|
|
677
|
+
Information in this decorator will augment any
|
|
678
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
679
|
+
you can use `@pypi_base` to set packages required by all
|
|
680
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
681
|
+
|
|
682
|
+
|
|
683
|
+
Parameters
|
|
684
|
+
----------
|
|
685
|
+
packages : Dict[str, str], default: {}
|
|
686
|
+
Packages to use for this step. The key is the name of the package
|
|
687
|
+
and the value is the version to use.
|
|
688
|
+
python : str, optional, default: None
|
|
689
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
690
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
691
|
+
"""
|
|
670
692
|
...
|
|
671
693
|
|
|
672
|
-
|
|
694
|
+
@typing.overload
|
|
695
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
696
|
+
...
|
|
697
|
+
|
|
698
|
+
@typing.overload
|
|
699
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
700
|
+
...
|
|
701
|
+
|
|
702
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
673
703
|
"""
|
|
674
|
-
|
|
704
|
+
Specifies the PyPI packages for the step.
|
|
705
|
+
|
|
706
|
+
Information in this decorator will augment any
|
|
707
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
708
|
+
you can use `@pypi_base` to set packages required by all
|
|
709
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
710
|
+
|
|
711
|
+
|
|
712
|
+
Parameters
|
|
713
|
+
----------
|
|
714
|
+
packages : Dict[str, str], default: {}
|
|
715
|
+
Packages to use for this step. The key is the name of the package
|
|
716
|
+
and the value is the version to use.
|
|
717
|
+
python : str, optional, default: None
|
|
718
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
719
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
720
|
+
"""
|
|
721
|
+
...
|
|
722
|
+
|
|
723
|
+
@typing.overload
|
|
724
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
725
|
+
"""
|
|
726
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
727
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
728
|
+
"""
|
|
729
|
+
...
|
|
730
|
+
|
|
731
|
+
@typing.overload
|
|
732
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
733
|
+
...
|
|
734
|
+
|
|
735
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
736
|
+
"""
|
|
737
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
738
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
739
|
+
"""
|
|
740
|
+
...
|
|
741
|
+
|
|
742
|
+
@typing.overload
|
|
743
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
744
|
+
"""
|
|
745
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
746
|
+
to inject a card and render simple markdown content.
|
|
747
|
+
"""
|
|
748
|
+
...
|
|
749
|
+
|
|
750
|
+
@typing.overload
|
|
751
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
752
|
+
...
|
|
753
|
+
|
|
754
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
755
|
+
"""
|
|
756
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
757
|
+
to inject a card and render simple markdown content.
|
|
758
|
+
"""
|
|
759
|
+
...
|
|
760
|
+
|
|
761
|
+
@typing.overload
|
|
762
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
763
|
+
"""
|
|
764
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
765
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
766
|
+
a Neo Cloud like Nebius.
|
|
767
|
+
"""
|
|
768
|
+
...
|
|
769
|
+
|
|
770
|
+
@typing.overload
|
|
771
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
772
|
+
...
|
|
773
|
+
|
|
774
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
775
|
+
"""
|
|
776
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
777
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
778
|
+
a Neo Cloud like Nebius.
|
|
675
779
|
"""
|
|
676
780
|
...
|
|
677
781
|
|
|
@@ -730,83 +834,22 @@ def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
730
834
|
"""
|
|
731
835
|
...
|
|
732
836
|
|
|
733
|
-
|
|
837
|
+
@typing.overload
|
|
838
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
734
839
|
"""
|
|
735
|
-
Decorator
|
|
736
|
-
|
|
737
|
-
|
|
738
|
-
|
|
739
|
-
|
|
740
|
-
|
|
741
|
-
|
|
742
|
-
|
|
743
|
-
|
|
744
|
-
|
|
745
|
-
|
|
746
|
-
|
|
747
|
-
|
|
748
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
749
|
-
|
|
750
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
751
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
752
|
-
repo_id=self.model_id,
|
|
753
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
754
|
-
)
|
|
755
|
-
self.next(self.train)
|
|
756
|
-
```
|
|
757
|
-
|
|
758
|
-
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
|
759
|
-
```python
|
|
760
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
761
|
-
@step
|
|
762
|
-
def pull_model_from_huggingface(self):
|
|
763
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
764
|
-
```
|
|
765
|
-
|
|
766
|
-
```python
|
|
767
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
|
768
|
-
@step
|
|
769
|
-
def finetune_model(self):
|
|
770
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
771
|
-
# path_to_model will be /my-directory
|
|
772
|
-
```
|
|
773
|
-
|
|
774
|
-
```python
|
|
775
|
-
# Takes all the arguments passed to `snapshot_download`
|
|
776
|
-
# except for `local_dir`
|
|
777
|
-
@huggingface_hub(load=[
|
|
778
|
-
{
|
|
779
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
780
|
-
},
|
|
781
|
-
{
|
|
782
|
-
"repo_id": "myorg/mistral-lora",
|
|
783
|
-
"repo_type": "model",
|
|
784
|
-
},
|
|
785
|
-
])
|
|
786
|
-
@step
|
|
787
|
-
def finetune_model(self):
|
|
788
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
789
|
-
# path_to_model will be /my-directory
|
|
790
|
-
```
|
|
791
|
-
|
|
792
|
-
|
|
793
|
-
Parameters
|
|
794
|
-
----------
|
|
795
|
-
temp_dir_root : str, optional
|
|
796
|
-
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
797
|
-
|
|
798
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
799
|
-
The list of repos (models/datasets) to load.
|
|
800
|
-
|
|
801
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
802
|
-
|
|
803
|
-
- If repo (model/dataset) is not found in the datastore:
|
|
804
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
805
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
806
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
807
|
-
|
|
808
|
-
- If repo is found in the datastore:
|
|
809
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
840
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
841
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
842
|
+
"""
|
|
843
|
+
...
|
|
844
|
+
|
|
845
|
+
@typing.overload
|
|
846
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
847
|
+
...
|
|
848
|
+
|
|
849
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
850
|
+
"""
|
|
851
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
852
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
810
853
|
"""
|
|
811
854
|
...
|
|
812
855
|
|
|
@@ -870,315 +913,93 @@ def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
870
913
|
...
|
|
871
914
|
|
|
872
915
|
@typing.overload
|
|
873
|
-
def
|
|
874
|
-
"""
|
|
875
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
876
|
-
|
|
877
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
878
|
-
|
|
879
|
-
|
|
880
|
-
Parameters
|
|
881
|
-
----------
|
|
882
|
-
type : str, default 'default'
|
|
883
|
-
Card type.
|
|
884
|
-
id : str, optional, default None
|
|
885
|
-
If multiple cards are present, use this id to identify this card.
|
|
886
|
-
options : Dict[str, Any], default {}
|
|
887
|
-
Options passed to the card. The contents depend on the card type.
|
|
888
|
-
timeout : int, default 45
|
|
889
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
890
|
-
"""
|
|
891
|
-
...
|
|
892
|
-
|
|
893
|
-
@typing.overload
|
|
894
|
-
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
895
|
-
...
|
|
896
|
-
|
|
897
|
-
@typing.overload
|
|
898
|
-
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
899
|
-
...
