ob-metaflow-stubs 6.0.4.6rc1__py2.py3-none-any.whl → 6.0.4.7__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +1047 -1028
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +6 -6
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +3 -3
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +4 -4
- metaflow-stubs/info_file.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +3 -3
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -2
- metaflow-stubs/metaflow_current.pyi +57 -57
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +6 -6
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +5 -5
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/parameters.pyi +4 -4
- metaflow-stubs/plugins/__init__.pyi +15 -15
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +4 -4
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +5 -5
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +22 -4
- metaflow-stubs/plugins/argo/exit_hooks.pyi +3 -3
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +5 -5
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +14 -3
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +4 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +5 -5
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +3 -3
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +5 -5
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +3 -3
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +3 -3
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +30 -5
- metaflow-stubs/runner/deployer_impl.pyi +3 -3
- metaflow-stubs/runner/metaflow_runner.pyi +4 -4
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_decorators.pyi +3 -3
- metaflow-stubs/user_configs/config_options.pyi +4 -4
- metaflow-stubs/user_configs/config_parameters.pyi +6 -6
- {ob_metaflow_stubs-6.0.4.6rc1.dist-info → ob_metaflow_stubs-6.0.4.7.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.4.7.dist-info/RECORD +249 -0
- ob_metaflow_stubs-6.0.4.6rc1.dist-info/RECORD +0 -249
- {ob_metaflow_stubs-6.0.4.6rc1.dist-info → ob_metaflow_stubs-6.0.4.7.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.4.6rc1.dist-info → ob_metaflow_stubs-6.0.4.7.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,15 +1,15 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
|
-
# MF version: 2.15.21.
|
4
|
-
# Generated on 2025-07-
|
3
|
+
# MF version: 2.15.21.4+obcheckpoint(0.2.4);ob(v1) #
|
4
|
+
# Generated on 2025-07-25T18:05:15.016391 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
8
8
|
|
9
9
|
import typing
|
10
10
|
if typing.TYPE_CHECKING:
|
11
|
-
import datetime
|
12
11
|
import typing
|
12
|
+
import datetime
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
15
15
|
|
@@ -35,18 +35,18 @@ from .user_configs.config_parameters import ConfigValue as ConfigValue
|
|
35
35
|
from .user_configs.config_parameters import config_expr as config_expr
|
36
36
|
from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
|
37
37
|
from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
|
38
|
-
from . import cards as cards
|
39
|
-
from . import tuple_util as tuple_util
|
40
38
|
from . import events as events
|
39
|
+
from . import tuple_util as tuple_util
|
40
|
+
from . import cards as cards
|
41
41
|
from . import metaflow_git as metaflow_git
|
42
42
|
from . import runner as runner
|
43
43
|
from . import plugins as plugins
|
44
44
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
45
45
|
from . import includefile as includefile
|
46
46
|
from .includefile import IncludeFile as IncludeFile
|
47
|
-
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
48
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
49
47
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
48
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
49
|
+
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
50
50
|
from . import client as client
|
51
51
|
from .client.core import namespace as namespace
|
52
52
|
from .client.core import get_namespace as get_namespace
|
@@ -157,26 +157,46 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
157
157
|
...
|
158
158
|
|
159
159
|
@typing.overload
|
160
|
-
def
|
160
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
161
161
|
"""
|
162
|
-
|
163
|
-
|
162
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
163
|
+
the execution of a step.
|
164
|
+
|
165
|
+
|
166
|
+
Parameters
|
167
|
+
----------
|
168
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
169
|
+
List of secret specs, defining how the secrets are to be retrieved
|
170
|
+
role : str, optional, default: None
|
171
|
+
Role to use for fetching secrets
|
164
172
|
"""
|
165
173
|
...
|
166
174
|
|
167
175
|
@typing.overload
|
168
|
-
def
|
176
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
169
177
|
...
|
170
178
|
|
171
|
-
|
179
|
+
@typing.overload
|
180
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
181
|
+
...
|
182
|
+
|
183
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
172
184
|
"""
|
173
|
-
|
174
|
-
|
185
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
186
|
+
the execution of a step.
