ob-metaflow-stubs 6.0.5.0__py2.py3-none-any.whl → 6.0.5.2__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +1070 -1001
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +4 -4
- metaflow-stubs/client/filecache.pyi +1 -1
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +5 -5
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/meta_files.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +50 -50
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +6 -5
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +6 -6
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +5 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +11 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +7 -8
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +5 -5
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +12 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +24 -0
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/packaging_sys/__init__.pyi +4 -4
- metaflow-stubs/packaging_sys/backend.pyi +3 -3
- metaflow-stubs/packaging_sys/distribution_support.pyi +5 -5
- metaflow-stubs/packaging_sys/tar_backend.pyi +4 -4
- metaflow-stubs/packaging_sys/utils.pyi +1 -1
- metaflow-stubs/packaging_sys/v1.pyi +2 -2
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +10 -10
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/argo/exit_hooks.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +5 -5
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +4 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/__init__.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +4 -4
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_func.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +1 -1
- metaflow-stubs/plugins/secrets/utils.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +1 -1
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +33 -33
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +2 -2
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_options.pyi +3 -3
- metaflow-stubs/user_configs/config_parameters.pyi +6 -6
- metaflow-stubs/user_decorators/__init__.pyi +1 -1
- metaflow-stubs/user_decorators/common.pyi +1 -1
- metaflow-stubs/user_decorators/mutable_flow.pyi +4 -4
- metaflow-stubs/user_decorators/mutable_step.pyi +5 -5
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +4 -4
- metaflow-stubs/user_decorators/user_step_decorator.pyi +6 -6
- {ob_metaflow_stubs-6.0.5.0.dist-info → ob_metaflow_stubs-6.0.5.2.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.5.2.dist-info/RECORD +261 -0
- ob_metaflow_stubs-6.0.5.0.dist-info/RECORD +0 -260
- {ob_metaflow_stubs-6.0.5.0.dist-info → ob_metaflow_stubs-6.0.5.2.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.5.0.dist-info → ob_metaflow_stubs-6.0.5.2.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
3
|
# MF version: 2.16.8.1+obcheckpoint(0.2.4);ob(v1) #
|
4
|
-
# Generated on 2025-
|
4
|
+
# Generated on 2025-08-04T19:06:54.653206 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
@@ -39,10 +39,10 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
42
|
-
from . import events as events
|
43
|
-
from . import tuple_util as tuple_util
|
44
42
|
from . import cards as cards
|
43
|
+
from . import tuple_util as tuple_util
|
45
44
|
from . import metaflow_git as metaflow_git
|
45
|
+
from . import events as events
|
46
46
|
from . import runner as runner
|
47
47
|
from . import plugins as plugins
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
@@ -72,6 +72,11 @@ from .runner.nbdeploy import NBDeployer as NBDeployer
|
|
72
72
|
from .mf_extensions.obcheckpoint.plugins.machine_learning_utilities.checkpoints.final_api import Checkpoint as Checkpoint
|
73
73
|
from .mf_extensions.obcheckpoint.plugins.machine_learning_utilities.datastructures import load_model as load_model
|
74
74
|
from .mf_extensions.obcheckpoint.plugins.machine_learning_utilities.datastore.context import artifact_store_from as artifact_store_from
|
75
|
+
from .mf_extensions.outerbounds.toplevel.s3_proxy import get_aws_client_with_s3_proxy as get_aws_client_with_s3_proxy
|
76
|
+
from .mf_extensions.outerbounds.toplevel.s3_proxy import get_S3_with_s3_proxy as get_S3_with_s3_proxy
|
77
|
+
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import set_s3_proxy_config as set_s3_proxy_config
|
78
|
+
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import clear_s3_proxy_config as clear_s3_proxy_config
|
79
|
+
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import get_s3_proxy_config as get_s3_proxy_config
|
75
80
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import get_aws_client as get_aws_client
|
76
81
|
from .mf_extensions.outerbounds.plugins.snowflake.snowflake import Snowflake as Snowflake
|
77
82
|
from .mf_extensions.outerbounds.plugins.checkpoint_datastores.nebius import nebius_checkpoints as nebius_checkpoints
|
@@ -162,214 +167,248 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
162
167
|
"""
|
163
168
|
...
|
164
169
|
|
165
|
-
|
166
|
-
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
170
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
167
171
|
"""
|
168
|
-
|
172
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
169
173
|
|
170
|
-
|
174
|
+
User code call
|
175
|
+
--------------
|
176
|
+
@ollama(
|
177
|
+
models=[...],
|
178
|
+
...
|
179
|
+
)
|
180
|
+
|
181
|
+
Valid backend options
|
182
|
+
---------------------
|
183
|
+
- 'local': Run as a separate process on the local task machine.
|
184
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
185
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
186
|
+
|
187
|
+
Valid model options
|
188
|
+
-------------------
|
189
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
171
190
|
|
172
191
|
|
173
192
|
Parameters
|
174
193
|
----------
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
194
|
+
models: list[str]
|
195
|
+
List of Ollama containers running models in sidecars.
|
196
|
+
backend: str
|
197
|
+
Determines where and how to run the Ollama process.
|
198
|
+
force_pull: bool
|
199
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
200
|
+
cache_update_policy: str
|
201
|
+
Cache update policy: "auto", "force", or "never".
|
202
|
+
force_cache_update: bool
|
203
|
+
Simple override for "force" cache update policy.
|
204
|
+
debug: bool
|
205
|
+
Whether to turn on verbose debugging logs.
|
206
|
+
circuit_breaker_config: dict
|
207
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
208
|
+
timeout_config: dict
|
209
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
183
210
|
"""
|
184
211
|
...
|
185
212
|
|
186
|
-
|
187
|
-
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
188
|
-
...
|
189
|
-
|
190
|
-
@typing.overload
|
191
|
-
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
192
|
-
...
|
193
|
-
|
194
|
-
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
213
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
195
214
|
"""
|
196
|
-
|
197
|
-
|
198
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
215
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
199
216
|
|
200
217
|
|
201
218
|
Parameters
|
202
219
|
----------
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
220
|
+
integration_name : str, optional
|
221
|
+
Name of the S3 proxy integration. If not specified, will use the only
|
222
|
+
available S3 proxy integration in the namespace (fails if multiple exist).
|
223
|
+
write_mode : str, optional
|
224
|
+
The desired behavior during write operations to target (origin) S3 bucket.
|
225
|
+
allowed options are:
|
226
|
+
"origin-and-cache" -> write to both the target S3 bucket and local object
|
227
|
+
storage
|
228
|
+
"origin" -> only write to the target S3 bucket
|
229
|
+
"cache" -> only write to the object storage service used for caching
|
230
|
+
debug : bool, optional
|
231
|
+
Enable debug logging for proxy operations.
|
211
232
|
"""
|
212
233
|
...
|
213
234
|
|
214
235
|
@typing.overload
|
215
|
-
def
|
236
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
216
237
|
"""
|
217
|
-
Enables
|
238
|
+
Enables checkpointing for a step.
|
218
239
|
|
219
240
|
> Examples
|
220
|
-
|
241
|
+
|
242
|
+
- Saving Checkpoints
|
243
|
+
|
221
244
|
```python
|
222
|
-
@
|
245
|
+
@checkpoint
|
223
246
|
@step
|
224
247
|
def train(self):
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
243
|
-
self.next(self.end)
|
248
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
249
|
+
for i in range(self.epochs):
|
250
|
+
# some training logic
|
251
|
+
loss = model.train(self.dataset)
|
252
|
+
if i % 10 == 0:
|
253
|
+
model.save(
|
254
|
+
current.checkpoint.directory,
|
255
|
+
)
|
256
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
257
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
258
|
+
self.latest_checkpoint = current.checkpoint.save(
|
259
|
+
name="epoch_checkpoint",
|
260
|
+
metadata={
|
261
|
+
"epoch": i,
|
262
|
+
"loss": loss,
|
263
|
+
}
|
264
|
+
)
|
244
265
|
```
|
245
266
|
|
246
|
-
-
|
267
|
+
- Using Loaded Checkpoints
|
268
|
+
|
247
269
|
```python
|
270
|
+
@retry(times=3)
|
271
|
+
@checkpoint
|
248
272
|
@step
|
249
273
|
def train(self):
|
250
|
-
#
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
274
|
+
# Assume that the task has restarted and the previous attempt of the task
|
275
|
+
# saved a checkpoint
|
276
|
+
checkpoint_path = None
|
277
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
278
|
+
print("Loaded checkpoint from the previous attempt")
|
279
|
+
checkpoint_path = current.checkpoint.directory
|
280
|
+
|
281
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
282
|
+
for i in range(self.epochs):
|
283
|
+
...
|
258
284
|
```
|
259
285
|
|
260
286
|
|
261
287
|
Parameters
|
262
288
|
----------
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
289
|
+
load_policy : str, default: "fresh"
|
290
|
+
The policy for loading the checkpoint. The following policies are supported:
|
291
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
292
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
293
|
+
will be loaded at the start of the task.
|
294
|
+
- "none": Do not load any checkpoint
|
295
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
296
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
297
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
298
|
+
created within the task will be loaded when the task is retries execution on failure.
|
269
299
|
|
270
300
|
temp_dir_root : str, default: None
|
271
|
-
The root directory under which `current.
|
301
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
272
302
|
"""
|
273
303
|
...
|
274
304
|
|
275
305
|
@typing.overload
|
276
|
-
def
|
306
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
277
307
|
...
|
278
308
|
|
279
309
|
@typing.overload
|
280
|
-
def
|
310
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
281
311
|
...
|
282
312
|
|
283
|
-
def
|
313
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
284
314
|
"""
|
285
|
-
Enables
|
315
|
+
Enables checkpointing for a step.
