ob-metaflow-stubs 6.0.6.0__py2.py3-none-any.whl → 6.0.6.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +991 -991
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +4 -4
- metaflow-stubs/client/filecache.pyi +1 -1
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +1 -1
- metaflow-stubs/meta_files.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +1 -1
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +61 -61
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +6 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/packaging_sys/__init__.pyi +4 -4
- metaflow-stubs/packaging_sys/backend.pyi +2 -2
- metaflow-stubs/packaging_sys/distribution_support.pyi +1 -1
- metaflow-stubs/packaging_sys/tar_backend.pyi +5 -5
- metaflow-stubs/packaging_sys/utils.pyi +1 -1
- metaflow-stubs/packaging_sys/v1.pyi +1 -1
- metaflow-stubs/parameters.pyi +1 -1
- metaflow-stubs/plugins/__init__.pyi +11 -11
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/argo/exit_hooks.pyi +1 -1
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +1 -1
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +1 -1
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/__init__.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +3 -3
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +1 -1
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_func.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +1 -1
- metaflow-stubs/plugins/secrets/utils.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +5 -5
- metaflow-stubs/runner/deployer_impl.pyi +1 -1
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +1 -1
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_options.pyi +1 -1
- metaflow-stubs/user_configs/config_parameters.pyi +4 -4
- metaflow-stubs/user_decorators/__init__.pyi +1 -1
- metaflow-stubs/user_decorators/common.pyi +1 -1
- metaflow-stubs/user_decorators/mutable_flow.pyi +4 -4
- metaflow-stubs/user_decorators/mutable_step.pyi +5 -5
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +2 -2
- metaflow-stubs/user_decorators/user_step_decorator.pyi +5 -5
- {ob_metaflow_stubs-6.0.6.0.dist-info → ob_metaflow_stubs-6.0.6.1.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.6.1.dist-info/RECORD +261 -0
- ob_metaflow_stubs-6.0.6.0.dist-info/RECORD +0 -261
- {ob_metaflow_stubs-6.0.6.0.dist-info → ob_metaflow_stubs-6.0.6.1.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.6.0.dist-info → ob_metaflow_stubs-6.0.6.1.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
3
|
# MF version: 2.17.0.1+obcheckpoint(0.2.4);ob(v1) #
|
4
|
-
# Generated on 2025-08-
|
4
|
+
# Generated on 2025-08-06T15:19:48.623789 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
@@ -39,18 +39,18 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
42
|
-
from . import metaflow_git as metaflow_git
|
43
|
-
from . import cards as cards
|
44
42
|
from . import tuple_util as tuple_util
|
43
|
+
from . import cards as cards
|
44
|
+
from . import metaflow_git as metaflow_git
|
45
45
|
from . import events as events
|
46
46
|
from . import runner as runner
|
47
47
|
from . import plugins as plugins
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
49
49
|
from . import includefile as includefile
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
51
|
-
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
52
51
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
53
52
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
53
|
+
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
54
54
|
from . import client as client
|
55
55
|
from .client.core import namespace as namespace
|
56
56
|
from .client.core import get_namespace as get_namespace
|
@@ -168,107 +168,237 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
168
168
|
...
|
169
169
|
|
170
170
|
@typing.overload
|
171
|
-
def
|
171
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
172
172
|
"""
|
173
|
-
|
173
|
+
Enables loading / saving of models within a step.
|
174
|
+
|
175
|
+
> Examples
|
176
|
+
- Saving Models
|
177
|
+
```python
|
178
|
+
@model
|
179
|
+
@step
|
180
|
+
def train(self):
|
181
|
+
# current.model.save returns a dictionary reference to the model saved
|
182
|
+
self.my_model = current.model.save(
|
183
|
+
path_to_my_model,
|
184
|
+
label="my_model",
|
185
|
+
metadata={
|
186
|
+
"epochs": 10,
|
187
|
+
"batch-size": 32,
|
188
|
+
"learning-rate": 0.001,
|
189
|
+
}
|
190
|
+
)
|
191
|
+
self.next(self.test)
|
192
|
+
|
193
|
+
@model(load="my_model")
|
194
|
+
@step
|
195
|
+
def test(self):
|
196
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
197
|
+
# where the key is the name of the artifact and the value is the path to the model
|
198
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
199
|
+
self.next(self.end)
|
200
|
+
```
|
201
|
+
|
202
|
+
- Loading models
|
203
|
+
```python
|
204
|
+
@step
|
205
|
+
def train(self):
|
206
|
+
# current.model.load returns the path to the model loaded
|
207
|
+
checkpoint_path = current.model.load(
|
208
|
+
self.checkpoint_key,
|
209
|
+
)
|
210
|
+
model_path = current.model.load(
|
211
|
+
self.model,
|
212
|
+
)
|
213
|
+
self.next(self.test)
|
214
|
+
```
|
174
215
|
|
175
216
|
|
176
217
|
Parameters
|
177
218
|
----------
|
178
|
-
|
179
|
-
|
219
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
220
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
221
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
222
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
223
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
224
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
225
|
+
|
226
|
+
temp_dir_root : str, default: None
|
227
|
+
The root directory under which `current.model.loaded` will store loaded models
|
180
228
|
"""
|
181
229
|
...
|
182
230
|
|
183
231
|
@typing.overload
|
184
|
-
def
|
232
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
185
233
|
...
|
186
234
|
|
187
235
|
@typing.overload
|
188
|
-
def
|
236
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
189
237
|
...
|
190
238
|
|
191
|
-
def
|
239
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
192
240
|
"""
|
193
|
-
|
241
|
+
Enables loading / saving of models within a step.
|
242
|
+
|
243
|
+
> Examples
|
244
|
+
- Saving Models
|
245
|
+
```python
|
246
|
+
@model
|
247
|
+
@step
|
248
|
+
def train(self):
|
249
|
+
# current.model.save returns a dictionary reference to the model saved
|
250
|
+
self.my_model = current.model.save(
|
251
|
+
path_to_my_model,
|
252
|
+
label="my_model",
|
253
|
+
metadata={
|
254
|
+
"epochs": 10,
|
255
|
+
"batch-size": 32,
|
256
|
+
"learning-rate": 0.001,
|
257
|
+
}
|
258
|
+
)
|
259
|
+
self.next(self.test)
|
260
|
+
|
261
|
+
@model(load="my_model")
|
262
|
+
@step
|
263
|
+
def test(self):
|
264
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
265
|
+
# where the key is the name of the artifact and the value is the path to the model
|
266
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
267
|
+
self.next(self.end)
|
268
|
+
```
|
269
|
+
|
270
|
+
- Loading models
|
271
|
+
```python
|
272
|
+
@step
|
273
|
+
def train(self):
|
274
|
+
# current.model.load returns the path to the model loaded
|
275
|
+
checkpoint_path = current.model.load(
|
276
|
+
self.checkpoint_key,
|
277
|
+
)
|
278
|
+
model_path = current.model.load(
|
279
|
+
self.model,
|
280
|
+
)
|
281
|
+
self.next(self.test)
|
282
|
+
```
|
194
283
|
|
195
284
|
|
196
285
|
Parameters
|
197
286
|
----------
|
198
|
-
|
199
|
-
|
287
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
288
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
289
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
290
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
291
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
292
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
293
|
+
|
294
|
+
temp_dir_root : str, default: None
|
295
|
+
The root directory under which `current.model.loaded` will store loaded models
|
200
296
|
"""
|
201
297
|
...
|
202
298
|
|
203
299
|
@typing.overload
|
204
|
-
def
|
300
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
205
301
|
"""
|
206
|
-
|
302
|
+
Specifies the Conda environment for the step.
|
303
|
+
|
304
|
+
Information in this decorator will augment any
|
305
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
306
|
+
you can use `@conda_base` to set packages required by all
|
307
|
+
steps and use `@conda` to specify step-specific overrides.
|
308
|
+
|
309
|
+
|
310
|
+
Parameters
|
311
|
+
----------
|
312
|
+
packages : Dict[str, str], default {}
|
313
|
+
Packages to use for this step. The key is the name of the package
|
314
|
+
and the value is the version to use.
|
315
|
+
libraries : Dict[str, str], default {}
|
316
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
317
|
+
python : str, optional, default None
|
318
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
319
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
320
|
+
disabled : bool, default False
|
321
|
+
If set to True, disables @conda.
|
207
322
|
"""
|
208
323
|
...
|
209
324
|
|
210
325
|
@typing.overload
|
211
|
-
def
|
326
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
212
327
|
...
|
213
328
|
|
214
|
-
|
329
|
+
@typing.overload
|
330
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
331
|
+
...
|
332
|
+
|
333
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
215
334
|
"""
|
216
|
-
|
335
|
+
Specifies the Conda environment for the step.
|
336
|
+
|
337
|
+
Information in this decorator will augment any
|
338
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
339
|
+
you can use `@conda_base` to set packages required by all
|
340
|
+
steps and use `@conda` to specify step-specific overrides.
|
341
|
+
|
342
|
+
|
343
|
+
Parameters
|
344
|
+
----------
|
345
|
+
packages : Dict[str, str], default {}
|
346
|
+
Packages to use for this step. The key is the name of the package
|
347
|
+
and the value is the version to use.
|
348
|
+
libraries : Dict[str, str], default {}
|
349
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
350
|
+
python : str, optional, default None
|
351
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
352
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
353
|
+
disabled : bool, default False
|
354
|
+
If set to True, disables @conda.