|
187
|
+
|
188
|
+
|
189
|
+
Parameters
|
190
|
+
----------
|
191
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
192
|
+
List of secret specs, defining how the secrets are to be retrieved
|
193
|
+
role : str, optional, default: None
|
194
|
+
Role to use for fetching secrets
|
175
195
|
"""
|
176
196
|
...
|
177
197
|
|
178
198
|
@typing.overload
|
179
|
-
def
|
199
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
180
200
|
"""
|
181
201
|
Decorator prototype for all step decorators. This function gets specialized
|
182
202
|
and imported for all decorators types by _import_plugin_decorators().
|
@@ -184,10 +204,10 @@ def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Ca
|
|
184
204
|
...
|
185
205
|
|
186
206
|
@typing.overload
|
187
|
-
def
|
207
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
188
208
|
...
|
189
209
|
|
190
|
-
def
|
210
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
191
211
|
"""
|
192
212
|
Decorator prototype for all step decorators. This function gets specialized
|
193
213
|
and imported for all decorators types by _import_plugin_decorators().
|
@@ -195,599 +215,590 @@ def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
195
215
|
...
|
196
216
|
|
197
217
|
@typing.overload
|
198
|
-
def
|
218
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
199
219
|
"""
|
200
|
-
|
220
|
+
Enables checkpointing for a step.
|
201
221
|
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
222
|
+
> Examples
|
223
|
+
|
224
|
+
- Saving Checkpoints
|
225
|
+
|
226
|
+
```python
|
227
|
+
@checkpoint
|
228
|
+
@step
|
229
|
+
def train(self):
|
230
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
231
|
+
for i in range(self.epochs):
|
232
|
+
# some training logic
|
233
|
+
loss = model.train(self.dataset)
|
234
|
+
if i % 10 == 0:
|
235
|
+
model.save(
|
236
|
+
current.checkpoint.directory,
|
237
|
+
)
|
238
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
239
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
240
|
+
self.latest_checkpoint = current.checkpoint.save(
|
241
|
+
name="epoch_checkpoint",
|
242
|
+
metadata={
|
243
|
+
"epoch": i,
|
244
|
+
"loss": loss,
|
245
|
+
}
|
246
|
+
)
|
247
|
+
```
|
248
|
+
|
249
|
+
- Using Loaded Checkpoints
|
250
|
+
|
251
|
+
```python
|
252
|
+
@retry(times=3)
|
253
|
+
@checkpoint
|
254
|
+
@step
|
255
|
+
def train(self):
|
256
|
+
# Assume that the task has restarted and the previous attempt of the task
|
257
|
+
# saved a checkpoint
|
258
|
+
checkpoint_path = None
|
259
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
260
|
+
print("Loaded checkpoint from the previous attempt")
|
261
|
+
checkpoint_path = current.checkpoint.directory
|
262
|
+
|
263
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
264
|
+
for i in range(self.epochs):
|
265
|
+
...
|
266
|
+
```
|
206
267
|
|
207
268
|
|
208
269
|
Parameters
|
209
270
|
----------
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
271
|
+
load_policy : str, default: "fresh"
|
272
|
+
The policy for loading the checkpoint. The following policies are supported:
|
273
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
274
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
275
|
+
will be loaded at the start of the task.
|
276
|
+
- "none": Do not load any checkpoint
|
277
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
278
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
279
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
280
|
+
created within the task will be loaded when the task is retries execution on failure.
|
281
|
+
|
282
|
+
temp_dir_root : str, default: None
|
283
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
216
284
|
"""
|
217
285
|
...
|
218
286
|
|
219
287
|
@typing.overload
|
220
|
-
def
|
288
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
221
289
|
...
|
222
290
|
|
223
291
|
@typing.overload
|
224
|
-
def
|
292
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
225
293
|
...
|
226
294
|
|
227
|
-
def
|
295
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
228
296
|
"""
|
229
|
-
|
297
|
+
Enables checkpointing for a step.