|
286
316
|
|
287
317
|
> Examples
|
288
|
-
|
318
|
+
|
319
|
+
- Saving Checkpoints
|
320
|
+
|
289
321
|
```python
|
290
|
-
@
|
322
|
+
@checkpoint
|
291
323
|
@step
|
292
324
|
def train(self):
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
311
|
-
self.next(self.end)
|
325
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
326
|
+
for i in range(self.epochs):
|
327
|
+
# some training logic
|
328
|
+
loss = model.train(self.dataset)
|
329
|
+
if i % 10 == 0:
|
330
|
+
model.save(
|
331
|
+
current.checkpoint.directory,
|
332
|
+
)
|
333
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
334
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
335
|
+
self.latest_checkpoint = current.checkpoint.save(
|
336
|
+
name="epoch_checkpoint",
|
337
|
+
metadata={
|
338
|
+
"epoch": i,
|
339
|
+
"loss": loss,
|
340
|
+
}
|
341
|
+
)
|
312
342
|
```
|
313
343
|
|
314
|
-
-
|
344
|
+
- Using Loaded Checkpoints
|
345
|
+
|
315
346
|
```python
|
347
|
+
@retry(times=3)
|
348
|
+
@checkpoint
|
316
349
|
@step
|
317
350
|
def train(self):
|
318
|
-
#
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
351
|
+
# Assume that the task has restarted and the previous attempt of the task
|
352
|
+
# saved a checkpoint
|
353
|
+
checkpoint_path = None
|
354
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
355
|
+
print("Loaded checkpoint from the previous attempt")
|
356
|
+
checkpoint_path = current.checkpoint.directory
|
357
|
+
|
358
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
359
|
+
for i in range(self.epochs):
|
360
|
+
...
|
326
361
|
```
|
327
362
|
|
328
363
|
|
329
364
|
Parameters
|
330
365
|
----------
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
366
|
+
load_policy : str, default: "fresh"
|
367
|
+
The policy for loading the checkpoint. The following policies are supported:
|
368
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
369
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
370
|
+
will be loaded at the start of the task.
|
371
|
+
- "none": Do not load any checkpoint
|
372
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
373
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
374
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
375
|
+
created within the task will be loaded when the task is retries execution on failure.
|
337
376
|
|
338
377
|
temp_dir_root : str, default: None
|
339
|
-
The root directory under which `current.
|
378
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
340
379
|
"""
|
341
380
|
...
|
342
381
|
|
343
|
-
|
382
|
+
@typing.overload
|
383
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
344
384
|
"""
|
345
|
-
Specifies
|
385
|
+
Specifies environment variables to be set prior to the execution of a step.
|
346
386
|
|
347
387
|
|
348
388
|
Parameters
|
349
389
|
----------
|
350
|
-
|
351
|
-
|
352
|
-
gpu_type : str
|
353
|
-
Type of Nvidia GPU to use.
|
390
|
+
vars : Dict[str, str], default {}
|
391
|
+
Dictionary of environment variables to set.
|
354
392
|
"""
|
355
393
|
...
|
356
394
|
|
357
395
|
@typing.overload
|
358
|
-
def
|
359
|
-
"""
|
360
|
-
Decorator prototype for all step decorators. This function gets specialized
|
361
|
-
and imported for all decorators types by _import_plugin_decorators().
|
362
|
-
"""
|
396
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
363
397
|
...
|
364
398
|
|
365
399
|
@typing.overload
|
366
|
-
def
|
400
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
367
401
|
...
|
368
402
|
|
369
|
-
def
|
403
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
370
404
|
"""
|
371
|
-
|
372
|
-
|
405
|
+
Specifies environment variables to be set prior to the execution of a step.
|
406
|
+
|
407
|
+
|
408
|
+
Parameters
|
409
|
+
----------
|
410
|
+
vars : Dict[str, str], default {}
|
411
|
+
Dictionary of environment variables to set.
|
373
412
|
"""
|
374
413
|
...
|
375
414
|
|
@@ -424,181 +463,89 @@ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
424
463
|
"""
|
425
464
|
...
|
426
465
|
|
427
|
-
def
|
466
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
428
467
|
"""
|
429
|
-
|
430
|
-
|
431
|
-
> Examples
|
432
|
-
|
433
|
-
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
434
|
-
```python
|
435
|
-
@huggingface_hub
|
436
|
-
@step
|
437
|
-
def pull_model_from_huggingface(self):
|
438
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
439
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
440
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
441
|
-
# value of the function is a reference to the model in the backend storage.
|
442
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
443
|
-
|
444
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
445
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
446
|
-
repo_id=self.model_id,
|
447
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
448
|
-
)
|
449
|
-
self.next(self.train)
|
450
|
-
```
|
451
|
-
|
452
|
-
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
453
|
-
```python
|
454
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
455
|
-
@step
|
456
|
-
def pull_model_from_huggingface(self):
|
457
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
458
|
-
```
|
459
|
-
|
460
|
-
```python
|
461
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
462
|
-
@step
|
463
|
-
def finetune_model(self):
|
464
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
465
|
-
# path_to_model will be /my-directory
|
466
|
-
```
|
467
|
-
|
468
|
-
```python
|
469
|
-
# Takes all the arguments passed to `snapshot_download`
|
470
|
-
# except for `local_dir`
|
471
|
-
@huggingface_hub(load=[
|
472
|
-
{
|
473
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
474
|
-
},
|
475
|
-
{
|
476
|
-
"repo_id": "myorg/mistral-lora",
|
477
|
-
"repo_type": "model",
|
478
|
-
},
|
479
|
-
])
|
480
|
-
@step
|
481
|
-
def finetune_model(self):
|
482
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
483
|
-
# path_to_model will be /my-directory
|
484
|
-
```
|
468
|
+
Specifies that this step should execute on DGX cloud.
|
485
469
|
|
486
470
|
|
487
471
|
Parameters
|
488
472
|
----------
|
489
|
-
|
490
|
-
|
491
|
-
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
496
|
-
|
497
|
-
- If repo (model/dataset) is not found in the datastore:
|
498
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
499
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
500
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
501
|
-
|
502
|
-
- If repo is found in the datastore:
|
503
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
473
|
+
gpu : int
|
474
|
+
Number of GPUs to use.
|
475
|
+
gpu_type : str
|
476
|
+
Type of Nvidia GPU to use.
|
477
|
+
queue_timeout : int
|
478
|
+
Time to keep the job in NVCF's queue.
|
504
479
|
"""
|
505
480
|
...
|
506
481
|
|
507
482
|
@typing.overload
|
508
|
-
def
|
483
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
509
484
|
"""
|
510
|
-
|
511
|
-
|
485
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
486
|
+
|
487
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
512
488
|
|
513
489
|
|
514
490
|
Parameters
|
515
491
|
----------
|
516
|
-
|
517
|
-
|
518
|
-
|
519
|
-
|
492
|
+
type : str, default 'default'
|
493
|
+
Card type.
|
494
|
+
id : str, optional, default None
|
495
|
+
If multiple cards are present, use this id to identify this card.
|
496
|
+
options : Dict[str, Any], default {}
|
497
|
+
Options passed to the card. The contents depend on the card type.
|
498
|
+
timeout : int, default 45
|
499
|
+
Interrupt reporting if it takes more than this many seconds.
|
520
500
|
"""
|
521
501
|
...
|
522
502
|
|
523
503
|
@typing.overload
|
524
|
-
def
|
504
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
525
505
|
...
|
526
506
|
|
527
507
|
@typing.overload
|
528
|
-
def
|
508
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
529
509
|
...
|
530
510
|
|
531
|
-
def
|
511
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
532
512
|
"""
|
533
|
-
|
534
|
-
|
513
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
514
|
+
|
515
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
535
516
|
|
536
517
|
|
537
518
|
Parameters
|
538
519
|
----------
|
539
|
-
|
540
|
-
|
541
|
-
|
542
|
-
|
520
|
+
type : str, default 'default'
|
521
|
+
Card type.
|
522
|
+
id : str, optional, default None
|
523
|
+
If multiple cards are present, use this id to identify this card.
|
524
|
+
options : Dict[str, Any], default {}
|
525
|
+
Options passed to the card. The contents depend on the card type.
|
526
|
+
timeout : int, default 45
|
527
|
+
Interrupt reporting if it takes more than this many seconds.
|
543
528
|
"""
|
544
529
|
...
|
545
530
|
|
546
531
|
@typing.overload
|
547
|
-
def
|
532
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
548
533
|
"""
|
549
|
-
|
550
|
-
to a step needs to be retried.
|
551
|
-
|
552
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
553
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
554
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
555
|
-
|
556
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
557
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
558
|
-
ensuring that the flow execution can continue.
|
559
|
-
|
560
|
-
|
561
|
-
Parameters
|
562
|
-
----------
|
563
|
-
times : int, default 3
|
564
|
-
Number of times to retry this task.
|
565
|
-
minutes_between_retries : int, default 2
|
566
|
-
Number of minutes between retries.
|
534
|
+
Internal decorator to support Fast bakery
|
567
535
|
"""
|
568
536
|
...
|
569
537
|
|
570
538
|
@typing.overload
|
571
|
-
def
|
572
|
-
...
|
573
|
-
|
574
|
-
@typing.overload
|
575
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
539
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
576
540
|
...
|
577
541
|
|
578
|
-
def
|
542
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
579
543
|
"""
|
580
|
-
|
581
|
-
to a step needs to be retried.
|
582
|
-
|
583
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
584
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
585
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
586
|
-
|
587
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
588
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
589
|
-
ensuring that the flow execution can continue.
|
590
|
-
|
591
|
-
|
592
|
-
Parameters
|
593
|
-
----------
|
594
|
-
times : int, default 3
|
595
|
-
Number of times to retry this task.
|
596
|
-
minutes_between_retries : int, default 2
|
597
|
-
Number of minutes between retries.
|
544
|
+
Internal decorator to support Fast bakery
|
598
545
|
"""
|
599
546
|
...
