ob-metaflow-stubs 6.0.6.2__py2.py3-none-any.whl → 6.0.7.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ob-metaflow-stubs might be problematic. Click here for more details.
- metaflow-stubs/__init__.pyi +870 -870
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +6 -6
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +1 -1
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/meta_files.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +29 -29
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +5 -5
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/packaging_sys/__init__.pyi +5 -5
- metaflow-stubs/packaging_sys/backend.pyi +3 -3
- metaflow-stubs/packaging_sys/distribution_support.pyi +3 -3
- metaflow-stubs/packaging_sys/tar_backend.pyi +6 -6
- metaflow-stubs/packaging_sys/utils.pyi +1 -1
- metaflow-stubs/packaging_sys/v1.pyi +3 -3
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +11 -11
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/argo/exit_hooks.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +1 -1
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/__init__.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +4 -4
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_func.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +1 -1
- metaflow-stubs/plugins/secrets/utils.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +1 -1
- metaflow-stubs/plugins/timeout_decorator.pyi +1 -1
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +4 -4
- metaflow-stubs/runner/deployer_impl.pyi +1 -1
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +6 -6
- metaflow-stubs/user_decorators/__init__.pyi +1 -1
- metaflow-stubs/user_decorators/common.pyi +1 -1
- metaflow-stubs/user_decorators/mutable_flow.pyi +5 -5
- metaflow-stubs/user_decorators/mutable_step.pyi +5 -5
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +5 -5
- metaflow-stubs/user_decorators/user_step_decorator.pyi +5 -5
- {ob_metaflow_stubs-6.0.6.2.dist-info → ob_metaflow_stubs-6.0.7.1.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.7.1.dist-info/RECORD +261 -0
- ob_metaflow_stubs-6.0.6.2.dist-info/RECORD +0 -261
- {ob_metaflow_stubs-6.0.6.2.dist-info → ob_metaflow_stubs-6.0.7.1.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.6.2.dist-info → ob_metaflow_stubs-6.0.7.1.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
3
|
# MF version: 2.17.1.0+obcheckpoint(0.2.4);ob(v1) #
|
|
4
|
-
# Generated on 2025-08-
|
|
4
|
+
# Generated on 2025-08-19T19:04:22.043902 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
@@ -39,18 +39,18 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
+
from . import cards as cards
|
|
42
43
|
from . import metaflow_git as metaflow_git
|
|
43
44
|
from . import tuple_util as tuple_util
|
|
44
|
-
from . import cards as cards
|
|
45
45
|
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
52
|
-
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
53
51
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
52
|
+
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
53
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
54
54
|
from . import client as client
|
|
55
55
|
from .client.core import namespace as namespace
|
|
56
56
|
from .client.core import get_namespace as get_namespace
|
|
@@ -167,78 +167,75 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
167
167
|
"""
|
|
168
168
|
...
|
|
169
169
|
|
|
170
|
-
|
|
171
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
172
|
-
"""
|
|
173
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
174
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
175
|
-
"""
|
|
176
|
-
...
|
|
177
|
-
|
|
178
|
-
@typing.overload
|
|
179
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
180
|
-
...
|
|
181
|
-
|
|
182
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
170
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
183
171
|
"""
|
|
184
|
-
|
|
185
|
-
|
|
172
|
+
Specifies that this step should execute on DGX cloud.
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
Parameters
|
|
176
|
+
----------
|
|
177
|
+
gpu : int
|
|
178
|
+
Number of GPUs to use.
|
|
179
|
+
gpu_type : str
|
|
180
|
+
Type of Nvidia GPU to use.
|
|
181
|
+
queue_timeout : int
|
|
182
|
+
Time to keep the job in NVCF's queue.
|
|
186
183
|
"""
|
|
187
184
|
...
|
|
188
185
|
|
|
189
186
|
@typing.overload
|
|
190
|
-
def
|
|
187
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
191
188
|
"""
|
|
192
|
-
Specifies the
|
|
189
|
+
Specifies that the step will success under all circumstances.
|
|
193
190
|
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
191
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
192
|
+
contains the exception raised. You can use it to detect the presence
|
|
193
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
194
|
+
are missing.
|
|
198
195
|
|
|
199
196
|
|
|
200
197
|
Parameters
|
|
201
198
|
----------
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
199
|
+
var : str, optional, default None
|
|
200
|
+
Name of the artifact in which to store the caught exception.
|
|
201
|
+
If not specified, the exception is not stored.
|
|
202
|
+
print_exception : bool, default True
|
|
203
|
+
Determines whether or not the exception is printed to
|
|
204
|
+
stdout when caught.
|
|
208
205
|
"""
|
|
209
206
|
...
|
|
210
207
|
|
|
211
208
|
@typing.overload
|
|
212
|
-
def
|
|
209
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
213
210
|
...
|
|
214
211
|
|
|
215
212
|
@typing.overload
|
|
216
|
-
def
|
|
213
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
217
214
|
...
|
|
218
215
|
|
|
219
|
-
def
|
|
216
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
220
217
|
"""
|
|
221
|
-
Specifies the
|
|
218
|
+
Specifies that the step will success under all circumstances.
|
|
222
219
|
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
220
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
221
|
+
contains the exception raised. You can use it to detect the presence
|
|
222
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
223
|
+
are missing.
|
|
227
224
|
|
|
228
225
|
|
|
229
226
|
Parameters
|
|
230
227
|
----------
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
228
|
+
var : str, optional, default None
|
|
229
|
+
Name of the artifact in which to store the caught exception.
|
|
230
|
+
If not specified, the exception is not stored.
|
|
231
|
+
print_exception : bool, default True
|
|
232
|
+
Determines whether or not the exception is printed to
|
|
233
|
+
stdout when caught.
|
|
237
234
|
"""
|
|
238
235
|
...
|
|
239
236
|
|
|
240
237
|
@typing.overload
|
|
241
|
-
def
|
|
238
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
242
239
|
"""
|
|
243
240
|
Decorator prototype for all step decorators. This function gets specialized
|
|
244
241
|
and imported for all decorators types by _import_plugin_decorators().
|
|
@@ -246,10 +243,10 @@ def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.
|
|
|
246
243
|
...
|
|
247
244
|
|
|
248
245
|
@typing.overload
|
|
249
|
-
def
|
|
246
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
250
247
|
...
|
|
251
248
|
|
|
252
|
-
def
|
|
249
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
253
250
|
"""
|
|
254
251
|
Decorator prototype for all step decorators. This function gets specialized
|
|
255
252
|
and imported for all decorators types by _import_plugin_decorators().
|
|
@@ -257,194 +254,116 @@ def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
|
257
254
|
...
|
|
258
255
|
|
|
259
256
|
@typing.overload
|
|
260
|
-
def
|
|
257
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
261
258
|
"""
|
|
262
|
-
|
|
259
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
260
|
+
to inject a card and render simple markdown content.
|
|
263
261
|
"""
|
|
264
262
|
...
|
|
265
263
|
|
|
266
264
|
@typing.overload
|
|
267
|
-
def
|
|
265
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
268
266
|
...
|
|
269
267
|
|
|
270
|
-
def
|
|
268
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
271
269
|
"""
|
|
272
|
-
|
|
270
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
271
|
+
to inject a card and render simple markdown content.
|
|
273
272
|
"""
|
|
274
273
|
...
|
|
275
274
|
|
|
276
|
-
|
|
277
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
275
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
278
276
|
"""
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
> Examples
|
|
282
|
-
|
|
283
|
-
- Saving Checkpoints
|
|
284
|
-
|
|
285
|
-
```python
|
|
286
|
-
@checkpoint
|
|
287
|
-
@step
|
|
288
|
-
def train(self):
|
|
289
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
290
|
-
for i in range(self.epochs):
|
|
291
|
-
# some training logic
|
|
292
|
-
loss = model.train(self.dataset)
|
|
293
|
-
if i % 10 == 0:
|
|
294
|
-
model.save(
|
|
295
|
-
current.checkpoint.directory,
|
|
296
|
-
)
|
|
297
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
298
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
299
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
300
|
-
name="epoch_checkpoint",
|
|
301
|
-
metadata={
|
|
302
|
-
"epoch": i,
|
|
303
|
-
"loss": loss,
|
|
304
|
-
}
|
|
305
|
-
)
|
|
306
|
-
```
|
|
307
|
-
|
|
308
|
-
- Using Loaded Checkpoints
|
|
309
|
-
|
|
310
|
-
```python
|
|
311
|
-
@retry(times=3)
|
|
312
|
-
@checkpoint
|
|
313
|
-
@step
|
|
314
|
-
def train(self):
|
|
315
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
316
|
-
# saved a checkpoint
|
|
317
|
-
checkpoint_path = None
|
|
318
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
319
|
-
print("Loaded checkpoint from the previous attempt")
|
|
320
|
-
checkpoint_path = current.checkpoint.directory
|
|
321
|
-
|
|
322
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
323
|
-
for i in range(self.epochs):
|
|
324
|
-
...