|
230
298
|
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
299
|
+
> Examples
|
300
|
+
|
301
|
+
- Saving Checkpoints
|
302
|
+
|
303
|
+
```python
|
304
|
+
@checkpoint
|
305
|
+
@step
|
306
|
+
def train(self):
|
307
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
308
|
+
for i in range(self.epochs):
|
309
|
+
# some training logic
|
310
|
+
loss = model.train(self.dataset)
|
311
|
+
if i % 10 == 0:
|
312
|
+
model.save(
|
313
|
+
current.checkpoint.directory,
|
314
|
+
)
|
315
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
316
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
317
|
+
self.latest_checkpoint = current.checkpoint.save(
|
318
|
+
name="epoch_checkpoint",
|
319
|
+
metadata={
|
320
|
+
"epoch": i,
|
321
|
+
"loss": loss,
|
322
|
+
}
|
323
|
+
)
|
324
|
+
```
|
325
|
+
|
326
|
+
- Using Loaded Checkpoints
|
327
|
+
|
328
|
+
```python
|
329
|
+
@retry(times=3)
|
330
|
+
@checkpoint
|
331
|
+
@step
|
332
|
+
def train(self):
|
333
|
+
# Assume that the task has restarted and the previous attempt of the task
|
334
|
+
# saved a checkpoint
|
335
|
+
checkpoint_path = None
|
336
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
337
|
+
print("Loaded checkpoint from the previous attempt")
|
338
|
+
checkpoint_path = current.checkpoint.directory
|
339
|
+
|
340
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
341
|
+
for i in range(self.epochs):
|
342
|
+
...
|
343
|
+
```
|
235
344
|
|
236
345
|
|
237
346
|
Parameters
|
238
347
|
----------
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
348
|
+
load_policy : str, default: "fresh"
|
349
|
+
The policy for loading the checkpoint. The following policies are supported:
|
350
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
351
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
352
|
+
will be loaded at the start of the task.
|
353
|
+
- "none": Do not load any checkpoint
|
354
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
355
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
356
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
357
|
+
created within the task will be loaded when the task is retries execution on failure.
|
358
|
+
|
359
|
+
temp_dir_root : str, default: None
|
360
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
245
361
|
"""
|
246
362
|
...
|
247
363
|
|
248
|
-
|
249
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
364
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
250
365
|
"""
|
251
|
-
Specifies
|
252
|
-
|
253
|
-
Use `@resources` to specify the resource requirements
|
254
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
255
|
-
|
256
|
-
You can choose the compute layer on the command line by executing e.g.
|
257
|
-
```
|
258
|
-
python myflow.py run --with batch
|
259
|
-
```
|
260
|
-
or
|
261
|
-
```
|
262
|
-
python myflow.py run --with kubernetes
|
263
|
-
```
|
264
|
-
which executes the flow on the desired system using the
|
265
|
-
requirements specified in `@resources`.
|
366
|
+
Specifies that this step should execute on DGX cloud.
|
266
367
|
|
267
368
|
|
268
369
|
Parameters
|
269
370
|
----------
|
270
|
-
|
271
|
-
Number of
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
memory : int, default 4096
|
277
|
-
Memory size (in MB) required for this step.
|
278
|
-
shared_memory : int, optional, default None
|
279
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
280
|
-
This parameter maps to the `--shm-size` option in Docker.
|
371
|
+
gpu : int
|
372
|
+
Number of GPUs to use.
|
373
|
+
gpu_type : str
|
374
|
+
Type of Nvidia GPU to use.
|
375
|
+
queue_timeout : int
|
376
|
+
Time to keep the job in NVCF's queue.
|
281
377
|
"""
|
282
378
|
...
|
283
379
|
|
284
380
|
@typing.overload
|
285
|
-
def
|
286
|
-
...
|
287
|
-
|
288
|
-
@typing.overload
|
289
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
290
|
-
...
|
291
|
-
|
292
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
381
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
293
382
|
"""
|
294
|
-
|
295
|
-
|
296
|
-
Use `@resources` to specify the resource requirements
|
297
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
298
|
-
|
299
|
-
You can choose the compute layer on the command line by executing e.g.
|
300
|
-
```
|
301
|
-
python myflow.py run --with batch
|
302
|
-
```
|
303
|
-
or
|
304
|
-
```
|
305
|
-
python myflow.py run --with kubernetes
|
306
|
-
```
|
307
|
-
which executes the flow on the desired system using the
|
308
|
-
requirements specified in `@resources`.
