ob-metaflow-stubs 6.0.5.1__py2.py3-none-any.whl → 6.0.5.2__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +995 -995
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +5 -5
- metaflow-stubs/client/filecache.pyi +1 -1
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +2 -2
- metaflow-stubs/meta_files.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +1 -1
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +53 -53
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +6 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +10 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +6 -7
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/packaging_sys/__init__.pyi +3 -3
- metaflow-stubs/packaging_sys/backend.pyi +1 -1
- metaflow-stubs/packaging_sys/distribution_support.pyi +3 -3
- metaflow-stubs/packaging_sys/tar_backend.pyi +3 -3
- metaflow-stubs/packaging_sys/utils.pyi +1 -1
- metaflow-stubs/packaging_sys/v1.pyi +1 -1
- metaflow-stubs/parameters.pyi +2 -2
- metaflow-stubs/plugins/__init__.pyi +7 -7
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +1 -1
- metaflow-stubs/plugins/argo/exit_hooks.pyi +1 -1
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +1 -1
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/__init__.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +3 -3
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +1 -1
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_func.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +1 -1
- metaflow-stubs/plugins/secrets/utils.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +1 -1
- metaflow-stubs/plugins/timeout_decorator.pyi +1 -1
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +1 -1
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +5 -5
- metaflow-stubs/runner/deployer_impl.pyi +1 -1
- metaflow-stubs/runner/metaflow_runner.pyi +2 -2
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +1 -1
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_options.pyi +1 -1
- metaflow-stubs/user_configs/config_parameters.pyi +4 -4
- metaflow-stubs/user_decorators/__init__.pyi +1 -1
- metaflow-stubs/user_decorators/common.pyi +1 -1
- metaflow-stubs/user_decorators/mutable_flow.pyi +4 -4
- metaflow-stubs/user_decorators/mutable_step.pyi +4 -4
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +3 -3
- metaflow-stubs/user_decorators/user_step_decorator.pyi +4 -4
- {ob_metaflow_stubs-6.0.5.1.dist-info → ob_metaflow_stubs-6.0.5.2.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.5.2.dist-info/RECORD +261 -0
- ob_metaflow_stubs-6.0.5.1.dist-info/RECORD +0 -261
- {ob_metaflow_stubs-6.0.5.1.dist-info → ob_metaflow_stubs-6.0.5.2.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.5.1.dist-info → ob_metaflow_stubs-6.0.5.2.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
3
|
# MF version: 2.16.8.1+obcheckpoint(0.2.4);ob(v1) #
|
4
|
-
# Generated on 2025-08-
|
4
|
+
# Generated on 2025-08-04T19:06:54.653206 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
@@ -40,16 +40,16 @@ from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
42
42
|
from . import cards as cards
|
43
|
-
from . import metaflow_git as metaflow_git
|
44
43
|
from . import tuple_util as tuple_util
|
44
|
+
from . import metaflow_git as metaflow_git
|
45
45
|
from . import events as events
|
46
46
|
from . import runner as runner
|
47
47
|
from . import plugins as plugins
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
49
49
|
from . import includefile as includefile
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
51
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
52
51
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
52
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
53
53
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
54
54
|
from . import client as client
|
55
55
|
from .client.core import namespace as namespace
|
@@ -167,6 +167,251 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
167
167
|
"""
|
168
168
|
...
|
169
169
|
|
170
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
171
|
+
"""
|
172
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
173
|
+
|
174
|
+
User code call
|
175
|
+
--------------
|
176
|
+
@ollama(
|
177
|
+
models=[...],
|
178
|
+
...
|
179
|
+
)
|
180
|
+
|
181
|
+
Valid backend options
|
182
|
+
---------------------
|
183
|
+
- 'local': Run as a separate process on the local task machine.
|
184
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
185
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
186
|
+
|
187
|
+
Valid model options
|
188
|
+
-------------------
|
189
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
190
|
+
|
191
|
+
|
192
|
+
Parameters
|
193
|
+
----------
|
194
|
+
models: list[str]
|
195
|
+
List of Ollama containers running models in sidecars.
|
196
|
+
backend: str
|
197
|
+
Determines where and how to run the Ollama process.
|
198
|
+
force_pull: bool
|
199
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
200
|
+
cache_update_policy: str
|
201
|
+
Cache update policy: "auto", "force", or "never".
|
202
|
+
force_cache_update: bool
|
203
|
+
Simple override for "force" cache update policy.
|
204
|
+
debug: bool
|
205
|
+
Whether to turn on verbose debugging logs.
|
206
|
+
circuit_breaker_config: dict
|
207
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
208
|
+
timeout_config: dict
|
209
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
210
|
+
"""
|
211
|
+
...
|
212
|
+
|
213
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
214
|
+
"""
|
215
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
216
|
+
|
217
|
+
|
218
|
+
Parameters
|
219
|
+
----------
|
220
|
+
integration_name : str, optional
|
221
|
+
Name of the S3 proxy integration. If not specified, will use the only
|
222
|
+
available S3 proxy integration in the namespace (fails if multiple exist).
|
223
|
+
write_mode : str, optional
|
224
|
+
The desired behavior during write operations to target (origin) S3 bucket.
|
225
|
+
allowed options are:
|
226
|
+
"origin-and-cache" -> write to both the target S3 bucket and local object
|
227
|
+
storage
|
228
|
+
"origin" -> only write to the target S3 bucket
|
229
|
+
"cache" -> only write to the object storage service used for caching
|
230
|
+
debug : bool, optional
|
231
|
+
Enable debug logging for proxy operations.
|
232
|
+
"""
|
233
|
+
...
|
234
|
+
|
235
|
+
@typing.overload
|
236
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
237
|
+
"""
|
238
|
+
Enables checkpointing for a step.
|
239
|
+
|
240
|
+
> Examples
|
241
|
+
|
242
|
+
- Saving Checkpoints
|
243
|
+
|
244
|
+
```python
|
245
|
+
@checkpoint
|
246
|
+
@step
|
247
|
+
def train(self):
|
248
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
249
|
+
for i in range(self.epochs):
|
250
|
+
# some training logic
|
251
|
+
loss = model.train(self.dataset)
|
252
|
+
if i % 10 == 0:
|
253
|
+
model.save(
|
254
|
+
current.checkpoint.directory,
|
255
|
+
)
|
256
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
257
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
258
|
+
self.latest_checkpoint = current.checkpoint.save(
|
259
|
+
name="epoch_checkpoint",
|
260
|
+
metadata={
|
261
|
+
"epoch": i,
|
262
|
+
"loss": loss,
|
263
|
+
}
|
264
|
+
)
|
265
|
+
```
|
266
|
+
|
267
|
+
- Using Loaded Checkpoints
|
268
|
+
|
269
|
+
```python
|
270
|
+
@retry(times=3)
|
271
|
+
@checkpoint
|
272
|
+
@step
|
273
|
+
def train(self):
|
274
|
+
# Assume that the task has restarted and the previous attempt of the task
|
275
|
+
# saved a checkpoint
|
276
|
+
checkpoint_path = None
|
277
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
278
|
+
print("Loaded checkpoint from the previous attempt")
|
279
|
+
checkpoint_path = current.checkpoint.directory
|
280
|
+
|
281
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
282
|
+
for i in range(self.epochs):
|
283
|
+
...
|
284
|
+
```
|
285
|
+
|
286
|
+
|
287
|
+
Parameters
|
288
|
+
----------
|
289
|
+
load_policy : str, default: "fresh"
|
290
|
+
The policy for loading the checkpoint. The following policies are supported:
|
291
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
292
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
293
|
+
will be loaded at the start of the task.
|
294
|
+
- "none": Do not load any checkpoint
|
295
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
296
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
297
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
298
|
+
created within the task will be loaded when the task is retries execution on failure.
|
299
|
+
|
300
|
+
temp_dir_root : str, default: None
|
301
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
302
|
+
"""
|
303
|
+
...
|
304
|
+
|
305
|
+
@typing.overload
|
306
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
307
|
+
...
|
308
|
+
|
309
|
+
@typing.overload
|
310
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
311
|
+
...
|
312
|
+
|
313
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
314
|
+
"""
|
315
|
+
Enables checkpointing for a step.
|
316
|
+
|
317
|
+
> Examples
|
318
|
+
|
319
|
+
- Saving Checkpoints
|
320
|
+
|
321
|
+
```python
|
322
|
+
@checkpoint
|
323
|
+
@step
|
324
|
+
def train(self):
|
325
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
326
|
+
for i in range(self.epochs):
|
327
|
+
# some training logic
|
328
|
+
loss = model.train(self.dataset)
|
329
|
+
if i % 10 == 0:
|
330
|
+
model.save(
|
331
|
+
current.checkpoint.directory,
|
332
|
+
)
|
333
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
334
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
335
|
+
self.latest_checkpoint = current.checkpoint.save(
|
336
|
+
name="epoch_checkpoint",
|
337
|
+
metadata={
|
338
|
+
"epoch": i,
|
339
|
+
"loss": loss,
|
340
|
+
}
|
341
|
+
)
|
342
|
+
```
|
343
|
+
|
344
|
+
- Using Loaded Checkpoints
|
345
|
+
|
346
|
+
```python
|
347
|
+
@retry(times=3)
|
348
|
+
@checkpoint
|
349
|
+
@step
|
350
|
+
def train(self):
|
351
|
+
# Assume that the task has restarted and the previous attempt of the task
|
352
|
+
# saved a checkpoint
|
353
|
+
checkpoint_path = None
|
354
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
355
|
+
print("Loaded checkpoint from the previous attempt")
|
356
|
+
checkpoint_path = current.checkpoint.directory
|
357
|
+
|
358
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
359
|
+
for i in range(self.epochs):
|
360
|
+
...
