ob-metaflow-stubs 6.0.6.1__py2.py3-none-any.whl → 6.0.6.2__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +951 -951
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +4 -4
- metaflow-stubs/client/filecache.pyi +3 -3
- metaflow-stubs/events.pyi +3 -3
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +2 -2
- metaflow-stubs/meta_files.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -2
- metaflow-stubs/metaflow_current.pyi +50 -50
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/packaging_sys/__init__.pyi +7 -7
- metaflow-stubs/packaging_sys/backend.pyi +4 -4
- metaflow-stubs/packaging_sys/distribution_support.pyi +5 -5
- metaflow-stubs/packaging_sys/tar_backend.pyi +3 -3
- metaflow-stubs/packaging_sys/utils.pyi +2 -2
- metaflow-stubs/packaging_sys/v1.pyi +2 -2
- metaflow-stubs/parameters.pyi +4 -4
- metaflow-stubs/plugins/__init__.pyi +13 -13
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/argo/exit_hooks.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +3 -3
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +4 -4
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +3 -3
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +5 -5
- metaflow-stubs/runner/deployer_impl.pyi +10 -2
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +3 -3
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_options.pyi +3 -3
- metaflow-stubs/user_configs/config_parameters.pyi +4 -4
- metaflow-stubs/user_decorators/__init__.pyi +2 -2
- metaflow-stubs/user_decorators/common.pyi +2 -2
- metaflow-stubs/user_decorators/mutable_flow.pyi +4 -4
- metaflow-stubs/user_decorators/mutable_step.pyi +4 -4
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +4 -4
- metaflow-stubs/user_decorators/user_step_decorator.pyi +4 -4
- {ob_metaflow_stubs-6.0.6.1.dist-info → ob_metaflow_stubs-6.0.6.2.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.6.2.dist-info/RECORD +261 -0
- ob_metaflow_stubs-6.0.6.1.dist-info/RECORD +0 -261
- {ob_metaflow_stubs-6.0.6.1.dist-info → ob_metaflow_stubs-6.0.6.2.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.6.1.dist-info → ob_metaflow_stubs-6.0.6.2.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
|
-
# MF version: 2.17.0
|
4
|
-
# Generated on 2025-08-
|
3
|
+
# MF version: 2.17.1.0+obcheckpoint(0.2.4);ob(v1) #
|
4
|
+
# Generated on 2025-08-11T21:26:28.605682 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
@@ -39,17 +39,17 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
42
|
+
from . import metaflow_git as metaflow_git
|
42
43
|
from . import tuple_util as tuple_util
|
43
44
|
from . import cards as cards
|
44
|
-
from . import metaflow_git as metaflow_git
|
45
45
|
from . import events as events
|
46
46
|
from . import runner as runner
|
47
47
|
from . import plugins as plugins
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
49
49
|
from . import includefile as includefile
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
51
|
-
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
52
51
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
52
|
+
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
53
53
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
54
54
|
from . import client as client
|
55
55
|
from .client.core import namespace as namespace
|
@@ -168,288 +168,108 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
168
168
|
...
|
169
169
|
|
170
170
|
@typing.overload
|
171
|
-
def
|
171
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
172
172
|
"""
|
173
|
-
|
174
|
-
|
175
|
-
> Examples
|
176
|
-
- Saving Models
|
177
|
-
```python
|
178
|
-
@model
|
179
|
-
@step
|
180
|
-
def train(self):
|
181
|
-
# current.model.save returns a dictionary reference to the model saved
|
182
|
-
self.my_model = current.model.save(
|
183
|
-
path_to_my_model,
|
184
|
-
label="my_model",
|
185
|
-
metadata={
|
186
|
-
"epochs": 10,
|
187
|
-
"batch-size": 32,
|
188
|
-
"learning-rate": 0.001,
|
189
|
-
}
|
190
|
-
)
|
191
|
-
self.next(self.test)
|
192
|
-
|
193
|
-
@model(load="my_model")
|
194
|
-
@step
|
195
|
-
def test(self):
|
196
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
197
|
-
# where the key is the name of the artifact and the value is the path to the model
|
198
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
199
|
-
self.next(self.end)
|
200
|
-
```
|
201
|
-
|
202
|
-
- Loading models
|
203
|
-
```python
|
204
|
-
@step
|
205
|
-
def train(self):
|
206
|
-
# current.model.load returns the path to the model loaded
|
207
|
-
checkpoint_path = current.model.load(
|
208
|
-
self.checkpoint_key,
|
209
|
-
)
|
210
|
-
model_path = current.model.load(
|
211
|
-
self.model,
|
212
|
-
)
|
213
|
-
self.next(self.test)
|
214
|
-
```
|
215
|
-
|
216
|
-
|
217
|
-
Parameters
|
218
|
-
----------
|
219
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
220
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
221
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
222
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
223
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
224
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
225
|
-
|
226
|
-
temp_dir_root : str, default: None
|
227
|
-
The root directory under which `current.model.loaded` will store loaded models
|
173
|
+
Decorator prototype for all step decorators. This function gets specialized
|
174
|
+
and imported for all decorators types by _import_plugin_decorators().
|
228
175
|
"""
|
229
176
|
...
|
230
177
|
|
231
178
|
@typing.overload
|
232
|
-
def
|
233
|
-
...
|
234
|
-
|
235
|
-
@typing.overload
|
236
|
-
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
179
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
237
180
|
...
|
238
181
|
|
239
|
-
def
|
182
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
240
183
|
"""
|
241
|
-
|
242
|
-
|
243
|
-
> Examples
|
244
|
-
- Saving Models
|
245
|
-
```python
|
246
|
-
@model
|
247
|
-
@step
|
248
|
-
def train(self):
|
249
|
-
# current.model.save returns a dictionary reference to the model saved
|
250
|
-
self.my_model = current.model.save(
|
251
|
-
path_to_my_model,
|
252
|
-
label="my_model",
|
253
|
-
metadata={
|
254
|
-
"epochs": 10,
|
255
|
-
"batch-size": 32,
|
256
|
-
"learning-rate": 0.001,
|
257
|
-
}
|
258
|
-
)
|
259
|
-
self.next(self.test)
|
260
|
-
|
261
|
-
@model(load="my_model")
|
262
|
-
@step
|
263
|
-
def test(self):
|
264
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
265
|
-
# where the key is the name of the artifact and the value is the path to the model
|
266
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
267
|
-
self.next(self.end)
|
268
|
-
```
|
269
|
-
|
270
|
-
- Loading models
|
271
|
-
```python
|
272
|
-
@step
|
273
|
-
def train(self):
|
274
|
-
# current.model.load returns the path to the model loaded
|
275
|
-
checkpoint_path = current.model.load(
|
276
|
-
self.checkpoint_key,
|
277
|
-
)
|
278
|
-
model_path = current.model.load(
|
279
|
-
self.model,
|
280
|
-
)
|
281
|
-
self.next(self.test)
|
282
|
-
```
|
283
|
-
|
284
|
-
|
285
|
-
Parameters
|
286
|
-
----------
|
287
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
288
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
289
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
290
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
291
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
292
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
293
|
-
|
294
|
-
temp_dir_root : str, default: None
|
295
|
-
The root directory under which `current.model.loaded` will store loaded models
|
184
|
+
Decorator prototype for all step decorators. This function gets specialized
|
185
|
+
and imported for all decorators types by _import_plugin_decorators().
|
296
186
|
"""
|
297
187
|
...
|
298
188
|
|
299
189
|
@typing.overload
|
300
|
-
def
|
190
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
301
191
|
"""
|
302
|
-
Specifies the
|
192
|
+
Specifies the PyPI packages for the step.
|
303
193
|
|
304
194
|
Information in this decorator will augment any
|
305
|
-
attributes set in the `@
|
306
|
-
you can use `@
|
307
|
-
steps and use `@
|
195
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
196
|
+
you can use `@pypi_base` to set packages required by all
|
197
|
+
steps and use `@pypi` to specify step-specific overrides.
|
308
198
|
|
309
199
|
|
310
200
|
Parameters
|
311
201
|
----------
|
312
|
-
packages : Dict[str, str], default {}
|
202
|
+
packages : Dict[str, str], default: {}
|
313
203
|
Packages to use for this step. The key is the name of the package
|
314
204
|
and the value is the version to use.
|
315
|
-
|
316
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
317
|
-
python : str, optional, default None
|
205
|
+
python : str, optional, default: None
|
318
206
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
319
207
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
320
|
-
disabled : bool, default False
|
321
|
-
If set to True, disables @conda.
|
322
208
|
"""
|
323
209
|
...
|
324
210
|
|
325
211
|
@typing.overload
|
326
|
-
def
|
212
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
327
213
|
...
|
328
214
|
|
329
215
|
@typing.overload
|
330
|
-
def
|
216
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
331
217
|
...
|
332
218
|
|
333
|
-
def
|
219
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
334
220
|
"""
|
335
|
-
Specifies the
|
221
|
+
Specifies the PyPI packages for the step.
|
336
222
|
|
337
223
|
Information in this decorator will augment any
|
338
|
-
attributes set in the `@
|
339
|
-
you can use `@
|
340
|
-
steps and use `@
|
224
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
225
|
+
you can use `@pypi_base` to set packages required by all
|
226
|
+
steps and use `@pypi` to specify step-specific overrides.