|
|
325
|
-
```
|
|
277
|
+
Specifies that this step should execute on Kubernetes.
|
|
326
278
|
|
|
327
279
|
|
|
328
280
|
Parameters
|
|
329
281
|
----------
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
282
|
+
cpu : int, default 1
|
|
283
|
+
Number of CPUs required for this step. If `@resources` is
|
|
284
|
+
also present, the maximum value from all decorators is used.
|
|
285
|
+
memory : int, default 4096
|
|
286
|
+
Memory size (in MB) required for this step. If
|
|
287
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
288
|
+
used.
|
|
289
|
+
disk : int, default 10240
|
|
290
|
+
Disk size (in MB) required for this step. If
|
|
291
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
292
|
+
used.
|
|
293
|
+
image : str, optional, default None
|
|
294
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
295
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
296
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
297
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
298
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
299
|
+
image_pull_secrets: List[str], default []
|
|
300
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
301
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
302
|
+
in Kubernetes.
|
|
303
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
304
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
305
|
+
secrets : List[str], optional, default None
|
|
306
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
307
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
308
|
+
in Metaflow configuration.
|
|
309
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
310
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
311
|
+
Can be passed in as a comma separated string of values e.g.
|
|
312
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
313
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
314
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
315
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
316
|
+
gpu : int, optional, default None
|
|
317
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
318
|
+
the scheduled node should not have GPUs.
|
|
319
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
320
|
+
The vendor of the GPUs to be used for this step.
|
|
321
|
+
tolerations : List[Dict[str,str]], default []
|
|
322
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
323
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
324
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
325
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
326
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
327
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
328
|
+
use_tmpfs : bool, default False
|
|
329
|
+
This enables an explicit tmpfs mount for this step.
|
|
330
|
+
tmpfs_tempdir : bool, default True
|
|
331
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
332
|
+
tmpfs_size : int, optional, default: None
|
|
333
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
334
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
335
|
+
memory allocated for this step.
|
|
336
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
337
|
+
Path to tmpfs mount for this step.
|
|
338
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
339
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
340
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
341
|
+
shared_memory: int, optional
|
|
342
|
+
Shared memory size (in MiB) required for this step
|
|
343
|
+
port: int, optional
|
|
344
|
+
Port number to specify in the Kubernetes job object
|
|
345
|
+
compute_pool : str, optional, default None
|
|
346
|
+
Compute pool to be used for for this step.
|
|
347
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
348
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
349
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
350
|
+
Only applicable when @parallel is used.
|
|
351
|
+
qos: str, default: Burstable
|
|
352
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
340
353
|
|
|
341
|
-
|
|
342
|
-
|
|
354
|
+
security_context: Dict[str, Any], optional, default None
|
|
355
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
356
|
+
- privileged: bool, optional, default None
|
|
357
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
358
|
+
- run_as_user: int, optional, default None
|
|
359
|
+
- run_as_group: int, optional, default None
|
|
360
|
+
- run_as_non_root: bool, optional, default None
|
|
343
361
|
"""
|
|
344
362
|
...
|
|
345
363
|
|
|
346
|
-
|
|
347
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
348
|
-
...
|
|
349
|
-
|
|
350
|
-
@typing.overload
|
|
351
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
352
|
-
...
|
|
353
|
-
|
|
354
|
-
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
364
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
355
365
|
"""
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
> Examples
|
|
359
|
-
|
|
360
|
-
- Saving Checkpoints
|
|
361
|
-
|
|
362
|
-
```python
|
|
363
|
-
@checkpoint
|
|
364
|
-
@step
|
|
365
|
-
def train(self):
|
|
366
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
367
|
-
for i in range(self.epochs):
|
|
368
|
-
# some training logic
|
|
369
|
-
loss = model.train(self.dataset)
|
|
370
|
-
if i % 10 == 0:
|
|
371
|
-
model.save(
|
|
372
|
-
current.checkpoint.directory,
|
|
373
|
-
)
|
|
374
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
375
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
376
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
377
|
-
name="epoch_checkpoint",
|
|
378
|
-
metadata={
|
|
379
|
-
"epoch": i,
|
|
380
|
-
"loss": loss,
|
|
381
|
-
}
|
|
382
|
-
)
|
|
383
|
-
```
|
|
384
|
-
|
|
385
|
-
- Using Loaded Checkpoints
|
|
386
|
-
|
|
387
|
-
```python
|
|
388
|
-
@retry(times=3)
|
|
389
|
-
@checkpoint
|
|
390
|
-
@step
|
|
391
|
-
def train(self):
|
|
392
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
393
|
-
# saved a checkpoint
|
|
394
|
-
checkpoint_path = None
|
|
395
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
396
|
-
print("Loaded checkpoint from the previous attempt")
|
|
397
|
-
checkpoint_path = current.checkpoint.directory
|
|
398
|
-
|
|
399
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
400
|
-
for i in range(self.epochs):
|
|
401
|
-
...
|
|
402
|
-
```
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
Parameters
|
|
406
|
-
----------
|
|
407
|
-
load_policy : str, default: "fresh"
|
|
408
|
-
The policy for loading the checkpoint. The following policies are supported:
|
|
409
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
410
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
411
|
-
will be loaded at the start of the task.
|
|
412
|
-
- "none": Do not load any checkpoint
|
|
413
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
414
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
415
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
416
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
417
|
-
|
|
418
|
-
temp_dir_root : str, default: None
|
|
419
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
420
|
-
"""
|
|
421
|
-
...
|
|
422
|
-
|
|
423
|
-
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
424
|
-
"""
|
|
425
|
-
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
426
|
-
|
|
427
|
-
|
|
428
|
-
Parameters
|
|
429
|
-
----------
|
|
430
|
-
integration_name : str, optional
|
|
431
|
-
Name of the S3 proxy integration. If not specified, will use the only
|
|
432
|
-
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
433
|
-
write_mode : str, optional
|
|
434
|
-
The desired behavior during write operations to target (origin) S3 bucket.
|
|
435
|
-
allowed options are:
|
|
436
|
-
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
437
|
-
storage
|
|
438
|
-
"origin" -> only write to the target S3 bucket
|
|
439
|
-
"cache" -> only write to the object storage service used for caching
|
|
440
|
-
debug : bool, optional
|
|
441
|
-
Enable debug logging for proxy operations.
|
|
442
|
-
"""
|
|
443
|
-
...
|
|
444
|
-
|
|
445
|
-
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
446
|
-
"""
|
|
447
|
-
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
366
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
448
367
|
|
|
449
368
|
User code call
|
|
450
369
|
--------------
|
|
@@ -493,53 +412,21 @@ def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card
|
|
|
493
412
|
...
|
|
494
413
|
|
|
495
414
|
@typing.overload
|
|
496
|
-
def
|
|
415
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
497
416
|
"""
|
|
498
|
-
|
|
499
|
-
|
|
500
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
501
|
-
contains the exception raised. You can use it to detect the presence
|
|
502
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
503
|
-
are missing.
|
|
504
|
-
|
|
505
|
-
|
|
506
|
-
Parameters
|
|
507
|
-
----------
|
|
508
|
-
var : str, optional, default None
|
|
509
|
-
Name of the artifact in which to store the caught exception.
|
|
510
|
-
If not specified, the exception is not stored.
|
|
511
|
-
print_exception : bool, default True
|
|
512
|
-
Determines whether or not the exception is printed to
|
|
513
|
-
stdout when caught.
|
|
417
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
418
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
514
419
|
"""
|
|
515
420
|
...
|
|
516
421
|
|
|
517
422
|
@typing.overload
|
|
518
|
-
def
|
|
519
|
-
...
|
|
520
|
-
|
|
521
|
-
@typing.overload
|
|
522
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
423
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
523
424
|
...
|
|
524
425
|
|
|
525
|
-
def
|
|
426
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
526
427
|
"""
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
530
|
-
contains the exception raised. You can use it to detect the presence
|
|
531
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
532
|
-
are missing.
|
|
533
|
-
|
|
534
|
-
|
|
535
|
-
Parameters
|
|
536
|
-
----------
|
|
537
|
-
var : str, optional, default None
|
|
538
|
-
Name of the artifact in which to store the caught exception.
|
|
539
|
-
If not specified, the exception is not stored.