|
217
355
|
"""
|
218
356
|
...
|
219
357
|
|
220
|
-
|
221
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
358
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
222
359
|
"""
|
223
|
-
Specifies
|
224
|
-
to a step needs to be retried.
|
360
|
+
Specifies that this step should execute on DGX cloud.
|
225
361
|
|
226
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
227
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
228
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
229
362
|
|
230
|
-
|
231
|
-
|
232
|
-
|
363
|
+
Parameters
|
364
|
+
----------
|
365
|
+
gpu : int
|
366
|
+
Number of GPUs to use.
|
367
|
+
gpu_type : str
|
368
|
+
Type of Nvidia GPU to use.
|
369
|
+
"""
|
370
|
+
...
|
371
|
+
|
372
|
+
@typing.overload
|
373
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
374
|
+
"""
|
375
|
+
Specifies environment variables to be set prior to the execution of a step.
|
233
376
|
|
234
377
|
|
235
378
|
Parameters
|
236
379
|
----------
|
237
|
-
|
238
|
-
|
239
|
-
minutes_between_retries : int, default 2
|
240
|
-
Number of minutes between retries.
|
380
|
+
vars : Dict[str, str], default {}
|
381
|
+
Dictionary of environment variables to set.
|
241
382
|
"""
|
242
383
|
...
|
243
384
|
|
244
385
|
@typing.overload
|
245
|
-
def
|
386
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
246
387
|
...
|
247
388
|
|
248
389
|
@typing.overload
|
249
|
-
def
|
390
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
250
391
|
...
|
251
392
|
|
252
|
-
def
|
393
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
253
394
|
"""
|
254
|
-
Specifies
|
255
|
-
to a step needs to be retried.
|
256
|
-
|
257
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
258
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
259
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
260
|
-
|
261
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
262
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
263
|
-
ensuring that the flow execution can continue.
|
395
|
+
Specifies environment variables to be set prior to the execution of a step.
|
264
396
|
|
265
397
|
|
266
398
|
Parameters
|
267
399
|
----------
|
268
|
-
|
269
|
-
|
270
|
-
minutes_between_retries : int, default 2
|
271
|
-
Number of minutes between retries.
|
400
|
+
vars : Dict[str, str], default {}
|
401
|
+
Dictionary of environment variables to set.
|
272
402
|
"""
|
273
403
|
...
|
274
404
|
|
@@ -324,93 +454,13 @@ def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
324
454
|
...
|
325
455
|
|
326
456
|
@typing.overload
|
327
|
-
def
|
457
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
328
458
|
"""
|
329
|
-
|
330
|
-
|
331
|
-
This decorator is useful if this step may hang indefinitely.
|
332
|
-
|
333
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
334
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
335
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
459
|
+
Enables checkpointing for a step.
|
336
460
|
|
337
|
-
|
338
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
461
|
+
> Examples
|
339
462
|
|
340
|
-
|
341
|
-
Parameters
|
342
|
-
----------
|
343
|
-
seconds : int, default 0
|
344
|
-
Number of seconds to wait prior to timing out.
|
345
|
-
minutes : int, default 0
|
346
|
-
Number of minutes to wait prior to timing out.
|
347
|
-
hours : int, default 0
|
348
|
-
Number of hours to wait prior to timing out.
|
349
|
-
"""
|
350
|
-
...
|
351
|
-
|
352
|
-
@typing.overload
|
353
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
354
|
-
...
|
355
|
-
|
356
|
-
@typing.overload
|
357
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
358
|
-
...
|
359
|
-
|
360
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
361
|
-
"""
|
362
|
-
Specifies a timeout for your step.
|
363
|
-
|
364
|
-
This decorator is useful if this step may hang indefinitely.
|
365
|
-
|
366
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
367
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
368
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
369
|
-
|
370
|
-
Note that all the values specified in parameters are added together so if you specify
|
371
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
372
|
-
|
373
|
-
|
374
|
-
Parameters
|
375
|
-
----------
|
376
|
-
seconds : int, default 0
|
377
|
-
Number of seconds to wait prior to timing out.
|
378
|
-
minutes : int, default 0
|
379
|
-
Number of minutes to wait prior to timing out.
|
380
|
-
hours : int, default 0
|
381
|
-
Number of hours to wait prior to timing out.
|
382
|
-
"""
|
383
|
-
...
|
384
|
-
|
385
|
-
@typing.overload
|
386
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
387
|
-
"""
|
388
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
389
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
390
|
-
a Neo Cloud like Nebius.
|
391
|
-
"""
|
392
|
-
...
|
393
|
-
|
394
|
-
@typing.overload
|
395
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
396
|
-
...
|
397
|
-
|
398
|
-
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
399
|
-
"""
|
400
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
401
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
402
|
-
a Neo Cloud like Nebius.
|
403
|
-
"""
|
404
|
-
...
|
405
|
-
|
406
|
-
@typing.overload
|
407
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
408
|
-
"""
|
409
|
-
Enables checkpointing for a step.
|
410
|
-
|
411
|
-
> Examples
|
412
|
-
|
413
|
-
- Saving Checkpoints
|
463
|
+
- Saving Checkpoints
|
414
464
|
|
415
465
|
```python
|
416
466
|
@checkpoint
|
@@ -550,539 +600,557 @@ def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
550
600
|
"""
|
551
601
|
...
|
552
602
|
|
553
|
-
|
603
|
+
@typing.overload
|
604
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
554
605
|
"""
|
555
|
-
|
556
|
-
|
557
|
-
|
558
|
-
Parameters
|
559
|
-
----------
|
560
|
-
cpu : int, default 1
|
561
|
-
Number of CPUs required for this step. If `@resources` is
|
562
|
-
also present, the maximum value from all decorators is used.
|
563
|
-
memory : int, default 4096
|
564
|
-
Memory size (in MB) required for this step. If
|
565
|
-
`@resources` is also present, the maximum value from all decorators is
|
566
|
-
used.
|
567
|
-
disk : int, default 10240
|
568
|
-
Disk size (in MB) required for this step. If
|
569
|
-
`@resources` is also present, the maximum value from all decorators is
|
570
|
-
used.
|
571
|
-
image : str, optional, default None
|
572
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
573
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
574
|
-
not, a default Docker image mapping to the current version of Python is used.
|
575
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
576
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
577
|
-
image_pull_secrets: List[str], default []
|
578
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
579
|
-
Kubernetes image pull secrets to use when pulling container images
|
580
|
-
in Kubernetes.
|
581
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
582
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
583
|
-
secrets : List[str], optional, default None
|
584
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
585
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
586
|
-
in Metaflow configuration.
|
587
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
588
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
589
|
-
Can be passed in as a comma separated string of values e.g.
|
590
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
591
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
592
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
593
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
594
|
-
gpu : int, optional, default None
|
595
|
-
Number of GPUs required for this step. A value of zero implies that
|
596
|
-
the scheduled node should not have GPUs.
|
597
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
598
|
-
The vendor of the GPUs to be used for this step.
|
599
|
-
tolerations : List[Dict[str,str]], default []
|
600
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
601
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
602
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
603
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
604
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
605
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
606
|
-
use_tmpfs : bool, default False
|
607
|
-
This enables an explicit tmpfs mount for this step.
|
608
|
-
tmpfs_tempdir : bool, default True
|
609
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
610
|
-
tmpfs_size : int, optional, default: None
|
611
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
612
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
613
|
-
memory allocated for this step.
|
614
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
615
|
-
Path to tmpfs mount for this step.
|
616
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
617
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
618
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
619
|
-
shared_memory: int, optional
|
620
|
-
Shared memory size (in MiB) required for this step
|
621
|
-
port: int, optional
|
622
|
-
Port number to specify in the Kubernetes job object
|
623
|
-
compute_pool : str, optional, default None
|
624
|
-
Compute pool to be used for for this step.
|
625
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
626
|
-
hostname_resolution_timeout: int, default 10 * 60
|
627
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
628
|
-
Only applicable when @parallel is used.
|
629
|
-
qos: str, default: Burstable
|
630
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
631
|
-
|
632
|
-
security_context: Dict[str, Any], optional, default None
|
633
|
-
Container security context. Applies to the task container. Allows the following keys:
|
634
|
-
- privileged: bool, optional, default None
|
635
|
-
- allow_privilege_escalation: bool, optional, default None
|
636
|
-
- run_as_user: int, optional, default None
|
637
|
-
- run_as_group: int, optional, default None
|
638
|
-
- run_as_non_root: bool, optional, default None
|
606
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
607
|
+
to inject a card and render simple markdown content.
|
639
608
|
"""
|
640
609
|
...
|
641
610
|
|
642
|
-
|
611
|
+
@typing.overload
|
612
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
613
|
+
...