|
|
900
|
-
|
|
901
|
-
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
916
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
902
917
|
"""
|
|
903
|
-
|
|
904
|
-
|
|
905
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
918
|
+
Enables checkpointing for a step.
|
|
906
919
|
|
|
920
|
+
> Examples
|
|
907
921
|
|
|
908
|
-
|
|
909
|
-
----------
|
|
910
|
-
type : str, default 'default'
|
|
911
|
-
Card type.
|
|
912
|
-
id : str, optional, default None
|
|
913
|
-
If multiple cards are present, use this id to identify this card.
|
|
914
|
-
options : Dict[str, Any], default {}
|
|
915
|
-
Options passed to the card. The contents depend on the card type.
|
|
916
|
-
timeout : int, default 45
|
|
917
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
918
|
-
"""
|
|
919
|
-
...
|
|
920
|
-
|
|
921
|
-
@typing.overload
|
|
922
|
-
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
923
|
-
"""
|
|
924
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
925
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
926
|
-
a Neo Cloud like CoreWeave.
|
|
927
|
-
"""
|
|
928
|
-
...
|
|
929
|
-
|
|
930
|
-
@typing.overload
|
|
931
|
-
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
932
|
-
...
|
|
933
|
-
|
|
934
|
-
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
935
|
-
"""
|
|
936
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
937
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
938
|
-
a Neo Cloud like CoreWeave.
|
|
939
|
-
"""
|
|
940
|
-
...
|
|
941
|
-
|
|
942
|
-
@typing.overload
|
|
943
|
-
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
944
|
-
"""
|
|
945
|
-
Enables loading / saving of models within a step.
|
|
922
|
+
- Saving Checkpoints
|
|
946
923
|
|
|
947
|
-
> Examples
|
|
948
|
-
- Saving Models
|
|
949
924
|
```python
|
|
950
|
-
@
|
|
925
|
+
@checkpoint
|
|
951
926
|
@step
|
|
952
927
|
def train(self):
|
|
953
|
-
|
|
954
|
-
|
|
955
|
-
|
|
956
|
-
|
|
957
|
-
|
|
958
|
-
|
|
959
|
-
|
|
960
|
-
|
|
961
|
-
|
|
962
|
-
|
|
963
|
-
|
|
964
|
-
|
|
965
|
-
|
|
966
|
-
|
|
967
|
-
|
|
968
|
-
|
|
969
|
-
|
|
970
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
971
|
-
self.next(self.end)
|
|
928
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
929
|
+
for i in range(self.epochs):
|
|
930
|
+
# some training logic
|
|
931
|
+
loss = model.train(self.dataset)
|
|
932
|
+
if i % 10 == 0:
|
|
933
|
+
model.save(
|
|
934
|
+
current.checkpoint.directory,
|
|
935
|
+
)
|
|
936
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
937
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
938
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
939
|
+
name="epoch_checkpoint",
|
|
940
|
+
metadata={
|
|
941
|
+
"epoch": i,
|
|
942
|
+
"loss": loss,
|
|
943
|
+
}
|
|
944
|
+
)
|
|
972
945
|
```
|
|
973
946
|
|
|
974
|
-
-
|
|
947
|
+
- Using Loaded Checkpoints
|
|
948
|
+
|
|
975
949
|
```python
|
|
950
|
+
@retry(times=3)
|
|
951
|
+
@checkpoint
|
|
976
952
|
@step
|
|
977
953
|
def train(self):
|
|
978
|
-
#
|
|
979
|
-
|
|
980
|
-
|
|
981
|
-
|
|
982
|
-
|
|
983
|
-
|
|
984
|
-
|
|
985
|
-
|
|
954
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
955
|
+
# saved a checkpoint
|
|
956
|
+
checkpoint_path = None
|
|
957
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
958
|
+
print("Loaded checkpoint from the previous attempt")
|
|
959
|
+
checkpoint_path = current.checkpoint.directory
|
|
960
|
+
|
|
961
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
962
|
+
for i in range(self.epochs):
|
|
963
|
+
...
|
|
986
964
|
```
|
|
987
965
|
|
|
988
966
|
|
|
989
967
|
Parameters
|
|
990
968
|
----------
|
|
991
|
-
|
|
992
|
-
|
|
993
|
-
|
|
994
|
-
|
|
995
|
-
|
|
996
|
-
|
|
969
|
+
load_policy : str, default: "fresh"
|
|
970
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
971
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
972
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
973
|
+
will be loaded at the start of the task.
|
|
974
|
+
- "none": Do not load any checkpoint
|
|
975
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
976
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
977
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
978
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
997
979
|
|
|
998
980
|
temp_dir_root : str, default: None
|
|
999
|
-
The root directory under which `current.
|
|
981
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1000
982
|
"""
|
|
1001
983
|
...
|
|
1002
984
|
|
|
1003
985
|
@typing.overload
|
|
1004
|
-
def
|
|
986
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1005
987
|
...
|
|
1006
988
|
|
|
1007
989
|
@typing.overload
|
|
1008
|
-
def
|
|
990
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1009
991
|
...
|
|
1010
992
|
|
|
1011
|
-
def
|
|
993
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
1012
994
|
"""
|
|
1013
|
-
Enables
|
|
995
|
+
Enables checkpointing for a step.
|
|
1014
996
|
|
|
1015
997
|
> Examples
|
|
1016
|
-
|
|
998
|
+
|
|
999
|
+
- Saving Checkpoints
|
|
1000
|
+
|
|
1017
1001
|
```python
|
|
1018
|
-
@
|
|
1019
|
-
@step
|
|
1020
|
-
def train(self):
|
|
1021
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
1022
|
-
self.my_model = current.model.save(
|
|
1023
|
-
path_to_my_model,
|
|
1024
|
-
label="my_model",
|
|
1025
|
-
metadata={
|
|
1026
|
-
"epochs": 10,
|
|
1027
|
-
"batch-size": 32,
|
|
1028
|
-
"learning-rate": 0.001,
|
|
1029
|
-
}
|
|
1030
|
-
)
|
|
1031
|
-
self.next(self.test)
|
|
1032
|
-
|
|
1033
|
-
@model(load="my_model")
|
|
1034
|
-
@step
|
|
1035
|
-
def test(self):
|
|
1036
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
1037
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
1038
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
1039
|
-
self.next(self.end)
|
|
1040
|
-
```
|
|
1041
|
-
|
|
1042
|
-
- Loading models
|
|
1043
|
-
```python
|
|
1044
|
-
@step
|
|
1045
|
-
def train(self):
|
|
1046
|
-
# current.model.load returns the path to the model loaded
|
|
1047
|
-
checkpoint_path = current.model.load(
|
|
1048
|
-
self.checkpoint_key,
|
|
1049
|
-
)
|
|
1050
|
-
model_path = current.model.load(
|
|
1051
|
-
self.model,
|
|
1052
|
-
)
|
|
1053
|
-
self.next(self.test)
|
|
1054
|
-
```
|
|
1055
|
-
|
|
1056
|
-
|
|
1057
|
-
Parameters
|
|
1058
|
-
----------
|
|
1059
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
1060
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
1061
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
1062
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
1063
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
1064
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
1065
|
-
|
|
1066
|
-
temp_dir_root : str, default: None
|
|
1067
|
-
The root directory under which `current.model.loaded` will store loaded models
|
|
1068
|
-
"""
|
|
1069
|
-
...