|
600
547
|
|
601
|
-
def
|
548
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
602
549
|
"""
|
603
550
|
Specifies that this step should execute on DGX cloud.
|
604
551
|
|
@@ -609,614 +556,736 @@ def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[t
|
|
609
556
|
Number of GPUs to use.
|
610
557
|
gpu_type : str
|
611
558
|
Type of Nvidia GPU to use.
|
612
|
-
queue_timeout : int
|
613
|
-
Time to keep the job in NVCF's queue.
|
614
559
|
"""
|
615
560
|
...
|
616
561
|
|
617
562
|
@typing.overload
|
618
|
-
def
|
563
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
619
564
|
"""
|
620
|
-
Specifies the
|
621
|
-
|
622
|
-
Use `@resources` to specify the resource requirements
|
623
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
565
|
+
Specifies the PyPI packages for the step.
|
624
566
|
|
625
|
-
|
626
|
-
|
627
|
-
|
628
|
-
|
629
|
-
or
|
630
|
-
```
|
631
|
-
python myflow.py run --with kubernetes
|
632
|
-
```
|
633
|
-
which executes the flow on the desired system using the
|
634
|
-
requirements specified in `@resources`.
|
567
|
+
Information in this decorator will augment any
|
568
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
569
|
+
you can use `@pypi_base` to set packages required by all
|
570
|
+
steps and use `@pypi` to specify step-specific overrides.
|
635
571
|
|
636
572
|
|
637
573
|
Parameters
|
638
574
|
----------
|
639
|
-
|
640
|
-
|
641
|
-
|
642
|
-
|
643
|
-
|
644
|
-
|
645
|
-
memory : int, default 4096
|
646
|
-
Memory size (in MB) required for this step.
|
647
|
-
shared_memory : int, optional, default None
|
648
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
649
|
-
This parameter maps to the `--shm-size` option in Docker.
|
575
|
+
packages : Dict[str, str], default: {}
|
576
|
+
Packages to use for this step. The key is the name of the package
|
577
|
+
and the value is the version to use.
|
578
|
+
python : str, optional, default: None
|
579
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
580
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
650
581
|
"""
|
651
582
|
...
|
652
583
|
|
653
584
|
@typing.overload
|
654
|
-
def
|
585
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
655
586
|
...
|
656
587
|
|
657
588
|
@typing.overload
|
658
|
-
def
|
589
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
659
590
|
...
|
660
591
|
|
661
|
-
def
|
592
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
662
593
|
"""
|
663
|
-
Specifies the
|
594
|
+
Specifies the PyPI packages for the step.
|
664
595
|
|
665
|
-
|
666
|
-
|
667
|
-
|
668
|
-
|
669
|
-
```
|
670
|
-
python myflow.py run --with batch
|
671
|
-
```
|
672
|
-
or
|
673
|
-
```
|
674
|
-
python myflow.py run --with kubernetes
|
675
|
-
```
|
676
|
-
which executes the flow on the desired system using the
|
677
|
-
requirements specified in `@resources`.
|
596
|
+
Information in this decorator will augment any
|
597
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
598
|
+
you can use `@pypi_base` to set packages required by all
|
599
|
+
steps and use `@pypi` to specify step-specific overrides.
|
678
600
|
|
679
601
|
|
680
602
|
Parameters
|
681
603
|
----------
|
682
|
-
|
683
|
-
|
684
|
-
|
685
|
-
|
686
|
-
|
687
|
-
|
688
|
-
memory : int, default 4096
|
689
|
-
Memory size (in MB) required for this step.
|
690
|
-
shared_memory : int, optional, default None
|
691
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
692
|
-
This parameter maps to the `--shm-size` option in Docker.
|
604
|
+
packages : Dict[str, str], default: {}
|
605
|
+
Packages to use for this step. The key is the name of the package
|
606
|
+
and the value is the version to use.
|
607
|
+
python : str, optional, default: None
|
608
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
609
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
693
610
|
"""
|
694
611
|
...
|
695
612
|
|
696
613
|
@typing.overload
|
697
|
-
def
|
614
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
698
615
|
"""
|
699
|
-
Specifies
|
700
|
-
|
701
|
-
Information in this decorator will augment any
|
702
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
703
|
-
you can use `@conda_base` to set packages required by all
|
704
|
-
steps and use `@conda` to specify step-specific overrides.
|
616
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
617
|
+
the execution of a step.
|
705
618
|
|
706
619
|
|
707
620
|
Parameters
|
708
621
|
----------
|
709
|
-
|
710
|
-
|
711
|
-
|
712
|
-
|
713
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
714
|
-
python : str, optional, default None
|
715
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
716
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
717
|
-
disabled : bool, default False
|
718
|
-
If set to True, disables @conda.
|
622
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
623
|
+
List of secret specs, defining how the secrets are to be retrieved
|
624
|
+
role : str, optional, default: None
|
625
|
+
Role to use for fetching secrets
|
719
626
|
"""
|
720
627
|
...
|
721
628
|
|
722
629
|
@typing.overload
|
723
|
-
def
|
630
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
724
631
|
...
|
725
632
|
|
726
633
|
@typing.overload
|
727
|
-
def
|
634
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
728
635
|
...
|
729
636
|
|
730
|
-
def
|
637
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
731
638
|
"""
|
732
|
-
Specifies
|
733
|
-
|
734
|
-
Information in this decorator will augment any
|
735
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
736
|
-
you can use `@conda_base` to set packages required by all
|
737
|
-
steps and use `@conda` to specify step-specific overrides.
|
639
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
640
|
+
the execution of a step.
|
738
641
|
|
739
642
|
|
740
643
|
Parameters
|
741
644
|
----------
|
742
|
-
|
743
|
-
|
744
|
-
|
745
|
-
|
746
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
747
|
-
python : str, optional, default None
|
748
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
749
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
750
|
-
disabled : bool, default False
|
751
|
-
If set to True, disables @conda.
|
645
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
646
|
+
List of secret specs, defining how the secrets are to be retrieved
|
647
|
+
role : str, optional, default: None
|
648
|
+
Role to use for fetching secrets
|
752
649
|
"""
|
753
650
|
...
|
754
651
|
|
755
652
|
@typing.overload
|
756
|
-
def
|
653
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
757
654
|
"""
|
758
|
-
|
655
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
656
|
+
to inject a card and render simple markdown content.
|
759
657
|
"""
|
760
658
|
...
|
761
659
|
|
762
660
|
@typing.overload
|
763
|
-
def
|
661
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
764
662
|
...
|
765
663
|
|
766
|
-
def
|
664
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
767
665
|
"""
|
768
|
-
|
666
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
667
|
+
to inject a card and render simple markdown content.
|
769
668
|
"""
|
770
669
|
...
|
771
670
|
|
772
|
-
def
|
671
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
773
672
|
"""
|
774
|
-
|
775
|
-
|
776
|
-
User code call
|
777
|
-
--------------
|
778
|
-
@vllm(
|
779
|
-
model="...",
|
780
|
-
...
|
781
|
-
)
|
782
|
-
|
783
|
-
Valid backend options
|
784
|
-
---------------------
|
785
|
-
- 'local': Run as a separate process on the local task machine.
|
786
|
-
|
787
|
-
Valid model options
|
788
|
-
-------------------
|
789
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
790
|
-
|
791
|
-
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
792
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
673
|
+
Specifies that this step should execute on Kubernetes.
|
793
674
|
|
794
675
|
|
795
676
|
Parameters
|
796
677
|
----------
|
797
|
-
|
798
|
-
|
799
|
-
|
800
|
-
|
801
|
-
|
802
|
-
|
803
|
-
|
804
|
-
|
805
|
-
|
806
|
-
|
807
|
-
|
808
|
-
|
809
|
-
|
810
|
-
|
811
|
-
|
812
|
-
|
813
|
-
|
814
|
-
|
815
|
-
|
816
|
-
|
817
|
-
|
818
|
-
|
678
|
+
cpu : int, default 1
|
679
|
+
Number of CPUs required for this step. If `@resources` is
|
680
|
+
also present, the maximum value from all decorators is used.
|
681
|
+
memory : int, default 4096
|
682
|
+
Memory size (in MB) required for this step. If
|
683
|
+
`@resources` is also present, the maximum value from all decorators is
|
684
|
+
used.
|
685
|
+
disk : int, default 10240
|
686
|
+
Disk size (in MB) required for this step. If
|
687
|
+
`@resources` is also present, the maximum value from all decorators is
|
688
|
+
used.
|
689
|
+
image : str, optional, default None
|
690
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
691
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
692
|
+
not, a default Docker image mapping to the current version of Python is used.
|
693
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
694
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
695
|
+
image_pull_secrets: List[str], default []
|
696
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
697
|
+
Kubernetes image pull secrets to use when pulling container images
|
698
|
+
in Kubernetes.
|
699
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
700
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
701
|
+
secrets : List[str], optional, default None
|
702
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
703
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
704
|
+
in Metaflow configuration.
|
705
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
706
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
707
|
+
Can be passed in as a comma separated string of values e.g.
|
708
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
709
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
710
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
711
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
712
|
+
gpu : int, optional, default None
|
713
|
+
Number of GPUs required for this step. A value of zero implies that
|
714
|
+
the scheduled node should not have GPUs.
|
715
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
716
|
+
The vendor of the GPUs to be used for this step.
|
717
|
+
tolerations : List[Dict[str,str]], default []
|
718
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
719
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
720
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
721
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
722
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
723
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
724
|
+
use_tmpfs : bool, default False
|
725
|
+
This enables an explicit tmpfs mount for this step.
|
726
|
+
tmpfs_tempdir : bool, default True
|
727
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
728
|
+
tmpfs_size : int, optional, default: None
|
729
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
730
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
731
|
+
memory allocated for this step.
|
732
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
733
|
+
Path to tmpfs mount for this step.