|
614
|
+
|
615
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
643
616
|
"""
|
644
|
-
|
645
|
-
|
646
|
-
> Examples
|
647
|
-
|
648
|
-
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
649
|
-
```python
|
650
|
-
@huggingface_hub
|
651
|
-
@step
|
652
|
-
def pull_model_from_huggingface(self):
|
653
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
654
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
655
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
656
|
-
# value of the function is a reference to the model in the backend storage.
|
657
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
658
|
-
|
659
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
660
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
661
|
-
repo_id=self.model_id,
|
662
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
663
|
-
)
|
664
|
-
self.next(self.train)
|
665
|
-
```
|
666
|
-
|
667
|
-
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
668
|
-
```python
|
669
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
670
|
-
@step
|
671
|
-
def pull_model_from_huggingface(self):
|
672
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
673
|
-
```
|
674
|
-
|
675
|
-
```python
|
676
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
677
|
-
@step
|
678
|
-
def finetune_model(self):
|
679
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
680
|
-
# path_to_model will be /my-directory
|
681
|
-
```
|
682
|
-
|
683
|
-
```python
|
684
|
-
# Takes all the arguments passed to `snapshot_download`
|
685
|
-
# except for `local_dir`
|
686
|
-
@huggingface_hub(load=[
|
687
|
-
{
|
688
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
689
|
-
},
|
690
|
-
{
|
691
|
-
"repo_id": "myorg/mistral-lora",
|
692
|
-
"repo_type": "model",
|
693
|
-
},
|
694
|
-
])
|
695
|
-
@step
|
696
|
-
def finetune_model(self):
|
697
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
698
|
-
# path_to_model will be /my-directory
|
699
|
-
```
|
700
|
-
|
701
|
-
|
702
|
-
Parameters
|
703
|
-
----------
|
704
|
-
temp_dir_root : str, optional
|
705
|
-
The root directory that will hold the temporary directory where objects will be downloaded.
|
706
|
-
|
707
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
708
|
-
The list of repos (models/datasets) to load.
|
709
|
-
|
710
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
711
|
-
|
712
|
-
- If repo (model/dataset) is not found in the datastore:
|
713
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
714
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
715
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
716
|
-
|
717
|
-
- If repo is found in the datastore:
|
718
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
617
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
618
|
+
to inject a card and render simple markdown content.
|
719
619
|
"""
|
720
620
|
...
|
721
621
|
|
722
622
|
@typing.overload
|
723
|
-
def
|
623
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
724
624
|
"""
|
725
|
-
|
726
|
-
|
625
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
626
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
627
|
+
a Neo Cloud like Nebius.
|
727
628
|
"""
|
728
629
|
...
|
729
630
|
|
730
631
|
@typing.overload
|
731
|
-
def
|
632
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
732
633
|
...
|
733
634
|
|
734
|
-
def
|
635
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
735
636
|
"""
|
736
|
-
|
737
|
-
|
637
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
638
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
639
|
+
a Neo Cloud like Nebius.
|
738
640
|
"""
|
739
641
|
...
|
740
642
|
|
741
643
|
@typing.overload
|
742
|
-
def
|
644
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
743
645
|
"""
|
744
|
-
|
745
|
-
|
746
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
646
|
+
Specifies a timeout for your step.
|
747
647
|
|
648
|
+
This decorator is useful if this step may hang indefinitely.
|
748
649
|
|
749
|
-
|
650
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
651
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
652
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
653
|
+
|
654
|
+
Note that all the values specified in parameters are added together so if you specify
|
655
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
656
|
+
|
657
|
+
|
658
|
+
Parameters
|
750
659
|
----------
|
751
|
-
|
752
|
-
|
753
|
-
|
754
|
-
|
755
|
-
|
756
|
-
|
757
|
-
timeout : int, default 45
|
758
|
-
Interrupt reporting if it takes more than this many seconds.
|
660
|
+
seconds : int, default 0
|
661
|
+
Number of seconds to wait prior to timing out.
|
662
|
+
minutes : int, default 0
|
663
|
+
Number of minutes to wait prior to timing out.
|
664
|
+
hours : int, default 0
|
665
|
+
Number of hours to wait prior to timing out.
|
759
666
|
"""
|
760
667
|
...
|
761
668
|
|
762
669
|
@typing.overload
|
763
|
-
def
|
670
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
764
671
|
...
|
765
672
|
|
766
673
|
@typing.overload
|
767
|
-
def
|
674
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
768
675
|
...
|
769
676
|
|
770
|
-
def
|
677
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
771
678
|
"""
|
772
|
-
|
679
|
+
Specifies a timeout for your step.
|
773
680
|
|
774
|
-
|
681
|
+
This decorator is useful if this step may hang indefinitely.
|
682
|
+
|
683
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
684
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
685
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
686
|
+
|
687
|
+
Note that all the values specified in parameters are added together so if you specify
|
688
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
775
689
|
|
776
690
|
|
777
691
|
Parameters
|
778
692
|
----------
|
779
|
-
|
780
|
-
|
781
|
-
|
782
|
-
|
783
|
-
|
784
|
-
|
785
|
-
|
786
|
-
|
693
|
+
seconds : int, default 0
|
694
|
+
Number of seconds to wait prior to timing out.
|
695
|
+
minutes : int, default 0
|
696
|
+
Number of minutes to wait prior to timing out.
|
697
|
+
hours : int, default 0
|
698
|
+
Number of hours to wait prior to timing out.
|
699
|
+
"""
|
700
|
+
...
|
701
|
+
|
702
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
703
|
+
"""
|
704
|
+
Specifies that this step should execute on DGX cloud.
|
705
|
+
|
706
|
+
|
707
|
+
Parameters
|
708
|
+
----------
|
709
|
+
gpu : int
|
710
|
+
Number of GPUs to use.
|
711
|
+
gpu_type : str
|
712
|
+
Type of Nvidia GPU to use.
|
713
|
+
queue_timeout : int
|
714
|
+
Time to keep the job in NVCF's queue.
|
787
715
|
"""
|
788
716
|
...
|
789
717
|
|
790
718
|
@typing.overload
|
791
|
-
def
|
719
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
792
720
|
"""
|
793
|
-
|
794
|
-
to
|
721
|
+
Specifies the number of times the task corresponding
|
722
|
+
to a step needs to be retried.
|
723
|
+
|
724
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
725
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
726
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
727
|
+
|
728
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
729
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
730
|
+
ensuring that the flow execution can continue.
|
731
|
+
|
732
|
+
|
733
|
+
Parameters
|
734
|
+
----------
|
735
|
+
times : int, default 3
|
736
|
+
Number of times to retry this task.
|
737
|
+
minutes_between_retries : int, default 2
|
738
|
+
Number of minutes between retries.
|
795
739
|
"""
|
796
740
|
...
|
797
741
|
|
798
742
|
@typing.overload
|
799
|
-
def
|
743
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
800
744
|
...
|
801
745
|
|
802
|
-
|
803
|
-
|
804
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
805
|
-
to inject a card and render simple markdown content.
|
806
|
-
"""
|
746
|
+
@typing.overload
|
747
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
807
748
|
...
|
808
749
|
|
809
|
-
def
|
750
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
810
751
|
"""
|
811
|
-
Specifies
|
752
|
+
Specifies the number of times the task corresponding
|
753
|
+
to a step needs to be retried.
|
754
|
+
|
755
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
756
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
757
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
758
|
+
|
759
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
760
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
761
|
+
ensuring that the flow execution can continue.
|
812
762
|
|
813
763
|
|
814
764
|
Parameters
|
815
765
|
----------
|
816
|
-
|
817
|
-
Number of
|
818
|
-
|
819
|
-
|
766
|
+
times : int, default 3
|
767
|
+
Number of times to retry this task.
|
768
|
+
minutes_between_retries : int, default 2
|
769
|
+
Number of minutes between retries.
|
820
770
|
"""
|
821
771
|
...
|
822
772
|
|
823
773
|
@typing.overload
|
824
|
-
def
|
774
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
825
775
|
"""
|
826
|
-
|
776
|
+
Decorator prototype for all step decorators. This function gets specialized
|
777
|
+
and imported for all decorators types by _import_plugin_decorators().
|
778
|
+
"""
|
779
|
+
...
|
780
|
+
|
781
|
+
@typing.overload
|
782
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
783
|
+
...
|
784
|
+
|
785
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
786
|
+
"""
|
787
|
+
Decorator prototype for all step decorators. This function gets specialized
|
788
|
+
and imported for all decorators types by _import_plugin_decorators().
|
789
|
+
"""
|
790
|
+
...
|
791
|
+
|
792
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
793
|
+
"""
|
794
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
827
795
|
|
828
|
-
> Examples
|
829
|
-
- Saving Models
|
830
|
-
```python
|
831
|
-
@model
|
832
|
-
@step
|
833
|
-
def train(self):
|
834
|
-
# current.model.save returns a dictionary reference to the model saved
|
835
|
-
self.my_model = current.model.save(
|
836
|
-
path_to_my_model,
|
837
|
-
label="my_model",
|
838
|
-
metadata={
|
839
|
-
"epochs": 10,
|
840
|
-
"batch-size": 32,
|
841
|
-
"learning-rate": 0.001,
|
842
|
-
}
|
843
|
-
)
|
844
|
-
self.next(self.test)
|
845
796
|
|
846
|
-
|
847
|
-
|
848
|
-
|
849
|
-
|
850
|
-
|
851
|
-
|
852
|
-
|
853
|
-
|
797
|
+
Parameters
|
798
|
+
----------
|
799
|
+
integration_name : str, optional
|
800
|
+
Name of the S3 proxy integration. If not specified, will use the only
|
801
|
+
available S3 proxy integration in the namespace (fails if multiple exist).
|
802
|
+
write_mode : str, optional
|
803
|
+
The desired behavior during write operations to target (origin) S3 bucket.