|
|
540
|
-
print_exception : bool, default True
|
|
541
|
-
Determines whether or not the exception is printed to
|
|
542
|
-
stdout when caught.
|
|
428
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
429
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
543
430
|
"""
|
|
544
431
|
...
|
|
545
432
|
|
|
@@ -582,109 +469,54 @@ def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
|
582
469
|
"""
|
|
583
470
|
...
|
|
584
471
|
|
|
585
|
-
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
586
|
-
"""
|
|
587
|
-
Specifies that this step should execute on DGX cloud.
|
|
588
|
-
|
|
589
|
-
|
|
590
|
-
Parameters
|
|
591
|
-
----------
|
|
592
|
-
gpu : int
|
|
593
|
-
Number of GPUs to use.
|
|
594
|
-
gpu_type : str
|
|
595
|
-
Type of Nvidia GPU to use.
|
|
596
|
-
"""
|
|
597
|
-
...
|
|
598
|
-
|
|
599
|
-
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
600
|
-
"""
|
|
601
|
-
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
602
|
-
|
|
603
|
-
User code call
|
|
604
|
-
--------------
|
|
605
|
-
@ollama(
|
|
606
|
-
models=[...],
|
|
607
|
-
...
|
|
608
|
-
)
|
|
609
|
-
|
|
610
|
-
Valid backend options
|
|
611
|
-
---------------------
|
|
612
|
-
- 'local': Run as a separate process on the local task machine.
|
|
613
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
614
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
615
|
-
|
|
616
|
-
Valid model options
|
|
617
|
-
-------------------
|
|
618
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
619
|
-
|
|
620
|
-
|
|
621
|
-
Parameters
|
|
622
|
-
----------
|
|
623
|
-
models: list[str]
|
|
624
|
-
List of Ollama containers running models in sidecars.
|
|
625
|
-
backend: str
|
|
626
|
-
Determines where and how to run the Ollama process.
|
|
627
|
-
force_pull: bool
|
|
628
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
629
|
-
cache_update_policy: str
|
|
630
|
-
Cache update policy: "auto", "force", or "never".
|
|
631
|
-
force_cache_update: bool
|
|
632
|
-
Simple override for "force" cache update policy.
|
|
633
|
-
debug: bool
|
|
634
|
-
Whether to turn on verbose debugging logs.
|
|
635
|
-
circuit_breaker_config: dict
|
|
636
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
637
|
-
timeout_config: dict
|
|
638
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
639
|
-
"""
|
|
640
|
-
...
|
|
641
|
-
|
|
642
472
|
@typing.overload
|
|
643
|
-
def
|
|
473
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
644
474
|
"""
|
|
645
|
-
|
|
475
|
+
Specifies the PyPI packages for the step.
|
|
646
476
|
|
|
647
|
-
|
|
477
|
+
Information in this decorator will augment any
|
|
478
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
479
|
+
you can use `@pypi_base` to set packages required by all
|
|
480
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
648
481
|
|
|
649
482
|
|
|
650
483
|
Parameters
|
|
651
484
|
----------
|
|
652
|
-
|
|
653
|
-
|
|
654
|
-
|
|
655
|
-
|
|
656
|
-
|
|
657
|
-
|
|
658
|
-
timeout : int, default 45
|
|
659
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
485
|
+
packages : Dict[str, str], default: {}
|
|
486
|
+
Packages to use for this step. The key is the name of the package
|
|
487
|
+
and the value is the version to use.
|
|
488
|
+
python : str, optional, default: None
|
|
489
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
490
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
660
491
|
"""
|
|
661
492
|
...
|
|
662
493
|
|
|
663
494
|
@typing.overload
|
|
664
|
-
def
|
|
495
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
665
496
|
...
|
|
666
497
|
|
|
667
498
|
@typing.overload
|
|
668
|
-
def
|
|
499
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
669
500
|
...
|
|
670
501
|
|
|
671
|
-
def
|
|
502
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
672
503
|
"""
|
|
673
|
-
|
|
504
|
+
Specifies the PyPI packages for the step.
|
|
674
505
|
|
|
675
|
-
|
|
506
|
+
Information in this decorator will augment any
|
|
507
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
508
|
+
you can use `@pypi_base` to set packages required by all
|
|
509
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
676
510
|
|
|
677
511
|
|
|
678
512
|
Parameters
|
|
679
513
|
----------
|
|
680
|
-
|
|
681
|
-
|
|
682
|
-
|
|
683
|
-
|
|
684
|
-
|
|
685
|
-
|
|
686
|
-
timeout : int, default 45
|
|
687
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
514
|
+
packages : Dict[str, str], default: {}
|
|
515
|
+
Packages to use for this step. The key is the name of the package
|
|
516
|
+
and the value is the version to use.
|
|
517
|
+
python : str, optional, default: None
|
|
518
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
519
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
688
520
|
"""
|
|
689
521
|
...
|
|
690
522
|
|
|
@@ -768,21 +600,78 @@ def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None]
|
|
|
768
600
|
...
|
|
769
601
|
|
|
770
602
|
@typing.overload
|
|
771
|
-
def
|
|
772
|
-
"""
|
|
773
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
774
|
-
to inject a card and render simple markdown content.
|
|
603
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
775
604
|
"""
|
|
776
|
-
|
|
777
|
-
|
|
778
|
-
|
|
779
|
-
|
|
780
|
-
|
|
781
|
-
|
|
782
|
-
|
|
605
|
+
Specifies a timeout for your step.
|
|
606
|
+
|
|
607
|
+
This decorator is useful if this step may hang indefinitely.
|
|
608
|
+
|
|
609
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
610
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
611
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
612
|
+
|
|
613
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
614
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
615
|
+
|
|
616
|
+
|
|
617
|
+
Parameters
|
|
618
|
+
----------
|
|
619
|
+
seconds : int, default 0
|
|
620
|
+
Number of seconds to wait prior to timing out.
|
|
621
|
+
minutes : int, default 0
|
|
622
|
+
Number of minutes to wait prior to timing out.
|
|
623
|
+
hours : int, default 0
|
|
624
|
+
Number of hours to wait prior to timing out.
|
|
783
625
|
"""
|
|
784
|
-
|
|
785
|
-
|
|
626
|
+
...
|
|
627
|
+
|
|
628
|
+
@typing.overload
|
|
629
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
630
|
+
...
|
|
631
|
+
|
|
632
|
+
@typing.overload
|
|
633
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
634
|
+
...
|
|
635
|
+
|
|
636
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
637
|
+
"""
|
|
638
|
+
Specifies a timeout for your step.
|
|
639
|
+
|
|
640
|
+
This decorator is useful if this step may hang indefinitely.
|
|
641
|
+
|
|
642
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
643
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
644
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
645
|
+
|
|
646
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
647
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
648
|
+
|
|
649
|
+
|
|
650
|
+
Parameters
|
|
651
|
+
----------
|
|
652
|
+
seconds : int, default 0
|
|
653
|
+
Number of seconds to wait prior to timing out.
|
|
654
|
+
minutes : int, default 0
|
|
655
|
+
Number of minutes to wait prior to timing out.
|
|
656
|
+
hours : int, default 0
|
|
657
|
+
Number of hours to wait prior to timing out.
|
|
658
|
+
"""
|
|
659
|
+
...
|
|
660
|
+
|
|
661
|
+
@typing.overload
|
|
662
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
663
|
+
"""
|
|
664
|
+
Internal decorator to support Fast bakery
|
|
665
|
+
"""
|
|
666
|
+
...
|
|
667
|
+
|
|
668
|
+
@typing.overload
|
|
669
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
670
|
+
...
|
|
671
|
+
|
|
672
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
673
|
+
"""
|
|
674
|
+
Internal decorator to support Fast bakery
|
|
786
675
|
"""
|
|
787
676
|
...
|
|
788
677
|
|
|
@@ -841,175 +730,6 @@ def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
841
730
|
"""
|
|
842
731
|
...
|
|
843
732
|
|
|
844
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
845
|
-
"""
|
|
846
|
-
Specifies that this step should execute on Kubernetes.
|
|
847
|
-
|
|
848
|
-
|
|
849
|
-
Parameters
|
|
850
|
-
----------
|
|
851
|
-
cpu : int, default 1
|
|
852
|
-
Number of CPUs required for this step. If `@resources` is
|
|
853
|
-
also present, the maximum value from all decorators is used.
|
|
854
|
-
memory : int, default 4096
|
|
855
|
-
Memory size (in MB) required for this step. If
|
|
856
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
857
|
-
used.
|
|
858
|
-
disk : int, default 10240
|
|
859
|
-
Disk size (in MB) required for this step. If
|
|
860
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
861
|
-
used.