|
341
227
|
|
342
228
|
|
343
229
|
Parameters
|
344
230
|
----------
|
345
|
-
packages : Dict[str, str], default {}
|
231
|
+
packages : Dict[str, str], default: {}
|
346
232
|
Packages to use for this step. The key is the name of the package
|
347
233
|
and the value is the version to use.
|
348
|
-
|
349
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
350
|
-
python : str, optional, default None
|
234
|
+
python : str, optional, default: None
|
351
235
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
352
236
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
353
|
-
disabled : bool, default False
|
354
|
-
If set to True, disables @conda.
|
355
|
-
"""
|
356
|
-
...
|
357
|
-
|
358
|
-
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
359
|
-
"""
|
360
|
-
Specifies that this step should execute on DGX cloud.
|
361
|
-
|
362
|
-
|
363
|
-
Parameters
|
364
|
-
----------
|
365
|
-
gpu : int
|
366
|
-
Number of GPUs to use.
|
367
|
-
gpu_type : str
|
368
|
-
Type of Nvidia GPU to use.
|
369
237
|
"""
|
370
238
|
...
|
371
239
|
|
372
240
|
@typing.overload
|
373
|
-
def
|
241
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
374
242
|
"""
|
375
|
-
|
376
|
-
|
377
|
-
|
378
|
-
Parameters
|
379
|
-
----------
|
380
|
-
vars : Dict[str, str], default {}
|
381
|
-
Dictionary of environment variables to set.
|
243
|
+
Decorator prototype for all step decorators. This function gets specialized
|
244
|
+
and imported for all decorators types by _import_plugin_decorators().
|
382
245
|
"""
|
383
246
|
...
|
384
247
|
|
385
248
|
@typing.overload
|
386
|
-
def
|
387
|
-
...
|
388
|
-
|
389
|
-
@typing.overload
|
390
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
249
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
391
250
|
...
|
392
251
|
|
393
|
-
def
|
252
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
394
253
|
"""
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
Parameters
|
399
|
-
----------
|
400
|
-
vars : Dict[str, str], default {}
|
401
|
-
Dictionary of environment variables to set.
|
254
|
+
Decorator prototype for all step decorators. This function gets specialized
|
255
|
+
and imported for all decorators types by _import_plugin_decorators().
|
402
256
|
"""
|
403
257
|
...
|
404
258
|
|
405
259
|
@typing.overload
|
406
|
-
def
|
260
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
407
261
|
"""
|
408
|
-
|
409
|
-
|
410
|
-
Information in this decorator will augment any
|
411
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
412
|
-
you can use `@pypi_base` to set packages required by all
|
413
|
-
steps and use `@pypi` to specify step-specific overrides.
|
414
|
-
|
415
|
-
|
416
|
-
Parameters
|
417
|
-
----------
|
418
|
-
packages : Dict[str, str], default: {}
|
419
|
-
Packages to use for this step. The key is the name of the package
|
420
|
-
and the value is the version to use.
|
421
|
-
python : str, optional, default: None
|
422
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
423
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
262
|
+
Internal decorator to support Fast bakery
|
424
263
|
"""
|
425
264
|
...
|
426
265
|
|
427
266
|
@typing.overload
|
428
|
-
def
|
429
|
-
...
|
430
|
-
|
431
|
-
@typing.overload
|
432
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
267
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
433
268
|
...
|
434
269
|
|
435
|
-
def
|
270
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
436
271
|
"""
|
437
|
-
|
438
|
-
|
439
|
-
Information in this decorator will augment any
|
440
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
441
|
-
you can use `@pypi_base` to set packages required by all
|
442
|
-
steps and use `@pypi` to specify step-specific overrides.
|
443
|
-
|
444
|
-
|
445
|
-
Parameters
|
446
|
-
----------
|
447
|
-
packages : Dict[str, str], default: {}
|
448
|
-
Packages to use for this step. The key is the name of the package
|
449
|
-
and the value is the version to use.
|
450
|
-
python : str, optional, default: None
|
451
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
452
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
272
|
+
Internal decorator to support Fast bakery
|
453
273
|
"""
|
454
274
|
...
|
455
275
|
|
@@ -600,106 +420,169 @@ def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
600
420
|
"""
|
601
421
|
...
|
602
422
|
|
603
|
-
|
604
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
423
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
605
424
|
"""
|
606
|
-
|
607
|
-
|
425
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
426
|
+
|
427
|
+
|
428
|
+
Parameters
|
429
|
+
----------
|
430
|
+
integration_name : str, optional
|
431
|
+
Name of the S3 proxy integration. If not specified, will use the only
|
432
|
+
available S3 proxy integration in the namespace (fails if multiple exist).
|
433
|
+
write_mode : str, optional
|
434
|
+
The desired behavior during write operations to target (origin) S3 bucket.
|
435
|
+
allowed options are:
|
436
|
+
"origin-and-cache" -> write to both the target S3 bucket and local object
|
437
|
+
storage
|
438
|
+
"origin" -> only write to the target S3 bucket
|
439
|
+
"cache" -> only write to the object storage service used for caching
|
440
|
+
debug : bool, optional
|
441
|
+
Enable debug logging for proxy operations.
|
608
442
|
"""
|
609
443
|
...
|
610
444
|
|
611
|
-
|
612
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
613
|
-
...
|
614
|
-
|
615
|
-
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
445
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
616
446
|
"""
|
617
|
-
|
618
|
-
|
447
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
448
|
+
|
449
|
+
User code call
|
450
|
+
--------------
|
451
|
+
@vllm(
|
452
|
+
model="...",
|
453
|
+
...
|
454
|
+
)
|
455
|
+
|
456
|
+
Valid backend options
|
457
|
+
---------------------
|
458
|
+
- 'local': Run as a separate process on the local task machine.
|
459
|
+
|
460
|
+
Valid model options
|
461
|
+
-------------------
|
462
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
463
|
+
|
464
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
465
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
466
|
+
|
467
|
+
|
468
|
+
Parameters
|
469
|
+
----------
|
470
|
+
model: str
|
471
|
+
HuggingFace model identifier to be served by vLLM.
|
472
|
+
backend: str
|
473
|
+
Determines where and how to run the vLLM process.
|
474
|
+
openai_api_server: bool
|
475
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
476
|
+
Default is False (uses native engine).
|
477
|
+
Set to True for backward compatibility with existing code.
|
478
|
+
debug: bool
|
479
|
+
Whether to turn on verbose debugging logs.
|
480
|
+
card_refresh_interval: int
|
481
|
+
Interval in seconds for refreshing the vLLM status card.
|
482
|
+
Only used when openai_api_server=True.
|
483
|
+
max_retries: int
|
484
|
+
Maximum number of retries checking for vLLM server startup.
|
485
|
+
Only used when openai_api_server=True.
|
486
|
+
retry_alert_frequency: int
|
487
|
+
Frequency of alert logs for vLLM server startup retries.
|
488
|
+
Only used when openai_api_server=True.
|
489
|
+
engine_args : dict
|
490
|
+
Additional keyword arguments to pass to the vLLM engine.
|
491
|
+
For example, `tensor_parallel_size=2`.
|
619
492
|
"""
|
620
493
|
...
|
621
494
|
|
622
495
|
@typing.overload
|
623
|
-
def
|
496
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
624
497
|
"""
|
625
|
-
|
626
|
-
|
627
|
-
|
498
|
+
Specifies that the step will success under all circumstances.
|
499
|
+
|
500
|
+
The decorator will create an optional artifact, specified by `var`, which
|
501
|
+
contains the exception raised. You can use it to detect the presence
|
502
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
503
|
+
are missing.
|
504
|
+
|
505
|
+
|
506
|
+
Parameters
|
507
|
+
----------
|
508
|
+
var : str, optional, default None
|
509
|
+
Name of the artifact in which to store the caught exception.
|
510
|
+
If not specified, the exception is not stored.
|
511
|
+
print_exception : bool, default True
|
512
|
+
Determines whether or not the exception is printed to
|
513
|
+
stdout when caught.
|
628
514
|
"""
|
629
515
|
...
|
630
516
|
|
631
517
|
@typing.overload
|
632
|
-
def
|
518
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
633
519
|
...
|
634
520
|
|
635
|
-
|
636
|
-
|
637
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
638
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
639
|
-
a Neo Cloud like Nebius.
|
640
|
-
"""
|
521
|
+
@typing.overload
|
522
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
641
523
|
...
|
642
524
|
|
643
|
-
|
644
|
-
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
525
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
645
526
|
"""
|
646
|
-
Specifies
|
527
|
+
Specifies that the step will success under all circumstances.
|
647
528
|
|
648
|
-
|
529
|
+
The decorator will create an optional artifact, specified by `var`, which
|
530
|
+
contains the exception raised. You can use it to detect the presence
|
531
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
532
|
+
are missing.
|
649
533
|
|
650
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
651
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
652
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
653
534
|
|
654
|
-
|
655
|
-
|
535
|
+
Parameters
|
536
|
+
----------
|
537
|
+
var : str, optional, default None
|
538
|
+
Name of the artifact in which to store the caught exception.
|
539
|
+
If not specified, the exception is not stored.
|
540
|
+
print_exception : bool, default True
|
541
|
+
Determines whether or not the exception is printed to
|
542
|
+
stdout when caught.
|
543
|
+
"""
|
544
|
+
...
|
545
|
+
|
546
|
+
@typing.overload
|
547
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
548
|
+
"""
|
549
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
550
|
+
the execution of a step.