|
309
|
-
|
310
|
-
|
311
|
-
Parameters
|
312
|
-
----------
|
313
|
-
cpu : int, default 1
|
314
|
-
Number of CPUs required for this step.
|
315
|
-
gpu : int, optional, default None
|
316
|
-
Number of GPUs required for this step.
|
317
|
-
disk : int, optional, default None
|
318
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
319
|
-
memory : int, default 4096
|
320
|
-
Memory size (in MB) required for this step.
|
321
|
-
shared_memory : int, optional, default None
|
322
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
323
|
-
This parameter maps to the `--shm-size` option in Docker.
|
324
|
-
"""
|
325
|
-
...
|
326
|
-
|
327
|
-
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
328
|
-
"""
|
329
|
-
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
330
|
-
|
331
|
-
User code call
|
332
|
-
--------------
|
333
|
-
@ollama(
|
334
|
-
models=[...],
|
335
|
-
...
|
336
|
-
)
|
337
|
-
|
338
|
-
Valid backend options
|
339
|
-
---------------------
|
340
|
-
- 'local': Run as a separate process on the local task machine.
|
341
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
342
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
343
|
-
|
344
|
-
Valid model options
|
345
|
-
-------------------
|
346
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
347
|
-
|
348
|
-
|
349
|
-
Parameters
|
350
|
-
----------
|
351
|
-
models: list[str]
|
352
|
-
List of Ollama containers running models in sidecars.
|
353
|
-
backend: str
|
354
|
-
Determines where and how to run the Ollama process.
|
355
|
-
force_pull: bool
|
356
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
357
|
-
cache_update_policy: str
|
358
|
-
Cache update policy: "auto", "force", or "never".
|
359
|
-
force_cache_update: bool
|
360
|
-
Simple override for "force" cache update policy.
|
361
|
-
debug: bool
|
362
|
-
Whether to turn on verbose debugging logs.
|
363
|
-
circuit_breaker_config: dict
|
364
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
365
|
-
timeout_config: dict
|
366
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
367
|
-
"""
|
368
|
-
...
|
369
|
-
|
370
|
-
@typing.overload
|
371
|
-
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
372
|
-
"""
|
373
|
-
Specifies a timeout for your step.
|
374
|
-
|
375
|
-
This decorator is useful if this step may hang indefinitely.
|
376
|
-
|
377
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
378
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
379
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
380
|
-
|
381
|
-
Note that all the values specified in parameters are added together so if you specify
|
382
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
383
|
-
|
384
|
-
|
385
|
-
Parameters
|
386
|
-
----------
|
387
|
-
seconds : int, default 0
|
388
|
-
Number of seconds to wait prior to timing out.
|
389
|
-
minutes : int, default 0
|
390
|
-
Number of minutes to wait prior to timing out.
|
391
|
-
hours : int, default 0
|
392
|
-
Number of hours to wait prior to timing out.
|
393
|
-
"""
|
394
|
-
...
|
395
|
-
|
396
|
-
@typing.overload
|
397
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
398
|
-
...
|
399
|
-
|
400
|
-
@typing.overload
|
401
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
402
|
-
...
|
403
|
-
|
404
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
405
|
-
"""
|
406
|
-
Specifies a timeout for your step.
|
407
|
-
|
408
|
-
This decorator is useful if this step may hang indefinitely.
|
409
|
-
|
410
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
411
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
412
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
413
|
-
|
414
|
-
Note that all the values specified in parameters are added together so if you specify
|
415
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
416
|
-
|
417
|
-
|
418
|
-
Parameters
|
419
|
-
----------
|
420
|
-
seconds : int, default 0
|
421
|
-
Number of seconds to wait prior to timing out.
|
422
|
-
minutes : int, default 0
|
423
|
-
Number of minutes to wait prior to timing out.
|
424
|
-
hours : int, default 0
|
425
|
-
Number of hours to wait prior to timing out.
|
426
|
-
"""
|
427
|
-
...
|
428
|
-
|
429
|
-
@typing.overload
|
430
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
431
|
-
"""
|
432
|
-
Enables checkpointing for a step.
|
383
|
+
Enables loading / saving of models within a step.