|
|
862
|
-
image : str, optional, default None
|
|
863
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
864
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
865
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
866
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
867
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
868
|
-
image_pull_secrets: List[str], default []
|
|
869
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
870
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
871
|
-
in Kubernetes.
|
|
872
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
873
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
874
|
-
secrets : List[str], optional, default None
|
|
875
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
876
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
877
|
-
in Metaflow configuration.
|
|
878
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
879
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
880
|
-
Can be passed in as a comma separated string of values e.g.
|
|
881
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
882
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
883
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
884
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
885
|
-
gpu : int, optional, default None
|
|
886
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
887
|
-
the scheduled node should not have GPUs.
|
|
888
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
889
|
-
The vendor of the GPUs to be used for this step.
|
|
890
|
-
tolerations : List[Dict[str,str]], default []
|
|
891
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
892
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
893
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
894
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
895
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
896
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
897
|
-
use_tmpfs : bool, default False
|
|
898
|
-
This enables an explicit tmpfs mount for this step.
|
|
899
|
-
tmpfs_tempdir : bool, default True
|
|
900
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
901
|
-
tmpfs_size : int, optional, default: None
|
|
902
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
903
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
904
|
-
memory allocated for this step.
|
|
905
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
906
|
-
Path to tmpfs mount for this step.
|
|
907
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
908
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
909
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
910
|
-
shared_memory: int, optional
|
|
911
|
-
Shared memory size (in MiB) required for this step
|
|
912
|
-
port: int, optional
|
|
913
|
-
Port number to specify in the Kubernetes job object
|
|
914
|
-
compute_pool : str, optional, default None
|
|
915
|
-
Compute pool to be used for for this step.
|
|
916
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
917
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
918
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
919
|
-
Only applicable when @parallel is used.
|
|
920
|
-
qos: str, default: Burstable
|
|
921
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
922
|
-
|
|
923
|
-
security_context: Dict[str, Any], optional, default None
|
|
924
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
925
|
-
- privileged: bool, optional, default None
|
|
926
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
927
|
-
- run_as_user: int, optional, default None
|
|
928
|
-
- run_as_group: int, optional, default None
|
|
929
|
-
- run_as_non_root: bool, optional, default None
|
|
930
|
-
"""
|
|
931
|
-
...
|
|
932
|
-
|
|
933
|
-
@typing.overload
|
|
934
|
-
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
935
|
-
"""
|
|
936
|
-
Specifies the Conda environment for the step.
|
|
937
|
-
|
|
938
|
-
Information in this decorator will augment any
|
|
939
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
940
|
-
you can use `@conda_base` to set packages required by all
|
|
941
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
942
|
-
|
|
943
|
-
|
|
944
|
-
Parameters
|
|
945
|
-
----------
|
|
946
|
-
packages : Dict[str, str], default {}
|
|
947
|
-
Packages to use for this step. The key is the name of the package
|
|
948
|
-
and the value is the version to use.
|
|
949
|
-
libraries : Dict[str, str], default {}
|
|
950
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
951
|
-
python : str, optional, default None
|
|
952
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
953
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
954
|
-
disabled : bool, default False
|
|
955
|
-
If set to True, disables @conda.
|
|
956
|
-
"""
|
|
957
|
-
...
|
|
958
|
-
|
|
959
|
-
@typing.overload
|
|
960
|
-
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
961
|
-
...
|
|
962
|
-
|
|
963
|
-
@typing.overload
|
|
964
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
965
|
-
...
|
|
966
|
-
|
|
967
|
-
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
968
|
-
"""
|
|
969
|
-
Specifies the Conda environment for the step.
|
|
970
|
-
|
|
971
|
-
Information in this decorator will augment any
|
|
972
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
973
|
-
you can use `@conda_base` to set packages required by all
|
|
974
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
975
|
-
|
|
976
|
-
|
|
977
|
-
Parameters
|
|
978
|
-
----------
|
|
979
|
-
packages : Dict[str, str], default {}
|
|
980
|
-
Packages to use for this step. The key is the name of the package
|
|
981
|
-
and the value is the version to use.
|
|
982
|
-
libraries : Dict[str, str], default {}
|
|
983
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
984
|
-
python : str, optional, default None
|
|
985
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
986
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
987
|
-
disabled : bool, default False
|
|
988
|
-
If set to True, disables @conda.
|
|
989
|
-
"""
|
|
990
|
-
...
|
|
991
|
-
|
|
992
|
-
@typing.overload
|
|
993
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
994
|
-
"""
|
|
995
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
996
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
997
|
-
a Neo Cloud like Nebius.
|
|
998
|
-
"""
|
|
999
|
-
...
|
|
1000
|
-
|
|
1001
|
-
@typing.overload
|
|
1002
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1003
|
-
...
|
|
1004
|
-
|
|
1005
|
-
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1006
|
-
"""
|
|
1007
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1008
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1009
|
-
a Neo Cloud like Nebius.
|
|
1010
|
-
"""
|
|
1011
|
-
...
|
|
1012
|
-
|
|
1013
733
|
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1014
734
|
"""
|
|
1015
735
|
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
|
@@ -1090,19 +810,132 @@ def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.
|
|
|
1090
810
|
"""
|
|
1091
811
|
...
|
|
1092
812
|
|
|
1093
|
-
|
|
813
|
+
@typing.overload
|
|
814
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1094
815
|
"""
|
|
1095
|
-
Specifies
|
|
816
|
+
Specifies the Conda environment for the step.
|
|
817
|
+
|
|
818
|
+
Information in this decorator will augment any
|
|
819
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
820
|
+
you can use `@conda_base` to set packages required by all
|
|
821
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
1096
822
|
|
|
1097
823
|
|
|
1098
824
|
Parameters
|
|
1099
825
|
----------
|
|
1100
|
-
|
|
1101
|
-
|
|
1102
|
-
|
|
1103
|
-
|
|
1104
|
-
|
|
1105
|
-
|
|
826
|
+
packages : Dict[str, str], default {}
|
|
827
|
+
Packages to use for this step. The key is the name of the package
|
|
828
|
+
and the value is the version to use.
|
|
829
|
+
libraries : Dict[str, str], default {}
|
|
830
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
831
|
+
python : str, optional, default None
|
|
832
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
833
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
834
|
+
disabled : bool, default False
|
|
835
|
+
If set to True, disables @conda.
|
|
836
|
+
"""
|
|
837
|
+
...
|
|
838
|
+
|
|
839
|
+
@typing.overload
|
|
840
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
841
|
+
...
|
|
842
|
+
|
|
843
|
+
@typing.overload
|
|
844
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
845
|
+
...
|
|
846
|
+
|
|
847
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
848
|
+
"""
|
|
849
|
+
Specifies the Conda environment for the step.
|
|
850
|
+
|
|
851
|
+
Information in this decorator will augment any
|
|
852
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
853
|
+
you can use `@conda_base` to set packages required by all
|
|
854
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
855
|
+
|
|
856
|
+
|
|
857
|
+
Parameters
|
|
858
|
+
----------
|
|
859
|
+
packages : Dict[str, str], default {}
|
|
860
|
+
Packages to use for this step. The key is the name of the package
|
|
861
|
+
and the value is the version to use.
|
|
862
|
+
libraries : Dict[str, str], default {}
|
|
863
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
864
|
+
python : str, optional, default None
|
|
865
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
866
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
867
|
+
disabled : bool, default False
|
|
868
|
+
If set to True, disables @conda.
|
|
869
|
+
"""
|
|
870
|
+
...
|
|
871
|
+
|
|
872
|
+
@typing.overload
|
|
873
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
874
|
+
"""
|
|
875
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
876
|
+
|
|
877
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
878
|
+
|
|
879
|
+
|
|
880
|
+
Parameters
|
|
881
|
+
----------
|
|
882
|
+
type : str, default 'default'
|
|
883
|
+
Card type.
|
|
884
|
+
id : str, optional, default None
|
|
885
|
+
If multiple cards are present, use this id to identify this card.
|
|
886
|
+
options : Dict[str, Any], default {}
|
|
887
|
+
Options passed to the card. The contents depend on the card type.
|
|
888
|
+
timeout : int, default 45
|
|
889
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
890
|
+
"""
|
|
891
|
+
...
|
|
892
|
+
|
|
893
|
+
@typing.overload
|
|
894
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
895
|
+
...
|
|
896
|
+
|
|
897
|
+
@typing.overload
|
|
898
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
899
|
+
...