|
|
1070
|
-
|
|
1071
|
-
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1072
|
-
"""
|
|
1073
|
-
Specifies that this step should execute on DGX cloud.
|
|
1074
|
-
|
|
1075
|
-
|
|
1076
|
-
Parameters
|
|
1077
|
-
----------
|
|
1078
|
-
gpu : int
|
|
1079
|
-
Number of GPUs to use.
|
|
1080
|
-
gpu_type : str
|
|
1081
|
-
Type of Nvidia GPU to use.
|
|
1082
|
-
"""
|
|
1083
|
-
...
|
|
1084
|
-
|
|
1085
|
-
@typing.overload
|
|
1086
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1087
|
-
"""
|
|
1088
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1089
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1090
|
-
a Neo Cloud like Nebius.
|
|
1091
|
-
"""
|
|
1092
|
-
...
|
|
1093
|
-
|
|
1094
|
-
@typing.overload
|
|
1095
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1096
|
-
...
|
|
1097
|
-
|
|
1098
|
-
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1099
|
-
"""
|
|
1100
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1101
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1102
|
-
a Neo Cloud like Nebius.
|
|
1103
|
-
"""
|
|
1104
|
-
...
|
|
1105
|
-
|
|
1106
|
-
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1107
|
-
"""
|
|
1108
|
-
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1109
|
-
|
|
1110
|
-
|
|
1111
|
-
Parameters
|
|
1112
|
-
----------
|
|
1113
|
-
integration_name : str, optional
|
|
1114
|
-
Name of the S3 proxy integration. If not specified, will use the only
|
|
1115
|
-
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
1116
|
-
write_mode : str, optional
|
|
1117
|
-
The desired behavior during write operations to target (origin) S3 bucket.
|
|
1118
|
-
allowed options are:
|
|
1119
|
-
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
1120
|
-
storage
|
|
1121
|
-
"origin" -> only write to the target S3 bucket
|
|
1122
|
-
"cache" -> only write to the object storage service used for caching
|
|
1123
|
-
debug : bool, optional
|
|
1124
|
-
Enable debug logging for proxy operations.
|
|
1125
|
-
"""
|
|
1126
|
-
...
|
|
1127
|
-
|
|
1128
|
-
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1129
|
-
"""
|
|
1130
|
-
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
1131
|
-
|
|
1132
|
-
User code call
|
|
1133
|
-
--------------
|
|
1134
|
-
@ollama(
|
|
1135
|
-
models=[...],
|
|
1136
|
-
...
|
|
1137
|
-
)
|
|
1138
|
-
|
|
1139
|
-
Valid backend options
|
|
1140
|
-
---------------------
|
|
1141
|
-
- 'local': Run as a separate process on the local task machine.
|
|
1142
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
1143
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
1144
|
-
|
|
1145
|
-
Valid model options
|
|
1146
|
-
-------------------
|
|
1147
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
1148
|
-
|
|
1149
|
-
|
|
1150
|
-
Parameters
|
|
1151
|
-
----------
|
|
1152
|
-
models: list[str]
|
|
1153
|
-
List of Ollama containers running models in sidecars.
|
|
1154
|
-
backend: str
|
|
1155
|
-
Determines where and how to run the Ollama process.
|
|
1156
|
-
force_pull: bool
|
|
1157
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
1158
|
-
cache_update_policy: str
|
|
1159
|
-
Cache update policy: "auto", "force", or "never".
|
|
1160
|
-
force_cache_update: bool
|
|
1161
|
-
Simple override for "force" cache update policy.
|
|
1162
|
-
debug: bool
|
|
1163
|
-
Whether to turn on verbose debugging logs.
|
|
1164
|
-
circuit_breaker_config: dict
|
|
1165
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
1166
|
-
timeout_config: dict
|
|
1167
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
1168
|
-
"""
|
|
1169
|
-
...
|
|
1170
|
-
|
|
1171
|
-
@typing.overload
|
|
1172
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1173
|
-
"""
|
|
1174
|
-
Enables checkpointing for a step.
|
|
1175
|
-
|
|
1176
|
-
> Examples
|
|
1177
|
-
|
|
1178
|
-
- Saving Checkpoints
|
|
1179
|
-
|
|
1180
|
-
```python
|
|
1181
|
-
@checkpoint
|
|
1002
|
+
@checkpoint
|
|
1182
1003
|
@step
|
|
1183
1004
|
def train(self):
|
|
1184
1005
|
model = create_model(self.parameters, checkpoint_path = None)
|
|
@@ -1238,437 +1059,436 @@ def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typi
|
|
|
1238
1059
|
"""
|
|
1239
1060
|
...
|
|
1240
1061
|
|
|
1241
|
-
|
|
1242
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1243
|
-
...
|
|
1244
|
-
|
|
1245
|
-
@typing.overload
|
|
1246
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1247
|
-
...
|
|
1248
|
-
|
|
1249
|
-
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
1062
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1250
1063
|
"""
|
|
1251
|
-
|
|
1252
|
-
|
|
1253
|
-
> Examples
|
|
1254
|
-
|
|
1255
|
-
- Saving Checkpoints
|
|
1256
|
-
|
|
1257
|
-
```python
|
|
1258
|
-
@checkpoint
|
|
1259
|
-
@step
|
|
1260
|
-
def train(self):
|
|
1261
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
1262
|
-
for i in range(self.epochs):
|
|
1263
|
-
# some training logic
|
|
1264
|
-
loss = model.train(self.dataset)
|
|
1265
|
-
if i % 10 == 0:
|
|
1266
|
-
model.save(
|
|
1267
|
-
current.checkpoint.directory,
|
|
1268
|
-
)
|
|
1269
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1270
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1271
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
1272
|
-
name="epoch_checkpoint",
|
|
1273
|
-
metadata={
|
|
1274
|
-
"epoch": i,
|
|
1275
|
-
"loss": loss,
|
|
1276
|
-
}
|
|
1277
|
-
)
|
|
1278
|
-
```
|
|
1279
|
-
|
|
1280
|
-
- Using Loaded Checkpoints
|
|
1281
|
-
|
|
1282
|
-
```python
|
|
1283
|
-
@retry(times=3)
|
|
1284
|
-
@checkpoint
|
|
1285
|
-
@step
|
|
1286
|
-
def train(self):
|
|
1287
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
1288
|
-
# saved a checkpoint
|
|
1289
|
-
checkpoint_path = None
|
|
1290
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1291
|
-
print("Loaded checkpoint from the previous attempt")
|
|
1292
|
-
checkpoint_path = current.checkpoint.directory
|
|
1293
|
-
|
|
1294
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1295
|
-
for i in range(self.epochs):
|
|
1296
|
-
...
|
|
1297
|
-
```
|
|
1064
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1298
1065
|
|
|
1299
1066
|
|
|
1300
1067
|
Parameters
|
|
1301
1068
|
----------
|
|
1302
|
-
|
|
1303
|
-
|
|
1304
|
-
|
|
1305
|
-
|
|
1306
|
-
|
|
1307
|
-
|
|
1308
|
-
-
|
|
1309
|
-
|
|
1310
|
-
|
|
1311
|
-
|
|
1312
|
-
|
|
1313
|
-
|
|
1314
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
1069
|
+
integration_name : str, optional
|
|
1070
|
+
Name of the S3 proxy integration. If not specified, will use the only
|
|
1071
|
+
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
1072
|
+
write_mode : str, optional
|
|
1073
|
+
The desired behavior during write operations to target (origin) S3 bucket.