|
433
384
|
|
434
385
|
> Examples
|
435
|
-
|
436
|
-
- Saving Checkpoints
|
437
|
-
|
386
|
+
- Saving Models
|
438
387
|
```python
|
439
|
-
@
|
388
|
+
@model
|
440
389
|
@step
|
441
390
|
def train(self):
|
442
|
-
model
|
443
|
-
|
444
|
-
|
445
|
-
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
name="epoch_checkpoint",
|
454
|
-
metadata={
|
455
|
-
"epoch": i,
|
456
|
-
"loss": loss,
|
457
|
-
}
|
458
|
-
)
|
459
|
-
```
|
391
|
+
# current.model.save returns a dictionary reference to the model saved
|
392
|
+
self.my_model = current.model.save(
|
393
|
+
path_to_my_model,
|
394
|
+
label="my_model",
|
395
|
+
metadata={
|
396
|
+
"epochs": 10,
|
397
|
+
"batch-size": 32,
|
398
|
+
"learning-rate": 0.001,
|
399
|
+
}
|
400
|
+
)
|
401
|
+
self.next(self.test)
|
460
402
|
|
461
|
-
|
403
|
+
@model(load="my_model")
|
404
|
+
@step
|
405
|
+
def test(self):
|
406
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
407
|
+
# where the key is the name of the artifact and the value is the path to the model
|
408
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
409
|
+
self.next(self.end)
|
410
|
+
```
|
462
411
|
|
412
|
+
- Loading models
|
463
413
|
```python
|
464
|
-
@retry(times=3)
|
465
|
-
@checkpoint
|
466
414
|
@step
|
467
415
|
def train(self):
|
468
|
-
#
|
469
|
-
|
470
|
-
|
471
|
-
|
472
|
-
|
473
|
-
|
474
|
-
|
475
|
-
|
476
|
-
for i in range(self.epochs):
|
477
|
-
...
|
416
|
+
# current.model.load returns the path to the model loaded
|
417
|
+
checkpoint_path = current.model.load(
|
418
|
+
self.checkpoint_key,
|
419
|
+
)
|
420
|
+
model_path = current.model.load(
|
421
|
+
self.model,
|
422
|
+
)
|
423
|
+
self.next(self.test)
|
478
424
|
```
|
479
425
|
|
480
426
|
|
481
427
|
Parameters
|
482
428
|
----------
|
483
|
-
|
484
|
-
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
|
489
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
490
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
491
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
492
|
-
created within the task will be loaded when the task is retries execution on failure.
|
429
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
430
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
431
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
432
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
433
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
434
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
493
435
|
|
494
436
|
temp_dir_root : str, default: None
|
495
|
-
The root directory under which `current.
|
437
|
+
The root directory under which `current.model.loaded` will store loaded models
|
496
438
|
"""
|
497
439
|
...
|
498
440
|
|
499
441
|
@typing.overload
|
500
|
-
def
|
442
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
501
443
|
...
|
502
444
|
|
503
445
|
@typing.overload
|
504
|
-
def
|
446
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
505
447
|
...
|
506
448
|
|
507
|
-
def
|
449
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
508
450
|
"""
|
509
|
-
Enables
|
451
|
+
Enables loading / saving of models within a step.