|
656
551
|
|
657
552
|
|
658
553
|
Parameters
|
659
554
|
----------
|
660
|
-
|
661
|
-
|
662
|
-
|
663
|
-
|
664
|
-
hours : int, default 0
|
665
|
-
Number of hours to wait prior to timing out.
|
555
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
556
|
+
List of secret specs, defining how the secrets are to be retrieved
|
557
|
+
role : str, optional, default: None
|
558
|
+
Role to use for fetching secrets
|
666
559
|
"""
|
667
560
|
...
|
668
561
|
|
669
562
|
@typing.overload
|
670
|
-
def
|
563
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
671
564
|
...
|
672
565
|
|
673
566
|
@typing.overload
|
674
|
-
def
|
567
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
675
568
|
...
|
676
569
|
|
677
|
-
def
|
570
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
678
571
|
"""
|
679
|
-
Specifies
|
680
|
-
|
681
|
-
This decorator is useful if this step may hang indefinitely.
|
682
|
-
|
683
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
684
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
685
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
686
|
-
|
687
|
-
Note that all the values specified in parameters are added together so if you specify
|
688
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
572
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
573
|
+
the execution of a step.
|
689
574
|
|
690
575
|
|
691
576
|
Parameters
|
692
577
|
----------
|
693
|
-
|
694
|
-
|
695
|
-
|
696
|
-
|
697
|
-
hours : int, default 0
|
698
|
-
Number of hours to wait prior to timing out.
|
578
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
579
|
+
List of secret specs, defining how the secrets are to be retrieved
|
580
|
+
role : str, optional, default: None
|
581
|
+
Role to use for fetching secrets
|
699
582
|
"""
|
700
583
|
...
|
701
584
|
|
702
|
-
def
|
585
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
703
586
|
"""
|
704
587
|
Specifies that this step should execute on DGX cloud.
|
705
588
|
|
@@ -710,109 +593,82 @@ def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[t
|
|
710
593
|
Number of GPUs to use.
|
711
594
|
gpu_type : str
|
712
595
|
Type of Nvidia GPU to use.
|
713
|
-
queue_timeout : int
|
714
|
-
Time to keep the job in NVCF's queue.
|
715
596
|
"""
|
716
597
|
...
|
717
598
|
|
718
|
-
|
719
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
599
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
720
600
|
"""
|
721
|
-
|
722
|
-
to a step needs to be retried.
|
601
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
723
602
|
|
724
|
-
|
725
|
-
|
726
|
-
|
603
|
+
User code call
|
604
|
+
--------------
|
605
|
+
@ollama(
|
606
|
+
models=[...],
|
607
|
+
...
|
608
|
+
)
|
727
609
|
|
728
|
-
|
729
|
-
|
730
|
-
|
610
|
+
Valid backend options
|
611
|
+
---------------------
|
612
|
+
- 'local': Run as a separate process on the local task machine.
|
613
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
614
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
615
|
+
|
616
|
+
Valid model options
|
617
|
+
-------------------
|
618
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
731
619
|
|
732
620
|
|
733
621
|
Parameters
|
734
622
|
----------
|
735
|
-
|
736
|
-
|
737
|
-
|
738
|
-
|
623
|
+
models: list[str]
|
624
|
+
List of Ollama containers running models in sidecars.
|
625
|
+
backend: str
|
626
|
+
Determines where and how to run the Ollama process.
|
627
|
+
force_pull: bool
|
628
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
629
|
+
cache_update_policy: str
|
630
|
+
Cache update policy: "auto", "force", or "never".
|
631
|
+
force_cache_update: bool
|
632
|
+
Simple override for "force" cache update policy.
|
633
|
+
debug: bool
|
634
|
+
Whether to turn on verbose debugging logs.
|
635
|
+
circuit_breaker_config: dict
|
636
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
637
|
+
timeout_config: dict
|
638
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
739
639
|
"""
|
740
640
|
...
|
741
641
|
|
742
642
|
@typing.overload
|
743
|
-
def
|
744
|
-
...
|
745
|
-
|
746
|
-
@typing.overload
|
747
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
748
|
-
...
|
749
|
-
|
750
|
-
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
643
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
751
644
|
"""
|
752
|
-
|
753
|
-
to a step needs to be retried.
|
754
|
-
|
755
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
756
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
757
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
645
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
758
646
|
|
759
|
-
|
760
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
761
|
-
ensuring that the flow execution can continue.
|
647
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
762
648
|
|
763
649
|
|
764
650
|
Parameters
|
765
651
|
----------
|
766
|
-
|
767
|
-
|
768
|
-
|
769
|
-
|
652
|
+
type : str, default 'default'
|
653
|
+
Card type.
|
654
|
+
id : str, optional, default None
|
655
|
+
If multiple cards are present, use this id to identify this card.
|
656
|
+
options : Dict[str, Any], default {}
|
657
|
+
Options passed to the card. The contents depend on the card type.
|
658
|
+
timeout : int, default 45
|
659
|
+
Interrupt reporting if it takes more than this many seconds.
|
770
660
|
"""
|
771
661
|
...
|
772
662
|
|
773
663
|
@typing.overload
|
774
|
-
def
|
775
|
-
"""
|
776
|
-
Decorator prototype for all step decorators. This function gets specialized
|
777
|
-
and imported for all decorators types by _import_plugin_decorators().
|
778
|
-
"""
|
664
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
779
665
|
...
|
780
666
|
|
781
667
|
@typing.overload
|
782
|
-
def
|
783
|
-
...
|
784
|
-
|
785
|
-
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
786
|
-
"""
|
787
|
-
Decorator prototype for all step decorators. This function gets specialized
|
788
|
-
and imported for all decorators types by _import_plugin_decorators().
|
789
|
-
"""
|
790
|
-
...
|
791
|
-
|
792
|
-
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
793
|
-
"""
|
794
|
-
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
795
|
-
|
796
|
-
|
797
|
-
Parameters
|
798
|
-
----------
|
799
|
-
integration_name : str, optional
|
800
|
-
Name of the S3 proxy integration. If not specified, will use the only
|
801
|
-
available S3 proxy integration in the namespace (fails if multiple exist).
|
802
|
-
write_mode : str, optional
|
803
|
-
The desired behavior during write operations to target (origin) S3 bucket.
|
804
|
-
allowed options are:
|
805
|
-
"origin-and-cache" -> write to both the target S3 bucket and local object
|
806
|
-
storage
|
807
|
-
"origin" -> only write to the target S3 bucket
|
808
|
-
"cache" -> only write to the object storage service used for caching
|
809
|
-
debug : bool, optional
|
810
|
-
Enable debug logging for proxy operations.
|
811
|
-
"""
|
668
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
812
669
|
...
|
813
670
|
|
814
|
-
|
815
|
-
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
671
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
816
672
|
"""
|
817
673
|
Creates a human-readable report, a Metaflow Card, after this step completes.
|
818
674
|
|
@@ -833,160 +689,155 @@ def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typ
|
|
833
689
|
...
|
834
690
|
|
835
691
|
@typing.overload
|
836
|
-
def
|
837
|
-
...
|
838
|
-
|
839
|
-
@typing.overload
|
840
|
-
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
841
|
-
...
|
842
|
-
|
843
|
-
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
692
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
844
693
|
"""
|
845
|
-
|
694
|
+
Specifies the resources needed when executing this step.
|
846
695
|
|
847
|
-
|
696
|
+
Use `@resources` to specify the resource requirements
|
697
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
698
|
+
|
699
|
+
You can choose the compute layer on the command line by executing e.g.
|
700
|
+
```
|
701
|
+
python myflow.py run --with batch
|
702
|
+
```
|
703
|
+
or
|
704
|
+
```
|
705
|
+
python myflow.py run --with kubernetes
|
706
|
+
```
|
707
|
+
which executes the flow on the desired system using the
|
708
|
+
requirements specified in `@resources`.
|
848
709
|
|
849
710
|
|
850
711
|
Parameters
|
851
712
|
----------
|
852
|
-
|
853
|
-
|
854
|
-
|
855
|
-
|
856
|
-
|
857
|
-
|
858
|
-
|
859
|
-
|
713
|
+
cpu : int, default 1
|
714
|
+
Number of CPUs required for this step.
|
715
|
+
gpu : int, optional, default None
|
716
|
+
Number of GPUs required for this step.
|
717
|
+
disk : int, optional, default None
|
718
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
719
|
+
memory : int, default 4096
|
720
|
+
Memory size (in MB) required for this step.
|
721
|
+
shared_memory : int, optional, default None
|
722
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
723
|
+
This parameter maps to the `--shm-size` option in Docker.
|
860
724
|
"""
|
861
725
|
...
|
862
726
|
|
863
|
-
|
727
|
+
@typing.overload
|
728
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
729
|
+
...
|
730
|
+
|
731
|
+
@typing.overload
|
732
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
733
|
+
...
|
734
|
+
|
735
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
864
736
|
"""
|
865
|
-
|
866
|
-
|
867
|
-
> Examples
|
737
|
+
Specifies the resources needed when executing this step.
|
868
738
|
|
869
|
-
|
870
|
-
|
871
|
-
@huggingface_hub
|
872
|
-
@step
|
873
|
-
def pull_model_from_huggingface(self):
|
874
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
875
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
876
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
877
|
-
# value of the function is a reference to the model in the backend storage.
|
878
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
739
|
+
Use `@resources` to specify the resource requirements
|
740
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
879
741
|
|
880
|
-
|
881
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
882
|
-
repo_id=self.model_id,
|
883
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
884
|
-
)
|
885
|
-
self.next(self.train)
|
742
|
+
You can choose the compute layer on the command line by executing e.g.