|
361
|
+
```
|
362
|
+
|
363
|
+
|
364
|
+
Parameters
|
365
|
+
----------
|
366
|
+
load_policy : str, default: "fresh"
|
367
|
+
The policy for loading the checkpoint. The following policies are supported:
|
368
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
369
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
370
|
+
will be loaded at the start of the task.
|
371
|
+
- "none": Do not load any checkpoint
|
372
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
373
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
374
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
375
|
+
created within the task will be loaded when the task is retries execution on failure.
|
376
|
+
|
377
|
+
temp_dir_root : str, default: None
|
378
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
379
|
+
"""
|
380
|
+
...
|
381
|
+
|
382
|
+
@typing.overload
|
383
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
384
|
+
"""
|
385
|
+
Specifies environment variables to be set prior to the execution of a step.
|
386
|
+
|
387
|
+
|
388
|
+
Parameters
|
389
|
+
----------
|
390
|
+
vars : Dict[str, str], default {}
|
391
|
+
Dictionary of environment variables to set.
|
392
|
+
"""
|
393
|
+
...
|
394
|
+
|
395
|
+
@typing.overload
|
396
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
397
|
+
...
|
398
|
+
|
399
|
+
@typing.overload
|
400
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
401
|
+
...
|
402
|
+
|
403
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
404
|
+
"""
|
405
|
+
Specifies environment variables to be set prior to the execution of a step.
|
406
|
+
|
407
|
+
|
408
|
+
Parameters
|
409
|
+
----------
|
410
|
+
vars : Dict[str, str], default {}
|
411
|
+
Dictionary of environment variables to set.
|
412
|
+
"""
|
413
|
+
...
|
414
|
+
|
170
415
|
@typing.overload
|
171
416
|
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
172
417
|
"""
|
@@ -218,42 +463,68 @@ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
218
463
|
"""
|
219
464
|
...
|
220
465
|
|
221
|
-
|
222
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
466
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
223
467
|
"""
|
224
|
-
Specifies
|
225
|
-
the execution of a step.
|
468
|
+
Specifies that this step should execute on DGX cloud.
|
226
469
|
|
227
470
|
|
228
471
|
Parameters
|
229
472
|
----------
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
473
|
+
gpu : int
|
474
|
+
Number of GPUs to use.
|
475
|
+
gpu_type : str
|
476
|
+
Type of Nvidia GPU to use.
|
477
|
+
queue_timeout : int
|
478
|
+
Time to keep the job in NVCF's queue.
|
234
479
|
"""
|
235
480
|
...
|
236
481
|
|
237
482
|
@typing.overload
|
238
|
-
def
|
483
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
484
|
+
"""
|
485
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
486
|
+
|
487
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
488
|
+
|
489
|
+
|
490
|
+
Parameters
|
491
|
+
----------
|
492
|
+
type : str, default 'default'
|
493
|
+
Card type.
|
494
|
+
id : str, optional, default None
|
495
|
+
If multiple cards are present, use this id to identify this card.
|
496
|
+
options : Dict[str, Any], default {}
|
497
|
+
Options passed to the card. The contents depend on the card type.
|
498
|
+
timeout : int, default 45
|
499
|
+
Interrupt reporting if it takes more than this many seconds.
|
500
|
+
"""
|
239
501
|
...
|
240
502
|
|
241
503
|
@typing.overload
|
242
|
-
def
|
504
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
243
505
|
...
|
244
506
|
|
245
|
-
|
507
|
+
@typing.overload
|
508
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
509
|
+
...
|
510
|
+
|
511
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
246
512
|
"""
|
247
|
-
|
248
|
-
|
513
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
514
|
+
|
515
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
249
516
|
|
250
517
|
|
251
518
|
Parameters
|
252
519
|
----------
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
520
|
+
type : str, default 'default'
|
521
|
+
Card type.
|
522
|
+
id : str, optional, default None
|
523
|
+
If multiple cards are present, use this id to identify this card.
|
524
|
+
options : Dict[str, Any], default {}
|
525
|
+
Options passed to the card. The contents depend on the card type.
|
526
|
+
timeout : int, default 45
|
527
|
+
Interrupt reporting if it takes more than this many seconds.
|
257
528
|
"""
|
258
529
|
...
|
259
530
|
|
@@ -274,22 +545,17 @@ def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepF
|
|
274
545
|
"""
|
275
546
|
...
|
276
547
|
|
277
|
-
|
278
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
279
|
-
"""
|
280
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
281
|
-
to inject a card and render simple markdown content.
|
282
|
-
"""
|
283
|
-
...
|
284
|
-
|
285
|
-
@typing.overload
|
286
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
287
|
-
...
|
288
|
-
|
289
|
-
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
548
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
290
549
|
"""
|
291
|
-
|
292
|
-
|
550
|
+
Specifies that this step should execute on DGX cloud.
|
551
|
+
|
552
|
+
|
553
|
+
Parameters
|
554
|
+
----------
|
555
|
+
gpu : int
|
556
|
+
Number of GPUs to use.
|
557
|
+
gpu_type : str
|
558
|
+
Type of Nvidia GPU to use.
|
293
559
|
"""
|
294
560
|
...
|
295
561
|
|
@@ -344,182 +610,226 @@ def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
344
610
|
"""
|
345
611
|
...
|
346
612
|
|
347
|
-
|
613
|
+
@typing.overload
|
614
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
348
615
|
"""
|
349
|
-
|
350
|
-
|
351
|
-
User code call
|
352
|
-
--------------
|
353
|
-
@vllm(
|
354
|
-
model="...",
|
355
|
-
...
|
356
|
-
)
|
357
|
-
|
358
|
-
Valid backend options
|
359
|
-
---------------------
|
360
|
-
- 'local': Run as a separate process on the local task machine.
|
361
|
-
|
362
|
-
Valid model options
|
363
|
-
-------------------
|
364
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
365
|
-
|
366
|
-
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
367
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
616
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
617
|
+
the execution of a step.
|
368
618
|
|
369
619
|
|
370
620
|
Parameters
|
371
621
|
----------
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
|
376
|
-
openai_api_server: bool
|
377
|
-
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
378
|
-
Default is False (uses native engine).
|
379
|
-
Set to True for backward compatibility with existing code.
|
380
|
-
debug: bool
|
381
|
-
Whether to turn on verbose debugging logs.
|
382
|
-
card_refresh_interval: int
|
383
|
-
Interval in seconds for refreshing the vLLM status card.
|
384
|
-
Only used when openai_api_server=True.
|
385
|
-
max_retries: int
|
386
|
-
Maximum number of retries checking for vLLM server startup.
|
387
|
-
Only used when openai_api_server=True.
|
388
|
-
retry_alert_frequency: int
|
389
|
-
Frequency of alert logs for vLLM server startup retries.
|
390
|
-
Only used when openai_api_server=True.
|
391
|
-
engine_args : dict
|
392
|
-
Additional keyword arguments to pass to the vLLM engine.
|
393
|
-
For example, `tensor_parallel_size=2`.
|
622
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
623
|
+
List of secret specs, defining how the secrets are to be retrieved
|
624
|
+
role : str, optional, default: None
|
625
|
+
Role to use for fetching secrets
|
394
626
|
"""
|
395
627
|
...
|
396
628
|
|
397
629
|
@typing.overload
|
398
|
-
def
|
630
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
631
|
+
...
|
632
|
+
|
633
|
+
@typing.overload
|
634
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
635
|
+
...
|
636
|
+
|
637
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
399
638
|
"""
|
400
|
-
|
401
|
-
|
402
|
-
> Examples
|
403
|
-
- Saving Models
|
404
|
-
```python
|
405
|
-
@model
|
406
|
-
@step
|
407
|
-
def train(self):
|
408
|
-
# current.model.save returns a dictionary reference to the model saved
|
409
|
-
self.my_model = current.model.save(
|
410
|
-
path_to_my_model,
|
411
|
-
label="my_model",
|
412
|
-
metadata={
|
413
|
-
"epochs": 10,
|
414
|
-
"batch-size": 32,
|
415
|
-
"learning-rate": 0.001,
|
416
|
-
}
|
417
|
-
)
|
418
|
-
self.next(self.test)
|
419
|
-
|
420
|
-
@model(load="my_model")
|
421
|
-
@step
|
422
|
-
def test(self):
|
423
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
424
|
-
# where the key is the name of the artifact and the value is the path to the model
|
425
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
426
|
-
self.next(self.end)
|
427
|
-
```
|
428
|
-
|
429
|
-
- Loading models
|
430
|
-
```python
|
431
|
-
@step
|
432
|
-
def train(self):
|
433
|
-
# current.model.load returns the path to the model loaded
|
434
|
-
checkpoint_path = current.model.load(
|
435
|
-
self.checkpoint_key,
|
436
|
-
)
|
437
|
-
model_path = current.model.load(
|
438
|
-
self.model,
|
439
|
-
)
|
440
|
-
self.next(self.test)
|
441
|
-
```
|
639
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
640
|
+
the execution of a step.