|
804
|
+
allowed options are:
|
805
|
+
"origin-and-cache" -> write to both the target S3 bucket and local object
|
806
|
+
storage
|
807
|
+
"origin" -> only write to the target S3 bucket
|
808
|
+
"cache" -> only write to the object storage service used for caching
|
809
|
+
debug : bool, optional
|
810
|
+
Enable debug logging for proxy operations.
|
811
|
+
"""
|
812
|
+
...
|
813
|
+
|
814
|
+
@typing.overload
|
815
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
816
|
+
"""
|
817
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
854
818
|
|
855
|
-
|
856
|
-
```python
|
857
|
-
@step
|
858
|
-
def train(self):
|
859
|
-
# current.model.load returns the path to the model loaded
|
860
|
-
checkpoint_path = current.model.load(
|
861
|
-
self.checkpoint_key,
|
862
|
-
)
|
863
|
-
model_path = current.model.load(
|
864
|
-
self.model,
|
865
|
-
)
|
866
|
-
self.next(self.test)
|
867
|
-
```
|
819
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
868
820
|
|
869
821
|
|
870
822
|
Parameters
|
871
823
|
----------
|
872
|
-
|
873
|
-
|
874
|
-
|
875
|
-
If
|
876
|
-
|
877
|
-
|
878
|
-
|
879
|
-
|
880
|
-
The root directory under which `current.model.loaded` will store loaded models
|
824
|
+
type : str, default 'default'
|
825
|
+
Card type.
|
826
|
+
id : str, optional, default None
|
827
|
+
If multiple cards are present, use this id to identify this card.
|
828
|
+
options : Dict[str, Any], default {}
|
829
|
+
Options passed to the card. The contents depend on the card type.
|
830
|
+
timeout : int, default 45
|
831
|
+
Interrupt reporting if it takes more than this many seconds.
|
881
832
|
"""
|
882
833
|
...
|
883
834
|
|
884
835
|
@typing.overload
|
885
|
-
def
|
836
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
886
837
|
...
|
887
838
|
|
888
839
|
@typing.overload
|
889
|
-
def
|
840
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
890
841
|
...
|
891
842
|
|
892
|
-
def
|
843
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
893
844
|
"""
|
894
|
-
|
845
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
846
|
+
|
847
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
848
|
+
|
849
|
+
|
850
|
+
Parameters
|
851
|
+
----------
|
852
|
+
type : str, default 'default'
|
853
|
+
Card type.
|
854
|
+
id : str, optional, default None
|
855
|
+
If multiple cards are present, use this id to identify this card.
|
856
|
+
options : Dict[str, Any], default {}
|
857
|
+
Options passed to the card. The contents depend on the card type.
|
858
|
+
timeout : int, default 45
|
859
|
+
Interrupt reporting if it takes more than this many seconds.
|
860
|
+
"""
|
861
|
+
...
|
862
|
+
|
863
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
864
|
+
"""
|
865
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
895
866
|
|
896
867
|
> Examples
|
897
|
-
|
868
|
+
|
869
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
898
870
|
```python
|
899
|
-
|
900
|
-
|
901
|
-
|
902
|
-
|
903
|
-
|
904
|
-
|
905
|
-
|
906
|
-
|
907
|
-
"epochs": 10,
|
908
|
-
"batch-size": 32,
|
909
|
-
"learning-rate": 0.001,
|
910
|
-
}
|
911
|
-
)
|
912
|
-
self.next(self.test)
|
871
|
+
@huggingface_hub
|
872
|
+
@step
|
873
|
+
def pull_model_from_huggingface(self):
|
874
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
875
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
876
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
877
|
+
# value of the function is a reference to the model in the backend storage.
|
878
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
913
879
|
|
914
|
-
|
915
|
-
|
916
|
-
|
917
|
-
|
918
|
-
|
919
|
-
|
920
|
-
self.next(self.end)
|
880
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
881
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
882
|
+
repo_id=self.model_id,
|
883
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
884
|
+
)
|
885
|
+
self.next(self.train)
|
921
886
|
```
|
922
887
|
|
923
|
-
|
888
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
924
889
|
```python
|
925
|
-
|
926
|
-
|
927
|
-
|
928
|
-
|
929
|
-
|
930
|
-
|
931
|
-
|
932
|
-
|
933
|
-
|
934
|
-
|
890
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
891
|
+
@step
|
892
|
+
def pull_model_from_huggingface(self):
|
893
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
894
|
+
```
|
895
|
+
|
896
|
+
```python
|
897
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
898
|
+
@step
|
899
|
+
def finetune_model(self):
|
900
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
901
|
+
# path_to_model will be /my-directory
|
902
|
+
```
|
903
|
+
|
904
|
+
```python
|
905
|
+
# Takes all the arguments passed to `snapshot_download`
|
906
|
+
# except for `local_dir`
|
907
|
+
@huggingface_hub(load=[
|
908
|
+
{
|
909
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
910
|
+
},
|
911
|
+
{
|
912
|
+
"repo_id": "myorg/mistral-lora",
|
913
|
+
"repo_type": "model",
|
914
|
+
},
|
915
|
+
])
|
916
|
+
@step
|
917
|
+
def finetune_model(self):
|
918
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
919
|
+
# path_to_model will be /my-directory
|
935
920
|
```
|
936
921
|
|
937
922
|
|
938
923
|
Parameters
|
939
924
|
----------
|
940
|
-
|
941
|
-
|
942
|
-
|
943
|
-
|
944
|
-
|
945
|
-
|
925
|
+
temp_dir_root : str, optional
|
926
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
927
|
+
|
928
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
929
|
+
The list of repos (models/datasets) to load.
|
930
|
+
|
931
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
932
|
+
|
933
|
+
- If repo (model/dataset) is not found in the datastore:
|
934
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
935
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
936
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
937
|
+
|
938
|
+
- If repo is found in the datastore:
|
939
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
940
|
+
"""
|
941
|
+
...
|
942
|
+
|
943
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
944
|
+
"""
|
945
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
946
|
+
|
947
|
+
User code call
|
948
|
+
--------------
|
949
|
+
@vllm(
|
950
|
+
model="...",
|
951
|
+
...
|
952
|
+
)
|
953
|
+
|
954
|
+
Valid backend options
|
955
|
+
---------------------
|
956
|
+
- 'local': Run as a separate process on the local task machine.
|
957
|
+
|
958
|
+
Valid model options
|
959
|
+
-------------------
|
960
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
961
|
+
|
962
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
963
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
964
|
+
|
965
|
+
|
966
|
+
Parameters
|
967
|
+
----------
|
968
|
+
model: str
|
969
|
+
HuggingFace model identifier to be served by vLLM.
|
970
|
+
backend: str
|
971
|
+
Determines where and how to run the vLLM process.
|
972
|
+
openai_api_server: bool
|
973
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
974
|
+
Default is False (uses native engine).
|
975
|
+
Set to True for backward compatibility with existing code.
|
976
|
+
debug: bool
|
977
|
+
Whether to turn on verbose debugging logs.
|
978
|
+
card_refresh_interval: int
|
979
|
+
Interval in seconds for refreshing the vLLM status card.
|
980
|
+
Only used when openai_api_server=True.
|
981
|
+
max_retries: int
|
982
|
+
Maximum number of retries checking for vLLM server startup.
|
983
|
+
Only used when openai_api_server=True.
|
984
|
+
retry_alert_frequency: int
|
985
|
+
Frequency of alert logs for vLLM server startup retries.
|
986
|
+
Only used when openai_api_server=True.
|
987
|
+
engine_args : dict
|
988
|
+
Additional keyword arguments to pass to the vLLM engine.
|
989
|
+
For example, `tensor_parallel_size=2`.
|
990
|
+
"""
|
991
|
+
...
|
992
|
+
|
993
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
994
|
+
"""
|
995
|
+
Specifies that this step should execute on Kubernetes.
|
996
|
+
|
997
|
+
|
998
|
+
Parameters
|
999
|
+
----------
|
1000
|
+
cpu : int, default 1
|
1001
|
+
Number of CPUs required for this step. If `@resources` is
|
1002
|
+
also present, the maximum value from all decorators is used.
|
1003
|
+
memory : int, default 4096
|
1004
|
+
Memory size (in MB) required for this step. If
|
1005
|
+
`@resources` is also present, the maximum value from all decorators is
|
1006
|
+
used.
|
1007
|
+
disk : int, default 10240
|
1008
|
+
Disk size (in MB) required for this step. If
|
1009
|
+
`@resources` is also present, the maximum value from all decorators is
|
1010
|
+
used.
|
1011
|
+
image : str, optional, default None
|
1012
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
1013
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
1014
|
+
not, a default Docker image mapping to the current version of Python is used.
|
1015
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
1016
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
1017
|
+
image_pull_secrets: List[str], default []
|
1018
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
1019
|
+
Kubernetes image pull secrets to use when pulling container images
|
1020
|
+
in Kubernetes.
|
1021
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
1022
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
1023
|
+
secrets : List[str], optional, default None
|
1024
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
1025
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
1026
|
+
in Metaflow configuration.
|
1027
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
1028
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
1029
|
+
Can be passed in as a comma separated string of values e.g.
|
1030
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
1031
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
1032
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
1033
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
1034
|
+
gpu : int, optional, default None
|
1035
|
+
Number of GPUs required for this step. A value of zero implies that
|
1036
|
+
the scheduled node should not have GPUs.
|
1037
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
1038
|
+
The vendor of the GPUs to be used for this step.