|
734
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
735
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
736
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
737
|
+
shared_memory: int, optional
|
738
|
+
Shared memory size (in MiB) required for this step
|
739
|
+
port: int, optional
|
740
|
+
Port number to specify in the Kubernetes job object
|
741
|
+
compute_pool : str, optional, default None
|
742
|
+
Compute pool to be used for for this step.
|
743
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
744
|
+
hostname_resolution_timeout: int, default 10 * 60
|
745
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
746
|
+
Only applicable when @parallel is used.
|
747
|
+
qos: str, default: Burstable
|
748
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
749
|
+
|
750
|
+
security_context: Dict[str, Any], optional, default None
|
751
|
+
Container security context. Applies to the task container. Allows the following keys:
|
752
|
+
- privileged: bool, optional, default None
|
753
|
+
- allow_privilege_escalation: bool, optional, default None
|
754
|
+
- run_as_user: int, optional, default None
|
755
|
+
- run_as_group: int, optional, default None
|
756
|
+
- run_as_non_root: bool, optional, default None
|
819
757
|
"""
|
820
758
|
...
|
821
759
|
|
822
760
|
@typing.overload
|
823
|
-
def
|
761
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
824
762
|
"""
|
825
|
-
|
826
|
-
|
827
|
-
|
828
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
829
|
-
you can use `@pypi_base` to set packages required by all
|
830
|
-
steps and use `@pypi` to specify step-specific overrides.
|
831
|
-
|
832
|
-
|
833
|
-
Parameters
|
834
|
-
----------
|
835
|
-
packages : Dict[str, str], default: {}
|
836
|
-
Packages to use for this step. The key is the name of the package
|
837
|
-
and the value is the version to use.
|
838
|
-
python : str, optional, default: None
|
839
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
840
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
763
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
764
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
765
|
+
a Neo Cloud like Nebius.
|
841
766
|
"""
|
842
767
|
...
|
843
768
|
|
844
769
|
@typing.overload
|
845
|
-
def
|
770
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
846
771
|
...
|
847
772
|
|
848
|
-
|
849
|
-
|
773
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
774
|
+
"""
|
775
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
776
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
777
|
+
a Neo Cloud like Nebius.
|
778
|
+
"""
|
850
779
|
...
|
851
780
|
|
852
|
-
|
781
|
+
@typing.overload
|
782
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
853
783
|
"""
|
854
|
-
Specifies the
|
784
|
+
Specifies the number of times the task corresponding
|
785
|
+
to a step needs to be retried.
|
855
786
|
|
856
|
-
|
857
|
-
|
858
|
-
|
859
|
-
|
787
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
788
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
789
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
790
|
+
|
791
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
792
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
793
|
+
ensuring that the flow execution can continue.
|
860
794
|
|
861
795
|
|
862
796
|
Parameters
|
863
797
|
----------
|
864
|
-
|
865
|
-
|
866
|
-
|
867
|
-
|
868
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
869
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
798
|
+
times : int, default 3
|
799
|
+
Number of times to retry this task.
|
800
|
+
minutes_between_retries : int, default 2
|
801
|
+
Number of minutes between retries.
|
870
802
|
"""
|
871
803
|
...
|
872
804
|
|
873
805
|
@typing.overload
|
874
|
-
def
|
806
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
807
|
+
...
|
808
|
+
|
809
|
+
@typing.overload
|
810
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
811
|
+
...
|
812
|
+
|
813
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
875
814
|
"""
|
876
|
-
|
877
|
-
|
815
|
+
Specifies the number of times the task corresponding
|
816
|
+
to a step needs to be retried.
|
817
|
+
|
818
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
819
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
820
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
821
|
+
|
822
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
823
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
824
|
+
ensuring that the flow execution can continue.
|
825
|
+
|
826
|
+
|
827
|
+
Parameters
|
828
|
+
----------
|
829
|
+
times : int, default 3
|
830
|
+
Number of times to retry this task.
|
831
|
+
minutes_between_retries : int, default 2
|
832
|
+
Number of minutes between retries.
|
833
|
+
"""
|
834
|
+
...
|
835
|
+
|
836
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
837
|
+
"""
|
838
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
839
|
+
|
840
|
+
> Examples
|
841
|
+
|
842
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
843
|
+
```python
|
844
|
+
@huggingface_hub
|
845
|
+
@step
|
846
|
+
def pull_model_from_huggingface(self):
|
847
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
848
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
849
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
850
|
+
# value of the function is a reference to the model in the backend storage.
|
851
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
852
|
+
|
853
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
854
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
855
|
+
repo_id=self.model_id,
|
856
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
857
|
+
)
|
858
|
+
self.next(self.train)
|
859
|
+
```
|
860
|
+
|
861
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
862
|
+
```python
|
863
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
864
|
+
@step
|
865
|
+
def pull_model_from_huggingface(self):
|
866
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
867
|
+
```
|
868
|
+
|
869
|
+
```python
|
870
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
871
|
+
@step
|
872
|
+
def finetune_model(self):
|
873
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
874
|
+
# path_to_model will be /my-directory
|
875
|
+
```
|
876
|
+
|
877
|
+
```python
|
878
|
+
# Takes all the arguments passed to `snapshot_download`
|
879
|
+
# except for `local_dir`
|
880
|
+
@huggingface_hub(load=[
|
881
|
+
{
|
882
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
883
|
+
},
|
884
|
+
{
|
885
|
+
"repo_id": "myorg/mistral-lora",
|
886
|
+
"repo_type": "model",
|
887
|
+
},
|
888
|
+
])
|
889
|
+
@step
|
890
|
+
def finetune_model(self):
|
891
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
892
|
+
# path_to_model will be /my-directory
|
893
|
+
```
|
894
|
+
|
895
|
+
|
896
|
+
Parameters
|
897
|
+
----------
|
898
|
+
temp_dir_root : str, optional
|
899
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
900
|
+
|
901
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
902
|
+
The list of repos (models/datasets) to load.
|
903
|
+
|
904
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
905
|
+
|
906
|
+
- If repo (model/dataset) is not found in the datastore:
|
907
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
908
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
909
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
910
|
+
|
911
|
+
- If repo is found in the datastore:
|
912
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
878
913
|
"""
|
879
914
|
...
|
880
915
|
|
881
916
|
@typing.overload
|
882
|
-
def
|
917
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
918
|
+
"""
|
919
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
920
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
921
|
+
a Neo Cloud like CoreWeave.
|
922
|
+
"""
|
883
923
|
...
|
884
924
|
|
885
|
-
|
925
|
+
@typing.overload
|
926
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
927
|
+
...
|
928
|
+
|
929
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
886
930
|
"""
|
887
|
-
|
888
|
-
|
931
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
932
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
933
|
+
a Neo Cloud like CoreWeave.
|
889
934
|
"""
|
890
935
|
...
|
891
936
|
|
892
|
-
|
937
|
+
@typing.overload
|
938
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
893
939
|
"""
|
894
|
-
|
895
|
-
|
896
|
-
User code call
|
897
|
-
--------------
|
898
|
-
@ollama(
|
899
|
-
models=[...],
|
900
|
-
...
|
901
|
-
)
|
940
|
+
Specifies the resources needed when executing this step.
|
902
941
|
|
903
|
-
|
904
|
-
|
905
|
-
- 'local': Run as a separate process on the local task machine.
|
906
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
907
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
942
|
+
Use `@resources` to specify the resource requirements
|
943
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
908
944
|
|
909
|
-
|
910
|
-
|
911
|
-
|
945
|
+
You can choose the compute layer on the command line by executing e.g.
|
946
|
+
```
|
947
|
+
python myflow.py run --with batch
|
948
|
+
```
|
949
|
+
or
|
950
|
+
```
|
951
|
+
python myflow.py run --with kubernetes
|
952
|
+
```
|
953
|
+
which executes the flow on the desired system using the
|
954
|
+
requirements specified in `@resources`.
|
912
955
|
|
913
956
|
|
914
957
|
Parameters
|
915
958
|
----------
|
916
|
-
|
917
|
-
|
918
|
-
|
919
|
-
|
920
|
-
|
921
|
-
|
922
|
-
|
923
|
-
|
924
|
-
|
925
|
-
|
926
|
-
|
927
|
-
Whether to turn on verbose debugging logs.
|
928
|
-
circuit_breaker_config: dict
|
929
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
930
|
-
timeout_config: dict
|
931
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
959
|
+
cpu : int, default 1
|
960
|
+
Number of CPUs required for this step.
|
961
|
+
gpu : int, optional, default None
|
962
|
+
Number of GPUs required for this step.
|
963
|
+
disk : int, optional, default None
|
964
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
965
|
+
memory : int, default 4096
|
966
|
+
Memory size (in MB) required for this step.
|
967
|
+
shared_memory : int, optional, default None
|
968
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
969
|
+
This parameter maps to the `--shm-size` option in Docker.
|
932
970
|
"""
|
933
971
|
...
|
934
972
|
|
935
973
|
@typing.overload
|
936
|
-
def
|
974
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
975
|
+
...
|
976
|
+
|
977
|
+
@typing.overload
|
978
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
979
|
+
...
|
980
|
+
|
981
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
937
982
|
"""
|
938
|
-
|
983
|
+
Specifies the resources needed when executing this step.
|
939
984
|
|
940
|
-
|
985
|
+
Use `@resources` to specify the resource requirements
|
986
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
941
987
|
|
942
|
-
|
988
|
+
You can choose the compute layer on the command line by executing e.g.
|
989
|
+
```
|
990
|
+
python myflow.py run --with batch
|
991
|
+
```
|
992
|
+
or
|
993
|
+
```
|
994
|
+
python myflow.py run --with kubernetes
|
995
|
+
```
|
996
|
+
which executes the flow on the desired system using the
|
997
|
+
requirements specified in `@resources`.
|
998
|
+
|
999
|
+
|
1000
|
+
Parameters
|
1001
|
+
----------
|
1002
|
+
cpu : int, default 1
|
1003
|
+
Number of CPUs required for this step.