|
886
743
|
```
|
887
|
-
|
888
|
-
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
889
|
-
```python
|
890
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
891
|
-
@step
|
892
|
-
def pull_model_from_huggingface(self):
|
893
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
744
|
+
python myflow.py run --with batch
|
894
745
|
```
|
895
|
-
|
896
|
-
```python
|
897
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
898
|
-
@step
|
899
|
-
def finetune_model(self):
|
900
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
901
|
-
# path_to_model will be /my-directory
|
746
|
+
or
|
902
747
|
```
|
903
|
-
|
904
|
-
```python
|
905
|
-
# Takes all the arguments passed to `snapshot_download`
|
906
|
-
# except for `local_dir`
|
907
|
-
@huggingface_hub(load=[
|
908
|
-
{
|
909
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
910
|
-
},
|
911
|
-
{
|
912
|
-
"repo_id": "myorg/mistral-lora",
|
913
|
-
"repo_type": "model",
|
914
|
-
},
|
915
|
-
])
|
916
|
-
@step
|
917
|
-
def finetune_model(self):
|
918
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
919
|
-
# path_to_model will be /my-directory
|
748
|
+
python myflow.py run --with kubernetes
|
920
749
|
```
|
750
|
+
which executes the flow on the desired system using the
|
751
|
+
requirements specified in `@resources`.
|
921
752
|
|
922
753
|
|
923
754
|
Parameters
|
924
755
|
----------
|
925
|
-
|
926
|
-
|
756
|
+
cpu : int, default 1
|
757
|
+
Number of CPUs required for this step.
|
758
|
+
gpu : int, optional, default None
|
759
|
+
Number of GPUs required for this step.
|
760
|
+
disk : int, optional, default None
|
761
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
762
|
+
memory : int, default 4096
|
763
|
+
Memory size (in MB) required for this step.
|
764
|
+
shared_memory : int, optional, default None
|
765
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
766
|
+
This parameter maps to the `--shm-size` option in Docker.
|
767
|
+
"""
|
768
|
+
...
|
769
|
+
|
770
|
+
@typing.overload
|
771
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
772
|
+
"""
|
773
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
774
|
+
to inject a card and render simple markdown content.
|
775
|
+
"""
|
776
|
+
...
|
777
|
+
|
778
|
+
@typing.overload
|
779
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
780
|
+
...
|
781
|
+
|
782
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
783
|
+
"""
|
784
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
785
|
+
to inject a card and render simple markdown content.
|
786
|
+
"""
|
787
|
+
...
|
788
|
+
|
789
|
+
@typing.overload
|
790
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
791
|
+
"""
|
792
|
+
Specifies the number of times the task corresponding
|
793
|
+
to a step needs to be retried.
|
927
794
|
|
928
|
-
|
929
|
-
|
795
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
796
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
797
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
930
798
|
|
931
|
-
|
799
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
800
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
801
|
+
ensuring that the flow execution can continue.
|
932
802
|
|
933
|
-
- If repo (model/dataset) is not found in the datastore:
|
934
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
935
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
936
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
937
803
|
|
938
|
-
|
939
|
-
|
804
|
+
Parameters
|
805
|
+
----------
|
806
|
+
times : int, default 3
|
807
|
+
Number of times to retry this task.
|
808
|
+
minutes_between_retries : int, default 2
|
809
|
+
Number of minutes between retries.
|
940
810
|
"""
|
941
811
|
...
|
942
812
|
|
943
|
-
|
813
|
+
@typing.overload
|
814
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
815
|
+
...
|
816
|
+
|
817
|
+
@typing.overload
|
818
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
819
|
+
...
|
820
|
+
|
821
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
944
822
|
"""
|
945
|
-
|
946
|
-
|
947
|
-
User code call
|
948
|
-
--------------
|
949
|
-
@vllm(
|
950
|
-
model="...",
|
951
|
-
...
|
952
|
-
)
|
953
|
-
|
954
|
-
Valid backend options
|
955
|
-
---------------------
|
956
|
-
- 'local': Run as a separate process on the local task machine.
|
823
|
+
Specifies the number of times the task corresponding
|
824
|
+
to a step needs to be retried.
|
957
825
|
|
958
|
-
|
959
|
-
|
960
|
-
|
826
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
827
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
828
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
961
829
|
|
962
|
-
|
963
|
-
|
830
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
831
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
832
|
+
ensuring that the flow execution can continue.
|
964
833
|
|
965
834
|
|
966
835
|
Parameters
|
967
836
|
----------
|
968
|
-
|
969
|
-
|
970
|
-
|
971
|
-
|
972
|
-
openai_api_server: bool
|
973
|
-
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
974
|
-
Default is False (uses native engine).
|
975
|
-
Set to True for backward compatibility with existing code.
|
976
|
-
debug: bool
|
977
|
-
Whether to turn on verbose debugging logs.
|
978
|
-
card_refresh_interval: int
|
979
|
-
Interval in seconds for refreshing the vLLM status card.
|
980
|
-
Only used when openai_api_server=True.
|
981
|
-
max_retries: int
|
982
|
-
Maximum number of retries checking for vLLM server startup.
|
983
|
-
Only used when openai_api_server=True.
|
984
|
-
retry_alert_frequency: int
|
985
|
-
Frequency of alert logs for vLLM server startup retries.
|
986
|
-
Only used when openai_api_server=True.
|
987
|
-
engine_args : dict
|
988
|
-
Additional keyword arguments to pass to the vLLM engine.
|
989
|
-
For example, `tensor_parallel_size=2`.
|
837
|
+
times : int, default 3
|
838
|
+
Number of times to retry this task.
|
839
|
+
minutes_between_retries : int, default 2
|
840
|
+
Number of minutes between retries.
|
990
841
|
"""
|
991
842
|
...
|
992
843
|
|
@@ -1080,207 +931,399 @@ def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: ty
|
|
1080
931
|
...
|
1081
932
|
|
1082
933
|
@typing.overload
|
1083
|
-
def
|
934
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1084
935
|
"""
|
1085
|
-
|
1086
|
-
|
936
|
+
Specifies the Conda environment for the step.
|
937
|
+
|
938
|
+
Information in this decorator will augment any
|
939
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
940
|
+
you can use `@conda_base` to set packages required by all
|
941
|
+
steps and use `@conda` to specify step-specific overrides.
|
942
|
+
|
943
|
+
|
944
|
+
Parameters
|
945
|
+
----------
|
946
|
+
packages : Dict[str, str], default {}
|
947
|
+
Packages to use for this step. The key is the name of the package
|
948
|
+
and the value is the version to use.
|
949
|
+
libraries : Dict[str, str], default {}
|
950
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
951
|
+
python : str, optional, default None
|
952
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
953
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
954
|
+
disabled : bool, default False
|
955
|
+
If set to True, disables @conda.
|
1087
956
|
"""
|
1088
957
|
...
|
1089
958
|
|
1090
959
|
@typing.overload
|
1091
|
-
def
|
960
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1092
961
|
...
|
1093
962
|
|
1094
|
-
|
1095
|
-
|
1096
|
-
Decorator prototype for all step decorators. This function gets specialized
|
1097
|
-
and imported for all decorators types by _import_plugin_decorators().
|
1098
|
-
"""
|
963
|
+
@typing.overload
|
964
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1099
965
|
...
|
1100
966
|
|
1101
|
-
|
1102
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
967
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1103
968
|
"""
|
1104
|
-
Specifies
|
1105
|
-
|
969
|
+
Specifies the Conda environment for the step.
|
970
|
+
|
971
|
+
Information in this decorator will augment any
|
972
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
973
|
+
you can use `@conda_base` to set packages required by all
|
974
|
+
steps and use `@conda` to specify step-specific overrides.
|
1106
975
|
|
1107
976
|
|
1108
977
|
Parameters
|
1109
978
|
----------
|
1110
|
-
|
1111
|
-
|
1112
|
-
|
1113
|
-
|
979
|
+
packages : Dict[str, str], default {}
|
980
|
+
Packages to use for this step. The key is the name of the package
|
981
|
+
and the value is the version to use.
|
982
|
+
libraries : Dict[str, str], default {}
|
983
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
984
|
+
python : str, optional, default None
|
985
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
986
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
987
|
+
disabled : bool, default False
|
988
|
+
If set to True, disables @conda.
|
1114
989
|
"""
|
1115
990
|
...
|
1116
991
|
|
1117
992
|
@typing.overload
|
1118
|
-
def
|
993
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
994
|
+
"""
|
995
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
996
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
997
|
+
a Neo Cloud like Nebius.
|
998
|
+
"""
|
1119
999
|
...
|
1120
1000
|
|
1121
1001
|
@typing.overload
|
1122
|
-
def
|
1002
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1123
1003
|
...
|
1124
1004
|
|
1125
|
-
def
|
1005
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1126
1006
|
"""
|
1127
|
-
|
1128
|
-
|
1007
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
1008
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
1009
|
+
a Neo Cloud like Nebius.
|
1010
|
+
"""
|
1011
|
+
...