|
1039
|
+
tolerations : List[Dict[str,str]], default []
|
1040
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
1041
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
1042
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
1043
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
1044
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
1045
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
1046
|
+
use_tmpfs : bool, default False
|
1047
|
+
This enables an explicit tmpfs mount for this step.
|
1048
|
+
tmpfs_tempdir : bool, default True
|
1049
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
1050
|
+
tmpfs_size : int, optional, default: None
|
1051
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
1052
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
1053
|
+
memory allocated for this step.
|
1054
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
1055
|
+
Path to tmpfs mount for this step.
|
1056
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
1057
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
1058
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
1059
|
+
shared_memory: int, optional
|
1060
|
+
Shared memory size (in MiB) required for this step
|
1061
|
+
port: int, optional
|
1062
|
+
Port number to specify in the Kubernetes job object
|
1063
|
+
compute_pool : str, optional, default None
|
1064
|
+
Compute pool to be used for for this step.
|
1065
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
1066
|
+
hostname_resolution_timeout: int, default 10 * 60
|
1067
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
1068
|
+
Only applicable when @parallel is used.
|
1069
|
+
qos: str, default: Burstable
|
1070
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
946
1071
|
|
947
|
-
|
948
|
-
|
1072
|
+
security_context: Dict[str, Any], optional, default None
|
1073
|
+
Container security context. Applies to the task container. Allows the following keys:
|
1074
|
+
- privileged: bool, optional, default None
|
1075
|
+
- allow_privilege_escalation: bool, optional, default None
|
1076
|
+
- run_as_user: int, optional, default None
|
1077
|
+
- run_as_group: int, optional, default None
|
1078
|
+
- run_as_non_root: bool, optional, default None
|
949
1079
|
"""
|
950
1080
|
...
|
951
1081
|
|
952
|
-
|
1082
|
+
@typing.overload
|
1083
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
953
1084
|
"""
|
954
|
-
|
955
|
-
|
956
|
-
|
957
|
-
Parameters
|
958
|
-
----------
|
959
|
-
gpu : int
|
960
|
-
Number of GPUs to use.
|
961
|
-
gpu_type : str
|
962
|
-
Type of Nvidia GPU to use.
|
963
|
-
queue_timeout : int
|
964
|
-
Time to keep the job in NVCF's queue.
|
1085
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1086
|
+
and imported for all decorators types by _import_plugin_decorators().
|
965
1087
|
"""
|
966
1088
|
...
|
967
1089
|
|
968
|
-
|
1090
|
+
@typing.overload
|
1091
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1092
|
+
...
|
1093
|
+
|
1094
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
969
1095
|
"""
|
970
|
-
|
971
|
-
|
972
|
-
User code call
|
973
|
-
--------------
|
974
|
-
@ollama(
|
975
|
-
models=[...],
|
976
|
-
...
|
977
|
-
)
|
978
|
-
|
979
|
-
Valid backend options
|
980
|
-
---------------------
|
981
|
-
- 'local': Run as a separate process on the local task machine.
|
982
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
983
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
984
|
-
|
985
|
-
Valid model options
|
986
|
-
-------------------
|
987
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
988
|
-
|
989
|
-
|
990
|
-
Parameters
|
991
|
-
----------
|
992
|
-
models: list[str]
|
993
|
-
List of Ollama containers running models in sidecars.
|
994
|
-
backend: str
|
995
|
-
Determines where and how to run the Ollama process.
|
996
|
-
force_pull: bool
|
997
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
998
|
-
cache_update_policy: str
|
999
|
-
Cache update policy: "auto", "force", or "never".
|
1000
|
-
force_cache_update: bool
|
1001
|
-
Simple override for "force" cache update policy.
|
1002
|
-
debug: bool
|
1003
|
-
Whether to turn on verbose debugging logs.
|
1004
|
-
circuit_breaker_config: dict
|
1005
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
1006
|
-
timeout_config: dict
|
1007
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
1096
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1097
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1008
1098
|
"""
|
1009
1099
|
...
|
1010
1100
|
|
1011
1101
|
@typing.overload
|
1012
|
-
def
|
1102
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1013
1103
|
"""
|
1014
|
-
Specifies
|
1015
|
-
|
1016
|
-
Information in this decorator will augment any
|
1017
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
1018
|
-
you can use `@conda_base` to set packages required by all
|
1019
|
-
steps and use `@conda` to specify step-specific overrides.
|
1104
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
1105
|
+
the execution of a step.
|
1020
1106
|
|
1021
1107
|
|
1022
1108
|
Parameters
|
1023
1109
|
----------
|
1024
|
-
|
1025
|
-
|
1026
|
-
|
1027
|
-
|
1028
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1029
|
-
python : str, optional, default None
|
1030
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1031
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1032
|
-
disabled : bool, default False
|
1033
|
-
If set to True, disables @conda.
|
1110
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
1111
|
+
List of secret specs, defining how the secrets are to be retrieved
|
1112
|
+
role : str, optional, default: None
|
1113
|
+
Role to use for fetching secrets
|
1034
1114
|
"""
|
1035
1115
|
...
|
1036
1116
|
|
1037
1117
|
@typing.overload
|
1038
|
-
def
|
1118
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1039
1119
|
...
|
1040
1120
|
|
1041
1121
|
@typing.overload
|
1042
|
-
def
|
1122
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1043
1123
|
...
|
1044
1124
|
|
1045
|
-
def
|
1125
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
1046
1126
|
"""
|
1047
|
-
Specifies
|
1048
|
-
|
1049
|
-
Information in this decorator will augment any
|
1050
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
1051
|
-
you can use `@conda_base` to set packages required by all
|
1052
|
-
steps and use `@conda` to specify step-specific overrides.
|
1127
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
1128
|
+
the execution of a step.
|
1053
1129
|
|
1054
1130
|
|
1055
1131
|
Parameters
|
1056
1132
|
----------
|
1057
|
-
|
1058
|
-
|
1059
|
-
|
1060
|
-
|
1061
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1062
|
-
python : str, optional, default None
|
1063
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1064
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1065
|
-
disabled : bool, default False
|
1066
|
-
If set to True, disables @conda.
|
1133
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
1134
|
+
List of secret specs, defining how the secrets are to be retrieved
|
1135
|
+
role : str, optional, default: None
|
1136
|
+
Role to use for fetching secrets
|
1067
1137
|
"""
|
1068
1138
|
...
|
1069
1139
|
|
1070
1140
|
@typing.overload
|
1071
|
-
def
|
1141
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1072
1142
|
"""
|
1073
|
-
|
1074
|
-
and imported for all decorators types by _import_plugin_decorators().
|
1143
|
+
Internal decorator to support Fast bakery
|
1075
1144
|
"""
|
1076
1145
|
...
|
1077
1146
|
|
1078
1147
|
@typing.overload
|
1079
|
-
def
|
1148
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1080
1149
|
...
|
1081
1150
|
|
1082
|
-
def
|
1151
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1083
1152
|
"""
|
1084
|
-
|
1085
|
-
and imported for all decorators types by _import_plugin_decorators().
|
1153
|
+
Internal decorator to support Fast bakery
|
1086
1154
|
"""
|
1087
1155
|
...
|
1088
1156
|
|
@@ -1123,155 +1191,45 @@ def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Op
|
|
1123
1191
|
...
|
1124
1192
|
|
1125
1193
|
@typing.overload
|
1126
|
-
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1127
|
-
...
|
1128
|
-
|
1129
|
-
@typing.overload
|
1130
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1131
|
-
...
|
1132
|
-
|
1133
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
1134
|
-
"""
|
1135
|
-
Specifies the resources needed when executing this step.
|
1136
|
-
|
1137
|
-
Use `@resources` to specify the resource requirements
|
1138
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
1139
|
-
|
1140
|
-
You can choose the compute layer on the command line by executing e.g.
|
1141
|
-
```
|
1142
|
-
python myflow.py run --with batch
|
1143
|
-
```
|
1144
|
-
or
|
1145
|
-
```
|
1146
|
-
python myflow.py run --with kubernetes
|
1147
|
-
```
|
1148
|
-
which executes the flow on the desired system using the
|
1149
|
-
requirements specified in `@resources`.
|
1150
|
-
|
1151
|
-
|
1152
|
-
Parameters
|
1153
|
-
----------
|
1154
|
-
cpu : int, default 1
|
1155
|
-
Number of CPUs required for this step.
|
1156
|
-
gpu : int, optional, default None
|
1157
|
-
Number of GPUs required for this step.
|
1158
|
-
disk : int, optional, default None
|
1159
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
1160
|
-
memory : int, default 4096
|
1161
|
-
Memory size (in MB) required for this step.
|
1162
|
-
shared_memory : int, optional, default None
|
1163
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
1164
|
-
This parameter maps to the `--shm-size` option in Docker.
|
1165
|
-
"""
|
1166
|
-
...
|
1167
|
-
|
1168
|
-
@typing.overload
|
1169
|
-
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1170
|
-
"""
|
1171
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
1172
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
1173
|
-
a Neo Cloud like CoreWeave.
|
1174
|
-
"""
|
1175
|
-
...
|
1176
|
-
|
1177
|
-
@typing.overload
|
1178
|
-
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1179
|
-
...
|
1180
|
-
|
1181
|
-
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1182
|
-
"""
|
1183
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
1184
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
1185
|
-
a Neo Cloud like CoreWeave.