|
|
1074
|
+
allowed options are:
|
|
1075
|
+
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
1076
|
+
storage
|
|
1077
|
+
"origin" -> only write to the target S3 bucket
|
|
1078
|
+
"cache" -> only write to the object storage service used for caching
|
|
1079
|
+
debug : bool, optional
|
|
1080
|
+
Enable debug logging for proxy operations.
|
|
1315
1081
|
"""
|
|
1316
1082
|
...
|
|
1317
1083
|
|
|
1318
1084
|
@typing.overload
|
|
1319
|
-
def
|
|
1085
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1320
1086
|
"""
|
|
1321
|
-
Specifies
|
|
1087
|
+
Specifies that the step will success under all circumstances.
|
|
1088
|
+
|
|
1089
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
1090
|
+
contains the exception raised. You can use it to detect the presence
|
|
1091
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
1092
|
+
are missing.
|
|
1322
1093
|
|
|
1323
1094
|
|
|
1324
1095
|
Parameters
|
|
1325
1096
|
----------
|
|
1326
|
-
|
|
1327
|
-
|
|
1097
|
+
var : str, optional, default None
|
|
1098
|
+
Name of the artifact in which to store the caught exception.
|
|
1099
|
+
If not specified, the exception is not stored.
|
|
1100
|
+
print_exception : bool, default True
|
|
1101
|
+
Determines whether or not the exception is printed to
|
|
1102
|
+
stdout when caught.
|
|
1328
1103
|
"""
|
|
1329
1104
|
...
|
|
1330
1105
|
|
|
1331
1106
|
@typing.overload
|
|
1332
|
-
def
|
|
1107
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1333
1108
|
...
|
|
1334
1109
|
|
|
1335
1110
|
@typing.overload
|
|
1336
|
-
def
|
|
1111
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1337
1112
|
...
|
|
1338
1113
|
|
|
1339
|
-
def
|
|
1114
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
1340
1115
|
"""
|
|
1341
|
-
Specifies
|
|
1342
|
-
|
|
1116
|
+
Specifies that the step will success under all circumstances.
|
|
1343
1117
|
|
|
1344
|
-
|
|
1345
|
-
|
|
1346
|
-
|
|
1347
|
-
|
|
1348
|
-
"""
|
|
1349
|
-
...
|
|
1350
|
-
|
|
1351
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1352
|
-
"""
|
|
1353
|
-
Specifies what flows belong to the same project.
|
|
1354
|
-
|
|
1355
|
-
A project-specific namespace is created for all flows that
|
|
1356
|
-
use the same `@project(name)`.
|
|
1118
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
1119
|
+
contains the exception raised. You can use it to detect the presence
|
|
1120
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
1121
|
+
are missing.
|
|
1357
1122
|
|
|
1358
1123
|
|
|
1359
1124
|
Parameters
|
|
1360
1125
|
----------
|
|
1361
|
-
|
|
1362
|
-
|
|
1363
|
-
|
|
1364
|
-
|
|
1365
|
-
|
|
1366
|
-
|
|
1367
|
-
The branch to use. If not specified, the branch is set to
|
|
1368
|
-
`user.<username>` unless `production` is set to `True`. This can
|
|
1369
|
-
also be set on the command line using `--branch` as a top-level option.
|
|
1370
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
|
1371
|
-
|
|
1372
|
-
production : bool, default False
|
|
1373
|
-
Whether or not the branch is the production branch. This can also be set on the
|
|
1374
|
-
command line using `--production` as a top-level option. It is an error to specify
|
|
1375
|
-
`production` in the decorator and on the command line.
|
|
1376
|
-
The project branch name will be:
|
|
1377
|
-
- if `branch` is specified:
|
|
1378
|
-
- if `production` is True: `prod.<branch>`
|
|
1379
|
-
- if `production` is False: `test.<branch>`
|
|
1380
|
-
- if `branch` is not specified:
|
|
1381
|
-
- if `production` is True: `prod`
|
|
1382
|
-
- if `production` is False: `user.<username>`
|
|
1126
|
+
var : str, optional, default None
|
|
1127
|
+
Name of the artifact in which to store the caught exception.
|
|
1128
|
+
If not specified, the exception is not stored.
|
|
1129
|
+
print_exception : bool, default True
|
|
1130
|
+
Determines whether or not the exception is printed to
|
|
1131
|
+
stdout when caught.
|
|
1383
1132
|
"""
|
|
1384
1133
|
...
|
|
1385
1134
|
|
|
1386
1135
|
@typing.overload
|
|
1387
|
-
def
|
|
1136
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1388
1137
|
"""
|
|
1389
|
-
|
|
1138
|
+
Internal decorator to support Fast bakery
|
|
1139
|
+
"""
|
|
1140
|
+
...
|
|
1141
|
+
|
|
1142
|
+
@typing.overload
|
|
1143
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1144
|
+
...
|
|
1145
|
+
|
|
1146
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1147
|
+
"""
|
|
1148
|
+
Internal decorator to support Fast bakery
|
|
1149
|
+
"""
|
|
1150
|
+
...
|
|
1151
|
+
|
|
1152
|
+
@typing.overload
|
|
1153
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1154
|
+
"""
|
|
1155
|
+
Specifies the resources needed when executing this step.
|
|
1390
1156
|
|
|
1391
|
-
Use `@
|
|
1392
|
-
|
|
1157
|
+
Use `@resources` to specify the resource requirements
|
|
1158
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1159
|
+
|
|
1160
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1161
|
+
```
|
|
1162
|
+
python myflow.py run --with batch
|
|
1163
|
+
```
|
|
1164
|
+
or
|
|
1165
|
+
```
|
|
1166
|
+
python myflow.py run --with kubernetes
|
|
1167
|
+
```
|
|
1168
|
+
which executes the flow on the desired system using the
|
|
1169
|
+
requirements specified in `@resources`.
|
|
1393
1170
|
|
|
1394
1171
|
|
|
1395
1172
|
Parameters
|
|
1396
1173
|
----------
|
|
1397
|
-
|
|
1398
|
-
|
|
1399
|
-
|
|
1400
|
-
|
|
1401
|
-
|
|
1402
|
-
|
|
1403
|
-
|
|
1404
|
-
|
|
1405
|
-
|
|
1406
|
-
|
|
1174
|
+
cpu : int, default 1
|
|
1175
|
+
Number of CPUs required for this step.
|
|
1176
|
+
gpu : int, optional, default None
|
|
1177
|
+
Number of GPUs required for this step.
|
|
1178
|
+
disk : int, optional, default None
|
|
1179
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1180
|
+
memory : int, default 4096
|
|
1181
|
+
Memory size (in MB) required for this step.
|
|
1182
|
+
shared_memory : int, optional, default None
|
|
1183
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1184
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1407
1185
|
"""
|
|
1408
1186
|
...
|
|
1409
1187
|
|
|
1410
1188
|
@typing.overload
|
|
1411
|
-
def
|
|
1189
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1412
1190
|
...