|
|
900
|
+
|
|
901
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
902
|
+
"""
|
|
903
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
904
|
+
|
|
905
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
906
|
+
|
|
907
|
+
|
|
908
|
+
Parameters
|
|
909
|
+
----------
|
|
910
|
+
type : str, default 'default'
|
|
911
|
+
Card type.
|
|
912
|
+
id : str, optional, default None
|
|
913
|
+
If multiple cards are present, use this id to identify this card.
|
|
914
|
+
options : Dict[str, Any], default {}
|
|
915
|
+
Options passed to the card. The contents depend on the card type.
|
|
916
|
+
timeout : int, default 45
|
|
917
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
918
|
+
"""
|
|
919
|
+
...
|
|
920
|
+
|
|
921
|
+
@typing.overload
|
|
922
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
923
|
+
"""
|
|
924
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
925
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
926
|
+
a Neo Cloud like CoreWeave.
|
|
927
|
+
"""
|
|
928
|
+
...
|
|
929
|
+
|
|
930
|
+
@typing.overload
|
|
931
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
932
|
+
...
|
|
933
|
+
|
|
934
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
935
|
+
"""
|
|
936
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
937
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
938
|
+
a Neo Cloud like CoreWeave.
|
|
1106
939
|
"""
|
|
1107
940
|
...
|
|
1108
941
|
|
|
@@ -1235,124 +1068,291 @@ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
1235
1068
|
"""
|
|
1236
1069
|
...
|
|
1237
1070
|
|
|
1238
|
-
|
|
1239
|
-
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1071
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1240
1072
|
"""
|
|
1241
|
-
Specifies
|
|
1073
|
+
Specifies that this step should execute on DGX cloud.
|
|
1242
1074
|
|
|
1243
1075
|
|
|
1244
1076
|
Parameters
|
|
1245
1077
|
----------
|
|
1246
|
-
|
|
1247
|
-
|
|
1078
|
+
gpu : int
|
|
1079
|
+
Number of GPUs to use.
|
|
1080
|
+
gpu_type : str
|
|
1081
|
+
Type of Nvidia GPU to use.
|
|
1248
1082
|
"""
|
|
1249
1083
|
...
|
|
1250
1084
|
|
|
1251
1085
|
@typing.overload
|
|
1252
|
-
def
|
|
1086
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1087
|
+
"""
|
|
1088
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1089
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1090
|
+
a Neo Cloud like Nebius.
|
|
1091
|
+
"""
|
|
1253
1092
|
...
|
|
1254
1093
|
|
|
1255
1094
|
@typing.overload
|
|
1256
|
-
def
|
|
1095
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1257
1096
|
...
|
|
1258
1097
|
|
|
1259
|
-
def
|
|
1098
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1260
1099
|
"""
|
|
1261
|
-
|
|
1262
|
-
|
|
1263
|
-
|
|
1264
|
-
Parameters
|
|
1265
|
-
----------
|
|
1266
|
-
vars : Dict[str, str], default {}
|
|
1267
|
-
Dictionary of environment variables to set.
|
|
1100
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1101
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1102
|
+
a Neo Cloud like Nebius.
|
|
1268
1103
|
"""
|
|
1269
1104
|
...
|
|
1270
1105
|
|
|
1271
|
-
|
|
1272
|
-
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1106
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1273
1107
|
"""
|
|
1274
|
-
|
|
1275
|
-
|
|
1276
|
-
This decorator is useful if this step may hang indefinitely.
|
|
1277
|
-
|
|
1278
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1279
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1280
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1281
|
-
|
|
1282
|
-
Note that all the values specified in parameters are added together so if you specify
|
|
1283
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
1108
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1284
1109
|
|
|
1285
1110
|
|
|
1286
1111
|
Parameters
|
|
1287
1112
|
----------
|
|
1288
|
-
|
|
1289
|
-
|
|
1290
|
-
|
|
1291
|
-
|
|
1292
|
-
|
|
1293
|
-
|
|
1113
|
+
integration_name : str, optional
|
|
1114
|
+
Name of the S3 proxy integration. If not specified, will use the only
|
|
1115
|
+
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
1116
|
+
write_mode : str, optional
|
|
1117
|
+
The desired behavior during write operations to target (origin) S3 bucket.
|
|
1118
|
+
allowed options are:
|
|
1119
|
+
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
1120
|
+
storage
|
|
1121
|
+
"origin" -> only write to the target S3 bucket
|
|
1122
|
+
"cache" -> only write to the object storage service used for caching
|
|
1123
|
+
debug : bool, optional
|
|
1124
|
+
Enable debug logging for proxy operations.
|
|
1294
1125
|
"""
|
|
1295
1126
|
...
|
|
1296
1127
|
|
|
1297
|
-
|
|
1298
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1299
|
-
...
|
|
1300
|
-
|
|
1301
|
-
@typing.overload
|
|
1302
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1303
|
-
...
|
|
1304
|
-
|
|
1305
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
1128
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1306
1129
|
"""
|
|
1307
|
-
|
|
1130
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
1308
1131
|
|
|
1309
|
-
|
|
1132
|
+
User code call
|
|
1133
|
+
--------------
|
|
1134
|
+
@ollama(
|
|
1135
|
+
models=[...],
|
|
1136
|
+
...
|
|
1137
|
+
)
|
|
1310
1138
|
|
|
1311
|
-
|
|
1312
|
-
|
|
1313
|
-
|
|
1139
|
+
Valid backend options
|
|
1140
|
+
---------------------
|
|
1141
|
+
- 'local': Run as a separate process on the local task machine.
|
|
1142
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
1143
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
1314
1144
|
|
|
1315
|
-
|
|
1316
|
-
|
|
1145
|
+
Valid model options
|
|
1146
|
+
-------------------
|
|
1147
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
1317
1148
|
|
|
1318
1149
|
|
|
1319
1150
|
Parameters
|
|
1320
1151
|
----------
|
|
1321
|
-
|
|
1322
|
-
|
|
1323
|
-
|
|
1324
|
-
|
|
1325
|
-
|
|
1326
|
-
|
|
1327
|
-
|
|
1328
|
-
|
|
1329
|
-
|
|
1330
|
-
|
|
1331
|
-
|
|
1332
|
-
|
|
1333
|
-
|
|
1334
|
-
|
|
1335
|
-
|
|
1152
|
+
models: list[str]
|
|
1153
|
+
List of Ollama containers running models in sidecars.
|
|
1154
|
+
backend: str
|
|
1155
|
+
Determines where and how to run the Ollama process.
|
|
1156
|
+
force_pull: bool
|
|
1157
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
1158
|
+
cache_update_policy: str
|
|
1159
|
+
Cache update policy: "auto", "force", or "never".
|
|
1160
|
+
force_cache_update: bool
|
|
1161
|
+
Simple override for "force" cache update policy.
|
|
1162
|
+
debug: bool
|
|
1163
|
+
Whether to turn on verbose debugging logs.
|
|
1164
|
+
circuit_breaker_config: dict
|
|
1165
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
1166
|
+
timeout_config: dict
|
|
1167
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
1336
1168
|
"""
|
|
1337
1169
|
...
|
|
1338
1170
|
|
|
1339
1171
|
@typing.overload
|
|
1340
|
-
def
|
|
1341
|
-
...
|
|
1342
|
-
|
|
1343
|
-
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1344
|
-
"""
|
|
1345
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1346
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1347
|
-
a Neo Cloud like CoreWeave.
|
|
1348
|
-
"""
|
|
1349
|
-
...
|
|
1350
|
-
|
|
1351
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1172
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1352
1173
|
"""
|
|
1353
|
-
|
|
1174
|
+
Enables checkpointing for a step.
|
|
1354
1175
|
|
|
1355
|
-
|
|
1176
|
+
> Examples
|
|
1177
|
+
|
|
1178
|
+
- Saving Checkpoints
|
|
1179
|
+
|
|
1180
|
+
```python
|
|
1181
|
+
@checkpoint
|
|
1182
|
+
@step
|
|
1183
|
+
def train(self):
|
|
1184
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
1185
|
+
for i in range(self.epochs):
|
|
1186
|
+
# some training logic
|
|
1187
|
+
loss = model.train(self.dataset)
|
|
1188
|
+
if i % 10 == 0:
|
|
1189
|
+
model.save(
|
|
1190
|
+
current.checkpoint.directory,
|
|
1191
|
+
)
|
|
1192
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1193
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1194
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
1195
|
+
name="epoch_checkpoint",
|
|
1196
|
+
metadata={
|
|
1197
|
+
"epoch": i,
|
|
1198
|
+
"loss": loss,
|
|
1199
|
+
}
|
|
1200
|
+
)
|
|
1201
|
+
```
|
|
1202
|
+
|
|
1203
|
+
- Using Loaded Checkpoints
|
|
1204
|
+
|
|
1205
|
+
```python
|
|
1206
|
+
@retry(times=3)
|
|
1207
|
+
@checkpoint
|
|
1208
|
+
@step
|
|
1209
|
+
def train(self):
|
|
1210
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1211
|
+
# saved a checkpoint
|
|
1212
|
+
checkpoint_path = None
|
|
1213
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1214
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1215
|
+
checkpoint_path = current.checkpoint.directory
|
|
1216
|
+
|
|
1217
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1218
|
+
for i in range(self.epochs):
|
|
1219
|
+
...