|
510
452
|
|
511
453
|
> Examples
|
512
|
-
|
513
|
-
- Saving Checkpoints
|
514
|
-
|
454
|
+
- Saving Models
|
515
455
|
```python
|
516
|
-
@
|
456
|
+
@model
|
517
457
|
@step
|
518
458
|
def train(self):
|
519
|
-
model
|
520
|
-
|
521
|
-
|
522
|
-
|
523
|
-
|
524
|
-
|
525
|
-
|
526
|
-
|
527
|
-
|
528
|
-
|
529
|
-
|
530
|
-
name="epoch_checkpoint",
|
531
|
-
metadata={
|
532
|
-
"epoch": i,
|
533
|
-
"loss": loss,
|
534
|
-
}
|
535
|
-
)
|
536
|
-
```
|
537
|
-
|
538
|
-
- Using Loaded Checkpoints
|
459
|
+
# current.model.save returns a dictionary reference to the model saved
|
460
|
+
self.my_model = current.model.save(
|
461
|
+
path_to_my_model,
|
462
|
+
label="my_model",
|
463
|
+
metadata={
|
464
|
+
"epochs": 10,
|
465
|
+
"batch-size": 32,
|
466
|
+
"learning-rate": 0.001,
|
467
|
+
}
|
468
|
+
)
|
469
|
+
self.next(self.test)
|
539
470
|
|
540
|
-
|
541
|
-
@retry(times=3)
|
542
|
-
@checkpoint
|
471
|
+
@model(load="my_model")
|
543
472
|
@step
|
544
|
-
def
|
545
|
-
#
|
546
|
-
#
|
547
|
-
|
548
|
-
|
549
|
-
|
550
|
-
checkpoint_path = current.checkpoint.directory
|
473
|
+
def test(self):
|
474
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
475
|
+
# where the key is the name of the artifact and the value is the path to the model
|
476
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
477
|
+
self.next(self.end)
|
478
|
+
```
|
551
479
|
|
552
|
-
|
553
|
-
|
554
|
-
|
480
|
+
- Loading models
|
481
|
+
```python
|
482
|
+
@step
|
483
|
+
def train(self):
|
484
|
+
# current.model.load returns the path to the model loaded
|
485
|
+
checkpoint_path = current.model.load(
|
486
|
+
self.checkpoint_key,
|
487
|
+
)
|
488
|
+
model_path = current.model.load(
|
489
|
+
self.model,
|
490
|
+
)
|
491
|
+
self.next(self.test)
|
555
492
|
```
|
556
493
|
|
557
494
|
|
558
495
|
Parameters
|
559
496
|
----------
|
560
|
-
|
561
|
-
|
562
|
-
|
563
|
-
|
564
|
-
|
565
|
-
|
566
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
567
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
568
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
569
|
-
created within the task will be loaded when the task is retries execution on failure.
|
497
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
498
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
499
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
500
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
501
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
502
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
570
503
|
|
571
504
|
temp_dir_root : str, default: None
|
572
|
-
The root directory under which `current.
|
505
|
+
The root directory under which `current.model.loaded` will store loaded models
|
573
506
|
"""
|
574
507
|
...
|
575
508
|
|
576
509
|
@typing.overload
|
577
|
-
def
|
510
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
578
511
|
"""
|
579
|
-
Specifies
|
512
|
+
Specifies the Conda environment for the step.
|
513
|
+
|
514
|
+
Information in this decorator will augment any
|
515
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
516
|
+
you can use `@conda_base` to set packages required by all
|
517
|
+
steps and use `@conda` to specify step-specific overrides.
|
580
518
|
|
581
519
|
|
582
520
|
Parameters
|
583
521
|
----------
|
584
|
-
|
585
|
-
|
522
|
+
packages : Dict[str, str], default {}
|
523
|
+
Packages to use for this step. The key is the name of the package
|
524
|
+
and the value is the version to use.
|
525
|
+
libraries : Dict[str, str], default {}
|
526
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
527
|
+
python : str, optional, default None
|
528
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
529
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
530
|
+
disabled : bool, default False
|
531
|
+
If set to True, disables @conda.
|
586
532
|
"""
|
587
533
|
...
|
588
534
|
|
589
535
|
@typing.overload
|
590
|
-
def
|
536
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
591
537
|
...
|
592
538
|
|
593
539
|
@typing.overload
|
594
|
-
def
|
540
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
595
541
|
...
|
596
542
|
|
597
|
-
def
|
543
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
598
544
|
"""
|
599
|
-
Specifies
|
545
|
+
Specifies the Conda environment for the step.
|
546
|
+
|
547
|
+
Information in this decorator will augment any
|
548
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
549
|
+
you can use `@conda_base` to set packages required by all
|
550
|
+
steps and use `@conda` to specify step-specific overrides.
|
600
551
|
|
601
552
|
|
602
553
|
Parameters
|
603
554
|
----------
|
604
|
-
|
605
|
-
|
555
|
+
packages : Dict[str, str], default {}
|
556
|
+
Packages to use for this step. The key is the name of the package
|
557
|
+
and the value is the version to use.