|
|
1413
1191
|
|
|
1414
|
-
|
|
1192
|
+
@typing.overload
|
|
1193
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1194
|
+
...
|
|
1195
|
+
|
|
1196
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
1415
1197
|
"""
|
|
1416
|
-
Specifies the
|
|
1198
|
+
Specifies the resources needed when executing this step.
|
|
1417
1199
|
|
|
1418
|
-
Use `@
|
|
1419
|
-
|
|
1200
|
+
Use `@resources` to specify the resource requirements
|
|
1201
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1202
|
+
|
|
1203
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1204
|
+
```
|
|
1205
|
+
python myflow.py run --with batch
|
|
1206
|
+
```
|
|
1207
|
+
or
|
|
1208
|
+
```
|
|
1209
|
+
python myflow.py run --with kubernetes
|
|
1210
|
+
```
|
|
1211
|
+
which executes the flow on the desired system using the
|
|
1212
|
+
requirements specified in `@resources`.
|
|
1420
1213
|
|
|
1421
1214
|
|
|
1422
1215
|
Parameters
|
|
1423
1216
|
----------
|
|
1424
|
-
|
|
1425
|
-
|
|
1426
|
-
|
|
1427
|
-
|
|
1428
|
-
|
|
1429
|
-
|
|
1430
|
-
|
|
1431
|
-
|
|
1432
|
-
|
|
1433
|
-
|
|
1217
|
+
cpu : int, default 1
|
|
1218
|
+
Number of CPUs required for this step.
|
|
1219
|
+
gpu : int, optional, default None
|
|
1220
|
+
Number of GPUs required for this step.
|
|
1221
|
+
disk : int, optional, default None
|
|
1222
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1223
|
+
memory : int, default 4096
|
|
1224
|
+
Memory size (in MB) required for this step.
|
|
1225
|
+
shared_memory : int, optional, default None
|
|
1226
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1227
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1434
1228
|
"""
|
|
1435
1229
|
...
|
|
1436
1230
|
|
|
1437
|
-
|
|
1231
|
+
@typing.overload
|
|
1232
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1438
1233
|
"""
|
|
1439
|
-
|
|
1440
|
-
|
|
1234
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1235
|
+
|
|
1236
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1441
1237
|
|
|
1442
1238
|
|
|
1443
1239
|
Parameters
|
|
1444
1240
|
----------
|
|
1445
|
-
|
|
1446
|
-
|
|
1447
|
-
|
|
1448
|
-
|
|
1449
|
-
|
|
1450
|
-
|
|
1451
|
-
|
|
1452
|
-
|
|
1453
|
-
pool : str
|
|
1454
|
-
the slot pool this task should run in,
|
|
1455
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1456
|
-
soft_fail : bool
|
|
1457
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1458
|
-
name : str
|
|
1459
|
-
Name of the sensor on Airflow
|
|
1460
|
-
description : str
|
|
1461
|
-
Description of sensor in the Airflow UI
|
|
1462
|
-
external_dag_id : str
|
|
1463
|
-
The dag_id that contains the task you want to wait for.
|
|
1464
|
-
external_task_ids : List[str]
|
|
1465
|
-
The list of task_ids that you want to wait for.
|
|
1466
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1467
|
-
allowed_states : List[str]
|
|
1468
|
-
Iterable of allowed states, (Default: ['success'])
|
|
1469
|
-
failed_states : List[str]
|
|
1470
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
|
1471
|
-
execution_delta : datetime.timedelta
|
|
1472
|
-
time difference with the previous execution to look at,
|
|
1473
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1474
|
-
check_existence: bool
|
|
1475
|
-
Set to True to check if the external task exists or check if
|
|
1476
|
-
the DAG to wait for exists. (Default: True)
|
|
1241
|
+
type : str, default 'default'
|
|
1242
|
+
Card type.
|
|
1243
|
+
id : str, optional, default None
|
|
1244
|
+
If multiple cards are present, use this id to identify this card.
|
|
1245
|
+
options : Dict[str, Any], default {}
|
|
1246
|
+
Options passed to the card. The contents depend on the card type.
|
|
1247
|
+
timeout : int, default 45
|
|
1248
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1477
1249
|
"""
|
|
1478
1250
|
...
|
|
1479
1251
|
|
|
1480
|
-
|
|
1252
|
+
@typing.overload
|
|
1253
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1254
|
+
...
|
|
1255
|
+
|
|
1256
|
+
@typing.overload
|
|
1257
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1258
|
+
...
|
|
1259
|
+
|
|
1260
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
1481
1261
|
"""
|
|
1482
|
-
|
|
1483
|
-
|
|
1484
|
-
|
|
1485
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1486
|
-
starts only after all sensors finish.
|
|
1262
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1263
|
+
|
|
1264
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1487
1265
|
|
|
1488
1266
|
|
|
1489
1267
|
Parameters
|
|
1490
1268
|
----------
|
|
1491
|
-
|
|
1492
|
-
|
|
1493
|
-
|
|
1494
|
-
|
|
1495
|
-
|
|
1496
|
-
|
|
1497
|
-
|
|
1498
|
-
|
|
1499
|
-
|
|
1500
|
-
|
|
1501
|
-
|
|
1502
|
-
|
|
1503
|
-
|
|
1504
|
-
|
|
1505
|
-
|
|
1506
|
-
|
|
1507
|
-
|
|
1508
|
-
|
|
1509
|
-
|
|
1510
|
-
|
|
1511
|
-
|
|
1512
|
-
|
|
1513
|
-
|
|
1514
|
-
|
|
1515
|
-
|
|
1516
|
-
|
|
1517
|
-
|
|
1518
|
-
|
|
1519
|
-
|
|
1269
|
+
type : str, default 'default'
|
|
1270
|
+
Card type.
|
|
1271
|
+
id : str, optional, default None
|
|
1272
|
+
If multiple cards are present, use this id to identify this card.
|
|
1273
|
+
options : Dict[str, Any], default {}
|
|
1274
|
+
Options passed to the card. The contents depend on the card type.
|
|
1275
|
+
timeout : int, default 45
|
|
1276
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1277
|
+
"""
|
|
1278
|
+
...
|
|
1279
|
+
|
|
1280
|
+
@typing.overload
|
|
1281
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1282
|
+
"""
|
|
1283
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1284
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1285
|
+
a Neo Cloud like CoreWeave.
|
|
1286
|
+
"""
|
|
1287
|
+
...
|
|
1288
|
+
|
|
1289
|
+
@typing.overload
|
|
1290
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1291
|
+
...
|
|
1292
|
+
|
|
1293
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1294
|
+
"""
|
|
1295
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1296
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1297
|
+
a Neo Cloud like CoreWeave.
|
|
1298
|
+
"""
|
|
1299
|
+
...
|
|
1300
|
+
|
|
1301
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1302
|
+
"""
|
|
1303
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
1304
|
+
|
|
1305
|
+
User code call
|
|
1306
|
+
--------------
|
|
1307
|
+
@vllm(
|
|
1308
|
+
model="...",
|
|
1309
|
+
...
|
|
1310
|
+
)
|
|
1311
|
+
|
|
1312
|
+
Valid backend options
|
|
1313
|
+
---------------------
|
|
1314
|
+
- 'local': Run as a separate process on the local task machine.