|
1186
|
-
"""
|
1187
|
-
...
|
1188
|
-
|
1189
|
-
@typing.overload
|
1190
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1191
|
-
"""
|
1192
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
1193
|
-
the execution of a step.
|
1194
|
-
|
1195
|
-
|
1196
|
-
Parameters
|
1197
|
-
----------
|
1198
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
1199
|
-
List of secret specs, defining how the secrets are to be retrieved
|
1200
|
-
role : str, optional, default: None
|
1201
|
-
Role to use for fetching secrets
|
1202
|
-
"""
|
1203
|
-
...
|
1204
|
-
|
1205
|
-
@typing.overload
|
1206
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1207
|
-
...
|
1208
|
-
|
1209
|
-
@typing.overload
|
1210
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1194
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1211
1195
|
...
|
1212
1196
|
|
1213
|
-
|
1214
|
-
|
1215
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
1216
|
-
the execution of a step.
|
1217
|
-
|
1218
|
-
|
1219
|
-
Parameters
|
1220
|
-
----------
|
1221
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
1222
|
-
List of secret specs, defining how the secrets are to be retrieved
|
1223
|
-
role : str, optional, default: None
|
1224
|
-
Role to use for fetching secrets
|
1225
|
-
"""
|
1197
|
+
@typing.overload
|
1198
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1226
1199
|
...
|
1227
1200
|
|
1228
|
-
def
|
1201
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
1229
1202
|
"""
|
1230
|
-
|
1231
|
-
|
1232
|
-
User code call
|
1233
|
-
--------------
|
1234
|
-
@vllm(
|
1235
|
-
model="...",
|
1236
|
-
...
|
1237
|
-
)
|
1238
|
-
|
1239
|
-
Valid backend options
|
1240
|
-
---------------------
|
1241
|
-
- 'local': Run as a separate process on the local task machine.
|
1203
|
+
Specifies the resources needed when executing this step.
|
1242
1204
|
|
1243
|
-
|
1244
|
-
|
1245
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
1205
|
+
Use `@resources` to specify the resource requirements
|
1206
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
1246
1207
|
|
1247
|
-
|
1248
|
-
|
1208
|
+
You can choose the compute layer on the command line by executing e.g.
|
1209
|
+
```
|
1210
|
+
python myflow.py run --with batch
|
1211
|
+
```
|
1212
|
+
or
|
1213
|
+
```
|
1214
|
+
python myflow.py run --with kubernetes
|
1215
|
+
```
|
1216
|
+
which executes the flow on the desired system using the
|
1217
|
+
requirements specified in `@resources`.
|
1249
1218
|
|
1250
1219
|
|
1251
1220
|
Parameters
|
1252
1221
|
----------
|
1253
|
-
|
1254
|
-
|
1255
|
-
|
1256
|
-
|
1257
|
-
|
1258
|
-
|
1259
|
-
|
1260
|
-
|
1261
|
-
|
1262
|
-
|
1263
|
-
|
1264
|
-
Interval in seconds for refreshing the vLLM status card.
|
1265
|
-
Only used when openai_api_server=True.
|
1266
|
-
max_retries: int
|
1267
|
-
Maximum number of retries checking for vLLM server startup.
|
1268
|
-
Only used when openai_api_server=True.
|
1269
|
-
retry_alert_frequency: int
|
1270
|
-
Frequency of alert logs for vLLM server startup retries.
|
1271
|
-
Only used when openai_api_server=True.
|
1272
|
-
engine_args : dict
|
1273
|
-
Additional keyword arguments to pass to the vLLM engine.
|
1274
|
-
For example, `tensor_parallel_size=2`.
|
1222
|
+
cpu : int, default 1
|
1223
|
+
Number of CPUs required for this step.
|
1224
|
+
gpu : int, optional, default None
|
1225
|
+
Number of GPUs required for this step.
|
1226
|
+
disk : int, optional, default None
|
1227
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
1228
|
+
memory : int, default 4096
|
1229
|
+
Memory size (in MB) required for this step.
|
1230
|
+
shared_memory : int, optional, default None
|
1231
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
1232
|
+
This parameter maps to the `--shm-size` option in Docker.
|
1275
1233
|
"""
|
1276
1234
|
...
|
1277
1235
|
|
@@ -1326,118 +1284,67 @@ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
1326
1284
|
"""
|
1327
1285
|
...
|
1328
1286
|
|
1329
|
-
|
1287
|
+
@typing.overload
|
1288
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1330
1289
|
"""
|
1331
|
-
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
1332
|
-
|
1333
|
-
|
1334
|
-
Parameters
|
1335
|
-
----------
|
1336
|
-
integration_name : str, optional
|
1337
|
-
Name of the S3 proxy integration. If not specified, will use the only
|
1338
|
-
available S3 proxy integration in the namespace (fails if multiple exist).
|
1339
|
-
write_mode : str, optional
|
1340
|
-
The desired behavior during write operations to target (origin) S3 bucket.
|
1341
|
-
allowed options are:
|
1342
|
-
"origin-and-cache" -> write to both the target S3 bucket and local object
|
1343
|
-
storage
|
1344
|
-
"origin" -> only write to the target S3 bucket
|
1345
|
-
"cache" -> only write to the object storage service used for caching
|
1346
|
-
debug : bool, optional
|
1347
|
-
Enable debug logging for proxy operations.
|
1290
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
1291
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
1292
|
+
a Neo Cloud like CoreWeave.
|
1348
1293
|
"""
|
1349
1294
|
...
|
1350
1295
|
|
1351
1296
|
@typing.overload
|
1352
|
-
def
|
1353
|
-
"""
|
1354
|
-
Specifies the event(s) that this flow depends on.
|
1355
|
-
|
1356
|
-
```
|
1357
|
-
@trigger(event='foo')
|
1358
|
-
```
|
1359
|
-
or
|
1360
|
-
```
|
1361
|
-
@trigger(events=['foo', 'bar'])
|
1362
|
-
```
|
1363
|
-
|
1364
|
-
Additionally, you can specify the parameter mappings
|
1365
|
-
to map event payload to Metaflow parameters for the flow.
|
1366
|
-
```
|
1367
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1368
|
-
```
|
1369
|
-
or
|
1370
|
-
```
|
1371
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1372
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1373
|
-
```
|
1374
|
-
|
1375
|
-
'parameters' can also be a list of strings and tuples like so:
|
1376
|
-
```
|
1377
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1378
|
-
```
|
1379
|
-
This is equivalent to:
|
1380
|
-
```
|
1381
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1382
|
-
```
|
1383
|
-
|
1384
|
-
|
1385
|
-
Parameters
|
1386
|
-
----------
|
1387
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
1388
|
-
Event dependency for this flow.
|
1389
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
1390
|
-
Events dependency for this flow.
|
1391
|
-
options : Dict[str, Any], default {}
|
1392
|
-
Backend-specific configuration for tuning eventing behavior.
|
1393
|
-
"""
|
1297
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1394
1298
|
...
|
1395
1299
|
|
1396
|
-
|
1397
|
-
|
1300
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1301
|
+
"""
|
1302
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
1303
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
1304
|
+
a Neo Cloud like CoreWeave.
|
1305
|
+
"""
|
1398
1306
|
...
|
1399
1307
|
|
1400
|
-
def
|
1308
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1401
1309
|
"""
|
1402
|
-
|
1310
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
1403
1311
|
|
1404
|
-
|
1405
|
-
|
1406
|
-
|
1407
|
-
|
1408
|
-
|
1409
|
-
|
1410
|
-
```
|
1312
|
+
User code call
|
1313
|
+
--------------
|
1314
|
+
@ollama(
|
1315
|
+
models=[...],
|
1316
|
+
...
|
1317
|
+
)
|
1411
1318
|
|
1412
|
-
|
1413
|
-
|
1414
|
-
|
1415
|
-
|
1416
|
-
|
1417
|
-
or
|
1418
|
-
```
|
1419
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1420
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1421
|
-
```
|
1319
|
+
Valid backend options
|
1320
|
+
---------------------
|
1321
|
+
- 'local': Run as a separate process on the local task machine.
|
1322
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
1323
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
1422
1324
|
|
1423
|
-
|
1424
|
-
|
1425
|
-
|
1426
|
-
```
|
1427
|
-
This is equivalent to:
|
1428
|
-
```
|
1429
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1430
|
-
```
|
1325
|
+
Valid model options
|
1326
|
+
-------------------
|
1327
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
1431
1328
|
|
1432
1329
|
|
1433
1330
|
Parameters
|
1434
1331
|
----------
|
1435
|
-
|
1436
|
-
|
1437
|
-
|
1438
|
-
|
1439
|
-
|
1440
|
-
|
1332
|
+
models: list[str]
|
1333
|
+
List of Ollama containers running models in sidecars.
|
1334
|
+
backend: str
|
1335
|
+
Determines where and how to run the Ollama process.
|
1336
|
+
force_pull: bool
|
1337
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
1338
|
+
cache_update_policy: str
|
1339
|
+
Cache update policy: "auto", "force", or "never".
|
1340
|
+
force_cache_update: bool
|
1341
|
+
Simple override for "force" cache update policy.
|
1342
|
+
debug: bool
|
1343
|
+
Whether to turn on verbose debugging logs.
|
1344
|
+
circuit_breaker_config: dict
|
1345
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
1346
|
+
timeout_config: dict
|
1347
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
1441
1348
|
"""
|
1442
1349
|
...