|
1004
|
+
gpu : int, optional, default None
|
1005
|
+
Number of GPUs required for this step.
|
1006
|
+
disk : int, optional, default None
|
1007
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
1008
|
+
memory : int, default 4096
|
1009
|
+
Memory size (in MB) required for this step.
|
1010
|
+
shared_memory : int, optional, default None
|
1011
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
1012
|
+
This parameter maps to the `--shm-size` option in Docker.
|
1013
|
+
"""
|
1014
|
+
...
|
1015
|
+
|
1016
|
+
@typing.overload
|
1017
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1018
|
+
"""
|
1019
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1020
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1021
|
+
"""
|
1022
|
+
...
|
1023
|
+
|
1024
|
+
@typing.overload
|
1025
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1026
|
+
...
|
1027
|
+
|
1028
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1029
|
+
"""
|
1030
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1031
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1032
|
+
"""
|
1033
|
+
...
|
1034
|
+
|
1035
|
+
@typing.overload
|
1036
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1037
|
+
"""
|
1038
|
+
Enables loading / saving of models within a step.
|
943
1039
|
|
1040
|
+
> Examples
|
1041
|
+
- Saving Models
|
944
1042
|
```python
|
945
|
-
@
|
1043
|
+
@model
|
946
1044
|
@step
|
947
1045
|
def train(self):
|
948
|
-
model
|
949
|
-
|
950
|
-
|
951
|
-
|
952
|
-
|
953
|
-
|
954
|
-
|
955
|
-
|
956
|
-
|
957
|
-
|
958
|
-
|
959
|
-
name="epoch_checkpoint",
|
960
|
-
metadata={
|
961
|
-
"epoch": i,
|
962
|
-
"loss": loss,
|
963
|
-
}
|
964
|
-
)
|
965
|
-
```
|
1046
|
+
# current.model.save returns a dictionary reference to the model saved
|
1047
|
+
self.my_model = current.model.save(
|
1048
|
+
path_to_my_model,
|
1049
|
+
label="my_model",
|
1050
|
+
metadata={
|
1051
|
+
"epochs": 10,
|
1052
|
+
"batch-size": 32,
|
1053
|
+
"learning-rate": 0.001,
|
1054
|
+
}
|
1055
|
+
)
|
1056
|
+
self.next(self.test)
|
966
1057
|
|
967
|
-
|
1058
|
+
@model(load="my_model")
|
1059
|
+
@step
|
1060
|
+
def test(self):
|
1061
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
1062
|
+
# where the key is the name of the artifact and the value is the path to the model
|
1063
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
1064
|
+
self.next(self.end)
|
1065
|
+
```
|
968
1066
|
|
1067
|
+
- Loading models
|
969
1068
|
```python
|
970
|
-
@retry(times=3)
|
971
|
-
@checkpoint
|
972
1069
|
@step
|
973
1070
|
def train(self):
|
974
|
-
#
|
975
|
-
|
976
|
-
|
977
|
-
|
978
|
-
|
979
|
-
|
980
|
-
|
981
|
-
|
982
|
-
for i in range(self.epochs):
|
983
|
-
...
|
1071
|
+
# current.model.load returns the path to the model loaded
|
1072
|
+
checkpoint_path = current.model.load(
|
1073
|
+
self.checkpoint_key,
|
1074
|
+
)
|
1075
|
+
model_path = current.model.load(
|
1076
|
+
self.model,
|
1077
|
+
)
|
1078
|
+
self.next(self.test)
|
984
1079
|
```
|
985
1080
|
|
986
1081
|
|
987
1082
|
Parameters
|
988
1083
|
----------
|
989
|
-
|
990
|
-
|
991
|
-
|
992
|
-
|
993
|
-
|
994
|
-
|
995
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
996
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
997
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
998
|
-
created within the task will be loaded when the task is retries execution on failure.
|
1084
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
1085
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
1086
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
1087
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
1088
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
1089
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
999
1090
|
|
1000
1091
|
temp_dir_root : str, default: None
|
1001
|
-
The root directory under which `current.
|
1092
|
+
The root directory under which `current.model.loaded` will store loaded models
|
1002
1093
|
"""
|
1003
1094
|
...
|
1004
1095
|
|
1005
1096
|
@typing.overload
|
1006
|
-
def
|
1097
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1007
1098
|
...
|
1008
1099
|
|
1009
1100
|
@typing.overload
|
1010
|
-
def
|
1101
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1011
1102
|
...
|
1012
1103
|
|
1013
|
-
def
|
1104
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
1014
1105
|
"""
|
1015
|
-
Enables
|
1106
|
+
Enables loading / saving of models within a step.
|
1016
1107
|
|
1017
1108
|
> Examples
|
1018
|
-
|
1019
|
-
- Saving Checkpoints
|
1020
|
-
|
1109
|
+
- Saving Models
|
1021
1110
|
```python
|
1022
|
-
@
|
1111
|
+
@model
|
1023
1112
|
@step
|
1024
1113
|
def train(self):
|
1025
|
-
model
|
1026
|
-
|
1027
|
-
|
1028
|
-
|
1029
|
-
|
1030
|
-
|
1031
|
-
|
1032
|
-
|
1033
|
-
|
1034
|
-
|
1035
|
-
|
1036
|
-
name="epoch_checkpoint",
|
1037
|
-
metadata={
|
1038
|
-
"epoch": i,
|
1039
|
-
"loss": loss,
|
1040
|
-
}
|
1041
|
-
)
|
1042
|
-
```
|
1114
|
+
# current.model.save returns a dictionary reference to the model saved
|
1115
|
+
self.my_model = current.model.save(
|
1116
|
+
path_to_my_model,
|
1117
|
+
label="my_model",
|
1118
|
+
metadata={
|
1119
|
+
"epochs": 10,
|
1120
|
+
"batch-size": 32,
|
1121
|
+
"learning-rate": 0.001,
|
1122
|
+
}
|
1123
|
+
)
|
1124
|
+
self.next(self.test)
|
1043
1125
|
|
1044
|
-
|
1126
|
+
@model(load="my_model")
|
1127
|
+
@step
|
1128
|
+
def test(self):
|
1129
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
1130
|
+
# where the key is the name of the artifact and the value is the path to the model
|
1131
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
1132
|
+
self.next(self.end)
|
1133
|
+
```
|
1045
1134
|
|
1135
|
+
- Loading models
|
1046
1136
|
```python
|
1047
|
-
@retry(times=3)
|
1048
|
-
@checkpoint
|
1049
1137
|
@step
|
1050
1138
|
def train(self):
|
1051
|
-
#
|
1052
|
-
|
1053
|
-
|
1054
|
-
|
1055
|
-
|
1056
|
-
|
1057
|
-
|
1058
|
-
|
1059
|
-
for i in range(self.epochs):
|
1060
|
-
...
|
1139
|
+
# current.model.load returns the path to the model loaded
|
1140
|
+
checkpoint_path = current.model.load(
|
1141
|
+
self.checkpoint_key,
|
1142
|
+
)
|
1143
|
+
model_path = current.model.load(
|
1144
|
+
self.model,
|
1145
|
+
)
|
1146
|
+
self.next(self.test)
|
1061
1147
|
```
|
1062
1148
|
|
1063
1149
|
|
1064
1150
|
Parameters
|
1065
1151
|
----------
|
1066
|
-
|
1067
|
-
|
1068
|
-
|
1069
|
-
|
1070
|
-
|
1071
|
-
|
1072
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
1073
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
1074
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
1075
|
-
created within the task will be loaded when the task is retries execution on failure.
|
1152
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
1153
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
1154
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
1155
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
1156
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
1157
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
1076
1158
|
|
1077
1159
|
temp_dir_root : str, default: None
|
1078
|
-
The root directory under which `current.
|
1079
|
-
"""
|
1080
|
-
...
|
1081
|
-
|
1082
|
-
@typing.overload
|
1083
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1084
|
-
"""
|
1085
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
1086
|
-
to inject a card and render simple markdown content.
|
1160
|
+
The root directory under which `current.model.loaded` will store loaded models
|
1087
1161
|
"""
|
1088
1162
|
...
|
1089
1163
|
|
1090
|
-
|
1091
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1092
|
-
...
|
1093
|
-
|
1094
|
-
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1164
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1095
1165
|
"""
|
1096
|
-
|
1097
|
-
|
1166
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
1167
|
+
|
1168
|
+
User code call
|
1169
|
+
--------------
|
1170
|
+
@vllm(
|
1171
|
+
model="...",
|
1172
|
+
...
|
1173
|
+
)
|
1174
|
+
|
1175
|
+
Valid backend options
|
1176
|
+
---------------------
|
1177
|
+
- 'local': Run as a separate process on the local task machine.
|
1178
|
+
|
1179
|
+
Valid model options
|
1180
|
+
-------------------
|
1181
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
1182
|
+
|
1183
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
1184
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
1185
|
+
|
1186
|
+
|
1187
|
+
Parameters
|
1188
|
+
----------
|
1189
|
+
model: str
|
1190
|
+
HuggingFace model identifier to be served by vLLM.
|
1191
|
+
backend: str
|
1192
|
+
Determines where and how to run the vLLM process.
|
1193
|
+
openai_api_server: bool
|
1194
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
1195
|
+
Default is False (uses native engine).
|
1196
|
+
Set to True for backward compatibility with existing code.
|
1197
|
+
debug: bool
|
1198
|
+
Whether to turn on verbose debugging logs.
|
1199
|
+
card_refresh_interval: int
|
1200
|
+
Interval in seconds for refreshing the vLLM status card.
|
1201
|
+
Only used when openai_api_server=True.
|
1202
|
+
max_retries: int
|
1203
|
+
Maximum number of retries checking for vLLM server startup.
|
1204
|
+
Only used when openai_api_server=True.
|
1205
|
+
retry_alert_frequency: int
|
1206
|
+
Frequency of alert logs for vLLM server startup retries.