|
|
1315
|
+
|
|
1316
|
+
Valid model options
|
|
1317
|
+
-------------------
|
|
1318
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
1319
|
+
|
|
1320
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
1321
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
1322
|
+
|
|
1323
|
+
|
|
1324
|
+
Parameters
|
|
1325
|
+
----------
|
|
1326
|
+
model: str
|
|
1327
|
+
HuggingFace model identifier to be served by vLLM.
|
|
1328
|
+
backend: str
|
|
1329
|
+
Determines where and how to run the vLLM process.
|
|
1330
|
+
openai_api_server: bool
|
|
1331
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
1332
|
+
Default is False (uses native engine).
|
|
1333
|
+
Set to True for backward compatibility with existing code.
|
|
1334
|
+
debug: bool
|
|
1335
|
+
Whether to turn on verbose debugging logs.
|
|
1336
|
+
card_refresh_interval: int
|
|
1337
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
1338
|
+
Only used when openai_api_server=True.
|
|
1339
|
+
max_retries: int
|
|
1340
|
+
Maximum number of retries checking for vLLM server startup.
|
|
1341
|
+
Only used when openai_api_server=True.
|
|
1342
|
+
retry_alert_frequency: int
|
|
1343
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
1344
|
+
Only used when openai_api_server=True.
|
|
1345
|
+
engine_args : dict
|
|
1346
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
1347
|
+
For example, `tensor_parallel_size=2`.
|
|
1520
1348
|
"""
|
|
1521
1349
|
...
|
|
1522
1350
|
|
|
1523
1351
|
@typing.overload
|
|
1524
|
-
def
|
|
1352
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1525
1353
|
"""
|
|
1526
|
-
Specifies the
|
|
1354
|
+
Specifies the event(s) that this flow depends on.
|
|
1527
1355
|
|
|
1528
1356
|
```
|
|
1529
|
-
@
|
|
1357
|
+
@trigger(event='foo')
|
|
1530
1358
|
```
|
|
1531
1359
|
or
|
|
1532
1360
|
```
|
|
1533
|
-
@
|
|
1361
|
+
@trigger(events=['foo', 'bar'])
|
|
1534
1362
|
```
|
|
1535
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1536
|
-
when upstream runs within the same namespace complete successfully
|
|
1537
1363
|
|
|
1538
|
-
Additionally, you can specify
|
|
1539
|
-
|
|
1364
|
+
Additionally, you can specify the parameter mappings
|
|
1365
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1540
1366
|
```
|
|
1541
|
-
@
|
|
1367
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1542
1368
|
```
|
|
1543
1369
|
or
|
|
1544
1370
|
```
|
|
1545
|
-
@
|
|
1371
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1372
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1546
1373
|
```
|
|
1547
1374
|
|
|
1548
|
-
|
|
1549
|
-
inferred from the current project or project branch):
|
|
1375
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1550
1376
|
```
|
|
1551
|
-
@
|
|
1377
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1378
|
+
```
|
|
1379
|
+
This is equivalent to:
|
|
1380
|
+
```
|
|
1381
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1552
1382
|
```
|
|
1553
|
-
|
|
1554
|
-
Note that `branch` is typically one of:
|
|
1555
|
-
- `prod`
|
|
1556
|
-
- `user.bob`
|
|
1557
|
-
- `test.my_experiment`
|
|
1558
|
-
- `prod.staging`
|
|
1559
1383
|
|
|
1560
1384
|
|
|
1561
1385
|
Parameters
|
|
1562
1386
|
----------
|
|
1563
|
-
|
|
1564
|
-
|
|
1565
|
-
|
|
1566
|
-
|
|
1387
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1388
|
+
Event dependency for this flow.
|
|
1389
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1390
|
+
Events dependency for this flow.
|
|
1567
1391
|
options : Dict[str, Any], default {}
|
|
1568
1392
|
Backend-specific configuration for tuning eventing behavior.
|
|
1569
1393
|
"""
|
|
1570
1394
|
...
|
|
1571
1395
|
|
|
1572
1396
|
@typing.overload
|
|
1573
|
-
def
|
|
1397
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1574
1398
|
...
|
|
1575
1399
|
|
|
1576
|
-
def
|
|
1400
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1577
1401
|
"""
|
|
1578
|
-
Specifies the
|
|
1402
|
+
Specifies the event(s) that this flow depends on.
|
|
1579
1403
|
|
|
1580
1404
|
```
|
|
1581
|
-
@
|
|
1405
|
+
@trigger(event='foo')
|
|
1582
1406
|
```
|
|
1583
1407
|
or
|
|
1584
1408
|
```
|
|
1585
|
-
@
|
|
1409
|
+
@trigger(events=['foo', 'bar'])
|
|
1586
1410
|
```
|
|
1587
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1588
|
-
when upstream runs within the same namespace complete successfully
|
|
1589
1411
|
|
|
1590
|
-
Additionally, you can specify
|
|
1591
|
-
|
|
1412
|
+
Additionally, you can specify the parameter mappings
|
|
1413
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1592
1414
|
```
|
|
1593
|
-
@
|
|
1415
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1594
1416
|
```
|
|
1595
1417
|
or
|
|
1596
1418
|
```
|
|
1597
|
-
@
|
|
1419
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1420
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1598
1421
|
```
|
|
1599
1422
|
|
|
1600
|
-
|
|
1601
|
-
inferred from the current project or project branch):
|
|
1423
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1602
1424
|
```
|
|
1603
|
-
@
|
|
1425
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1426
|
+
```
|
|
1427
|
+
This is equivalent to:
|
|
1428
|
+
```
|
|
1429
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1604
1430
|
```
|
|
1605
|
-
|
|
1606
|
-
Note that `branch` is typically one of:
|
|
1607
|
-
- `prod`
|
|
1608
|
-
- `user.bob`
|
|
1609
|
-
- `test.my_experiment`
|
|
1610
|
-
- `prod.staging`
|
|
1611
1431
|
|
|
1612
1432
|
|
|
1613
1433
|
Parameters
|
|
1614
1434
|
----------
|
|
1615
|
-
|
|
1616
|
-
|
|
1617
|
-
|
|
1618
|
-
|
|
1435
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1436
|
+
Event dependency for this flow.
|
|
1437
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1438
|
+
Events dependency for this flow.
|
|
1619
1439
|
options : Dict[str, Any], default {}
|
|
1620
1440
|
Backend-specific configuration for tuning eventing behavior.
|
|
1621
1441
|
"""
|
|
1622
1442
|
...
|
|
1623
1443
|
|
|
1624
1444
|
@typing.overload
|
|
1625
|
-
def
|
|
1445
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1626
1446
|
"""
|
|
1627
|
-
Specifies the
|
|
1628
|
-
|
|
1447
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1448
|
+
|
|
1449
|
+
Use `@conda_base` to set common libraries required by all
|
|
1450
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1629
1451
|
|
|
1630
1452
|
|
|
1631
1453
|
Parameters
|
|
1632
1454
|
----------
|
|
1633
|
-
|
|
1634
|
-
|
|
1635
|
-
|
|
1636
|
-
|
|
1637
|
-
|
|
1638
|
-
|
|
1639
|
-
|
|
1640
|
-
|
|
1641
|
-
|
|
1642
|
-
|
|
1643
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1644
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1455
|
+
packages : Dict[str, str], default {}
|
|
1456
|
+
Packages to use for this flow. The key is the name of the package
|
|
1457
|
+
and the value is the version to use.