|
1443
1350
|
|
@@ -1469,120 +1376,175 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
1469
1376
|
Name of the sensor on Airflow
|
1470
1377
|
description : str
|
1471
1378
|
Description of sensor in the Airflow UI
|
1472
|
-
bucket_key : Union[str, List[str]]
|
1473
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1474
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1475
|
-
bucket_name : str
|
1476
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1477
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1478
|
-
wildcard_match : bool
|
1479
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1480
|
-
aws_conn_id : str
|
1481
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
1482
|
-
verify : bool
|
1483
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1379
|
+
bucket_key : Union[str, List[str]]
|
1380
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1381
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1382
|
+
bucket_name : str
|
1383
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1384
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1385
|
+
wildcard_match : bool
|
1386
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1387
|
+
aws_conn_id : str
|
1388
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1389
|
+
verify : bool
|
1390
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1391
|
+
"""
|
1392
|
+
...
|
1393
|
+
|
1394
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1395
|
+
"""
|
1396
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1397
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1398
|
+
|
1399
|
+
|
1400
|
+
Parameters
|
1401
|
+
----------
|
1402
|
+
timeout : int
|
1403
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1404
|
+
poke_interval : int
|
1405
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1406
|
+
mode : str
|
1407
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1408
|
+
exponential_backoff : bool
|
1409
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1410
|
+
pool : str
|
1411
|
+
the slot pool this task should run in,
|
1412
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1413
|
+
soft_fail : bool
|
1414
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1415
|
+
name : str
|
1416
|
+
Name of the sensor on Airflow
|
1417
|
+
description : str
|
1418
|
+
Description of sensor in the Airflow UI
|
1419
|
+
external_dag_id : str
|
1420
|
+
The dag_id that contains the task you want to wait for.
|
1421
|
+
external_task_ids : List[str]
|
1422
|
+
The list of task_ids that you want to wait for.
|
1423
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1424
|
+
allowed_states : List[str]
|
1425
|
+
Iterable of allowed states, (Default: ['success'])
|
1426
|
+
failed_states : List[str]
|
1427
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1428
|
+
execution_delta : datetime.timedelta
|
1429
|
+
time difference with the previous execution to look at,
|
1430
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1431
|
+
check_existence: bool
|
1432
|
+
Set to True to check if the external task exists or check if
|
1433
|
+
the DAG to wait for exists. (Default: True)
|
1484
1434
|
"""
|
1485
1435
|
...
|
1486
1436
|
|
1487
|
-
|
1488
|
-
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1437
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1489
1438
|
"""
|
1490
|
-
|
1439
|
+
Allows setting external datastores to save data for the
|
1440
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1491
1441
|
|
1492
|
-
|
1493
|
-
|
1442
|
+
This decorator is useful when users wish to save data to a different datastore
|
1443
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1494
1444
|
|
1445
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1446
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1447
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1448
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1449
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1495
1450
|
|
1496
|
-
|
1451
|
+
Usage:
|
1497
1452
|
----------
|
1498
|
-
packages : Dict[str, str], default {}
|
1499
|
-
Packages to use for this flow. The key is the name of the package
|
1500
|
-
and the value is the version to use.
|
1501
|
-
libraries : Dict[str, str], default {}
|
1502
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1503
|
-
python : str, optional, default None
|
1504
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1505
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1506
|
-
disabled : bool, default False
|
1507
|
-
If set to True, disables Conda.
|
1508
|
-
"""
|
1509
|
-
...
|
1510
|
-
|
1511
|
-
@typing.overload
|
1512
|
-
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1513
|
-
...
|
1514
|
-
|
1515
|
-
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1516
|
-
"""
|
1517
|
-
Specifies the Conda environment for all steps of the flow.
|
1518
1453
|
|
1519
|
-
|
1520
|
-
steps and use `@conda` to specify step-specific additions.
|
1454
|
+
- Using a custom IAM role to access the datastore.
|
1521
1455
|
|
1456
|
+
```python
|
1457
|
+
@with_artifact_store(
|
1458
|
+
type="s3",
|
1459
|
+
config=lambda: {
|
1460
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1461
|
+
"role_arn": ROLE,
|
1462
|
+
},
|
1463
|
+
)
|
1464
|
+
class MyFlow(FlowSpec):
|
1522
1465
|
|
1523
|
-
|
1524
|
-
|
1525
|
-
|
1526
|
-
|
1527
|
-
|
1528
|
-
|
1529
|
-
|
1530
|
-
python : str, optional, default None
|
1531
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1532
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1533
|
-
disabled : bool, default False
|
1534
|
-
If set to True, disables Conda.
|
1535
|
-
"""
|
1536
|
-
...
|
1537
|
-
|
1538
|
-
@typing.overload
|
1539
|
-
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1540
|
-
"""
|
1541
|
-
Specifies the times when the flow should be run when running on a
|
1542
|
-
production scheduler.
|
1466
|
+
@checkpoint
|
1467
|
+
@step
|
1468
|
+
def start(self):
|
1469
|
+
with open("my_file.txt", "w") as f:
|
1470
|
+
f.write("Hello, World!")
|
1471
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1472
|
+
self.next(self.end)
|
1543
1473
|
|
1474
|
+
```
|
1544
1475
|
|
1545
|
-
|
1546
|
-
|
1547
|
-
|
1548
|
-
|
1549
|
-
|
1550
|
-
|
1551
|
-
|
1552
|
-
|
1553
|
-
|
1554
|
-
|
1555
|
-
|
1556
|
-
|
1557
|
-
|
1558
|
-
|
1559
|
-
|
1560
|
-
|
1561
|
-
|
1562
|
-
|
1563
|
-
|
1564
|
-
|
1565
|
-
|
1566
|
-
|
1567
|
-
"""
|
1568
|
-
Specifies the times when the flow should be run when running on a
|
1569
|
-
production scheduler.
|
1476
|
+
- Using credentials to access the s3-compatible datastore.
|
1477
|
+
|
1478
|
+
```python
|
1479
|
+
@with_artifact_store(
|
1480
|
+
type="s3",
|
1481
|
+
config=lambda: {
|
1482
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1483
|
+
"client_params": {
|
1484
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1485
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1486
|
+
},
|
1487
|
+
},
|
1488
|
+
)
|
1489
|
+
class MyFlow(FlowSpec):
|
1490
|
+
|
1491
|
+
@checkpoint
|
1492
|
+
@step
|
1493
|
+
def start(self):
|
1494
|
+
with open("my_file.txt", "w") as f:
|
1495
|
+
f.write("Hello, World!")
|
1496
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1497
|
+
self.next(self.end)
|
1570
1498
|
|
1499
|
+
```
|
1571
1500
|
|
1572
|
-
|
1501
|
+
- Accessing objects stored in external datastores after task execution.
|
1502
|
+
|
1503
|
+
```python
|
1504
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1505
|
+
with artifact_store_from(run=run, config={
|
1506
|
+
"client_params": {
|
1507
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1508
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1509
|
+
},
|
1510
|
+
}):
|
1511
|
+
with Checkpoint() as cp:
|
1512
|
+
latest = cp.list(
|
1513
|
+
task=run["start"].task
|
1514
|
+
)[0]
|
1515
|
+
print(latest)
|
1516
|
+
cp.load(
|
1517
|
+
latest,
|
1518
|
+
"test-checkpoints"
|
1519
|
+
)
|
1520
|
+
|
1521
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1522
|
+
with artifact_store_from(run=run, config={
|
1523
|
+
"client_params": {
|
1524
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1525
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1526
|
+
},
|
1527
|
+
}):
|
1528
|
+
load_model(
|
1529
|
+
task.data.model_ref,
|
1530
|
+
"test-models"
|
1531
|
+
)
|
1532
|
+
```
|
1533
|
+
Parameters:
|
1573
1534
|
----------
|
1574
|
-
|
1575
|
-
|
1576
|
-
|
1577
|
-
|
1578
|
-
|
1579
|
-
|
1580
|
-
|
1581
|
-
|
1582
|
-
|
1583
|
-
|
1584
|
-
|
1585
|
-
|
1535
|
+
|
1536
|
+
type: str
|
1537
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1538
|
+
|
1539
|
+
config: dict or Callable
|
1540
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1541
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1542
|
+
- example: 's3://bucket-name/path/to/root'
|
1543
|
+
- example: 'gs://bucket-name/path/to/root'
|
1544
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1545
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1546
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1547
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1586
1548
|
"""
|
1587
1549
|
...
|
1588
1550
|
|
@@ -1627,46 +1589,54 @@ def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packag
|
|
1627
1589
|
"""
|
1628
1590
|
...
|
1629
1591
|
|
1630
|
-
|
1592
|
+
@typing.overload
|
1593
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1631
1594
|
"""
|
1632
|
-
|
1633
|
-
|
1595
|
+
Specifies the times when the flow should be run when running on a
|
1596
|
+
production scheduler.