|
|
1220
|
+
```
|
|
1221
|
+
|
|
1222
|
+
|
|
1223
|
+
Parameters
|
|
1224
|
+
----------
|
|
1225
|
+
load_policy : str, default: "fresh"
|
|
1226
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1227
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1228
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1229
|
+
will be loaded at the start of the task.
|
|
1230
|
+
- "none": Do not load any checkpoint
|
|
1231
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1232
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1233
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1234
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1235
|
+
|
|
1236
|
+
temp_dir_root : str, default: None
|
|
1237
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1238
|
+
"""
|
|
1239
|
+
...
|
|
1240
|
+
|
|
1241
|
+
@typing.overload
|
|
1242
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1243
|
+
...
|
|
1244
|
+
|
|
1245
|
+
@typing.overload
|
|
1246
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1247
|
+
...
|
|
1248
|
+
|
|
1249
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
1250
|
+
"""
|
|
1251
|
+
Enables checkpointing for a step.
|
|
1252
|
+
|
|
1253
|
+
> Examples
|
|
1254
|
+
|
|
1255
|
+
- Saving Checkpoints
|
|
1256
|
+
|
|
1257
|
+
```python
|
|
1258
|
+
@checkpoint
|
|
1259
|
+
@step
|
|
1260
|
+
def train(self):
|
|
1261
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
1262
|
+
for i in range(self.epochs):
|
|
1263
|
+
# some training logic
|
|
1264
|
+
loss = model.train(self.dataset)
|
|
1265
|
+
if i % 10 == 0:
|
|
1266
|
+
model.save(
|
|
1267
|
+
current.checkpoint.directory,
|
|
1268
|
+
)
|
|
1269
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1270
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1271
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
1272
|
+
name="epoch_checkpoint",
|
|
1273
|
+
metadata={
|
|
1274
|
+
"epoch": i,
|
|
1275
|
+
"loss": loss,
|
|
1276
|
+
}
|
|
1277
|
+
)
|
|
1278
|
+
```
|
|
1279
|
+
|
|
1280
|
+
- Using Loaded Checkpoints
|
|
1281
|
+
|
|
1282
|
+
```python
|
|
1283
|
+
@retry(times=3)
|
|
1284
|
+
@checkpoint
|
|
1285
|
+
@step
|
|
1286
|
+
def train(self):
|
|
1287
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1288
|
+
# saved a checkpoint
|
|
1289
|
+
checkpoint_path = None
|
|
1290
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1291
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1292
|
+
checkpoint_path = current.checkpoint.directory
|
|
1293
|
+
|
|
1294
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1295
|
+
for i in range(self.epochs):
|
|
1296
|
+
...
|
|
1297
|
+
```
|
|
1298
|
+
|
|
1299
|
+
|
|
1300
|
+
Parameters
|
|
1301
|
+
----------
|
|
1302
|
+
load_policy : str, default: "fresh"
|
|
1303
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1304
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1305
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1306
|
+
will be loaded at the start of the task.
|
|
1307
|
+
- "none": Do not load any checkpoint
|
|
1308
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1309
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1310
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1311
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1312
|
+
|
|
1313
|
+
temp_dir_root : str, default: None
|
|
1314
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1315
|
+
"""
|
|
1316
|
+
...
|
|
1317
|
+
|
|
1318
|
+
@typing.overload
|
|
1319
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1320
|
+
"""
|
|
1321
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
1322
|
+
|
|
1323
|
+
|
|
1324
|
+
Parameters
|
|
1325
|
+
----------
|
|
1326
|
+
vars : Dict[str, str], default {}
|
|
1327
|
+
Dictionary of environment variables to set.
|
|
1328
|
+
"""
|
|
1329
|
+
...
|
|
1330
|
+
|
|
1331
|
+
@typing.overload
|
|
1332
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1333
|
+
...
|
|
1334
|
+
|
|
1335
|
+
@typing.overload
|
|
1336
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1337
|
+
...
|
|
1338
|
+
|
|
1339
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
1340
|
+
"""
|
|
1341
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
1342
|
+
|
|
1343
|
+
|
|
1344
|
+
Parameters
|
|
1345
|
+
----------
|
|
1346
|
+
vars : Dict[str, str], default {}
|
|
1347
|
+
Dictionary of environment variables to set.
|
|
1348
|
+
"""
|
|
1349
|
+
...
|
|
1350
|
+
|
|
1351
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1352
|
+
"""
|
|
1353
|
+
Specifies what flows belong to the same project.
|
|
1354
|
+
|
|
1355
|
+
A project-specific namespace is created for all flows that
|
|
1356
1356
|
use the same `@project(name)`.
|
|
1357
1357
|
|
|
1358
1358
|
|
|
@@ -1384,53 +1384,53 @@ def project(*, name: str, branch: typing.Optional[str] = None, production: bool
|
|
|
1384
1384
|
...
|
|
1385
1385
|
|
|
1386
1386
|
@typing.overload
|
|
1387
|
-
def
|
|
1387
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1388
1388
|
"""
|
|
1389
|
-
Specifies the
|
|
1390
|
-
|
|
1389
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1390
|
+
|
|
1391
|
+
Use `@conda_base` to set common libraries required by all
|
|
1392
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1391
1393
|
|
|
1392
1394
|
|
|
1393
1395
|
Parameters
|
|
1394
1396
|
----------
|
|
1395
|
-
|
|
1396
|
-
|
|
1397
|
-
|
|
1398
|
-
|
|
1399
|
-
|
|
1400
|
-
|
|
1401
|
-
|
|
1402
|
-
|
|
1403
|
-
|
|
1404
|
-
|
|
1405
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1406
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1397
|
+
packages : Dict[str, str], default {}
|
|
1398
|
+
Packages to use for this flow. The key is the name of the package
|
|
1399
|
+
and the value is the version to use.
|
|
1400
|
+
libraries : Dict[str, str], default {}
|
|
1401
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1402
|
+
python : str, optional, default None
|
|
1403
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1404
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1405
|
+
disabled : bool, default False
|
|
1406
|
+
If set to True, disables Conda.
|
|
1407
1407
|
"""
|
|
1408
1408
|
...
|
|
1409
1409
|
|
|
1410
1410
|
@typing.overload
|
|
1411
|
-
def
|
|
1411
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1412
1412
|
...
|
|
1413
1413
|
|
|
1414
|
-
def
|
|
1414
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1415
1415
|
"""
|
|
1416
|
-
Specifies the
|
|
1417
|
-
|
|
1416
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1417
|
+
|
|
1418
|
+
Use `@conda_base` to set common libraries required by all
|
|
1419
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1418
1420
|
|
|
1419
1421
|
|
|
1420
1422
|
Parameters
|
|
1421
1423
|
----------
|
|
1422
|
-
|
|
1423
|
-
|
|
1424
|
-
|
|
1425
|
-
|
|
1426
|
-
|
|
1427
|
-
|
|
1428
|
-
|
|
1429
|
-
|
|
1430
|
-
|
|
1431
|
-
|
|
1432
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1433
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1424
|
+
packages : Dict[str, str], default {}
|
|
1425
|
+
Packages to use for this flow. The key is the name of the package
|
|
1426
|
+
and the value is the version to use.
|
|
1427
|
+
libraries : Dict[str, str], default {}
|
|
1428
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1429
|
+
python : str, optional, default None
|
|
1430
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1431
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1432
|
+
disabled : bool, default False
|
|
1433
|
+
If set to True, disables Conda.
|
|
1434
1434
|
"""
|
|
1435
1435
|
...
|
|
1436
1436
|
|
|
@@ -1477,6 +1477,242 @@ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str,
|
|
|
1477
1477
|
"""
|
|
1478
1478
|
...
|
|
1479
1479
|
|
|
1480
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1481
|
+
"""
|
|
1482
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1483
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1484
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1485
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1486
|
+
starts only after all sensors finish.