|
1012
|
+
|
1013
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1014
|
+
"""
|
1015
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
1016
|
+
|
1017
|
+
> Examples
|
1018
|
+
|
1019
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
1020
|
+
```python
|
1021
|
+
@huggingface_hub
|
1022
|
+
@step
|
1023
|
+
def pull_model_from_huggingface(self):
|
1024
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
1025
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
1026
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
1027
|
+
# value of the function is a reference to the model in the backend storage.
|
1028
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
1029
|
+
|
1030
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
1031
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
1032
|
+
repo_id=self.model_id,
|
1033
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
1034
|
+
)
|
1035
|
+
self.next(self.train)
|
1036
|
+
```
|
1037
|
+
|
1038
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
1039
|
+
```python
|
1040
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
1041
|
+
@step
|
1042
|
+
def pull_model_from_huggingface(self):
|
1043
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1044
|
+
```
|
1045
|
+
|
1046
|
+
```python
|
1047
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
1048
|
+
@step
|
1049
|
+
def finetune_model(self):
|
1050
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1051
|
+
# path_to_model will be /my-directory
|
1052
|
+
```
|
1053
|
+
|
1054
|
+
```python
|
1055
|
+
# Takes all the arguments passed to `snapshot_download`
|
1056
|
+
# except for `local_dir`
|
1057
|
+
@huggingface_hub(load=[
|
1058
|
+
{
|
1059
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
1060
|
+
},
|
1061
|
+
{
|
1062
|
+
"repo_id": "myorg/mistral-lora",
|
1063
|
+
"repo_type": "model",
|
1064
|
+
},
|
1065
|
+
])
|
1066
|
+
@step
|
1067
|
+
def finetune_model(self):
|
1068
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1069
|
+
# path_to_model will be /my-directory
|
1070
|
+
```
|
1129
1071
|
|
1130
1072
|
|
1131
1073
|
Parameters
|
1132
1074
|
----------
|
1133
|
-
|
1134
|
-
|
1135
|
-
|
1136
|
-
|
1075
|
+
temp_dir_root : str, optional
|
1076
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
1077
|
+
|
1078
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
1079
|
+
The list of repos (models/datasets) to load.
|
1080
|
+
|
1081
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
1082
|
+
|
1083
|
+
- If repo (model/dataset) is not found in the datastore:
|
1084
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
1085
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
1086
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
1087
|
+
|
1088
|
+
- If repo is found in the datastore:
|
1089
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
1137
1090
|
"""
|
1138
1091
|
...
|
1139
1092
|
|
1140
|
-
|
1141
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1093
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1142
1094
|
"""
|
1143
|
-
|
1095
|
+
Specifies that this step should execute on DGX cloud.
|
1096
|
+
|
1097
|
+
|
1098
|
+
Parameters
|
1099
|
+
----------
|
1100
|
+
gpu : int
|
1101
|
+
Number of GPUs to use.
|
1102
|
+
gpu_type : str
|
1103
|
+
Type of Nvidia GPU to use.
|
1104
|
+
queue_timeout : int
|
1105
|
+
Time to keep the job in NVCF's queue.
|
1144
1106
|
"""
|
1145
1107
|
...
|
1146
1108
|
|
1147
1109
|
@typing.overload
|
1148
|
-
def
|
1149
|
-
...
|
1150
|
-
|
1151
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1110
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1152
1111
|
"""
|
1153
|
-
|
1112
|
+
Enables loading / saving of models within a step.
|
1113
|
+
|
1114
|
+
> Examples
|
1115
|
+
- Saving Models
|
1116
|
+
```python
|
1117
|
+
@model
|
1118
|
+
@step
|
1119
|
+
def train(self):
|
1120
|
+
# current.model.save returns a dictionary reference to the model saved
|
1121
|
+
self.my_model = current.model.save(
|
1122
|
+
path_to_my_model,
|
1123
|
+
label="my_model",
|
1124
|
+
metadata={
|
1125
|
+
"epochs": 10,
|
1126
|
+
"batch-size": 32,
|
1127
|
+
"learning-rate": 0.001,
|
1128
|
+
}
|
1129
|
+
)
|
1130
|
+
self.next(self.test)
|
1131
|
+
|
1132
|
+
@model(load="my_model")
|
1133
|
+
@step
|
1134
|
+
def test(self):
|
1135
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
1136
|
+
# where the key is the name of the artifact and the value is the path to the model
|
1137
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
1138
|
+
self.next(self.end)
|
1139
|
+
```
|
1140
|
+
|
1141
|
+
- Loading models
|
1142
|
+
```python
|
1143
|
+
@step
|
1144
|
+
def train(self):
|
1145
|
+
# current.model.load returns the path to the model loaded
|
1146
|
+
checkpoint_path = current.model.load(
|
1147
|
+
self.checkpoint_key,
|
1148
|
+
)
|
1149
|
+
model_path = current.model.load(
|
1150
|
+
self.model,
|
1151
|
+
)
|
1152
|
+
self.next(self.test)
|
1153
|
+
```
|
1154
|
+
|
1155
|
+
|
1156
|
+
Parameters
|
1157
|
+
----------
|
1158
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
1159
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
1160
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
1161
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
1162
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
1163
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
1164
|
+
|
1165
|
+
temp_dir_root : str, default: None
|
1166
|
+
The root directory under which `current.model.loaded` will store loaded models
|
1154
1167
|
"""
|
1155
1168
|
...
|
1156
1169
|
|
1157
1170
|
@typing.overload
|
1158
|
-
def
|
1171
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1172
|
+
...
|
1173
|
+
|
1174
|
+
@typing.overload
|
1175
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1176
|
+
...
|
1177
|
+
|
1178
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
1159
1179
|
"""
|
1160
|
-
|
1180
|
+
Enables loading / saving of models within a step.
|
1161
1181
|
|
1162
|
-
|
1163
|
-
|
1182
|
+
> Examples
|
1183
|
+
- Saving Models
|
1184
|
+
```python
|
1185
|
+
@model
|
1186
|
+
@step
|
1187
|
+
def train(self):
|
1188
|
+
# current.model.save returns a dictionary reference to the model saved
|
1189
|
+
self.my_model = current.model.save(
|
1190
|
+
path_to_my_model,
|
1191
|
+
label="my_model",
|
1192
|
+
metadata={
|
1193
|
+
"epochs": 10,
|
1194
|
+
"batch-size": 32,
|
1195
|
+
"learning-rate": 0.001,
|
1196
|
+
}
|
1197
|
+
)
|
1198
|
+
self.next(self.test)
|
1164
1199
|
|
1165
|
-
|
1166
|
-
|
1167
|
-
|
1168
|
-
|
1169
|
-
|
1200
|
+
@model(load="my_model")
|
1201
|
+
@step
|
1202
|
+
def test(self):
|
1203
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
1204
|
+
# where the key is the name of the artifact and the value is the path to the model
|
1205
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
1206
|
+
self.next(self.end)
|
1170
1207
|
```
|
1171
|
-
|
1208
|
+
|
1209
|
+
- Loading models
|
1210
|
+
```python
|
1211
|
+
@step
|
1212
|
+
def train(self):
|
1213
|
+
# current.model.load returns the path to the model loaded
|
1214
|
+
checkpoint_path = current.model.load(
|
1215
|
+
self.checkpoint_key,
|
1216
|
+
)
|
1217
|
+
model_path = current.model.load(
|
1218
|
+
self.model,
|
1219
|
+
)
|
1220
|
+
self.next(self.test)
|
1172
1221
|
```
|
1173
|
-
which executes the flow on the desired system using the
|
1174
|
-
requirements specified in `@resources`.
|
1175
1222
|
|
1176
1223
|
|
1177
1224
|
Parameters
|
1178
1225
|
----------
|
1179
|
-
|
1180
|
-
|
1181
|
-
|
1182
|
-
|
1183
|
-
|
1184
|
-
|
1185
|
-
|
1186
|
-
|
1187
|
-
|
1188
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
1189
|
-
This parameter maps to the `--shm-size` option in Docker.
|
1226
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
1227
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
1228
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
1229
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
1230
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
1231
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
1232
|
+
|
1233
|
+
temp_dir_root : str, default: None
|
1234
|
+
The root directory under which `current.model.loaded` will store loaded models
|
1190
1235
|
"""
|
1191
1236
|
...
|
1192
1237
|
|
1193
1238
|
@typing.overload
|
1194
|
-
def
|
1239
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1240
|
+
"""
|
1241
|
+
Specifies environment variables to be set prior to the execution of a step.
|
1242
|
+
|
1243
|
+
|
1244
|
+
Parameters
|
1245
|
+
----------
|
1246
|
+
vars : Dict[str, str], default {}
|
1247
|
+
Dictionary of environment variables to set.
|
1248
|
+
"""
|
1195
1249
|
...
|
1196
1250
|
|
1197
1251
|
@typing.overload
|
1198
|
-
def
|
1252
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1199
1253
|
...
|
1200
1254
|
|
1201
|
-
|
1255
|
+
@typing.overload
|
1256
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1257
|
+
...
|
1258
|
+
|
1259
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
1202
1260
|
"""
|
1203
|
-
Specifies
|
1204
|
-
|
1205
|
-
Use `@resources` to specify the resource requirements
|
1206
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
1207
|
-
|
1208
|
-
You can choose the compute layer on the command line by executing e.g.
|
1209
|
-
```
|
1210
|
-
python myflow.py run --with batch
|
1211
|
-
```
|
1212
|
-
or
|
1213
|
-
```
|
1214
|
-
python myflow.py run --with kubernetes
|
1215
|
-
```
|
1216
|
-
which executes the flow on the desired system using the
|
1217
|
-
requirements specified in `@resources`.