|
1634
1597
|
|
1635
1598
|
|
1636
1599
|
Parameters
|
1637
|
-
----------
|
1638
|
-
|
1639
|
-
|
1640
|
-
|
1641
|
-
|
1642
|
-
|
1643
|
-
|
1644
|
-
|
1645
|
-
|
1646
|
-
|
1647
|
-
|
1648
|
-
|
1649
|
-
|
1650
|
-
|
1651
|
-
|
1652
|
-
|
1653
|
-
|
1654
|
-
|
1655
|
-
|
1656
|
-
|
1657
|
-
|
1658
|
-
|
1659
|
-
|
1660
|
-
|
1661
|
-
|
1662
|
-
|
1663
|
-
|
1664
|
-
|
1665
|
-
|
1666
|
-
|
1667
|
-
|
1668
|
-
|
1669
|
-
|
1600
|
+
----------
|
1601
|
+
hourly : bool, default False
|
1602
|
+
Run the workflow hourly.
|
1603
|
+
daily : bool, default True
|
1604
|
+
Run the workflow daily.
|
1605
|
+
weekly : bool, default False
|
1606
|
+
Run the workflow weekly.
|
1607
|
+
cron : str, optional, default None
|
1608
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1609
|
+
specified by this expression.
|
1610
|
+
timezone : str, optional, default None
|
1611
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1612
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1613
|
+
"""
|
1614
|
+
...
|
1615
|
+
|
1616
|
+
@typing.overload
|
1617
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1618
|
+
...
|
1619
|
+
|
1620
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1621
|
+
"""
|
1622
|
+
Specifies the times when the flow should be run when running on a
|
1623
|
+
production scheduler.
|
1624
|
+
|
1625
|
+
|
1626
|
+
Parameters
|
1627
|
+
----------
|
1628
|
+
hourly : bool, default False
|
1629
|
+
Run the workflow hourly.
|
1630
|
+
daily : bool, default True
|
1631
|
+
Run the workflow daily.
|
1632
|
+
weekly : bool, default False
|
1633
|
+
Run the workflow weekly.
|
1634
|
+
cron : str, optional, default None
|
1635
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1636
|
+
specified by this expression.
|
1637
|
+
timezone : str, optional, default None
|
1638
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1639
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1670
1640
|
"""
|
1671
1641
|
...
|
1672
1642
|
|
@@ -1806,117 +1776,147 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
1806
1776
|
"""
|
1807
1777
|
...
|
1808
1778
|
|
1809
|
-
|
1779
|
+
@typing.overload
|
1780
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1810
1781
|
"""
|
1811
|
-
|
1812
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1782
|
+
Specifies the Conda environment for all steps of the flow.
|
1813
1783
|
|
1814
|
-
|
1815
|
-
|
1784
|
+
Use `@conda_base` to set common libraries required by all
|
1785
|
+
steps and use `@conda` to specify step-specific additions.
|
1816
1786
|
|
1817
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1818
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1819
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1820
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1821
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1822
1787
|
|
1823
|
-
|
1788
|
+
Parameters
|
1824
1789
|
----------
|
1790
|
+
packages : Dict[str, str], default {}
|
1791
|
+
Packages to use for this flow. The key is the name of the package
|
1792
|
+
and the value is the version to use.
|
1793
|
+
libraries : Dict[str, str], default {}
|
1794
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1795
|
+
python : str, optional, default None
|
1796
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1797
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1798
|
+
disabled : bool, default False
|
1799
|
+
If set to True, disables Conda.
|
1800
|
+
"""
|
1801
|
+
...
|
1802
|
+
|
1803
|
+
@typing.overload
|
1804
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1805
|
+
...
|
1806
|
+
|
1807
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1808
|
+
"""
|
1809
|
+
Specifies the Conda environment for all steps of the flow.
|
1825
1810
|
|
1826
|
-
|
1811
|
+
Use `@conda_base` to set common libraries required by all
|
1812
|
+
steps and use `@conda` to specify step-specific additions.
|
1827
1813
|
|
1828
|
-
```python
|
1829
|
-
@with_artifact_store(
|
1830
|
-
type="s3",
|
1831
|
-
config=lambda: {
|
1832
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1833
|
-
"role_arn": ROLE,
|
1834
|
-
},
|
1835
|
-
)
|
1836
|
-
class MyFlow(FlowSpec):
|
1837
1814
|
|
1838
|
-
|
1839
|
-
|
1840
|
-
|
1841
|
-
|
1842
|
-
|
1843
|
-
|
1844
|
-
|
1815
|
+
Parameters
|
1816
|
+
----------
|
1817
|
+
packages : Dict[str, str], default {}
|
1818
|
+
Packages to use for this flow. The key is the name of the package
|
1819
|
+
and the value is the version to use.
|
1820
|
+
libraries : Dict[str, str], default {}
|
1821
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1822
|
+
python : str, optional, default None
|
1823
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1824
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1825
|
+
disabled : bool, default False
|
1826
|
+
If set to True, disables Conda.
|
1827
|
+
"""
|
1828
|
+
...
|
1829
|
+
|
1830
|
+
@typing.overload
|
1831
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1832
|
+
"""
|
1833
|
+
Specifies the event(s) that this flow depends on.
|
1845
1834
|
|
1846
|
-
|
1835
|
+
```
|
1836
|
+
@trigger(event='foo')
|
1837
|
+
```
|
1838
|
+
or
|
1839
|
+
```
|
1840
|
+
@trigger(events=['foo', 'bar'])
|
1841
|
+
```
|
1847
1842
|
|
1848
|
-
|
1843
|
+
Additionally, you can specify the parameter mappings
|
1844
|
+
to map event payload to Metaflow parameters for the flow.
|
1845
|
+
```
|
1846
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1847
|
+
```
|
1848
|
+
or
|
1849
|
+
```
|
1850
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1851
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1852
|
+
```
|
1849
1853
|
|
1850
|
-
|
1851
|
-
|
1852
|
-
|
1853
|
-
|
1854
|
-
|
1855
|
-
|
1856
|
-
|
1857
|
-
|
1858
|
-
},
|
1859
|
-
},
|
1860
|
-
)
|
1861
|
-
class MyFlow(FlowSpec):
|
1854
|
+
'parameters' can also be a list of strings and tuples like so:
|
1855
|
+
```
|
1856
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1857
|
+
```
|
1858
|
+
This is equivalent to:
|
1859
|
+
```
|
1860
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1861
|
+
```
|
1862
1862
|
|
1863
|
-
@checkpoint
|
1864
|
-
@step
|
1865
|
-
def start(self):
|
1866
|
-
with open("my_file.txt", "w") as f:
|
1867
|
-
f.write("Hello, World!")
|
1868
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1869
|
-
self.next(self.end)
|
1870
1863
|
|
1871
|
-
|
1864
|
+
Parameters
|
1865
|
+
----------
|
1866
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1867
|
+
Event dependency for this flow.
|
1868
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1869
|
+
Events dependency for this flow.
|
1870
|
+
options : Dict[str, Any], default {}
|
1871
|
+
Backend-specific configuration for tuning eventing behavior.
|
1872
|
+
"""
|
1873
|
+
...
|
1874
|
+
|
1875
|
+
@typing.overload
|
1876
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1877
|
+
...
|
1878
|
+
|
1879
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1880
|
+
"""
|
1881
|
+
Specifies the event(s) that this flow depends on.
|
1872
1882
|
|
1873
|
-
|
1883
|
+
```
|
1884
|
+
@trigger(event='foo')
|
1885
|
+
```
|
1886
|
+
or
|
1887
|
+
```
|
1888
|
+
@trigger(events=['foo', 'bar'])
|
1889
|
+
```
|
1874
1890
|
|
1875
|
-
|
1876
|
-
|
1877
|
-
|
1878
|
-
|
1879
|
-
|
1880
|
-
|
1881
|
-
|
1882
|
-
|
1883
|
-
|
1884
|
-
|
1885
|
-
task=run["start"].task
|
1886
|
-
)[0]
|
1887
|
-
print(latest)
|
1888
|
-
cp.load(
|
1889
|
-
latest,
|
1890
|
-
"test-checkpoints"
|
1891
|
-
)
|
1891
|
+
Additionally, you can specify the parameter mappings
|
1892
|
+
to map event payload to Metaflow parameters for the flow.
|
1893
|
+
```
|
1894
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1895
|
+
```
|
1896
|
+
or
|
1897
|
+
```
|
1898
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1899
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1900
|
+
```
|
1892
1901
|
|
1893
|
-
|
1894
|
-
|
1895
|
-
|
1896
|
-
|
1897
|
-
|
1898
|
-
|
1899
|
-
|
1900
|
-
|
1901
|
-
task.data.model_ref,
|
1902
|
-
"test-models"
|
1903
|
-
)
|
1904
|
-
```
|
1905
|
-
Parameters:
|
1906
|
-
----------
|
1902
|
+
'parameters' can also be a list of strings and tuples like so:
|
1903
|
+
```
|
1904
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1905
|
+
```
|
1906
|
+
This is equivalent to:
|
1907
|
+
```
|
1908
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1909
|
+
```
|
1907
1910
|
|
1908
|
-
type: str
|
1909
|
-
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1910
1911
|
|
1911
|
-
|
1912
|
-
|
1913
|
-
|
1914
|
-
|
1915
|
-
|
1916
|
-
|
1917
|
-
|
1918
|
-
-
|
1919
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1912
|
+
Parameters
|
1913
|
+
----------
|
1914
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1915
|
+
Event dependency for this flow.
|
1916
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1917
|
+
Events dependency for this flow.
|
1918
|
+
options : Dict[str, Any], default {}
|
1919
|
+
Backend-specific configuration for tuning eventing behavior.
|
1920
1920
|
"""
|
1921
1921
|
...
|
1922
1922
|
|