|
442
641
|
|
443
642
|
|
444
643
|
Parameters
|
445
644
|
----------
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
451
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
452
|
-
|
453
|
-
temp_dir_root : str, default: None
|
454
|
-
The root directory under which `current.model.loaded` will store loaded models
|
645
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
646
|
+
List of secret specs, defining how the secrets are to be retrieved
|
647
|
+
role : str, optional, default: None
|
648
|
+
Role to use for fetching secrets
|
455
649
|
"""
|
456
650
|
...
|
457
651
|
|
458
652
|
@typing.overload
|
459
|
-
def
|
653
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
654
|
+
"""
|
655
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
656
|
+
to inject a card and render simple markdown content.
|
657
|
+
"""
|
460
658
|
...
|
461
659
|
|
462
660
|
@typing.overload
|
463
|
-
def
|
661
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
464
662
|
...
|
465
663
|
|
466
|
-
def
|
664
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
467
665
|
"""
|
468
|
-
|
469
|
-
|
470
|
-
|
471
|
-
|
472
|
-
|
473
|
-
|
474
|
-
|
475
|
-
|
476
|
-
# current.model.save returns a dictionary reference to the model saved
|
477
|
-
self.my_model = current.model.save(
|
478
|
-
path_to_my_model,
|
479
|
-
label="my_model",
|
480
|
-
metadata={
|
481
|
-
"epochs": 10,
|
482
|
-
"batch-size": 32,
|
483
|
-
"learning-rate": 0.001,
|
484
|
-
}
|
485
|
-
)
|
486
|
-
self.next(self.test)
|
487
|
-
|
488
|
-
@model(load="my_model")
|
489
|
-
@step
|
490
|
-
def test(self):
|
491
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
492
|
-
# where the key is the name of the artifact and the value is the path to the model
|
493
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
494
|
-
self.next(self.end)
|
495
|
-
```
|
496
|
-
|
497
|
-
- Loading models
|
498
|
-
```python
|
499
|
-
@step
|
500
|
-
def train(self):
|
501
|
-
# current.model.load returns the path to the model loaded
|
502
|
-
checkpoint_path = current.model.load(
|
503
|
-
self.checkpoint_key,
|
504
|
-
)
|
505
|
-
model_path = current.model.load(
|
506
|
-
self.model,
|
507
|
-
)
|
508
|
-
self.next(self.test)
|
509
|
-
```
|
666
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
667
|
+
to inject a card and render simple markdown content.
|
668
|
+
"""
|
669
|
+
...
|
670
|
+
|
671
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
672
|
+
"""
|
673
|
+
Specifies that this step should execute on Kubernetes.
|
510
674
|
|
511
675
|
|
512
676
|
Parameters
|
513
677
|
----------
|
514
|
-
|
515
|
-
|
516
|
-
|
517
|
-
|
518
|
-
|
519
|
-
|
678
|
+
cpu : int, default 1
|
679
|
+
Number of CPUs required for this step. If `@resources` is
|
680
|
+
also present, the maximum value from all decorators is used.
|
681
|
+
memory : int, default 4096
|
682
|
+
Memory size (in MB) required for this step. If
|
683
|
+
`@resources` is also present, the maximum value from all decorators is
|
684
|
+
used.
|
685
|
+
disk : int, default 10240
|
686
|
+
Disk size (in MB) required for this step. If
|
687
|
+
`@resources` is also present, the maximum value from all decorators is
|
688
|
+
used.
|
689
|
+
image : str, optional, default None
|
690
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
691
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
692
|
+
not, a default Docker image mapping to the current version of Python is used.
|
693
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
694
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
695
|
+
image_pull_secrets: List[str], default []
|
696
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
697
|
+
Kubernetes image pull secrets to use when pulling container images
|
698
|
+
in Kubernetes.
|
699
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
700
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
701
|
+
secrets : List[str], optional, default None
|
702
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
703
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
704
|
+
in Metaflow configuration.
|
705
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
706
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
707
|
+
Can be passed in as a comma separated string of values e.g.
|
708
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
709
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
710
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
711
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
712
|
+
gpu : int, optional, default None
|
713
|
+
Number of GPUs required for this step. A value of zero implies that
|
714
|
+
the scheduled node should not have GPUs.
|
715
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
716
|
+
The vendor of the GPUs to be used for this step.
|
717
|
+
tolerations : List[Dict[str,str]], default []
|
718
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
719
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
720
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
721
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
722
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
723
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
724
|
+
use_tmpfs : bool, default False
|
725
|
+
This enables an explicit tmpfs mount for this step.
|
726
|
+
tmpfs_tempdir : bool, default True
|
727
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
728
|
+
tmpfs_size : int, optional, default: None
|
729
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
730
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
731
|
+
memory allocated for this step.
|
732
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
733
|
+
Path to tmpfs mount for this step.
|
734
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
735
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
736
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
737
|
+
shared_memory: int, optional
|
738
|
+
Shared memory size (in MiB) required for this step
|
739
|
+
port: int, optional
|
740
|
+
Port number to specify in the Kubernetes job object
|
741
|
+
compute_pool : str, optional, default None
|
742
|
+
Compute pool to be used for for this step.
|
743
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
744
|
+
hostname_resolution_timeout: int, default 10 * 60
|
745
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
746
|
+
Only applicable when @parallel is used.
|
747
|
+
qos: str, default: Burstable
|
748
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
520
749
|
|
521
|
-
|
522
|
-
|
750
|
+
security_context: Dict[str, Any], optional, default None
|
751
|
+
Container security context. Applies to the task container. Allows the following keys:
|
752
|
+
- privileged: bool, optional, default None
|
753
|
+
- allow_privilege_escalation: bool, optional, default None
|
754
|
+
- run_as_user: int, optional, default None
|
755
|
+
- run_as_group: int, optional, default None
|
756
|
+
- run_as_non_root: bool, optional, default None
|
757
|
+
"""
|
758
|
+
...
|
759
|
+
|
760
|
+
@typing.overload
|
761
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
762
|
+
"""
|
763
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
764
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
765
|
+
a Neo Cloud like Nebius.
|
766
|
+
"""
|
767
|
+
...
|
768
|
+
|
769
|
+
@typing.overload
|
770
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
771
|
+
...
|
772
|
+
|
773
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
774
|
+
"""
|
775
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
776
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
777
|
+
a Neo Cloud like Nebius.
|
778
|
+
"""
|
779
|
+
...
|
780
|
+
|
781
|
+
@typing.overload
|
782
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
783
|
+
"""
|
784
|
+
Specifies the number of times the task corresponding
|
785
|
+
to a step needs to be retried.
|
786
|
+
|
787
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
788
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
789
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
790
|
+
|
791
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
792
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
793
|
+
ensuring that the flow execution can continue.
|
794
|
+
|
795
|
+
|
796
|
+
Parameters
|
797
|
+
----------
|
798
|
+
times : int, default 3
|
799
|
+
Number of times to retry this task.
|
800
|
+
minutes_between_retries : int, default 2
|
801
|
+
Number of minutes between retries.
|
802
|
+
"""
|
803
|
+
...
|
804
|
+
|
805
|
+
@typing.overload
|
806
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
807
|
+
...
|
808
|
+
|
809
|
+
@typing.overload
|
810
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
811
|
+
...
|
812
|
+
|
813
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
814
|
+
"""
|
815
|
+
Specifies the number of times the task corresponding
|
816
|
+
to a step needs to be retried.
|
817
|
+
|
818
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
819
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
820
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
821
|
+
|
822
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
823
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
824
|
+
ensuring that the flow execution can continue.
|
825
|
+
|
826
|
+
|
827
|
+
Parameters
|
828
|
+
----------
|
829
|
+
times : int, default 3
|
830
|
+
Number of times to retry this task.
|
831
|
+
minutes_between_retries : int, default 2
|
832
|
+
Number of minutes between retries.
|
523
833
|
"""
|
524
834
|
...
|
525
835
|
|
@@ -603,488 +913,45 @@ def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.
|
|
603
913
|
"""
|
604
914
|
...
|
605
915
|
|
606
|
-
|
916
|
+
@typing.overload
|
917
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
607
918
|
"""
|
608
|
-
|
609
|
-
|
610
|
-
|
611
|
-
Parameters
|
612
|
-
----------
|
613
|
-
gpu : int
|
614
|
-
Number of GPUs to use.
|
615
|
-
gpu_type : str
|
616
|
-
Type of Nvidia GPU to use.
|
617
|
-
queue_timeout : int
|
618
|
-
Time to keep the job in NVCF's queue.
|
919
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
920
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
921
|
+
a Neo Cloud like CoreWeave.
|
619
922
|
"""
|
620
923
|
...
|
621
924
|
|
622
925
|
@typing.overload
|
623
|
-
def
|
926
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
927
|
+
...
|
928
|
+
|
929
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
624
930
|
"""
|
625
|
-
|
626
|
-
|
627
|
-
|
931
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
932
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
933
|
+
a Neo Cloud like CoreWeave.
|
934
|
+
"""
|
935
|
+
...
|
936
|
+
|
937
|
+
@typing.overload
|
938
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
939
|
+
"""
|
940
|
+
Specifies the resources needed when executing this step.