|
1261
|
+
Specifies environment variables to be set prior to the execution of a step.
|
1218
1262
|
|
1219
1263
|
|
1220
1264
|
Parameters
|
1221
1265
|
----------
|
1222
|
-
|
1223
|
-
|
1224
|
-
gpu : int, optional, default None
|
1225
|
-
Number of GPUs required for this step.
|
1226
|
-
disk : int, optional, default None
|
1227
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
1228
|
-
memory : int, default 4096
|
1229
|
-
Memory size (in MB) required for this step.
|
1230
|
-
shared_memory : int, optional, default None
|
1231
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
1232
|
-
This parameter maps to the `--shm-size` option in Docker.
|
1266
|
+
vars : Dict[str, str], default {}
|
1267
|
+
Dictionary of environment variables to set.
|
1233
1268
|
"""
|
1234
1269
|
...
|
1235
1270
|
|
1236
1271
|
@typing.overload
|
1237
|
-
def
|
1272
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1238
1273
|
"""
|
1239
|
-
Specifies
|
1274
|
+
Specifies a timeout for your step.
|
1240
1275
|
|
1241
|
-
|
1242
|
-
|
1243
|
-
|
1244
|
-
|
1276
|
+
This decorator is useful if this step may hang indefinitely.
|
1277
|
+
|
1278
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
1279
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
1280
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
1281
|
+
|
1282
|
+
Note that all the values specified in parameters are added together so if you specify
|
1283
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
1245
1284
|
|
1246
1285
|
|
1247
1286
|
Parameters
|
1248
1287
|
----------
|
1249
|
-
|
1250
|
-
|
1251
|
-
|
1252
|
-
|
1253
|
-
|
1254
|
-
|
1288
|
+
seconds : int, default 0
|
1289
|
+
Number of seconds to wait prior to timing out.
|
1290
|
+
minutes : int, default 0
|
1291
|
+
Number of minutes to wait prior to timing out.
|
1292
|
+
hours : int, default 0
|
1293
|
+
Number of hours to wait prior to timing out.
|
1255
1294
|
"""
|
1256
1295
|
...
|
1257
1296
|
|
1258
1297
|
@typing.overload
|
1259
|
-
def
|
1298
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1260
1299
|
...
|
1261
1300
|
|
1262
1301
|
@typing.overload
|
1263
|
-
def
|
1302
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1264
1303
|
...
|
1265
1304
|
|
1266
|
-
def
|
1305
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
1267
1306
|
"""
|
1268
|
-
Specifies
|
1307
|
+
Specifies a timeout for your step.
|
1269
1308
|
|
1270
|
-
|
1271
|
-
|
1272
|
-
|
1273
|
-
|
1309
|
+
This decorator is useful if this step may hang indefinitely.
|
1310
|
+
|
1311
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
1312
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
1313
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
1314
|
+
|
1315
|
+
Note that all the values specified in parameters are added together so if you specify
|
1316
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
1274
1317
|
|
1275
1318
|
|
1276
1319
|
Parameters
|
1277
1320
|
----------
|
1278
|
-
|
1279
|
-
|
1280
|
-
|
1281
|
-
|
1282
|
-
|
1283
|
-
|
1321
|
+
seconds : int, default 0
|
1322
|
+
Number of seconds to wait prior to timing out.
|
1323
|
+
minutes : int, default 0
|
1324
|
+
Number of minutes to wait prior to timing out.
|
1325
|
+
hours : int, default 0
|
1326
|
+
Number of hours to wait prior to timing out.
|
1284
1327
|
"""
|
1285
1328
|
...
|
1286
1329
|
|
@@ -1305,89 +1348,89 @@ def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFla
|
|
1305
1348
|
"""
|
1306
1349
|
...
|
1307
1350
|
|
1308
|
-
def
|
1351
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1309
1352
|
"""
|
1310
|
-
|
1353
|
+
Specifies what flows belong to the same project.
|
1311
1354
|
|
1312
|
-
|
1313
|
-
|
1314
|
-
@ollama(
|
1315
|
-
models=[...],
|
1316
|
-
...
|
1317
|
-
)
|
1355
|
+
A project-specific namespace is created for all flows that
|
1356
|
+
use the same `@project(name)`.
|
1318
1357
|
|
1319
|
-
Valid backend options
|
1320
|
-
---------------------
|
1321
|
-
- 'local': Run as a separate process on the local task machine.
|
1322
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
1323
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
1324
1358
|
|
1325
|
-
|
1326
|
-
|
1327
|
-
|
1359
|
+
Parameters
|
1360
|
+
----------
|
1361
|
+
name : str
|
1362
|
+
Project name. Make sure that the name is unique amongst all
|
1363
|
+
projects that use the same production scheduler. The name may
|
1364
|
+
contain only lowercase alphanumeric characters and underscores.
|
1365
|
+
|
1366
|
+
branch : Optional[str], default None
|
1367
|
+
The branch to use. If not specified, the branch is set to
|
1368
|
+
`user.<username>` unless `production` is set to `True`. This can
|
1369
|
+
also be set on the command line using `--branch` as a top-level option.
|
1370
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
1371
|
+
|
1372
|
+
production : bool, default False
|
1373
|
+
Whether or not the branch is the production branch. This can also be set on the
|
1374
|
+
command line using `--production` as a top-level option. It is an error to specify
|
1375
|
+
`production` in the decorator and on the command line.
|
1376
|
+
The project branch name will be:
|
1377
|
+
- if `branch` is specified:
|
1378
|
+
- if `production` is True: `prod.<branch>`
|
1379
|
+
- if `production` is False: `test.<branch>`
|
1380
|
+
- if `branch` is not specified:
|
1381
|
+
- if `production` is True: `prod`
|
1382
|
+
- if `production` is False: `user.<username>`
|
1383
|
+
"""
|
1384
|
+
...
|
1385
|
+
|
1386
|
+
@typing.overload
|
1387
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1388
|
+
"""
|
1389
|
+
Specifies the times when the flow should be run when running on a
|
1390
|
+
production scheduler.
|
1328
1391
|
|
1329
1392
|
|
1330
1393
|
Parameters
|
1331
1394
|
----------
|
1332
|
-
|
1333
|
-
|
1334
|
-
|
1335
|
-
|
1336
|
-
|
1337
|
-
|
1338
|
-
|
1339
|
-
|
1340
|
-
|
1341
|
-
|
1342
|
-
|
1343
|
-
|
1344
|
-
circuit_breaker_config: dict
|
1345
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
1346
|
-
timeout_config: dict
|
1347
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
1395
|
+
hourly : bool, default False
|
1396
|
+
Run the workflow hourly.
|
1397
|
+
daily : bool, default True
|
1398
|
+
Run the workflow daily.
|
1399
|
+
weekly : bool, default False
|
1400
|
+
Run the workflow weekly.
|
1401
|
+
cron : str, optional, default None
|
1402
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1403
|
+
specified by this expression.
|
1404
|
+
timezone : str, optional, default None
|
1405
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1406
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1348
1407
|
"""
|
1349
1408
|
...
|
1350
1409
|
|
1351
|
-
|
1410
|
+
@typing.overload
|
1411
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1412
|
+
...
|
1413
|
+
|
1414
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1352
1415
|
"""
|
1353
|
-
|
1354
|
-
|
1355
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1356
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1357
|
-
starts only after all sensors finish.
|
1416
|
+
Specifies the times when the flow should be run when running on a
|
1417
|
+
production scheduler.
|
1358
1418
|
|
1359
1419
|
|
1360
1420
|
Parameters
|
1361
1421
|
----------
|
1362
|
-
|
1363
|
-
|
1364
|
-
|
1365
|
-
|
1366
|
-
|
1367
|
-
|
1368
|
-
|
1369
|
-
|
1370
|
-
|
1371
|
-
|
1372
|
-
|
1373
|
-
|
1374
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1375
|
-
name : str
|
1376
|
-
Name of the sensor on Airflow
|
1377
|
-
description : str
|
1378
|
-
Description of sensor in the Airflow UI
|
1379
|
-
bucket_key : Union[str, List[str]]
|
1380
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1381
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1382
|
-
bucket_name : str
|
1383
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1384
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1385
|
-
wildcard_match : bool
|
1386
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1387
|
-
aws_conn_id : str
|
1388
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
1389
|
-
verify : bool
|
1390
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1422
|
+
hourly : bool, default False
|
1423
|
+
Run the workflow hourly.
|
1424
|
+
daily : bool, default True
|
1425
|
+
Run the workflow daily.
|
1426
|
+
weekly : bool, default False
|
1427
|
+
Run the workflow weekly.
|
1428
|
+
cron : str, optional, default None
|
1429
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1430
|
+
specified by this expression.
|
1431
|
+
timezone : str, optional, default None
|
1432
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1433
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1391
1434
|
"""
|
1392
1435
|
...
|
1393
1436
|
|
@@ -1434,117 +1477,147 @@ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str,
|
|
1434
1477
|
"""
|
1435
1478
|
...
|
1436
1479
|
|
1437
|
-
|
1480
|
+
@typing.overload
|
1481
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1438
1482
|
"""
|
1439
|
-
|
1440
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1441
|
-
|
1442
|
-
This decorator is useful when users wish to save data to a different datastore
|
1443
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
1444
|
-
|
1445
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1446
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1447
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1448
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1449
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1483
|
+
Specifies the event(s) that this flow depends on.