|
1207
|
+
Only used when openai_api_server=True.
|
1208
|
+
engine_args : dict
|
1209
|
+
Additional keyword arguments to pass to the vLLM engine.
|
1210
|
+
For example, `tensor_parallel_size=2`.
|
1098
1211
|
"""
|
1099
1212
|
...
|
1100
1213
|
|
1101
1214
|
@typing.overload
|
1102
|
-
def
|
1215
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1103
1216
|
"""
|
1104
|
-
Specifies
|
1217
|
+
Specifies the Conda environment for the step.
|
1218
|
+
|
1219
|
+
Information in this decorator will augment any
|
1220
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
1221
|
+
you can use `@conda_base` to set packages required by all
|
1222
|
+
steps and use `@conda` to specify step-specific overrides.
|
1105
1223
|
|
1106
1224
|
|
1107
1225
|
Parameters
|
1108
1226
|
----------
|
1109
|
-
|
1110
|
-
|
1227
|
+
packages : Dict[str, str], default {}
|
1228
|
+
Packages to use for this step. The key is the name of the package
|
1229
|
+
and the value is the version to use.
|
1230
|
+
libraries : Dict[str, str], default {}
|
1231
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1232
|
+
python : str, optional, default None
|
1233
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1234
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1235
|
+
disabled : bool, default False
|
1236
|
+
If set to True, disables @conda.
|
1111
1237
|
"""
|
1112
1238
|
...
|
1113
1239
|
|
1114
1240
|
@typing.overload
|
1115
|
-
def
|
1241
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1116
1242
|
...
|
1117
1243
|
|
1118
1244
|
@typing.overload
|
1119
|
-
def
|
1245
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1120
1246
|
...
|
1121
1247
|
|
1122
|
-
def
|
1248
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1123
1249
|
"""
|
1124
|
-
Specifies
|
1250
|
+
Specifies the Conda environment for the step.
|
1251
|
+
|
1252
|
+
Information in this decorator will augment any
|
1253
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
1254
|
+
you can use `@conda_base` to set packages required by all
|
1255
|
+
steps and use `@conda` to specify step-specific overrides.
|
1125
1256
|
|
1126
1257
|
|
1127
1258
|
Parameters
|
1128
1259
|
----------
|
1129
|
-
|
1130
|
-
|
1260
|
+
packages : Dict[str, str], default {}
|
1261
|
+
Packages to use for this step. The key is the name of the package
|
1262
|
+
and the value is the version to use.
|
1263
|
+
libraries : Dict[str, str], default {}
|
1264
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1265
|
+
python : str, optional, default None
|
1266
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1267
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1268
|
+
disabled : bool, default False
|
1269
|
+
If set to True, disables @conda.
|
1131
1270
|
"""
|
1132
1271
|
...
|
1133
1272
|
|
1134
|
-
|
1273
|
+
@typing.overload
|
1274
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1135
1275
|
"""
|
1136
|
-
|
1137
|
-
|
1138
|
-
|
1139
|
-
|
1140
|
-
|
1141
|
-
|
1142
|
-
|
1143
|
-
|
1144
|
-
|
1145
|
-
|
1146
|
-
|
1147
|
-
|
1148
|
-
|
1149
|
-
Disk size (in MB) required for this step. If
|
1150
|
-
`@resources` is also present, the maximum value from all decorators is
|
1151
|
-
used.
|
1152
|
-
image : str, optional, default None
|
1153
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
1154
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
1155
|
-
not, a default Docker image mapping to the current version of Python is used.
|
1156
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
1157
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
1158
|
-
image_pull_secrets: List[str], default []
|
1159
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
1160
|
-
Kubernetes image pull secrets to use when pulling container images
|
1161
|
-
in Kubernetes.
|
1162
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
1163
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
1164
|
-
secrets : List[str], optional, default None
|
1165
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
1166
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
1167
|
-
in Metaflow configuration.
|
1168
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
1169
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
1170
|
-
Can be passed in as a comma separated string of values e.g.
|
1171
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
1172
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
1173
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
1174
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
1175
|
-
gpu : int, optional, default None
|
1176
|
-
Number of GPUs required for this step. A value of zero implies that
|
1177
|
-
the scheduled node should not have GPUs.
|
1178
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
1179
|
-
The vendor of the GPUs to be used for this step.
|
1180
|
-
tolerations : List[Dict[str,str]], default []
|
1181
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
1182
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
1183
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
1184
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
1185
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
1186
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
1187
|
-
use_tmpfs : bool, default False
|
1188
|
-
This enables an explicit tmpfs mount for this step.
|
1189
|
-
tmpfs_tempdir : bool, default True
|
1190
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
1191
|
-
tmpfs_size : int, optional, default: None
|
1192
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
1193
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
1194
|
-
memory allocated for this step.
|
1195
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
1196
|
-
Path to tmpfs mount for this step.
|
1197
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
1198
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
1199
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
1200
|
-
shared_memory: int, optional
|
1201
|
-
Shared memory size (in MiB) required for this step
|
1202
|
-
port: int, optional
|
1203
|
-
Port number to specify in the Kubernetes job object
|
1204
|
-
compute_pool : str, optional, default None
|
1205
|
-
Compute pool to be used for for this step.
|
1206
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
1207
|
-
hostname_resolution_timeout: int, default 10 * 60
|
1208
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
1209
|
-
Only applicable when @parallel is used.
|
1210
|
-
qos: str, default: Burstable
|
1211
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
1212
|
-
|
1213
|
-
security_context: Dict[str, Any], optional, default None
|
1214
|
-
Container security context. Applies to the task container. Allows the following keys:
|
1215
|
-
- privileged: bool, optional, default None
|
1216
|
-
- allow_privilege_escalation: bool, optional, default None
|
1217
|
-
- run_as_user: int, optional, default None
|
1218
|
-
- run_as_group: int, optional, default None
|
1219
|
-
- run_as_non_root: bool, optional, default None
|
1276
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1277
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1278
|
+
"""
|
1279
|
+
...
|
1280
|
+
|
1281
|
+
@typing.overload
|
1282
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1283
|
+
...
|
1284
|
+
|
1285
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1286
|
+
"""
|
1287
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1288
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1220
1289
|
"""
|
1221
1290
|
...
|
1222
1291
|
|
@@ -1280,208 +1349,131 @@ def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
1280
1349
|
...
|
1281
1350
|
|
1282
1351
|
@typing.overload
|
1283
|
-
def
|
1352
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1284
1353
|
"""
|
1285
|
-
Specifies the
|
1286
|
-
|
1287
|
-
Use `@conda_base` to set common libraries required by all
|
1288
|
-
steps and use `@conda` to specify step-specific additions.
|
1354
|
+
Specifies the times when the flow should be run when running on a
|
1355
|
+
production scheduler.
|
1289
1356
|
|
1290
1357
|
|
1291
1358
|
Parameters
|
1292
1359
|
----------
|
1293
|
-
|
1294
|
-
|
1295
|
-
|
1296
|
-
|
1297
|
-
|
1298
|
-
|
1299
|
-
|
1300
|
-
|
1301
|
-
|
1302
|
-
|
1360
|
+
hourly : bool, default False
|
1361
|
+
Run the workflow hourly.
|
1362
|
+
daily : bool, default True
|
1363
|
+
Run the workflow daily.
|
1364
|
+
weekly : bool, default False
|
1365
|
+
Run the workflow weekly.
|
1366
|
+
cron : str, optional, default None
|
1367
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1368
|
+
specified by this expression.
|
1369
|
+
timezone : str, optional, default None
|
1370
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1371
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1303
1372
|
"""
|
1304
1373
|
...
|
1305
1374
|
|
1306
1375
|
@typing.overload
|
1307
|
-
def
|
1308
|
-
...
|
1309
|
-
|
1310
|
-
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1311
|
-
"""
|
1312
|
-
Specifies the Conda environment for all steps of the flow.
|
1313
|
-
|
1314
|
-
Use `@conda_base` to set common libraries required by all
|
1315
|
-
steps and use `@conda` to specify step-specific additions.
|
1316
|
-
|
1317
|
-
|
1318
|
-
Parameters
|
1319
|
-
----------
|
1320
|
-
packages : Dict[str, str], default {}
|
1321
|
-
Packages to use for this flow. The key is the name of the package
|
1322
|
-
and the value is the version to use.
|
1323
|
-
libraries : Dict[str, str], default {}
|
1324
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1325
|
-
python : str, optional, default None
|
1326
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1327
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1328
|
-
disabled : bool, default False
|
1329
|
-
If set to True, disables Conda.
|
1330
|
-
"""
|
1376
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1331
1377
|
...
|
1332
1378
|
|
1333
|
-
|
1334
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1379
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1335
1380
|
"""
|
1336
|
-
Specifies the
|
1381
|
+
Specifies the times when the flow should be run when running on a
|
1382
|
+
production scheduler.
|
1337
1383
|
|
1338
|
-
Use `@pypi_base` to set common packages required by all
|
1339
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1340
1384
|
|
1341
1385
|
Parameters
|
1342
1386
|
----------
|
1343
|
-
|
1344
|
-
|
1345
|
-
|
1346
|
-
|
1347
|
-
|
1348
|
-
|
1387
|
+
hourly : bool, default False
|
1388
|
+
Run the workflow hourly.
|
1389
|
+
daily : bool, default True
|
1390
|
+
Run the workflow daily.
|
1391
|
+
weekly : bool, default False
|
1392
|
+
Run the workflow weekly.
|
1393
|
+
cron : str, optional, default None
|
1394
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1395
|
+
specified by this expression.
|
1396
|
+
timezone : str, optional, default None
|
1397
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1398
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1349
1399
|
"""
|
1350
1400
|
...
|
1351
1401
|
|
1352
|
-
|
1353
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1354
|
-
...