|
628
941
|
|
629
|
-
|
942
|
+
Use `@resources` to specify the resource requirements
|
943
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
630
944
|
|
631
|
-
|
632
|
-
@checkpoint
|
633
|
-
@step
|
634
|
-
def train(self):
|
635
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
636
|
-
for i in range(self.epochs):
|
637
|
-
# some training logic
|
638
|
-
loss = model.train(self.dataset)
|
639
|
-
if i % 10 == 0:
|
640
|
-
model.save(
|
641
|
-
current.checkpoint.directory,
|
642
|
-
)
|
643
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
644
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
645
|
-
self.latest_checkpoint = current.checkpoint.save(
|
646
|
-
name="epoch_checkpoint",
|
647
|
-
metadata={
|
648
|
-
"epoch": i,
|
649
|
-
"loss": loss,
|
650
|
-
}
|
651
|
-
)
|
945
|
+
You can choose the compute layer on the command line by executing e.g.
|
652
946
|
```
|
653
|
-
|
654
|
-
|
655
|
-
|
656
|
-
```
|
657
|
-
|
658
|
-
@checkpoint
|
659
|
-
@step
|
660
|
-
def train(self):
|
661
|
-
# Assume that the task has restarted and the previous attempt of the task
|
662
|
-
# saved a checkpoint
|
663
|
-
checkpoint_path = None
|
664
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
665
|
-
print("Loaded checkpoint from the previous attempt")
|
666
|
-
checkpoint_path = current.checkpoint.directory
|
667
|
-
|
668
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
669
|
-
for i in range(self.epochs):
|
670
|
-
...
|
947
|
+
python myflow.py run --with batch
|
948
|
+
```
|
949
|
+
or
|
950
|
+
```
|
951
|
+
python myflow.py run --with kubernetes
|
671
952
|
```
|
672
|
-
|
673
|
-
|
674
|
-
Parameters
|
675
|
-
----------
|
676
|
-
load_policy : str, default: "fresh"
|
677
|
-
The policy for loading the checkpoint. The following policies are supported:
|
678
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
679
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
680
|
-
will be loaded at the start of the task.
|
681
|
-
- "none": Do not load any checkpoint
|
682
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
683
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
684
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
685
|
-
created within the task will be loaded when the task is retries execution on failure.
|
686
|
-
|
687
|
-
temp_dir_root : str, default: None
|
688
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
689
|
-
"""
|
690
|
-
...
|
691
|
-
|
692
|
-
@typing.overload
|
693
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
694
|
-
...
|
695
|
-
|
696
|
-
@typing.overload
|
697
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
698
|
-
...
|
699
|
-
|
700
|
-
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
701
|
-
"""
|
702
|
-
Enables checkpointing for a step.
|
703
|
-
|
704
|
-
> Examples
|
705
|
-
|
706
|
-
- Saving Checkpoints
|
707
|
-
|
708
|
-
```python
|
709
|
-
@checkpoint
|
710
|
-
@step
|
711
|
-
def train(self):
|
712
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
713
|
-
for i in range(self.epochs):
|
714
|
-
# some training logic
|
715
|
-
loss = model.train(self.dataset)
|
716
|
-
if i % 10 == 0:
|
717
|
-
model.save(
|
718
|
-
current.checkpoint.directory,
|
719
|
-
)
|
720
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
721
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
722
|
-
self.latest_checkpoint = current.checkpoint.save(
|
723
|
-
name="epoch_checkpoint",
|
724
|
-
metadata={
|
725
|
-
"epoch": i,
|
726
|
-
"loss": loss,
|
727
|
-
}
|
728
|
-
)
|
729
|
-
```
|
730
|
-
|
731
|
-
- Using Loaded Checkpoints
|
732
|
-
|
733
|
-
```python
|
734
|
-
@retry(times=3)
|
735
|
-
@checkpoint
|
736
|
-
@step
|
737
|
-
def train(self):
|
738
|
-
# Assume that the task has restarted and the previous attempt of the task
|
739
|
-
# saved a checkpoint
|
740
|
-
checkpoint_path = None
|
741
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
742
|
-
print("Loaded checkpoint from the previous attempt")
|
743
|
-
checkpoint_path = current.checkpoint.directory
|
744
|
-
|
745
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
746
|
-
for i in range(self.epochs):
|
747
|
-
...
|
748
|
-
```
|
749
|
-
|
750
|
-
|
751
|
-
Parameters
|
752
|
-
----------
|
753
|
-
load_policy : str, default: "fresh"
|
754
|
-
The policy for loading the checkpoint. The following policies are supported:
|
755
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
756
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
757
|
-
will be loaded at the start of the task.
|
758
|
-
- "none": Do not load any checkpoint
|
759
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
760
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
761
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
762
|
-
created within the task will be loaded when the task is retries execution on failure.
|
763
|
-
|
764
|
-
temp_dir_root : str, default: None
|
765
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
766
|
-
"""
|
767
|
-
...
|
768
|
-
|
769
|
-
@typing.overload
|
770
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
771
|
-
"""
|
772
|
-
Decorator prototype for all step decorators. This function gets specialized
|
773
|
-
and imported for all decorators types by _import_plugin_decorators().
|
774
|
-
"""
|
775
|
-
...
|
776
|
-
|
777
|
-
@typing.overload
|
778
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
779
|
-
...
|
780
|
-
|
781
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
782
|
-
"""
|
783
|
-
Decorator prototype for all step decorators. This function gets specialized
|
784
|
-
and imported for all decorators types by _import_plugin_decorators().
|
785
|
-
"""
|
786
|
-
...
|
787
|
-
|
788
|
-
@typing.overload
|
789
|
-
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
790
|
-
"""
|
791
|
-
Specifies environment variables to be set prior to the execution of a step.
|
792
|
-
|
793
|
-
|
794
|
-
Parameters
|
795
|
-
----------
|
796
|
-
vars : Dict[str, str], default {}
|
797
|
-
Dictionary of environment variables to set.
|
798
|
-
"""
|
799
|
-
...
|
800
|
-
|
801
|
-
@typing.overload
|
802
|
-
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
803
|
-
...
|
804
|
-
|
805
|
-
@typing.overload
|
806
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
807
|
-
...
|
808
|
-
|
809
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
810
|
-
"""
|
811
|
-
Specifies environment variables to be set prior to the execution of a step.
|
812
|
-
|
813
|
-
|
814
|
-
Parameters
|
815
|
-
----------
|
816
|
-
vars : Dict[str, str], default {}
|
817
|
-
Dictionary of environment variables to set.
|
818
|
-
"""
|
819
|
-
...
|
820
|
-
|
821
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
822
|
-
"""
|
823
|
-
Specifies that this step should execute on Kubernetes.
|
824
|
-
|
825
|
-
|
826
|
-
Parameters
|
827
|
-
----------
|
828
|
-
cpu : int, default 1
|
829
|
-
Number of CPUs required for this step. If `@resources` is
|
830
|
-
also present, the maximum value from all decorators is used.
|
831
|
-
memory : int, default 4096
|
832
|
-
Memory size (in MB) required for this step. If
|
833
|
-
`@resources` is also present, the maximum value from all decorators is
|
834
|
-
used.
|
835
|
-
disk : int, default 10240
|
836
|
-
Disk size (in MB) required for this step. If
|
837
|
-
`@resources` is also present, the maximum value from all decorators is
|
838
|
-
used.
|
839
|
-
image : str, optional, default None
|
840
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
841
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
842
|
-
not, a default Docker image mapping to the current version of Python is used.
|
843
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
844
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
845
|
-
image_pull_secrets: List[str], default []
|
846
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
847
|
-
Kubernetes image pull secrets to use when pulling container images
|
848
|
-
in Kubernetes.
|
849
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
850
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
851
|
-
secrets : List[str], optional, default None
|
852
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
853
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
854
|
-
in Metaflow configuration.
|
855
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
856
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
857
|
-
Can be passed in as a comma separated string of values e.g.
|
858
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
859
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
860
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
861
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
862
|
-
gpu : int, optional, default None
|
863
|
-
Number of GPUs required for this step. A value of zero implies that
|
864
|
-
the scheduled node should not have GPUs.
|
865
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
866
|
-
The vendor of the GPUs to be used for this step.
|
867
|
-
tolerations : List[Dict[str,str]], default []
|
868
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
869
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
870
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
871
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
872
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
873
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
874
|
-
use_tmpfs : bool, default False
|
875
|
-
This enables an explicit tmpfs mount for this step.
|
876
|
-
tmpfs_tempdir : bool, default True
|
877
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
878
|
-
tmpfs_size : int, optional, default: None
|
879
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
880
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
881
|
-
memory allocated for this step.
|
882
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
883
|
-
Path to tmpfs mount for this step.
|
884
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
885
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
886
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
887
|
-
shared_memory: int, optional
|
888
|
-
Shared memory size (in MiB) required for this step
|
889
|
-
port: int, optional
|
890
|
-
Port number to specify in the Kubernetes job object
|
891
|
-
compute_pool : str, optional, default None
|
892
|
-
Compute pool to be used for for this step.
|
893
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
894
|
-
hostname_resolution_timeout: int, default 10 * 60
|
895
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
896
|
-
Only applicable when @parallel is used.
|
897
|
-
qos: str, default: Burstable
|
898
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
899
|
-
|
900
|
-
security_context: Dict[str, Any], optional, default None
|
901
|
-
Container security context. Applies to the task container. Allows the following keys:
|
902
|
-
- privileged: bool, optional, default None
|
903
|
-
- allow_privilege_escalation: bool, optional, default None
|
904
|
-
- run_as_user: int, optional, default None
|
905
|
-
- run_as_group: int, optional, default None
|
906
|
-
- run_as_non_root: bool, optional, default None
|
907
|
-
"""
|
908
|
-
...