|
|
1458
|
+
libraries : Dict[str, str], default {}
|
|
1459
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1460
|
+
python : str, optional, default None
|
|
1461
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1462
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1463
|
+
disabled : bool, default False
|
|
1464
|
+
If set to True, disables Conda.
|
|
1645
1465
|
"""
|
|
1646
1466
|
...
|
|
1647
1467
|
|
|
1648
1468
|
@typing.overload
|
|
1649
|
-
def
|
|
1469
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1650
1470
|
...
|
|
1651
1471
|
|
|
1652
|
-
def
|
|
1472
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1653
1473
|
"""
|
|
1654
|
-
Specifies the
|
|
1655
|
-
|
|
1474
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1475
|
+
|
|
1476
|
+
Use `@conda_base` to set common libraries required by all
|
|
1477
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1656
1478
|
|
|
1657
1479
|
|
|
1658
1480
|
Parameters
|
|
1659
1481
|
----------
|
|
1660
|
-
|
|
1661
|
-
|
|
1662
|
-
|
|
1663
|
-
|
|
1664
|
-
|
|
1665
|
-
|
|
1666
|
-
|
|
1667
|
-
|
|
1668
|
-
|
|
1669
|
-
|
|
1670
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1671
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1482
|
+
packages : Dict[str, str], default {}
|
|
1483
|
+
Packages to use for this flow. The key is the name of the package
|
|
1484
|
+
and the value is the version to use.
|
|
1485
|
+
libraries : Dict[str, str], default {}
|
|
1486
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1487
|
+
python : str, optional, default None
|
|
1488
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1489
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1490
|
+
disabled : bool, default False
|
|
1491
|
+
If set to True, disables Conda.
|
|
1672
1492
|
"""
|
|
1673
1493
|
...
|
|
1674
1494
|
|
|
@@ -1714,95 +1534,131 @@ def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packag
|
|
|
1714
1534
|
...
|
|
1715
1535
|
|
|
1716
1536
|
@typing.overload
|
|
1717
|
-
def
|
|
1537
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1718
1538
|
"""
|
|
1719
|
-
Specifies the
|
|
1539
|
+
Specifies the times when the flow should be run when running on a
|
|
1540
|
+
production scheduler.
|
|
1720
1541
|
|
|
1721
|
-
```
|
|
1722
|
-
@trigger(event='foo')
|
|
1723
|
-
```
|
|
1724
|
-
or
|
|
1725
|
-
```
|
|
1726
|
-
@trigger(events=['foo', 'bar'])
|
|
1727
|
-
```
|
|
1728
1542
|
|
|
1729
|
-
|
|
1730
|
-
|
|
1731
|
-
|
|
1732
|
-
|
|
1733
|
-
|
|
1734
|
-
|
|
1735
|
-
|
|
1736
|
-
|
|
1737
|
-
|
|
1738
|
-
|
|
1543
|
+
Parameters
|
|
1544
|
+
----------
|
|
1545
|
+
hourly : bool, default False
|
|
1546
|
+
Run the workflow hourly.
|
|
1547
|
+
daily : bool, default True
|
|
1548
|
+
Run the workflow daily.
|
|
1549
|
+
weekly : bool, default False
|
|
1550
|
+
Run the workflow weekly.
|
|
1551
|
+
cron : str, optional, default None
|
|
1552
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1553
|
+
specified by this expression.
|
|
1554
|
+
timezone : str, optional, default None
|
|
1555
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1556
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1557
|
+
"""
|
|
1558
|
+
...
|
|
1559
|
+
|
|
1560
|
+
@typing.overload
|
|
1561
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1562
|
+
...
|
|
1563
|
+
|
|
1564
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1565
|
+
"""
|
|
1566
|
+
Specifies the times when the flow should be run when running on a
|
|
1567
|
+
production scheduler.
|
|
1739
1568
|
|
|
1740
|
-
|
|
1741
|
-
|
|
1742
|
-
|
|
1743
|
-
|
|
1744
|
-
|
|
1745
|
-
|
|
1746
|
-
|
|
1747
|
-
|
|
1569
|
+
|
|
1570
|
+
Parameters
|
|
1571
|
+
----------
|
|
1572
|
+
hourly : bool, default False
|
|
1573
|
+
Run the workflow hourly.
|
|
1574
|
+
daily : bool, default True
|
|
1575
|
+
Run the workflow daily.
|
|
1576
|
+
weekly : bool, default False
|
|
1577
|
+
Run the workflow weekly.
|
|
1578
|
+
cron : str, optional, default None
|
|
1579
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1580
|
+
specified by this expression.
|
|
1581
|
+
timezone : str, optional, default None
|
|
1582
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1583
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1584
|
+
"""
|
|
1585
|
+
...
|
|
1586
|
+
|
|
1587
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1588
|
+
"""
|
|
1589
|
+
Specifies what flows belong to the same project.
|
|
1590
|
+
|
|
1591
|
+
A project-specific namespace is created for all flows that
|
|
1592
|
+
use the same `@project(name)`.
|
|
1748
1593
|
|
|
1749
1594
|
|
|
1750
1595
|
Parameters
|
|
1751
1596
|
----------
|
|
1752
|
-
|
|
1753
|
-
|
|
1754
|
-
|
|
1755
|
-
|
|
1756
|
-
|
|
1757
|
-
|
|
1597
|
+
name : str
|
|
1598
|
+
Project name. Make sure that the name is unique amongst all
|
|
1599
|
+
projects that use the same production scheduler. The name may
|
|
1600
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
1601
|
+
|
|
1602
|
+
branch : Optional[str], default None
|
|
1603
|
+
The branch to use. If not specified, the branch is set to
|
|
1604
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
1605
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
1606
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
1607
|
+
|
|
1608
|
+
production : bool, default False
|
|
1609
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
1610
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
1611
|
+
`production` in the decorator and on the command line.
|
|
1612
|
+
The project branch name will be:
|
|
1613
|
+
- if `branch` is specified:
|
|
1614
|
+
- if `production` is True: `prod.<branch>`
|
|
1615
|
+
- if `production` is False: `test.<branch>`
|
|
1616
|
+
- if `branch` is not specified:
|
|
1617
|
+
- if `production` is True: `prod`
|
|
1618
|
+
- if `production` is False: `user.<username>`
|
|
1758
1619
|
"""
|
|
1759
1620
|
...
|
|
1760
1621
|
|
|
1761
|
-
|
|
1762
|
-
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1763
|
-
...
|
|
1764
|
-
|
|
1765
|
-
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1622
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1766
1623
|
"""
|
|
1767
|
-
|
|
1768
|
-
|
|
1769
|
-
|
|
1770
|
-
|
|
1771
|
-
|
|
1772
|
-
or
|
|
1773
|
-
```
|
|
1774
|
-
@trigger(events=['foo', 'bar'])
|
|
1775
|
-
```
|
|
1776
|
-
|
|
1777
|
-
Additionally, you can specify the parameter mappings
|
|
1778
|
-
to map event payload to Metaflow parameters for the flow.