|
1450
1484
|
|
1451
|
-
|
1452
|
-
|
1485
|
+
```
|
1486
|
+
@trigger(event='foo')
|
1487
|
+
```
|
1488
|
+
or
|
1489
|
+
```
|
1490
|
+
@trigger(events=['foo', 'bar'])
|
1491
|
+
```
|
1453
1492
|
|
1454
|
-
|
1493
|
+
Additionally, you can specify the parameter mappings
|
1494
|
+
to map event payload to Metaflow parameters for the flow.
|
1495
|
+
```
|
1496
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1497
|
+
```
|
1498
|
+
or
|
1499
|
+
```
|
1500
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1501
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1502
|
+
```
|
1455
1503
|
|
1456
|
-
|
1457
|
-
|
1458
|
-
|
1459
|
-
|
1460
|
-
|
1461
|
-
|
1462
|
-
|
1463
|
-
|
1464
|
-
class MyFlow(FlowSpec):
|
1504
|
+
'parameters' can also be a list of strings and tuples like so:
|
1505
|
+
```
|
1506
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1507
|
+
```
|
1508
|
+
This is equivalent to:
|
1509
|
+
```
|
1510
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1511
|
+
```
|
1465
1512
|
|
1466
|
-
@checkpoint
|
1467
|
-
@step
|
1468
|
-
def start(self):
|
1469
|
-
with open("my_file.txt", "w") as f:
|
1470
|
-
f.write("Hello, World!")
|
1471
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1472
|
-
self.next(self.end)
|
1473
1513
|
|
1474
|
-
|
1514
|
+
Parameters
|
1515
|
+
----------
|
1516
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1517
|
+
Event dependency for this flow.
|
1518
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1519
|
+
Events dependency for this flow.
|
1520
|
+
options : Dict[str, Any], default {}
|
1521
|
+
Backend-specific configuration for tuning eventing behavior.
|
1522
|
+
"""
|
1523
|
+
...
|
1524
|
+
|
1525
|
+
@typing.overload
|
1526
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1527
|
+
...
|
1528
|
+
|
1529
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1530
|
+
"""
|
1531
|
+
Specifies the event(s) that this flow depends on.
|
1475
1532
|
|
1476
|
-
|
1533
|
+
```
|
1534
|
+
@trigger(event='foo')
|
1535
|
+
```
|
1536
|
+
or
|
1537
|
+
```
|
1538
|
+
@trigger(events=['foo', 'bar'])
|
1539
|
+
```
|
1477
1540
|
|
1478
|
-
|
1479
|
-
|
1480
|
-
|
1481
|
-
|
1482
|
-
|
1483
|
-
|
1484
|
-
|
1485
|
-
|
1486
|
-
|
1487
|
-
|
1488
|
-
)
|
1489
|
-
class MyFlow(FlowSpec):
|
1541
|
+
Additionally, you can specify the parameter mappings
|
1542
|
+
to map event payload to Metaflow parameters for the flow.
|
1543
|
+
```
|
1544
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1545
|
+
```
|
1546
|
+
or
|
1547
|
+
```
|
1548
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1549
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1550
|
+
```
|
1490
1551
|
|
1491
|
-
|
1492
|
-
|
1493
|
-
|
1494
|
-
|
1495
|
-
|
1496
|
-
|
1497
|
-
|
1552
|
+
'parameters' can also be a list of strings and tuples like so:
|
1553
|
+
```
|
1554
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1555
|
+
```
|
1556
|
+
This is equivalent to:
|
1557
|
+
```
|
1558
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1559
|
+
```
|
1498
1560
|
|
1499
|
-
```
|
1500
1561
|
|
1501
|
-
|
1562
|
+
Parameters
|
1563
|
+
----------
|
1564
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1565
|
+
Event dependency for this flow.
|
1566
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1567
|
+
Events dependency for this flow.
|
1568
|
+
options : Dict[str, Any], default {}
|
1569
|
+
Backend-specific configuration for tuning eventing behavior.
|
1570
|
+
"""
|
1571
|
+
...
|
1572
|
+
|
1573
|
+
@typing.overload
|
1574
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1575
|
+
"""
|
1576
|
+
Specifies the Conda environment for all steps of the flow.
|
1502
1577
|
|
1503
|
-
|
1504
|
-
|
1505
|
-
with artifact_store_from(run=run, config={
|
1506
|
-
"client_params": {
|
1507
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1508
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1509
|
-
},
|
1510
|
-
}):
|
1511
|
-
with Checkpoint() as cp:
|
1512
|
-
latest = cp.list(
|
1513
|
-
task=run["start"].task
|
1514
|
-
)[0]
|
1515
|
-
print(latest)
|
1516
|
-
cp.load(
|
1517
|
-
latest,
|
1518
|
-
"test-checkpoints"
|
1519
|
-
)
|
1578
|
+
Use `@conda_base` to set common libraries required by all
|
1579
|
+
steps and use `@conda` to specify step-specific additions.
|
1520
1580
|
|
1521
|
-
|
1522
|
-
|
1523
|
-
"client_params": {
|
1524
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1525
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1526
|
-
},
|
1527
|
-
}):
|
1528
|
-
load_model(
|
1529
|
-
task.data.model_ref,
|
1530
|
-
"test-models"
|
1531
|
-
)
|
1532
|
-
```
|
1533
|
-
Parameters:
|
1581
|
+
|
1582
|
+
Parameters
|
1534
1583
|
----------
|
1584
|
+
packages : Dict[str, str], default {}
|
1585
|
+
Packages to use for this flow. The key is the name of the package
|
1586
|
+
and the value is the version to use.
|
1587
|
+
libraries : Dict[str, str], default {}
|
1588
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1589
|
+
python : str, optional, default None
|
1590
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1591
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1592
|
+
disabled : bool, default False
|
1593
|
+
If set to True, disables Conda.
|
1594
|
+
"""
|
1595
|
+
...
|
1596
|
+
|
1597
|
+
@typing.overload
|
1598
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1599
|
+
...
|
1600
|
+
|
1601
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1602
|
+
"""
|
1603
|
+
Specifies the Conda environment for all steps of the flow.
|
1535
1604
|
|
1536
|
-
|
1537
|
-
|
1605
|
+
Use `@conda_base` to set common libraries required by all
|
1606
|
+
steps and use `@conda` to specify step-specific additions.
|
1538
1607
|
|
1539
|
-
|
1540
|
-
|
1541
|
-
|
1542
|
-
|
1543
|
-
|
1544
|
-
|
1545
|
-
|
1546
|
-
|
1547
|
-
|
1608
|
+
|
1609
|
+
Parameters
|
1610
|
+
----------
|
1611
|
+
packages : Dict[str, str], default {}
|
1612
|
+
Packages to use for this flow. The key is the name of the package
|
1613
|
+
and the value is the version to use.
|
1614
|
+
libraries : Dict[str, str], default {}
|
1615
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1616
|
+
python : str, optional, default None
|
1617
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1618
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1619
|
+
disabled : bool, default False
|
1620
|
+
If set to True, disables Conda.
|
1548
1621
|
"""
|
1549
1622
|
...
|
1550
1623
|
|
@@ -1589,89 +1662,117 @@ def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packag
|
|
1589
1662
|
"""
|
1590
1663
|
...
|
1591
1664
|
|
1592
|
-
|
1593
|
-
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1665
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1594
1666
|
"""
|
1595
|
-
|
1596
|
-
|
1667
|
+
Allows setting external datastores to save data for the
|
1668
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1597
1669
|
|
1670
|
+
This decorator is useful when users wish to save data to a different datastore
|
1671
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1598
1672
|
|
1599
|
-
|
1673
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1674
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1675
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1676
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1677
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1678
|
+
|
1679
|
+
Usage:
|
1600
1680
|
----------
|
1601
|
-
hourly : bool, default False
|
1602
|
-
Run the workflow hourly.
|
1603
|
-
daily : bool, default True
|
1604
|
-
Run the workflow daily.
|
1605
|
-
weekly : bool, default False
|
1606
|
-
Run the workflow weekly.
|
1607
|
-
cron : str, optional, default None
|
1608
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1609
|
-
specified by this expression.
|
1610
|
-
timezone : str, optional, default None
|
1611
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1612
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1613
|
-
"""
|
1614
|
-
...
|
1615
|
-
|
1616
|
-
@typing.overload
|
1617
|
-
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1618
|
-
...
|
1619
|
-
|
1620
|
-
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1621
|
-
"""
|
1622
|
-
Specifies the times when the flow should be run when running on a
|
1623
|
-
production scheduler.
|
1624
1681
|
|
1682
|
+
- Using a custom IAM role to access the datastore.
|
1625
1683
|
|
1626
|
-
|
1627
|
-
|
1628
|
-
|
1629
|
-
|
1630
|
-
|
1631
|
-
|
1632
|
-
|
1633
|
-
|
1634
|
-
|
1635
|
-
|
1636
|
-
|
1637
|
-
|
1638
|
-
|
1639
|
-
|
1640
|
-
|
1641
|
-
|
1642
|
-
|
1643
|
-
|
1644
|
-
|
1645
|
-
|
1684
|
+
```python
|
1685
|
+
@with_artifact_store(
|
1686
|
+
type="s3",
|
1687
|
+
config=lambda: {
|
1688
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1689
|
+
"role_arn": ROLE,
|
1690
|
+
},
|
1691
|
+
)
|
1692
|
+
class MyFlow(FlowSpec):
|
1693
|
+
|
1694
|
+
@checkpoint
|
1695
|
+
@step
|
1696
|
+
def start(self):
|
1697
|
+
with open("my_file.txt", "w") as f:
|
1698
|
+
f.write("Hello, World!")