|
1355
|
-
|
1356
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1402
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1357
1403
|
"""
|
1358
|
-
|
1404
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1405
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1359
1406
|
|
1360
|
-
Use `@pypi_base` to set common packages required by all
|
1361
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1362
1407
|
|
1363
1408
|
Parameters
|
1364
1409
|
----------
|
1365
|
-
|
1366
|
-
|
1367
|
-
|
1368
|
-
|
1369
|
-
|
1370
|
-
|
1410
|
+
timeout : int
|
1411
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1412
|
+
poke_interval : int
|
1413
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1414
|
+
mode : str
|
1415
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1416
|
+
exponential_backoff : bool
|
1417
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1418
|
+
pool : str
|
1419
|
+
the slot pool this task should run in,
|
1420
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1421
|
+
soft_fail : bool
|
1422
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1423
|
+
name : str
|
1424
|
+
Name of the sensor on Airflow
|
1425
|
+
description : str
|
1426
|
+
Description of sensor in the Airflow UI
|
1427
|
+
external_dag_id : str
|
1428
|
+
The dag_id that contains the task you want to wait for.
|
1429
|
+
external_task_ids : List[str]
|
1430
|
+
The list of task_ids that you want to wait for.
|
1431
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1432
|
+
allowed_states : List[str]
|
1433
|
+
Iterable of allowed states, (Default: ['success'])
|
1434
|
+
failed_states : List[str]
|
1435
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1436
|
+
execution_delta : datetime.timedelta
|
1437
|
+
time difference with the previous execution to look at,
|
1438
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1439
|
+
check_existence: bool
|
1440
|
+
Set to True to check if the external task exists or check if
|
1441
|
+
the DAG to wait for exists. (Default: True)
|
1371
1442
|
"""
|
1372
1443
|
...
|
1373
1444
|
|
1374
|
-
def
|
1445
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1375
1446
|
"""
|
1376
|
-
|
1377
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1378
|
-
|
1379
|
-
This decorator is useful when users wish to save data to a different datastore
|
1380
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
1381
|
-
|
1382
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1383
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1384
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1385
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1386
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1387
|
-
|
1388
|
-
Usage:
|
1389
|
-
----------
|
1390
|
-
|
1391
|
-
- Using a custom IAM role to access the datastore.
|
1392
|
-
|
1393
|
-
```python
|
1394
|
-
@with_artifact_store(
|
1395
|
-
type="s3",
|
1396
|
-
config=lambda: {
|
1397
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1398
|
-
"role_arn": ROLE,
|
1399
|
-
},
|
1400
|
-
)
|
1401
|
-
class MyFlow(FlowSpec):
|
1402
|
-
|
1403
|
-
@checkpoint
|
1404
|
-
@step
|
1405
|
-
def start(self):
|
1406
|
-
with open("my_file.txt", "w") as f:
|
1407
|
-
f.write("Hello, World!")
|
1408
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1409
|
-
self.next(self.end)
|
1410
|
-
|
1411
|
-
```
|
1412
|
-
|
1413
|
-
- Using credentials to access the s3-compatible datastore.
|
1414
|
-
|
1415
|
-
```python
|
1416
|
-
@with_artifact_store(
|
1417
|
-
type="s3",
|
1418
|
-
config=lambda: {
|
1419
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1420
|
-
"client_params": {
|
1421
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1422
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1423
|
-
},
|
1424
|
-
},
|
1425
|
-
)
|
1426
|
-
class MyFlow(FlowSpec):
|
1427
|
-
|
1428
|
-
@checkpoint
|
1429
|
-
@step
|
1430
|
-
def start(self):
|
1431
|
-
with open("my_file.txt", "w") as f:
|
1432
|
-
f.write("Hello, World!")
|
1433
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1434
|
-
self.next(self.end)
|
1435
|
-
|
1436
|
-
```
|
1447
|
+
Specifies what flows belong to the same project.
|
1437
1448
|
|
1438
|
-
-
|
1449
|
+
A project-specific namespace is created for all flows that
|
1450
|
+
use the same `@project(name)`.
|
1439
1451
|
|
1440
|
-
```python
|
1441
|
-
run = Run("CheckpointsTestsFlow/8992")
|
1442
|
-
with artifact_store_from(run=run, config={
|
1443
|
-
"client_params": {
|
1444
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1445
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1446
|
-
},
|
1447
|
-
}):
|
1448
|
-
with Checkpoint() as cp:
|
1449
|
-
latest = cp.list(
|
1450
|
-
task=run["start"].task
|
1451
|
-
)[0]
|
1452
|
-
print(latest)
|
1453
|
-
cp.load(
|
1454
|
-
latest,
|
1455
|
-
"test-checkpoints"
|
1456
|
-
)
|
1457
1452
|
|
1458
|
-
|
1459
|
-
with artifact_store_from(run=run, config={
|
1460
|
-
"client_params": {
|
1461
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1462
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1463
|
-
},
|
1464
|
-
}):
|
1465
|
-
load_model(
|
1466
|
-
task.data.model_ref,
|
1467
|
-
"test-models"
|
1468
|
-
)
|
1469
|
-
```
|
1470
|
-
Parameters:
|
1453
|
+
Parameters
|
1471
1454
|
----------
|
1455
|
+
name : str
|
1456
|
+
Project name. Make sure that the name is unique amongst all
|
1457
|
+
projects that use the same production scheduler. The name may
|
1458
|
+
contain only lowercase alphanumeric characters and underscores.
|
1472
1459
|
|
1473
|
-
|
1474
|
-
The
|
1460
|
+
branch : Optional[str], default None
|
1461
|
+
The branch to use. If not specified, the branch is set to
|
1462
|
+
`user.<username>` unless `production` is set to `True`. This can
|
1463
|
+
also be set on the command line using `--branch` as a top-level option.
|
1464
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
1475
1465
|
|
1476
|
-
|
1477
|
-
|
1478
|
-
|
1479
|
-
|
1480
|
-
|
1481
|
-
|
1482
|
-
|
1483
|
-
|
1484
|
-
|
1466
|
+
production : bool, default False
|
1467
|
+
Whether or not the branch is the production branch. This can also be set on the
|
1468
|
+
command line using `--production` as a top-level option. It is an error to specify
|
1469
|
+
`production` in the decorator and on the command line.
|
1470
|
+
The project branch name will be:
|
1471
|
+
- if `branch` is specified:
|
1472
|
+
- if `production` is True: `prod.<branch>`
|
1473
|
+
- if `production` is False: `test.<branch>`
|
1474
|
+
- if `branch` is not specified:
|
1475
|
+
- if `production` is True: `prod`
|
1476
|
+
- if `production` is False: `user.<username>`
|
1485
1477
|
"""
|
1486
1478
|
...
|
1487
1479
|
|
@@ -1586,175 +1578,117 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
1586
1578
|
"""
|
1587
1579
|
...
|
1588
1580
|
|
1589
|
-
def
|
1581
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1590
1582
|
"""
|
1591
|
-
|
1592
|
-
|
1583
|
+
Allows setting external datastores to save data for the
|
1584
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1585
|
+
|
1586
|
+
This decorator is useful when users wish to save data to a different datastore
|
1587
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1593
1588
|
|
1589
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1590
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1591
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1592
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1593
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1594
1594
|
|
1595
|
-
|
1595
|
+
Usage:
|
1596
1596
|
----------
|
1597
|
-
timeout : int
|
1598
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
1599
|
-
poke_interval : int
|
1600
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
1601
|
-
mode : str
|
1602
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1603
|
-
exponential_backoff : bool
|
1604
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1605
|
-
pool : str
|
1606
|
-
the slot pool this task should run in,
|
1607
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1608
|
-
soft_fail : bool
|
1609
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1610
|
-
name : str
|
1611
|
-
Name of the sensor on Airflow
|
1612
|
-
description : str
|
1613
|
-
Description of sensor in the Airflow UI
|
1614
|
-
external_dag_id : str
|
1615
|
-
The dag_id that contains the task you want to wait for.
|
1616
|
-
external_task_ids : List[str]
|
1617
|
-
The list of task_ids that you want to wait for.
|
1618
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
1619
|
-
allowed_states : List[str]
|
1620
|
-
Iterable of allowed states, (Default: ['success'])
|
1621
|
-
failed_states : List[str]
|
1622
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1623
|
-
execution_delta : datetime.timedelta
|
1624
|
-
time difference with the previous execution to look at,
|
1625
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1626
|
-
check_existence: bool
|
1627
|
-
Set to True to check if the external task exists or check if
|
1628
|
-
the DAG to wait for exists. (Default: True)
|
1629
|
-
"""
|
1630
|
-
...
|
1631
|
-
|
1632
|
-
@typing.overload
|
1633
|
-
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1634
|
-
"""
|
1635
|
-
Specifies the times when the flow should be run when running on a
|
1636
|
-
production scheduler.
|
1637
1597
|
|
1598
|
+
- Using a custom IAM role to access the datastore.
|
1638
1599
|
|
1639
|
-
|
1640
|
-
|
1641
|
-
|
1642
|
-
|
1643
|
-
|
1644
|
-
|
1645
|
-
|
1646
|
-
|
1647
|
-
|
1648
|
-
|
1649
|
-
|
1650
|
-
|
1651
|
-
|
1652
|
-
|
1653
|
-
|
1654
|
-
|
1655
|
-
|
1656
|
-
@typing.overload
|
1657
|
-
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1658
|
-
...
|
1659
|
-
|
1660
|
-
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1661
|
-
"""
|
1662
|
-
Specifies the times when the flow should be run when running on a
|
1663
|
-
production scheduler.
|
1600
|
+
```python
|
1601
|
+
@with_artifact_store(
|
1602
|
+
type="s3",
|
1603
|
+
config=lambda: {
|
1604
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1605
|
+
"role_arn": ROLE,
|
1606
|
+
},
|
1607
|
+
)
|
1608
|
+
class MyFlow(FlowSpec):
|
1609
|
+
|
1610
|
+
@checkpoint
|
1611
|
+
@step
|
1612
|
+
def start(self):
|
1613
|
+
with open("my_file.txt", "w") as f:
|
1614
|
+
f.write("Hello, World!")