|
|
1779
|
-
```
|
|
1780
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1781
|
-
```
|
|
1782
|
-
or
|
|
1783
|
-
```
|
|
1784
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1785
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1786
|
-
```
|
|
1787
|
-
|
|
1788
|
-
'parameters' can also be a list of strings and tuples like so:
|
|
1789
|
-
```
|
|
1790
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1791
|
-
```
|
|
1792
|
-
This is equivalent to:
|
|
1793
|
-
```
|
|
1794
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1795
|
-
```
|
|
1624
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1625
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1626
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1627
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1628
|
+
starts only after all sensors finish.
|
|
1796
1629
|
|
|
1797
1630
|
|
|
1798
1631
|
Parameters
|
|
1799
1632
|
----------
|
|
1800
|
-
|
|
1801
|
-
|
|
1802
|
-
|
|
1803
|
-
|
|
1804
|
-
|
|
1805
|
-
|
|
1633
|
+
timeout : int
|
|
1634
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1635
|
+
poke_interval : int
|
|
1636
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1637
|
+
mode : str
|
|
1638
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1639
|
+
exponential_backoff : bool
|
|
1640
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1641
|
+
pool : str
|
|
1642
|
+
the slot pool this task should run in,
|
|
1643
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1644
|
+
soft_fail : bool
|
|
1645
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1646
|
+
name : str
|
|
1647
|
+
Name of the sensor on Airflow
|
|
1648
|
+
description : str
|
|
1649
|
+
Description of sensor in the Airflow UI
|
|
1650
|
+
bucket_key : Union[str, List[str]]
|
|
1651
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1652
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1653
|
+
bucket_name : str
|
|
1654
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1655
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1656
|
+
wildcard_match : bool
|
|
1657
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1658
|
+
aws_conn_id : str
|
|
1659
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1660
|
+
verify : bool
|
|
1661
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1806
1662
|
"""
|
|
1807
1663
|
...
|
|
1808
1664
|
|
|
@@ -1920,5 +1776,149 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1920
1776
|
"""
|
|
1921
1777
|
...
|
|
1922
1778
|
|
|
1779
|
+
@typing.overload
|
|
1780
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1781
|
+
"""
|
|
1782
|
+
Specifies the flow(s) that this flow depends on.
|
|
1783
|
+
|
|
1784
|
+
```
|
|
1785
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1786
|
+
```
|
|
1787
|
+
or
|
|
1788
|
+
```
|
|
1789
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1790
|
+
```
|
|
1791
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1792
|
+
when upstream runs within the same namespace complete successfully
|
|
1793
|
+
|
|
1794
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1795
|
+
by specifying the fully qualified project_flow_name.
|
|
1796
|
+
```
|
|
1797
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1798
|
+
```
|
|
1799
|
+
or
|
|
1800
|
+
```
|
|
1801
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1802
|
+
```
|
|
1803
|
+
|
|
1804
|
+
You can also specify just the project or project branch (other values will be
|
|
1805
|
+
inferred from the current project or project branch):
|
|
1806
|
+
```
|
|
1807
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1808
|
+
```
|
|
1809
|
+
|
|
1810
|
+
Note that `branch` is typically one of:
|
|
1811
|
+
- `prod`
|
|
1812
|
+
- `user.bob`
|
|
1813
|
+
- `test.my_experiment`
|
|
1814
|
+
- `prod.staging`
|
|
1815
|
+
|
|
1816
|
+
|
|
1817
|
+
Parameters
|
|
1818
|
+
----------
|
|
1819
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1820
|
+
Upstream flow dependency for this flow.
|
|
1821
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1822
|
+
Upstream flow dependencies for this flow.
|
|
1823
|
+
options : Dict[str, Any], default {}
|
|
1824
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1825
|
+
"""
|
|
1826
|
+
...
|
|
1827
|
+
|
|
1828
|
+
@typing.overload
|
|
1829
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1830
|
+
...
|
|
1831
|
+
|
|
1832
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1833
|
+
"""
|
|
1834
|
+
Specifies the flow(s) that this flow depends on.
|
|
1835
|
+
|
|
1836
|
+
```
|
|
1837
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1838
|
+
```
|
|
1839
|
+
or
|
|
1840
|
+
```
|
|
1841
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1842
|
+
```
|
|
1843
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1844
|
+
when upstream runs within the same namespace complete successfully
|
|
1845
|
+
|
|
1846
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1847
|
+
by specifying the fully qualified project_flow_name.
|
|
1848
|
+
```
|
|
1849
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1850
|
+
```
|
|
1851
|
+
or
|
|
1852
|
+
```
|
|
1853
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1854
|
+
```
|
|
1855
|
+
|
|
1856
|
+
You can also specify just the project or project branch (other values will be
|
|
1857
|
+
inferred from the current project or project branch):
|
|
1858
|
+
```
|
|
1859
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1860
|
+
```
|
|
1861
|
+
|
|
1862
|
+
Note that `branch` is typically one of:
|
|
1863
|
+
- `prod`
|
|
1864
|
+
- `user.bob`
|
|
1865
|
+
- `test.my_experiment`
|
|
1866
|
+
- `prod.staging`
|
|
1867
|
+
|
|
1868
|
+
|
|
1869
|
+
Parameters
|
|
1870
|
+
----------
|
|
1871
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1872
|
+
Upstream flow dependency for this flow.
|
|
1873
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1874
|
+
Upstream flow dependencies for this flow.
|
|
1875
|
+
options : Dict[str, Any], default {}
|
|
1876
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1877
|
+
"""
|
|
1878
|
+
...
|
|
1879
|
+
|
|
1880
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1881
|
+
"""
|
|
1882
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
1883
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1884
|
+
|
|
1885
|
+
|
|
1886
|
+
Parameters
|
|
1887
|
+
----------
|
|
1888
|
+
timeout : int
|
|
1889
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1890
|
+
poke_interval : int
|
|
1891
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1892
|
+
mode : str
|
|
1893
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1894
|
+
exponential_backoff : bool
|
|
1895
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1896
|
+
pool : str
|
|
1897
|
+
the slot pool this task should run in,
|
|
1898
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1899
|
+
soft_fail : bool
|
|
1900
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1901
|
+
name : str
|
|
1902
|
+
Name of the sensor on Airflow
|
|
1903
|
+
description : str
|
|
1904
|
+
Description of sensor in the Airflow UI
|
|
1905
|
+
external_dag_id : str
|
|
1906
|
+
The dag_id that contains the task you want to wait for.
|
|
1907
|
+
external_task_ids : List[str]
|
|
1908
|
+
The list of task_ids that you want to wait for.
|
|
1909
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1910
|
+
allowed_states : List[str]
|
|
1911
|
+
Iterable of allowed states, (Default: ['success'])
|
|
1912
|
+
failed_states : List[str]
|
|
1913
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
|
1914
|
+
execution_delta : datetime.timedelta
|
|
1915
|
+
time difference with the previous execution to look at,
|
|
1916
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1917
|
+
check_existence: bool
|
|
1918
|
+
Set to True to check if the external task exists or check if
|
|
1919
|
+
the DAG to wait for exists. (Default: True)
|
|
1920
|
+
"""
|
|
1921
|
+
...
|
|
1922
|
+
|
|
1923
1923
|
pkg_name: str
|
|
1924
1924
|
|