|
909
|
-
|
910
|
-
@typing.overload
|
911
|
-
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
912
|
-
"""
|
913
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
914
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
915
|
-
a Neo Cloud like CoreWeave.
|
916
|
-
"""
|
917
|
-
...
|
918
|
-
|
919
|
-
@typing.overload
|
920
|
-
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
921
|
-
...
|
922
|
-
|
923
|
-
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
924
|
-
"""
|
925
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
926
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
927
|
-
a Neo Cloud like CoreWeave.
|
928
|
-
"""
|
929
|
-
...
|
930
|
-
|
931
|
-
@typing.overload
|
932
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
933
|
-
"""
|
934
|
-
Specifies the number of times the task corresponding
|
935
|
-
to a step needs to be retried.
|
936
|
-
|
937
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
938
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
939
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
940
|
-
|
941
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
942
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
943
|
-
ensuring that the flow execution can continue.
|
944
|
-
|
945
|
-
|
946
|
-
Parameters
|
947
|
-
----------
|
948
|
-
times : int, default 3
|
949
|
-
Number of times to retry this task.
|
950
|
-
minutes_between_retries : int, default 2
|
951
|
-
Number of minutes between retries.
|
952
|
-
"""
|
953
|
-
...
|
954
|
-
|
955
|
-
@typing.overload
|
956
|
-
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
957
|
-
...
|
958
|
-
|
959
|
-
@typing.overload
|
960
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
961
|
-
...
|
962
|
-
|
963
|
-
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
964
|
-
"""
|
965
|
-
Specifies the number of times the task corresponding
|
966
|
-
to a step needs to be retried.
|
967
|
-
|
968
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
969
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
970
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
971
|
-
|
972
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
973
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
974
|
-
ensuring that the flow execution can continue.
|
975
|
-
|
976
|
-
|
977
|
-
Parameters
|
978
|
-
----------
|
979
|
-
times : int, default 3
|
980
|
-
Number of times to retry this task.
|
981
|
-
minutes_between_retries : int, default 2
|
982
|
-
Number of minutes between retries.
|
983
|
-
"""
|
984
|
-
...
|
985
|
-
|
986
|
-
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
987
|
-
"""
|
988
|
-
Specifies that this step should execute on DGX cloud.
|
989
|
-
|
990
|
-
|
991
|
-
Parameters
|
992
|
-
----------
|
993
|
-
gpu : int
|
994
|
-
Number of GPUs to use.
|
995
|
-
gpu_type : str
|
996
|
-
Type of Nvidia GPU to use.
|
997
|
-
"""
|
998
|
-
...
|
999
|
-
|
1000
|
-
@typing.overload
|
1001
|
-
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1002
|
-
"""
|
1003
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
1004
|
-
|
1005
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
1006
|
-
|
1007
|
-
|
1008
|
-
Parameters
|
1009
|
-
----------
|
1010
|
-
type : str, default 'default'
|
1011
|
-
Card type.
|
1012
|
-
id : str, optional, default None
|
1013
|
-
If multiple cards are present, use this id to identify this card.
|
1014
|
-
options : Dict[str, Any], default {}
|
1015
|
-
Options passed to the card. The contents depend on the card type.
|
1016
|
-
timeout : int, default 45
|
1017
|
-
Interrupt reporting if it takes more than this many seconds.
|
1018
|
-
"""
|
1019
|
-
...
|
1020
|
-
|
1021
|
-
@typing.overload
|
1022
|
-
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1023
|
-
...
|
1024
|
-
|
1025
|
-
@typing.overload
|
1026
|
-
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1027
|
-
...
|
1028
|
-
|
1029
|
-
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
1030
|
-
"""
|
1031
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
1032
|
-
|
1033
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
1034
|
-
|
1035
|
-
|
1036
|
-
Parameters
|
1037
|
-
----------
|
1038
|
-
type : str, default 'default'
|
1039
|
-
Card type.
|
1040
|
-
id : str, optional, default None
|
1041
|
-
If multiple cards are present, use this id to identify this card.
|
1042
|
-
options : Dict[str, Any], default {}
|
1043
|
-
Options passed to the card. The contents depend on the card type.
|
1044
|
-
timeout : int, default 45
|
1045
|
-
Interrupt reporting if it takes more than this many seconds.
|
1046
|
-
"""
|
1047
|
-
...
|
1048
|
-
|
1049
|
-
@typing.overload
|
1050
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1051
|
-
"""
|
1052
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
1053
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
1054
|
-
a Neo Cloud like Nebius.
|
1055
|
-
"""
|
1056
|
-
...
|
1057
|
-
|
1058
|
-
@typing.overload
|
1059
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1060
|
-
...
|
1061
|
-
|
1062
|
-
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1063
|
-
"""
|
1064
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
1065
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
1066
|
-
a Neo Cloud like Nebius.
|
1067
|
-
"""
|
1068
|
-
...
|
1069
|
-
|
1070
|
-
@typing.overload
|
1071
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1072
|
-
"""
|
1073
|
-
Specifies the resources needed when executing this step.
|
1074
|
-
|
1075
|
-
Use `@resources` to specify the resource requirements
|
1076
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
1077
|
-
|
1078
|
-
You can choose the compute layer on the command line by executing e.g.
|
1079
|
-
```
|
1080
|
-
python myflow.py run --with batch
|
1081
|
-
```
|
1082
|
-
or
|
1083
|
-
```
|
1084
|
-
python myflow.py run --with kubernetes
|
1085
|
-
```
|
1086
|
-
which executes the flow on the desired system using the
|
1087
|
-
requirements specified in `@resources`.
|
953
|
+
which executes the flow on the desired system using the
|
954
|
+
requirements specified in `@resources`.
|
1088
955
|
|
1089
956
|
|
1090
957
|
Parameters
|
@@ -1147,102 +1014,200 @@ def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None]
|
|
1147
1014
|
...
|
1148
1015
|
|
1149
1016
|
@typing.overload
|
1150
|
-
def
|
1017
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1151
1018
|
"""
|
1152
|
-
|
1019
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1020
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1021
|
+
"""
|
1022
|
+
...
|
1023
|
+
|
1024
|
+
@typing.overload
|
1025
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1026
|
+
...
|
1027
|
+
|
1028
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1029
|
+
"""
|
1030
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1031
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1032
|
+
"""
|
1033
|
+
...
|
1034
|
+
|
1035
|
+
@typing.overload
|
1036
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1037
|
+
"""
|
1038
|
+
Enables loading / saving of models within a step.
|
1153
1039
|
|
1154
|
-
|
1040
|
+
> Examples
|
1041
|
+
- Saving Models
|
1042
|
+
```python
|
1043
|
+
@model
|
1044
|
+
@step
|
1045
|
+
def train(self):
|
1046
|
+
# current.model.save returns a dictionary reference to the model saved
|
1047
|
+
self.my_model = current.model.save(
|
1048
|
+
path_to_my_model,
|
1049
|
+
label="my_model",
|
1050
|
+
metadata={
|
1051
|
+
"epochs": 10,
|
1052
|
+
"batch-size": 32,
|
1053
|
+
"learning-rate": 0.001,
|
1054
|
+
}
|
1055
|
+
)
|
1056
|
+
self.next(self.test)
|
1155
1057
|
|
1156
|
-
|
1157
|
-
|
1158
|
-
|
1058
|
+
@model(load="my_model")
|
1059
|
+
@step
|
1060
|
+
def test(self):
|
1061
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
1062
|
+
# where the key is the name of the artifact and the value is the path to the model
|
1063
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
1064
|
+
self.next(self.end)
|
1065
|
+
```
|
1159
1066
|
|
1160
|
-
|
1161
|
-
|
1067
|
+
- Loading models
|
1068
|
+
```python
|
1069
|
+
@step
|
1070
|
+
def train(self):
|
1071
|
+
# current.model.load returns the path to the model loaded
|
1072
|
+
checkpoint_path = current.model.load(
|
1073
|
+
self.checkpoint_key,
|
1074
|
+
)
|
1075
|
+
model_path = current.model.load(
|
1076
|
+
self.model,
|
1077
|
+
)
|
1078
|
+
self.next(self.test)
|
1079
|
+
```
|
1162
1080
|
|
1163
1081
|
|
1164
1082
|
Parameters
|
1165
1083
|
----------
|
1166
|
-
|
1167
|
-
|
1168
|
-
|
1169
|
-
|
1170
|
-
|
1171
|
-
|
1084
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
1085
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
1086
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
1087
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
1088
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
1089
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
1090
|
+
|
1091
|
+
temp_dir_root : str, default: None
|
1092
|
+
The root directory under which `current.model.loaded` will store loaded models
|
1172
1093
|
"""
|
1173
1094
|
...
|
1174
1095
|
|
1175
1096
|
@typing.overload
|
1176
|
-
def
|
1097
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1177
1098
|
...
|
1178
1099
|
|
1179
1100
|
@typing.overload
|
1180
|
-
def
|
1101
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1181
1102
|
...
|
1182
1103
|
|
1183
|
-
def
|
1104
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
1184
1105
|
"""
|
1185
|
-
|
1106
|
+
Enables loading / saving of models within a step.