|
1615
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1616
|
+
self.next(self.end)
|
1664
1617
|
|
1618
|
+
```
|
1665
1619
|
|
1666
|
-
|
1667
|
-
|
1668
|
-
|
1669
|
-
|
1670
|
-
|
1671
|
-
|
1672
|
-
|
1673
|
-
|
1674
|
-
|
1675
|
-
|
1676
|
-
|
1677
|
-
|
1678
|
-
|
1679
|
-
|
1680
|
-
"""
|
1681
|
-
...
|
1682
|
-
|
1683
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1684
|
-
"""
|
1685
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1686
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1687
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1688
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1689
|
-
starts only after all sensors finish.
|
1620
|
+
- Using credentials to access the s3-compatible datastore.
|
1621
|
+
|
1622
|
+
```python
|
1623
|
+
@with_artifact_store(
|
1624
|
+
type="s3",
|
1625
|
+
config=lambda: {
|
1626
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1627
|
+
"client_params": {
|
1628
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1629
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1630
|
+
},
|
1631
|
+
},
|
1632
|
+
)
|
1633
|
+
class MyFlow(FlowSpec):
|
1690
1634
|
|
1635
|
+
@checkpoint
|
1636
|
+
@step
|
1637
|
+
def start(self):
|
1638
|
+
with open("my_file.txt", "w") as f:
|
1639
|
+
f.write("Hello, World!")
|
1640
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1641
|
+
self.next(self.end)
|
1691
1642
|
|
1692
|
-
|
1693
|
-
----------
|
1694
|
-
timeout : int
|
1695
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
1696
|
-
poke_interval : int
|
1697
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
1698
|
-
mode : str
|
1699
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1700
|
-
exponential_backoff : bool
|
1701
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1702
|
-
pool : str
|
1703
|
-
the slot pool this task should run in,
|
1704
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1705
|
-
soft_fail : bool
|
1706
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1707
|
-
name : str
|
1708
|
-
Name of the sensor on Airflow
|
1709
|
-
description : str
|
1710
|
-
Description of sensor in the Airflow UI
|
1711
|
-
bucket_key : Union[str, List[str]]
|
1712
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1713
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1714
|
-
bucket_name : str
|
1715
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1716
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1717
|
-
wildcard_match : bool
|
1718
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1719
|
-
aws_conn_id : str
|
1720
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
1721
|
-
verify : bool
|
1722
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1723
|
-
"""
|
1724
|
-
...
|
1725
|
-
|
1726
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1727
|
-
"""
|
1728
|
-
Specifies what flows belong to the same project.
|
1643
|
+
```
|
1729
1644
|
|
1730
|
-
|
1731
|
-
use the same `@project(name)`.
|
1645
|
+
- Accessing objects stored in external datastores after task execution.
|
1732
1646
|
|
1647
|
+
```python
|
1648
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1649
|
+
with artifact_store_from(run=run, config={
|
1650
|
+
"client_params": {
|
1651
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1652
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1653
|
+
},
|
1654
|
+
}):
|
1655
|
+
with Checkpoint() as cp:
|
1656
|
+
latest = cp.list(
|
1657
|
+
task=run["start"].task
|
1658
|
+
)[0]
|
1659
|
+
print(latest)
|
1660
|
+
cp.load(
|
1661
|
+
latest,
|
1662
|
+
"test-checkpoints"
|
1663
|
+
)
|
1733
1664
|
|
1734
|
-
|
1665
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1666
|
+
with artifact_store_from(run=run, config={
|
1667
|
+
"client_params": {
|
1668
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1669
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1670
|
+
},
|
1671
|
+
}):
|
1672
|
+
load_model(
|
1673
|
+
task.data.model_ref,
|
1674
|
+
"test-models"
|
1675
|
+
)
|
1676
|
+
```
|
1677
|
+
Parameters:
|
1735
1678
|
----------
|
1736
|
-
name : str
|
1737
|
-
Project name. Make sure that the name is unique amongst all
|
1738
|
-
projects that use the same production scheduler. The name may
|
1739
|
-
contain only lowercase alphanumeric characters and underscores.
|
1740
1679
|
|
1741
|
-
|
1742
|
-
The
|
1743
|
-
`user.<username>` unless `production` is set to `True`. This can
|
1744
|
-
also be set on the command line using `--branch` as a top-level option.
|
1745
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
1680
|
+
type: str
|
1681
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1746
1682
|
|
1747
|
-
|
1748
|
-
|
1749
|
-
|
1750
|
-
|
1751
|
-
|
1752
|
-
|
1753
|
-
|
1754
|
-
|
1755
|
-
|
1756
|
-
- if `production` is True: `prod`
|
1757
|
-
- if `production` is False: `user.<username>`
|
1683
|
+
config: dict or Callable
|
1684
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1685
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1686
|
+
- example: 's3://bucket-name/path/to/root'
|
1687
|
+
- example: 'gs://bucket-name/path/to/root'
|
1688
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1689
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1690
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1691
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1758
1692
|
"""
|
1759
1693
|
...
|
1760
1694
|
|
@@ -1851,5 +1785,140 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
1851
1785
|
"""
|
1852
1786
|
...
|
1853
1787
|
|
1788
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1789
|
+
"""
|
1790
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1791
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1792
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1793
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1794
|
+
starts only after all sensors finish.
|
1795
|
+
|
1796
|
+
|
1797
|
+
Parameters
|
1798
|
+
----------
|
1799
|
+
timeout : int
|
1800
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1801
|
+
poke_interval : int
|
1802
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1803
|
+
mode : str
|
1804
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1805
|
+
exponential_backoff : bool
|
1806
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1807
|
+
pool : str
|
1808
|
+
the slot pool this task should run in,
|
1809
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1810
|
+
soft_fail : bool
|
1811
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1812
|
+
name : str
|
1813
|
+
Name of the sensor on Airflow
|
1814
|
+
description : str
|
1815
|
+
Description of sensor in the Airflow UI
|
1816
|
+
bucket_key : Union[str, List[str]]
|
1817
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1818
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1819
|
+
bucket_name : str
|
1820
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1821
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1822
|
+
wildcard_match : bool
|
1823
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1824
|
+
aws_conn_id : str
|
1825
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1826
|
+
verify : bool
|
1827
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1828
|
+
"""
|
1829
|
+
...
|
1830
|
+
|
1831
|
+
@typing.overload
|
1832
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1833
|
+
"""
|
1834
|
+
Specifies the Conda environment for all steps of the flow.
|
1835
|
+
|
1836
|
+
Use `@conda_base` to set common libraries required by all
|
1837
|
+
steps and use `@conda` to specify step-specific additions.
|
1838
|
+
|
1839
|
+
|
1840
|
+
Parameters
|
1841
|
+
----------
|
1842
|
+
packages : Dict[str, str], default {}
|
1843
|
+
Packages to use for this flow. The key is the name of the package
|
1844
|
+
and the value is the version to use.
|
1845
|
+
libraries : Dict[str, str], default {}
|
1846
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1847
|
+
python : str, optional, default None
|
1848
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1849
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1850
|
+
disabled : bool, default False
|
1851
|
+
If set to True, disables Conda.
|
1852
|
+
"""
|
1853
|
+
...
|
1854
|
+
|
1855
|
+
@typing.overload
|
1856
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1857
|
+
...
|
1858
|
+
|
1859
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1860
|
+
"""
|
1861
|
+
Specifies the Conda environment for all steps of the flow.
|
1862
|
+
|
1863
|
+
Use `@conda_base` to set common libraries required by all
|
1864
|
+
steps and use `@conda` to specify step-specific additions.
|
1865
|
+
|
1866
|
+
|
1867
|
+
Parameters
|
1868
|
+
----------
|
1869
|
+
packages : Dict[str, str], default {}
|
1870
|
+
Packages to use for this flow. The key is the name of the package
|
1871
|
+
and the value is the version to use.
|
1872
|
+
libraries : Dict[str, str], default {}
|
1873
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1874
|
+
python : str, optional, default None
|
1875
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1876
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1877
|
+
disabled : bool, default False
|
1878
|
+
If set to True, disables Conda.
|
1879
|
+
"""
|
1880
|
+
...
|
1881
|
+
|
1882
|
+
@typing.overload
|
1883
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1884
|
+
"""
|
1885
|
+
Specifies the PyPI packages for all steps of the flow.
|
1886
|
+
|
1887
|
+
Use `@pypi_base` to set common packages required by all
|
1888
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1889
|
+
|
1890
|
+
Parameters
|
1891
|
+
----------
|
1892
|
+
packages : Dict[str, str], default: {}
|
1893
|
+
Packages to use for this flow. The key is the name of the package
|
1894
|
+
and the value is the version to use.
|
1895
|
+
python : str, optional, default: None
|
1896
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1897
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1898
|
+
"""
|
1899
|
+
...
|
1900
|
+
|
1901
|
+
@typing.overload
|
1902
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1903
|
+
...
|
1904
|
+
|
1905
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1906
|
+
"""
|
1907
|
+
Specifies the PyPI packages for all steps of the flow.
|
1908
|
+
|
1909
|
+
Use `@pypi_base` to set common packages required by all
|
1910
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1911
|
+
|
1912
|
+
Parameters
|
1913
|
+
----------
|
1914
|
+
packages : Dict[str, str], default: {}
|
1915
|
+
Packages to use for this flow. The key is the name of the package
|
1916
|
+
and the value is the version to use.
|
1917
|
+
python : str, optional, default: None
|
1918
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1919
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1920
|
+
"""
|
1921
|
+
...
|
1922
|
+
|
1854
1923
|
pkg_name: str
|
1855
1924
|
|