|
1699
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1700
|
+
self.next(self.end)
|
1701
|
+
|
1702
|
+
```
|
1703
|
+
|
1704
|
+
- Using credentials to access the s3-compatible datastore.
|
1705
|
+
|
1706
|
+
```python
|
1707
|
+
@with_artifact_store(
|
1708
|
+
type="s3",
|
1709
|
+
config=lambda: {
|
1710
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1711
|
+
"client_params": {
|
1712
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1713
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1714
|
+
},
|
1715
|
+
},
|
1716
|
+
)
|
1717
|
+
class MyFlow(FlowSpec):
|
1646
1718
|
|
1647
|
-
|
1648
|
-
|
1719
|
+
@checkpoint
|
1720
|
+
@step
|
1721
|
+
def start(self):
|
1722
|
+
with open("my_file.txt", "w") as f:
|
1723
|
+
f.write("Hello, World!")
|
1724
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1725
|
+
self.next(self.end)
|
1726
|
+
|
1727
|
+
```
|
1649
1728
|
|
1729
|
+
- Accessing objects stored in external datastores after task execution.
|
1650
1730
|
|
1651
|
-
|
1731
|
+
```python
|
1732
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1733
|
+
with artifact_store_from(run=run, config={
|
1734
|
+
"client_params": {
|
1735
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1736
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1737
|
+
},
|
1738
|
+
}):
|
1739
|
+
with Checkpoint() as cp:
|
1740
|
+
latest = cp.list(
|
1741
|
+
task=run["start"].task
|
1742
|
+
)[0]
|
1743
|
+
print(latest)
|
1744
|
+
cp.load(
|
1745
|
+
latest,
|
1746
|
+
"test-checkpoints"
|
1747
|
+
)
|
1748
|
+
|
1749
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1750
|
+
with artifact_store_from(run=run, config={
|
1751
|
+
"client_params": {
|
1752
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1753
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1754
|
+
},
|
1755
|
+
}):
|
1756
|
+
load_model(
|
1757
|
+
task.data.model_ref,
|
1758
|
+
"test-models"
|
1759
|
+
)
|
1760
|
+
```
|
1761
|
+
Parameters:
|
1652
1762
|
----------
|
1653
|
-
name : str
|
1654
|
-
Project name. Make sure that the name is unique amongst all
|
1655
|
-
projects that use the same production scheduler. The name may
|
1656
|
-
contain only lowercase alphanumeric characters and underscores.
|
1657
1763
|
|
1658
|
-
|
1659
|
-
The
|
1660
|
-
`user.<username>` unless `production` is set to `True`. This can
|
1661
|
-
also be set on the command line using `--branch` as a top-level option.
|
1662
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
1764
|
+
type: str
|
1765
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1663
1766
|
|
1664
|
-
|
1665
|
-
|
1666
|
-
|
1667
|
-
|
1668
|
-
|
1669
|
-
|
1670
|
-
|
1671
|
-
|
1672
|
-
|
1673
|
-
- if `production` is True: `prod`
|
1674
|
-
- if `production` is False: `user.<username>`
|
1767
|
+
config: dict or Callable
|
1768
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1769
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1770
|
+
- example: 's3://bucket-name/path/to/root'
|
1771
|
+
- example: 'gs://bucket-name/path/to/root'
|
1772
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1773
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1774
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1775
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1675
1776
|
"""
|
1676
1777
|
...
|
1677
1778
|
|
@@ -1776,147 +1877,46 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
1776
1877
|
"""
|
1777
1878
|
...
|
1778
1879
|
|
1779
|
-
|
1780
|
-
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1781
|
-
"""
|
1782
|
-
Specifies the Conda environment for all steps of the flow.
|
1783
|
-
|
1784
|
-
Use `@conda_base` to set common libraries required by all
|
1785
|
-
steps and use `@conda` to specify step-specific additions.
|
1786
|
-
|
1787
|
-
|
1788
|
-
Parameters
|
1789
|
-
----------
|
1790
|
-
packages : Dict[str, str], default {}
|
1791
|
-
Packages to use for this flow. The key is the name of the package
|
1792
|
-
and the value is the version to use.
|
1793
|
-
libraries : Dict[str, str], default {}
|
1794
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1795
|
-
python : str, optional, default None
|
1796
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1797
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1798
|
-
disabled : bool, default False
|
1799
|
-
If set to True, disables Conda.
|
1800
|
-
"""
|
1801
|
-
...
|
1802
|
-
|
1803
|
-
@typing.overload
|
1804
|
-
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1805
|
-
...
|
1806
|
-
|
1807
|
-
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1808
|
-
"""
|
1809
|
-
Specifies the Conda environment for all steps of the flow.
|
1810
|
-
|
1811
|
-
Use `@conda_base` to set common libraries required by all
|
1812
|
-
steps and use `@conda` to specify step-specific additions.
|
1813
|
-
|
1814
|
-
|
1815
|
-
Parameters
|
1816
|
-
----------
|
1817
|
-
packages : Dict[str, str], default {}
|
1818
|
-
Packages to use for this flow. The key is the name of the package
|
1819
|
-
and the value is the version to use.
|
1820
|
-
libraries : Dict[str, str], default {}
|
1821
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1822
|
-
python : str, optional, default None
|
1823
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1824
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1825
|
-
disabled : bool, default False
|
1826
|
-
If set to True, disables Conda.
|
1827
|
-
"""
|
1828
|
-
...
|
1829
|
-
|
1830
|
-
@typing.overload
|
1831
|
-
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1832
|
-
"""
|
1833
|
-
Specifies the event(s) that this flow depends on.
|
1834
|
-
|
1835
|
-
```
|
1836
|
-
@trigger(event='foo')
|
1837
|
-
```
|
1838
|
-
or
|
1839
|
-
```
|
1840
|
-
@trigger(events=['foo', 'bar'])
|
1841
|
-
```
|
1842
|
-
|
1843
|
-
Additionally, you can specify the parameter mappings
|
1844
|
-
to map event payload to Metaflow parameters for the flow.
|
1845
|
-
```
|
1846
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1847
|
-
```
|
1848
|
-
or
|
1849
|
-
```
|
1850
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1851
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1852
|
-
```
|
1853
|
-
|
1854
|
-
'parameters' can also be a list of strings and tuples like so:
|
1855
|
-
```
|
1856
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1857
|
-
```
|
1858
|
-
This is equivalent to:
|
1859
|
-
```
|
1860
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1861
|
-
```
|
1862
|
-
|
1863
|
-
|
1864
|
-
Parameters
|
1865
|
-
----------
|
1866
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
1867
|
-
Event dependency for this flow.
|
1868
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
1869
|
-
Events dependency for this flow.
|
1870
|
-
options : Dict[str, Any], default {}
|
1871
|
-
Backend-specific configuration for tuning eventing behavior.
|
1872
|
-
"""
|
1873
|
-
...
|
1874
|
-
|
1875
|
-
@typing.overload
|
1876
|
-
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1877
|
-
...
|
1878
|
-
|
1879
|
-
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1880
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1880
1881
|
"""
|
1881
|
-
|
1882
|
-
|
1883
|
-
|
1884
|
-
|
1885
|
-
|
1886
|
-
or
|
1887
|
-
```
|
1888
|
-
@trigger(events=['foo', 'bar'])
|
1889
|
-
```
|
1890
|
-
|
1891
|
-
Additionally, you can specify the parameter mappings
|
1892
|
-
to map event payload to Metaflow parameters for the flow.
|
1893
|
-
```
|
1894
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1895
|
-
```
|
1896
|
-
or
|
1897
|
-
```
|
1898
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1899
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1900
|
-
```
|
1901
|
-
|
1902
|
-
'parameters' can also be a list of strings and tuples like so:
|
1903
|
-
```
|
1904
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1905
|
-
```
|
1906
|
-
This is equivalent to:
|
1907
|
-
```
|
1908
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1909
|
-
```
|
1882
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1883
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1884
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1885
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1886
|
+
starts only after all sensors finish.
|
1910
1887
|
|
1911
1888
|
|
1912
1889
|
Parameters
|
1913
1890
|
----------
|
1914
|
-
|
1915
|
-
|
1916
|
-
|
1917
|
-
|
1918
|
-
|
1919
|
-
|
1891
|
+
timeout : int
|
1892
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1893
|
+
poke_interval : int
|
1894
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1895
|
+
mode : str
|
1896
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1897
|
+
exponential_backoff : bool
|
1898
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1899
|
+
pool : str
|
1900
|
+
the slot pool this task should run in,
|
1901
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1902
|
+
soft_fail : bool
|
1903
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1904
|
+
name : str
|
1905
|
+
Name of the sensor on Airflow
|
1906
|
+
description : str
|
1907
|
+
Description of sensor in the Airflow UI
|
1908
|
+
bucket_key : Union[str, List[str]]
|
1909
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1910
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1911
|
+
bucket_name : str
|
1912
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1913
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1914
|
+
wildcard_match : bool
|
1915
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1916
|
+
aws_conn_id : str
|
1917
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1918
|
+
verify : bool
|
1919
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1920
1920
|
"""
|
1921
1921
|
...
|
1922
1922
|
|