|
1186
1107
|
|
1187
|
-
|
1108
|
+
> Examples
|
1109
|
+
- Saving Models
|
1110
|
+
```python
|
1111
|
+
@model
|
1112
|
+
@step
|
1113
|
+
def train(self):
|
1114
|
+
# current.model.save returns a dictionary reference to the model saved
|
1115
|
+
self.my_model = current.model.save(
|
1116
|
+
path_to_my_model,
|
1117
|
+
label="my_model",
|
1118
|
+
metadata={
|
1119
|
+
"epochs": 10,
|
1120
|
+
"batch-size": 32,
|
1121
|
+
"learning-rate": 0.001,
|
1122
|
+
}
|
1123
|
+
)
|
1124
|
+
self.next(self.test)
|
1188
1125
|
|
1189
|
-
|
1190
|
-
|
1191
|
-
|
1126
|
+
@model(load="my_model")
|
1127
|
+
@step
|
1128
|
+
def test(self):
|
1129
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
1130
|
+
# where the key is the name of the artifact and the value is the path to the model
|
1131
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
1132
|
+
self.next(self.end)
|
1133
|
+
```
|
1192
1134
|
|
1193
|
-
|
1194
|
-
|
1135
|
+
- Loading models
|
1136
|
+
```python
|
1137
|
+
@step
|
1138
|
+
def train(self):
|
1139
|
+
# current.model.load returns the path to the model loaded
|
1140
|
+
checkpoint_path = current.model.load(
|
1141
|
+
self.checkpoint_key,
|
1142
|
+
)
|
1143
|
+
model_path = current.model.load(
|
1144
|
+
self.model,
|
1145
|
+
)
|
1146
|
+
self.next(self.test)
|
1147
|
+
```
|
1195
1148
|
|
1196
1149
|
|
1197
1150
|
Parameters
|
1198
1151
|
----------
|
1199
|
-
|
1200
|
-
|
1201
|
-
|
1202
|
-
|
1203
|
-
|
1204
|
-
|
1205
|
-
|
1206
|
-
|
1207
|
-
|
1208
|
-
@typing.overload
|
1209
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1210
|
-
"""
|
1211
|
-
Decorator prototype for all step decorators. This function gets specialized
|
1212
|
-
and imported for all decorators types by _import_plugin_decorators().
|
1213
|
-
"""
|
1214
|
-
...
|
1215
|
-
|
1216
|
-
@typing.overload
|
1217
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1218
|
-
...
|
1219
|
-
|
1220
|
-
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1221
|
-
"""
|
1222
|
-
Decorator prototype for all step decorators. This function gets specialized
|
1223
|
-
and imported for all decorators types by _import_plugin_decorators().
|
1152
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
1153
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
1154
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
1155
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
1156
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
1157
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
1158
|
+
|
1159
|
+
temp_dir_root : str, default: None
|
1160
|
+
The root directory under which `current.model.loaded` will store loaded models
|
1224
1161
|
"""
|
1225
1162
|
...
|
1226
1163
|
|
1227
|
-
def
|
1164
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1228
1165
|
"""
|
1229
|
-
|
1166
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
1167
|
+
|
1168
|
+
User code call
|
1169
|
+
--------------
|
1170
|
+
@vllm(
|
1171
|
+
model="...",
|
1172
|
+
...
|
1173
|
+
)
|
1174
|
+
|
1175
|
+
Valid backend options
|
1176
|
+
---------------------
|
1177
|
+
- 'local': Run as a separate process on the local task machine.
|
1178
|
+
|
1179
|
+
Valid model options
|
1180
|
+
-------------------
|
1181
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
1182
|
+
|
1183
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
1184
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
1230
1185
|
|
1231
1186
|
|
1232
1187
|
Parameters
|
1233
1188
|
----------
|
1234
|
-
|
1235
|
-
|
1236
|
-
|
1237
|
-
|
1238
|
-
|
1239
|
-
|
1240
|
-
|
1241
|
-
|
1242
|
-
|
1243
|
-
|
1244
|
-
|
1245
|
-
|
1189
|
+
model: str
|
1190
|
+
HuggingFace model identifier to be served by vLLM.
|
1191
|
+
backend: str
|
1192
|
+
Determines where and how to run the vLLM process.
|
1193
|
+
openai_api_server: bool
|
1194
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
1195
|
+
Default is False (uses native engine).
|
1196
|
+
Set to True for backward compatibility with existing code.
|
1197
|
+
debug: bool
|
1198
|
+
Whether to turn on verbose debugging logs.
|
1199
|
+
card_refresh_interval: int
|
1200
|
+
Interval in seconds for refreshing the vLLM status card.
|
1201
|
+
Only used when openai_api_server=True.
|
1202
|
+
max_retries: int
|
1203
|
+
Maximum number of retries checking for vLLM server startup.
|
1204
|
+
Only used when openai_api_server=True.
|
1205
|
+
retry_alert_frequency: int
|
1206
|
+
Frequency of alert logs for vLLM server startup retries.
|
1207
|
+
Only used when openai_api_server=True.
|
1208
|
+
engine_args : dict
|
1209
|
+
Additional keyword arguments to pass to the vLLM engine.
|
1210
|
+
For example, `tensor_parallel_size=2`.
|
1246
1211
|
"""
|
1247
1212
|
...
|
1248
1213
|
|
@@ -1305,140 +1270,81 @@ def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
1305
1270
|
"""
|
1306
1271
|
...
|
1307
1272
|
|
1308
|
-
|
1273
|
+
@typing.overload
|
1274
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1309
1275
|
"""
|
1310
|
-
|
1311
|
-
|
1312
|
-
User code call
|
1313
|
-
--------------
|
1314
|
-
@ollama(
|
1315
|
-
models=[...],
|
1316
|
-
...
|
1317
|
-
)
|
1318
|
-
|
1319
|
-
Valid backend options
|
1320
|
-
---------------------
|
1321
|
-
- 'local': Run as a separate process on the local task machine.
|
1322
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
1323
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
1324
|
-
|
1325
|
-
Valid model options
|
1326
|
-
-------------------
|
1327
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
1328
|
-
|
1329
|
-
|
1330
|
-
Parameters
|
1331
|
-
----------
|
1332
|
-
models: list[str]
|
1333
|
-
List of Ollama containers running models in sidecars.
|
1334
|
-
backend: str
|
1335
|
-
Determines where and how to run the Ollama process.
|
1336
|
-
force_pull: bool
|
1337
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
1338
|
-
cache_update_policy: str
|
1339
|
-
Cache update policy: "auto", "force", or "never".
|
1340
|
-
force_cache_update: bool
|
1341
|
-
Simple override for "force" cache update policy.
|
1342
|
-
debug: bool
|
1343
|
-
Whether to turn on verbose debugging logs.
|
1344
|
-
circuit_breaker_config: dict
|
1345
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
1346
|
-
timeout_config: dict
|
1347
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
1276
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1277
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1348
1278
|
"""
|
1349
1279
|
...
|
1350
1280
|
|
1351
1281
|
@typing.overload
|
1352
|
-
def
|
1282
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1283
|
+
...
|
1284
|
+
|
1285
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1353
1286
|
"""
|
1354
|
-
|
1287
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1288
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1289
|
+
"""
|
1290
|
+
...
|
1291
|
+
|
1292
|
+
@typing.overload
|
1293
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1294
|
+
"""
|
1295
|
+
Specifies a timeout for your step.
|
1355
1296
|
|
1356
|
-
|
1357
|
-
|
1297
|
+
This decorator is useful if this step may hang indefinitely.
|
1298
|
+
|
1299
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
1300
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
1301
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
1358
1302
|
|
1303
|
+
Note that all the values specified in parameters are added together so if you specify
|
1304
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
1359
1305
|
|
1360
|
-
|
1361
|
-
|
1362
|
-
|
1363
|
-
|
1364
|
-
|
1365
|
-
|
1366
|
-
|
1367
|
-
|
1368
|
-
|
1369
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1370
|
-
disabled : bool, default False
|
1371
|
-
If set to True, disables Conda.
|
1306
|
+
|
1307
|
+
Parameters
|
1308
|
+
----------
|
1309
|
+
seconds : int, default 0
|
1310
|
+
Number of seconds to wait prior to timing out.
|
1311
|
+
minutes : int, default 0
|
1312
|
+
Number of minutes to wait prior to timing out.
|
1313
|
+
hours : int, default 0
|
1314
|
+
Number of hours to wait prior to timing out.
|
1372
1315
|
"""
|
1373
1316
|
...
|
1374
1317
|
|
1375
1318
|
@typing.overload
|
1376
|
-
def
|
1319
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1377
1320
|
...
|
1378
1321
|
|
1379
|
-
|
1322
|
+
@typing.overload
|
1323
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1324
|
+
...
|
1325
|
+
|
1326
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
1380
1327
|
"""
|
1381
|
-
Specifies
|
1328
|
+
Specifies a timeout for your step.
|
1382
1329
|
|
1383
|
-
|
1384
|
-
steps and use `@conda` to specify step-specific additions.
|
1330
|
+
This decorator is useful if this step may hang indefinitely.
|
1385
1331
|
|
1332
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
1333
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
1334
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
1386
1335
|
|
1387
|
-
|
1388
|
-
|
1389
|
-
packages : Dict[str, str], default {}
|
1390
|
-
Packages to use for this flow. The key is the name of the package
|
1391
|
-
and the value is the version to use.
|
1392
|
-
libraries : Dict[str, str], default {}
|
1393
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1394
|
-
python : str, optional, default None
|
1395
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1396
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1397
|
-
disabled : bool, default False
|
1398
|
-
If set to True, disables Conda.