|
|
1487
|
+
|
|
1488
|
+
|
|
1489
|
+
Parameters
|
|
1490
|
+
----------
|
|
1491
|
+
timeout : int
|
|
1492
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1493
|
+
poke_interval : int
|
|
1494
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1495
|
+
mode : str
|
|
1496
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1497
|
+
exponential_backoff : bool
|
|
1498
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1499
|
+
pool : str
|
|
1500
|
+
the slot pool this task should run in,
|
|
1501
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1502
|
+
soft_fail : bool
|
|
1503
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1504
|
+
name : str
|
|
1505
|
+
Name of the sensor on Airflow
|
|
1506
|
+
description : str
|
|
1507
|
+
Description of sensor in the Airflow UI
|
|
1508
|
+
bucket_key : Union[str, List[str]]
|
|
1509
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1510
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1511
|
+
bucket_name : str
|
|
1512
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1513
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1514
|
+
wildcard_match : bool
|
|
1515
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1516
|
+
aws_conn_id : str
|
|
1517
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1518
|
+
verify : bool
|
|
1519
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1520
|
+
"""
|
|
1521
|
+
...
|
|
1522
|
+
|
|
1523
|
+
@typing.overload
|
|
1524
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1525
|
+
"""
|
|
1526
|
+
Specifies the flow(s) that this flow depends on.
|
|
1527
|
+
|
|
1528
|
+
```
|
|
1529
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1530
|
+
```
|
|
1531
|
+
or
|
|
1532
|
+
```
|
|
1533
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1534
|
+
```
|
|
1535
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1536
|
+
when upstream runs within the same namespace complete successfully
|
|
1537
|
+
|
|
1538
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1539
|
+
by specifying the fully qualified project_flow_name.
|
|
1540
|
+
```
|
|
1541
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1542
|
+
```
|
|
1543
|
+
or
|
|
1544
|
+
```
|
|
1545
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1546
|
+
```
|
|
1547
|
+
|
|
1548
|
+
You can also specify just the project or project branch (other values will be
|
|
1549
|
+
inferred from the current project or project branch):
|
|
1550
|
+
```
|
|
1551
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1552
|
+
```
|
|
1553
|
+
|
|
1554
|
+
Note that `branch` is typically one of:
|
|
1555
|
+
- `prod`
|
|
1556
|
+
- `user.bob`
|
|
1557
|
+
- `test.my_experiment`
|
|
1558
|
+
- `prod.staging`
|
|
1559
|
+
|
|
1560
|
+
|
|
1561
|
+
Parameters
|
|
1562
|
+
----------
|
|
1563
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1564
|
+
Upstream flow dependency for this flow.
|
|
1565
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1566
|
+
Upstream flow dependencies for this flow.
|
|
1567
|
+
options : Dict[str, Any], default {}
|
|
1568
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1569
|
+
"""
|
|
1570
|
+
...
|
|
1571
|
+
|
|
1572
|
+
@typing.overload
|
|
1573
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1574
|
+
...
|
|
1575
|
+
|
|
1576
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1577
|
+
"""
|
|
1578
|
+
Specifies the flow(s) that this flow depends on.
|
|
1579
|
+
|
|
1580
|
+
```
|
|
1581
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1582
|
+
```
|
|
1583
|
+
or
|
|
1584
|
+
```
|
|
1585
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1586
|
+
```
|
|
1587
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1588
|
+
when upstream runs within the same namespace complete successfully
|
|
1589
|
+
|
|
1590
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1591
|
+
by specifying the fully qualified project_flow_name.
|
|
1592
|
+
```
|
|
1593
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1594
|
+
```
|
|
1595
|
+
or
|
|
1596
|
+
```
|
|
1597
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1598
|
+
```
|
|
1599
|
+
|
|
1600
|
+
You can also specify just the project or project branch (other values will be
|
|
1601
|
+
inferred from the current project or project branch):
|
|
1602
|
+
```
|
|
1603
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1604
|
+
```
|
|
1605
|
+
|
|
1606
|
+
Note that `branch` is typically one of:
|
|
1607
|
+
- `prod`
|
|
1608
|
+
- `user.bob`
|
|
1609
|
+
- `test.my_experiment`
|
|
1610
|
+
- `prod.staging`
|
|
1611
|
+
|
|
1612
|
+
|
|
1613
|
+
Parameters
|
|
1614
|
+
----------
|
|
1615
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1616
|
+
Upstream flow dependency for this flow.
|
|
1617
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1618
|
+
Upstream flow dependencies for this flow.
|
|
1619
|
+
options : Dict[str, Any], default {}
|
|
1620
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1621
|
+
"""
|
|
1622
|
+
...
|
|
1623
|
+
|
|
1624
|
+
@typing.overload
|
|
1625
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1626
|
+
"""
|
|
1627
|
+
Specifies the times when the flow should be run when running on a
|
|
1628
|
+
production scheduler.
|
|
1629
|
+
|
|
1630
|
+
|
|
1631
|
+
Parameters
|
|
1632
|
+
----------
|
|
1633
|
+
hourly : bool, default False
|
|
1634
|
+
Run the workflow hourly.
|
|
1635
|
+
daily : bool, default True
|
|
1636
|
+
Run the workflow daily.
|
|
1637
|
+
weekly : bool, default False
|
|
1638
|
+
Run the workflow weekly.
|
|
1639
|
+
cron : str, optional, default None
|
|
1640
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1641
|
+
specified by this expression.
|
|
1642
|
+
timezone : str, optional, default None
|
|
1643
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1644
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1645
|
+
"""
|
|
1646
|
+
...
|
|
1647
|
+
|
|
1648
|
+
@typing.overload
|
|
1649
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1650
|
+
...
|
|
1651
|
+
|
|
1652
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1653
|
+
"""
|
|
1654
|
+
Specifies the times when the flow should be run when running on a
|
|
1655
|
+
production scheduler.
|
|
1656
|
+
|
|
1657
|
+
|
|
1658
|
+
Parameters
|
|
1659
|
+
----------
|
|
1660
|
+
hourly : bool, default False
|
|
1661
|
+
Run the workflow hourly.
|
|
1662
|
+
daily : bool, default True
|
|
1663
|
+
Run the workflow daily.
|
|
1664
|
+
weekly : bool, default False
|
|
1665
|
+
Run the workflow weekly.
|
|
1666
|
+
cron : str, optional, default None
|
|
1667
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1668
|
+
specified by this expression.
|
|
1669
|
+
timezone : str, optional, default None
|
|
1670
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1671
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1672
|
+
"""
|
|
1673
|
+
...
|
|
1674
|
+
|
|
1675
|
+
@typing.overload
|
|
1676
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1677
|
+
"""
|
|
1678
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1679
|
+
|
|
1680
|
+
Use `@pypi_base` to set common packages required by all
|
|
1681
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1682
|
+
|
|
1683
|
+
Parameters
|
|
1684
|
+
----------
|
|
1685
|
+
packages : Dict[str, str], default: {}
|
|
1686
|
+
Packages to use for this flow. The key is the name of the package
|
|
1687
|
+
and the value is the version to use.
|
|
1688
|
+
python : str, optional, default: None
|
|
1689
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1690
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1691
|
+
"""
|
|
1692
|
+
...
|
|
1693
|
+
|
|
1694
|
+
@typing.overload
|
|
1695
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1696
|
+
...
|
|
1697
|
+
|
|
1698
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1699
|
+
"""
|
|
1700
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1701
|
+
|
|
1702
|
+
Use `@pypi_base` to set common packages required by all
|
|
1703
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1704
|
+
|
|
1705
|
+
Parameters
|
|
1706
|
+
----------
|
|
1707
|
+
packages : Dict[str, str], default: {}
|
|
1708
|
+
Packages to use for this flow. The key is the name of the package
|
|
1709
|
+
and the value is the version to use.
|
|
1710
|
+
python : str, optional, default: None
|
|
1711
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1712
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1713
|
+
"""
|
|
1714
|
+
...
|
|
1715
|
+
|
|
1480
1716
|
@typing.overload
|
|
1481
1717
|
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1482
1718
|
"""
|
|
@@ -1570,98 +1806,6 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
|
1570
1806
|
"""
|
|
1571
1807
|
...
|
|
1572
1808
|
|
|
1573
|
-
@typing.overload
|
|
1574
|
-
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1575
|
-
"""
|
|
1576
|
-
Specifies the Conda environment for all steps of the flow.
|
|
1577
|
-
|
|
1578
|
-
Use `@conda_base` to set common libraries required by all
|
|
1579
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1580
|
-
|
|
1581
|
-
|
|
1582
|
-
Parameters
|
|
1583
|
-
----------
|
|
1584
|
-
packages : Dict[str, str], default {}
|
|
1585
|
-
Packages to use for this flow. The key is the name of the package
|
|
1586
|
-
and the value is the version to use.