|
1399
|
-
"""
|
1400
|
-
...
|
1401
|
-
|
1402
|
-
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1403
|
-
"""
|
1404
|
-
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1405
|
-
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1336
|
+
Note that all the values specified in parameters are added together so if you specify
|
1337
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
1406
1338
|
|
1407
1339
|
|
1408
1340
|
Parameters
|
1409
1341
|
----------
|
1410
|
-
|
1411
|
-
|
1412
|
-
|
1413
|
-
|
1414
|
-
|
1415
|
-
|
1416
|
-
exponential_backoff : bool
|
1417
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1418
|
-
pool : str
|
1419
|
-
the slot pool this task should run in,
|
1420
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1421
|
-
soft_fail : bool
|
1422
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1423
|
-
name : str
|
1424
|
-
Name of the sensor on Airflow
|
1425
|
-
description : str
|
1426
|
-
Description of sensor in the Airflow UI
|
1427
|
-
external_dag_id : str
|
1428
|
-
The dag_id that contains the task you want to wait for.
|
1429
|
-
external_task_ids : List[str]
|
1430
|
-
The list of task_ids that you want to wait for.
|
1431
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
1432
|
-
allowed_states : List[str]
|
1433
|
-
Iterable of allowed states, (Default: ['success'])
|
1434
|
-
failed_states : List[str]
|
1435
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1436
|
-
execution_delta : datetime.timedelta
|
1437
|
-
time difference with the previous execution to look at,
|
1438
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1439
|
-
check_existence: bool
|
1440
|
-
Set to True to check if the external task exists or check if
|
1441
|
-
the DAG to wait for exists. (Default: True)
|
1342
|
+
seconds : int, default 0
|
1343
|
+
Number of seconds to wait prior to timing out.
|
1344
|
+
minutes : int, default 0
|
1345
|
+
Number of minutes to wait prior to timing out.
|
1346
|
+
hours : int, default 0
|
1347
|
+
Number of hours to wait prior to timing out.
|
1442
1348
|
"""
|
1443
1349
|
...
|
1444
1350
|
|
@@ -1493,127 +1399,10 @@ def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly:
|
|
1493
1399
|
"""
|
1494
1400
|
...
|
1495
1401
|
|
1496
|
-
def
|
1497
|
-
"""
|
1498
|
-
Allows setting external datastores to save data for the
|
1499
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1500
|
-
|
1501
|
-
This decorator is useful when users wish to save data to a different datastore
|
1502
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
1503
|
-
|
1504
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1505
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1506
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1507
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1508
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1509
|
-
|
1510
|
-
Usage:
|
1511
|
-
----------
|
1512
|
-
|
1513
|
-
- Using a custom IAM role to access the datastore.
|
1514
|
-
|
1515
|
-
```python
|
1516
|
-
@with_artifact_store(
|
1517
|
-
type="s3",
|
1518
|
-
config=lambda: {
|
1519
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1520
|
-
"role_arn": ROLE,
|
1521
|
-
},
|
1522
|
-
)
|
1523
|
-
class MyFlow(FlowSpec):
|
1524
|
-
|
1525
|
-
@checkpoint
|
1526
|
-
@step
|
1527
|
-
def start(self):
|
1528
|
-
with open("my_file.txt", "w") as f:
|
1529
|
-
f.write("Hello, World!")
|
1530
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1531
|
-
self.next(self.end)
|
1532
|
-
|
1533
|
-
```
|
1534
|
-
|
1535
|
-
- Using credentials to access the s3-compatible datastore.
|
1536
|
-
|
1537
|
-
```python
|
1538
|
-
@with_artifact_store(
|
1539
|
-
type="s3",
|
1540
|
-
config=lambda: {
|
1541
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1542
|
-
"client_params": {
|
1543
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1544
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1545
|
-
},
|
1546
|
-
},
|
1547
|
-
)
|
1548
|
-
class MyFlow(FlowSpec):
|
1549
|
-
|
1550
|
-
@checkpoint
|
1551
|
-
@step
|
1552
|
-
def start(self):
|
1553
|
-
with open("my_file.txt", "w") as f:
|
1554
|
-
f.write("Hello, World!")
|
1555
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1556
|
-
self.next(self.end)
|
1557
|
-
|
1558
|
-
```
|
1559
|
-
|
1560
|
-
- Accessing objects stored in external datastores after task execution.
|
1561
|
-
|
1562
|
-
```python
|
1563
|
-
run = Run("CheckpointsTestsFlow/8992")
|
1564
|
-
with artifact_store_from(run=run, config={
|
1565
|
-
"client_params": {
|
1566
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1567
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1568
|
-
},
|
1569
|
-
}):
|
1570
|
-
with Checkpoint() as cp:
|
1571
|
-
latest = cp.list(
|
1572
|
-
task=run["start"].task
|
1573
|
-
)[0]
|
1574
|
-
print(latest)
|
1575
|
-
cp.load(
|
1576
|
-
latest,
|
1577
|
-
"test-checkpoints"
|
1578
|
-
)
|
1579
|
-
|
1580
|
-
task = Task("TorchTuneFlow/8484/train/53673")
|
1581
|
-
with artifact_store_from(run=run, config={
|
1582
|
-
"client_params": {
|
1583
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1584
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1585
|
-
},
|
1586
|
-
}):
|
1587
|
-
load_model(
|
1588
|
-
task.data.model_ref,
|
1589
|
-
"test-models"
|
1590
|
-
)
|
1591
|
-
```
|
1592
|
-
Parameters:
|
1593
|
-
----------
|
1594
|
-
|
1595
|
-
type: str
|
1596
|
-
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1597
|
-
|
1598
|
-
config: dict or Callable
|
1599
|
-
Dictionary of configuration options for the datastore. The following keys are required:
|
1600
|
-
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1601
|
-
- example: 's3://bucket-name/path/to/root'
|
1602
|
-
- example: 'gs://bucket-name/path/to/root'
|
1603
|
-
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1604
|
-
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1605
|
-
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1606
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1607
|
-
"""
|
1608
|
-
...
|
1609
|
-
|
1610
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1402
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1611
1403
|
"""
|
1612
|
-
The `@
|
1613
|
-
|
1614
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1615
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1616
|
-
starts only after all sensors finish.
|
1404
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1405
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1617
1406
|
|
1618
1407
|
|
1619
1408
|
Parameters
|
@@ -1635,18 +1424,56 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
1635
1424
|
Name of the sensor on Airflow
|
1636
1425
|
description : str
|
1637
1426
|
Description of sensor in the Airflow UI
|
1638
|
-
|
1639
|
-
The
|
1640
|
-
|
1641
|
-
|
1642
|
-
|
1643
|
-
|
1644
|
-
|
1645
|
-
|
1646
|
-
|
1647
|
-
|
1648
|
-
|
1649
|
-
|
1427
|
+
external_dag_id : str
|
1428
|
+
The dag_id that contains the task you want to wait for.
|
1429
|
+
external_task_ids : List[str]
|
1430
|
+
The list of task_ids that you want to wait for.
|
1431
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1432
|
+
allowed_states : List[str]
|
1433
|
+
Iterable of allowed states, (Default: ['success'])
|
1434
|
+
failed_states : List[str]
|
1435
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1436
|
+
execution_delta : datetime.timedelta
|
1437
|
+
time difference with the previous execution to look at,
|
1438
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1439
|
+
check_existence: bool
|
1440
|
+
Set to True to check if the external task exists or check if
|
1441
|
+
the DAG to wait for exists. (Default: True)
|
1442
|
+
"""
|
1443
|
+
...
|
1444
|
+
|
1445
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1446
|
+
"""
|
1447
|
+
Specifies what flows belong to the same project.
|
1448
|
+
|
1449
|
+
A project-specific namespace is created for all flows that
|
1450
|
+
use the same `@project(name)`.
|
1451
|
+
|
1452
|
+
|
1453
|
+
Parameters
|
1454
|
+
----------
|
1455
|
+
name : str
|
1456
|
+
Project name. Make sure that the name is unique amongst all
|
1457
|
+
projects that use the same production scheduler. The name may
|
1458
|
+
contain only lowercase alphanumeric characters and underscores.
|
1459
|
+
|
1460
|
+
branch : Optional[str], default None
|
1461
|
+
The branch to use. If not specified, the branch is set to
|
1462
|
+
`user.<username>` unless `production` is set to `True`. This can
|
1463
|
+
also be set on the command line using `--branch` as a top-level option.
|
1464
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
1465
|
+
|
1466
|
+
production : bool, default False
|
1467
|
+
Whether or not the branch is the production branch. This can also be set on the
|
1468
|
+
command line using `--production` as a top-level option. It is an error to specify
|
1469
|
+
`production` in the decorator and on the command line.
|
1470
|
+
The project branch name will be:
|
1471
|
+
- if `branch` is specified:
|
1472
|
+
- if `production` is True: `prod.<branch>`
|
1473
|
+
- if `production` is False: `test.<branch>`
|
1474
|
+
- if `branch` is not specified:
|
1475
|
+
- if `production` is True: `prod`
|
1476
|
+
- if `production` is False: `user.<username>`
|
1650
1477
|
"""
|
1651
1478
|
...
|
1652
1479
|
|
@@ -1751,6 +1578,120 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
1751
1578
|
"""
|
1752
1579
|
...