|
|
1587
|
-
libraries : Dict[str, str], default {}
|
|
1588
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1589
|
-
python : str, optional, default None
|
|
1590
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1591
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1592
|
-
disabled : bool, default False
|
|
1593
|
-
If set to True, disables Conda.
|
|
1594
|
-
"""
|
|
1595
|
-
...
|
|
1596
|
-
|
|
1597
|
-
@typing.overload
|
|
1598
|
-
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1599
|
-
...
|
|
1600
|
-
|
|
1601
|
-
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1602
|
-
"""
|
|
1603
|
-
Specifies the Conda environment for all steps of the flow.
|
|
1604
|
-
|
|
1605
|
-
Use `@conda_base` to set common libraries required by all
|
|
1606
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1607
|
-
|
|
1608
|
-
|
|
1609
|
-
Parameters
|
|
1610
|
-
----------
|
|
1611
|
-
packages : Dict[str, str], default {}
|
|
1612
|
-
Packages to use for this flow. The key is the name of the package
|
|
1613
|
-
and the value is the version to use.
|
|
1614
|
-
libraries : Dict[str, str], default {}
|
|
1615
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1616
|
-
python : str, optional, default None
|
|
1617
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1618
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1619
|
-
disabled : bool, default False
|
|
1620
|
-
If set to True, disables Conda.
|
|
1621
|
-
"""
|
|
1622
|
-
...
|
|
1623
|
-
|
|
1624
|
-
@typing.overload
|
|
1625
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1626
|
-
"""
|
|
1627
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1628
|
-
|
|
1629
|
-
Use `@pypi_base` to set common packages required by all
|
|
1630
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1631
|
-
|
|
1632
|
-
Parameters
|
|
1633
|
-
----------
|
|
1634
|
-
packages : Dict[str, str], default: {}
|
|
1635
|
-
Packages to use for this flow. The key is the name of the package
|
|
1636
|
-
and the value is the version to use.
|
|
1637
|
-
python : str, optional, default: None
|
|
1638
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1639
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1640
|
-
"""
|
|
1641
|
-
...
|
|
1642
|
-
|
|
1643
|
-
@typing.overload
|
|
1644
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1645
|
-
...
|
|
1646
|
-
|
|
1647
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1648
|
-
"""
|
|
1649
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1650
|
-
|
|
1651
|
-
Use `@pypi_base` to set common packages required by all
|
|
1652
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1653
|
-
|
|
1654
|
-
Parameters
|
|
1655
|
-
----------
|
|
1656
|
-
packages : Dict[str, str], default: {}
|
|
1657
|
-
Packages to use for this flow. The key is the name of the package
|
|
1658
|
-
and the value is the version to use.
|
|
1659
|
-
python : str, optional, default: None
|
|
1660
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1661
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1662
|
-
"""
|
|
1663
|
-
...
|
|
1664
|
-
|
|
1665
1809
|
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
|
1666
1810
|
"""
|
|
1667
1811
|
Allows setting external datastores to save data for the
|
|
@@ -1776,149 +1920,5 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1776
1920
|
"""
|
|
1777
1921
|
...
|
|
1778
1922
|
|
|
1779
|
-
@typing.overload
|
|
1780
|
-
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1781
|
-
"""
|
|
1782
|
-
Specifies the flow(s) that this flow depends on.
|
|
1783
|
-
|
|
1784
|
-
```
|
|
1785
|
-
@trigger_on_finish(flow='FooFlow')
|
|
1786
|
-
```
|
|
1787
|
-
or
|
|
1788
|
-
```
|
|
1789
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1790
|
-
```
|
|
1791
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1792
|
-
when upstream runs within the same namespace complete successfully
|
|
1793
|
-
|
|
1794
|
-
Additionally, you can specify project aware upstream flow dependencies
|
|
1795
|
-
by specifying the fully qualified project_flow_name.
|
|
1796
|
-
```
|
|
1797
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1798
|
-
```
|
|
1799
|
-
or
|
|
1800
|
-
```
|
|
1801
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1802
|
-
```
|
|
1803
|
-
|
|
1804
|
-
You can also specify just the project or project branch (other values will be
|
|
1805
|
-
inferred from the current project or project branch):
|
|
1806
|
-
```
|
|
1807
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1808
|
-
```
|
|
1809
|
-
|
|
1810
|
-
Note that `branch` is typically one of:
|
|
1811
|
-
- `prod`
|
|
1812
|
-
- `user.bob`
|
|
1813
|
-
- `test.my_experiment`
|
|
1814
|
-
- `prod.staging`
|
|
1815
|
-
|
|
1816
|
-
|
|
1817
|
-
Parameters
|
|
1818
|
-
----------
|
|
1819
|
-
flow : Union[str, Dict[str, str]], optional, default None
|
|
1820
|
-
Upstream flow dependency for this flow.
|
|
1821
|
-
flows : List[Union[str, Dict[str, str]]], default []
|
|
1822
|
-
Upstream flow dependencies for this flow.
|
|
1823
|
-
options : Dict[str, Any], default {}
|
|
1824
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
1825
|
-
"""
|
|
1826
|
-
...
|
|
1827
|
-
|
|
1828
|
-
@typing.overload
|
|
1829
|
-
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1830
|
-
...
|
|
1831
|
-
|
|
1832
|
-
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1833
|
-
"""
|
|
1834
|
-
Specifies the flow(s) that this flow depends on.
|
|
1835
|
-
|
|
1836
|
-
```
|
|
1837
|
-
@trigger_on_finish(flow='FooFlow')
|
|
1838
|
-
```
|
|
1839
|
-
or
|
|
1840
|
-
```
|
|
1841
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1842
|
-
```
|
|
1843
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1844
|
-
when upstream runs within the same namespace complete successfully
|
|
1845
|
-
|
|
1846
|
-
Additionally, you can specify project aware upstream flow dependencies
|
|
1847
|
-
by specifying the fully qualified project_flow_name.
|
|
1848
|
-
```
|
|
1849
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1850
|
-
```
|
|
1851
|
-
or
|
|
1852
|
-
```
|
|
1853
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1854
|
-
```
|
|
1855
|
-
|
|
1856
|
-
You can also specify just the project or project branch (other values will be
|
|
1857
|
-
inferred from the current project or project branch):
|
|
1858
|
-
```
|
|
1859
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1860
|
-
```
|
|
1861
|
-
|
|
1862
|
-
Note that `branch` is typically one of:
|
|
1863
|
-
- `prod`
|
|
1864
|
-
- `user.bob`
|
|
1865
|
-
- `test.my_experiment`
|
|
1866
|
-
- `prod.staging`
|
|
1867
|
-
|
|
1868
|
-
|
|
1869
|
-
Parameters
|
|
1870
|
-
----------
|
|
1871
|
-
flow : Union[str, Dict[str, str]], optional, default None
|
|
1872
|
-
Upstream flow dependency for this flow.
|
|
1873
|
-
flows : List[Union[str, Dict[str, str]]], default []
|
|
1874
|
-
Upstream flow dependencies for this flow.
|
|
1875
|
-
options : Dict[str, Any], default {}
|
|
1876
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
1877
|
-
"""
|
|
1878
|
-
...
|
|
1879
|
-
|
|
1880
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1881
|
-
"""
|
|
1882
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1883
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1884
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1885
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1886
|
-
starts only after all sensors finish.
|
|
1887
|
-
|
|
1888
|
-
|
|
1889
|
-
Parameters
|
|
1890
|
-
----------
|
|
1891
|
-
timeout : int
|
|
1892
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1893
|
-
poke_interval : int
|
|
1894
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1895
|
-
mode : str
|
|
1896
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1897
|
-
exponential_backoff : bool
|
|
1898
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1899
|
-
pool : str
|
|
1900
|
-
the slot pool this task should run in,
|
|
1901
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1902
|
-
soft_fail : bool
|
|
1903
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1904
|
-
name : str
|
|
1905
|
-
Name of the sensor on Airflow
|
|
1906
|
-
description : str
|
|
1907
|
-
Description of sensor in the Airflow UI
|
|
1908
|
-
bucket_key : Union[str, List[str]]
|
|
1909
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1910
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1911
|
-
bucket_name : str
|
|
1912
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1913
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1914
|
-
wildcard_match : bool
|
|
1915
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1916
|
-
aws_conn_id : str
|
|
1917
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
|
1918
|
-
verify : bool
|
|
1919
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1920
|
-
"""
|
|
1921
|
-
...
|
|
1922
|
-
|
|
1923
1923
|
pkg_name: str
|
|
1924
1924
|
|