|
1753
1580
|
|
1581
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1582
|
+
"""
|
1583
|
+
Allows setting external datastores to save data for the
|
1584
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1585
|
+
|
1586
|
+
This decorator is useful when users wish to save data to a different datastore
|
1587
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1588
|
+
|
1589
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1590
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1591
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1592
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1593
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1594
|
+
|
1595
|
+
Usage:
|
1596
|
+
----------
|
1597
|
+
|
1598
|
+
- Using a custom IAM role to access the datastore.
|
1599
|
+
|
1600
|
+
```python
|
1601
|
+
@with_artifact_store(
|
1602
|
+
type="s3",
|
1603
|
+
config=lambda: {
|
1604
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1605
|
+
"role_arn": ROLE,
|
1606
|
+
},
|
1607
|
+
)
|
1608
|
+
class MyFlow(FlowSpec):
|
1609
|
+
|
1610
|
+
@checkpoint
|
1611
|
+
@step
|
1612
|
+
def start(self):
|
1613
|
+
with open("my_file.txt", "w") as f:
|
1614
|
+
f.write("Hello, World!")
|
1615
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1616
|
+
self.next(self.end)
|
1617
|
+
|
1618
|
+
```
|
1619
|
+
|
1620
|
+
- Using credentials to access the s3-compatible datastore.
|
1621
|
+
|
1622
|
+
```python
|
1623
|
+
@with_artifact_store(
|
1624
|
+
type="s3",
|
1625
|
+
config=lambda: {
|
1626
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1627
|
+
"client_params": {
|
1628
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1629
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1630
|
+
},
|
1631
|
+
},
|
1632
|
+
)
|
1633
|
+
class MyFlow(FlowSpec):
|
1634
|
+
|
1635
|
+
@checkpoint
|
1636
|
+
@step
|
1637
|
+
def start(self):
|
1638
|
+
with open("my_file.txt", "w") as f:
|
1639
|
+
f.write("Hello, World!")
|
1640
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1641
|
+
self.next(self.end)
|
1642
|
+
|
1643
|
+
```
|
1644
|
+
|
1645
|
+
- Accessing objects stored in external datastores after task execution.
|
1646
|
+
|
1647
|
+
```python
|
1648
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1649
|
+
with artifact_store_from(run=run, config={
|
1650
|
+
"client_params": {
|
1651
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1652
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1653
|
+
},
|
1654
|
+
}):
|
1655
|
+
with Checkpoint() as cp:
|
1656
|
+
latest = cp.list(
|
1657
|
+
task=run["start"].task
|
1658
|
+
)[0]
|
1659
|
+
print(latest)
|
1660
|
+
cp.load(
|
1661
|
+
latest,
|
1662
|
+
"test-checkpoints"
|
1663
|
+
)
|
1664
|
+
|
1665
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1666
|
+
with artifact_store_from(run=run, config={
|
1667
|
+
"client_params": {
|
1668
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1669
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1670
|
+
},
|
1671
|
+
}):
|
1672
|
+
load_model(
|
1673
|
+
task.data.model_ref,
|
1674
|
+
"test-models"
|
1675
|
+
)
|
1676
|
+
```
|
1677
|
+
Parameters:
|
1678
|
+
----------
|
1679
|
+
|
1680
|
+
type: str
|
1681
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1682
|
+
|
1683
|
+
config: dict or Callable
|
1684
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1685
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1686
|
+
- example: 's3://bucket-name/path/to/root'
|
1687
|
+
- example: 'gs://bucket-name/path/to/root'
|
1688
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1689
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1690
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1691
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1692
|
+
"""
|
1693
|
+
...
|
1694
|
+
|
1754
1695
|
@typing.overload
|
1755
1696
|
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1756
1697
|
"""
|
@@ -1844,30 +1785,102 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
1844
1785
|
"""
|
1845
1786
|
...
|
1846
1787
|
|
1788
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1789
|
+
"""
|
1790
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1791
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1792
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1793
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1794
|
+
starts only after all sensors finish.
|
1795
|
+
|
1796
|
+
|
1797
|
+
Parameters
|
1798
|
+
----------
|
1799
|
+
timeout : int
|
1800
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1801
|
+
poke_interval : int
|
1802
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1803
|
+
mode : str
|
1804
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1805
|
+
exponential_backoff : bool
|
1806
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1807
|
+
pool : str
|
1808
|
+
the slot pool this task should run in,
|
1809
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1810
|
+
soft_fail : bool
|
1811
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1812
|
+
name : str
|
1813
|
+
Name of the sensor on Airflow
|
1814
|
+
description : str
|
1815
|
+
Description of sensor in the Airflow UI
|
1816
|
+
bucket_key : Union[str, List[str]]
|
1817
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1818
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1819
|
+
bucket_name : str
|
1820
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1821
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1822
|
+
wildcard_match : bool
|
1823
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1824
|
+
aws_conn_id : str
|
1825
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1826
|
+
verify : bool
|
1827
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1828
|
+
"""
|
1829
|
+
...
|
1830
|
+
|
1847
1831
|
@typing.overload
|
1848
|
-
def
|
1832
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1849
1833
|
"""
|
1850
|
-
Specifies the
|
1834
|
+
Specifies the Conda environment for all steps of the flow.
|
1835
|
+
|
1836
|
+
Use `@conda_base` to set common libraries required by all
|
1837
|
+
steps and use `@conda` to specify step-specific additions.
|
1851
1838
|
|
1852
|
-
Use `@pypi_base` to set common packages required by all
|
1853
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1854
1839
|
|
1855
1840
|
Parameters
|
1856
1841
|
----------
|
1857
|
-
packages : Dict[str, str], default
|
1842
|
+
packages : Dict[str, str], default {}
|
1858
1843
|
Packages to use for this flow. The key is the name of the package
|
1859
1844
|
and the value is the version to use.
|
1860
|
-
|
1845
|
+
libraries : Dict[str, str], default {}
|
1846
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1847
|
+
python : str, optional, default None
|
1861
1848
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1862
1849
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1850
|
+
disabled : bool, default False
|
1851
|
+
If set to True, disables Conda.
|
1863
1852
|
"""
|
1864
1853
|
...
|
1865
1854
|
|
1866
1855
|
@typing.overload
|
1867
|
-
def
|
1856
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1868
1857
|
...
|
1869
1858
|
|
1870
|
-
def
|
1859
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1860
|
+
"""
|
1861
|
+
Specifies the Conda environment for all steps of the flow.
|
1862
|
+
|
1863
|
+
Use `@conda_base` to set common libraries required by all
|
1864
|
+
steps and use `@conda` to specify step-specific additions.
|
1865
|
+
|
1866
|
+
|
1867
|
+
Parameters
|
1868
|
+
----------
|
1869
|
+
packages : Dict[str, str], default {}
|
1870
|
+
Packages to use for this flow. The key is the name of the package
|
1871
|
+
and the value is the version to use.
|
1872
|
+
libraries : Dict[str, str], default {}
|
1873
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1874
|
+
python : str, optional, default None
|
1875
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1876
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1877
|
+
disabled : bool, default False
|
1878
|
+
If set to True, disables Conda.
|
1879
|
+
"""
|
1880
|
+
...
|
1881
|
+
|
1882
|
+
@typing.overload
|
1883
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1871
1884
|
"""
|
1872
1885
|
Specifies the PyPI packages for all steps of the flow.
|
1873
1886
|
|
@@ -1885,38 +1898,25 @@ def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packag
|
|
1885
1898
|
"""
|
1886
1899
|
...
|
1887
1900
|
|
1888
|
-
|
1901
|
+
@typing.overload
|
1902
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1903
|
+
...
|
1904
|
+
|
1905
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1889
1906
|
"""
|
1890
|
-
Specifies
|
1891
|
-
|
1892
|
-
A project-specific namespace is created for all flows that
|
1893
|
-
use the same `@project(name)`.
|
1907
|
+
Specifies the PyPI packages for all steps of the flow.
|
1894
1908
|
|
1909
|
+
Use `@pypi_base` to set common packages required by all
|
1910
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1895
1911
|
|
1896
1912
|
Parameters
|
1897
1913
|
----------
|
1898
|
-
|
1899
|
-
|
1900
|
-
|
1901
|
-
|
1902
|
-
|
1903
|
-
|
1904
|
-
The branch to use. If not specified, the branch is set to
|
1905
|
-
`user.<username>` unless `production` is set to `True`. This can
|
1906
|
-
also be set on the command line using `--branch` as a top-level option.
|
1907
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
1908
|
-
|
1909
|
-
production : bool, default False
|
1910
|
-
Whether or not the branch is the production branch. This can also be set on the
|
1911
|
-
command line using `--production` as a top-level option. It is an error to specify
|
1912
|
-
`production` in the decorator and on the command line.
|
1913
|
-
The project branch name will be:
|
1914
|
-
- if `branch` is specified:
|
1915
|
-
- if `production` is True: `prod.<branch>`
|
1916
|
-
- if `production` is False: `test.<branch>`
|
1917
|
-
- if `branch` is not specified:
|
1918
|
-
- if `production` is True: `prod`
|
1919
|
-
- if `production` is False: `user.<username>`
|
1914
|
+
packages : Dict[str, str], default: {}
|
1915
|
+
Packages to use for this flow. The key is the name of the package
|
1916
|
+
and the value is the version to use.
|
1917
|
+
python : str, optional, default: None
|
1918
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1919
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1920
1920
|
"""
|
1921
1921
|
...
|
1922
1922
|
|