|
558
|
+
libraries : Dict[str, str], default {}
|
559
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
560
|
+
python : str, optional, default None
|
561
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
562
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
563
|
+
disabled : bool, default False
|
564
|
+
If set to True, disables @conda.
|
606
565
|
"""
|
607
566
|
...
|
608
567
|
|
609
568
|
@typing.overload
|
610
|
-
def
|
569
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
611
570
|
"""
|
612
|
-
|
571
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
572
|
+
|
573
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
574
|
+
|
575
|
+
|
576
|
+
Parameters
|
577
|
+
----------
|
578
|
+
type : str, default 'default'
|
579
|
+
Card type.
|
580
|
+
id : str, optional, default None
|
581
|
+
If multiple cards are present, use this id to identify this card.
|
582
|
+
options : Dict[str, Any], default {}
|
583
|
+
Options passed to the card. The contents depend on the card type.
|
584
|
+
timeout : int, default 45
|
585
|
+
Interrupt reporting if it takes more than this many seconds.
|
613
586
|
"""
|
614
587
|
...
|
615
588
|
|
616
589
|
@typing.overload
|
617
|
-
def
|
590
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
618
591
|
...
|
619
592
|
|
620
|
-
|
621
|
-
|
622
|
-
Internal decorator to support Fast bakery
|
623
|
-
"""
|
593
|
+
@typing.overload
|
594
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
624
595
|
...
|
625
596
|
|
626
|
-
def
|
597
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
627
598
|
"""
|
628
|
-
|
629
|
-
|
630
|
-
User code call
|
631
|
-
--------------
|
632
|
-
@vllm(
|
633
|
-
model="...",
|
634
|
-
...
|
635
|
-
)
|
636
|
-
|
637
|
-
Valid backend options
|
638
|
-
---------------------
|
639
|
-
- 'local': Run as a separate process on the local task machine.
|
640
|
-
|
641
|
-
Valid model options
|
642
|
-
-------------------
|
643
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
599
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
644
600
|
|
645
|
-
|
646
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
601
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
647
602
|
|
648
603
|
|
649
604
|
Parameters
|
650
605
|
----------
|
651
|
-
|
652
|
-
|
653
|
-
|
654
|
-
|
655
|
-
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
debug: bool
|
660
|
-
Whether to turn on verbose debugging logs.
|
661
|
-
card_refresh_interval: int
|
662
|
-
Interval in seconds for refreshing the vLLM status card.
|
663
|
-
Only used when openai_api_server=True.
|
664
|
-
max_retries: int
|
665
|
-
Maximum number of retries checking for vLLM server startup.
|
666
|
-
Only used when openai_api_server=True.
|
667
|
-
retry_alert_frequency: int
|
668
|
-
Frequency of alert logs for vLLM server startup retries.
|
669
|
-
Only used when openai_api_server=True.
|
670
|
-
engine_args : dict
|
671
|
-
Additional keyword arguments to pass to the vLLM engine.
|
672
|
-
For example, `tensor_parallel_size=2`.
|
606
|
+
type : str, default 'default'
|
607
|
+
Card type.
|
608
|
+
id : str, optional, default None
|
609
|
+
If multiple cards are present, use this id to identify this card.
|
610
|
+
options : Dict[str, Any], default {}
|
611
|
+
Options passed to the card. The contents depend on the card type.
|
612
|
+
timeout : int, default 45
|
613
|
+
Interrupt reporting if it takes more than this many seconds.
|
673
614
|
"""
|
674
615
|
...
|
675
616
|
|
676
|
-
|
617
|
+
@typing.overload
|
618
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
677
619
|
"""
|
678
|
-
Specifies
|
620
|
+
Specifies the resources needed when executing this step.
|
621
|
+
|
622
|
+
Use `@resources` to specify the resource requirements
|
623
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
624
|
+
|
625
|
+
You can choose the compute layer on the command line by executing e.g.
|
626
|
+
```
|
627
|
+
python myflow.py run --with batch
|
628
|
+
```
|
629
|
+
or
|
630
|
+
```
|
631
|
+
python myflow.py run --with kubernetes
|
632
|
+
```
|
633
|
+
which executes the flow on the desired system using the
|
634
|
+
requirements specified in `@resources`.
|
679
635
|
|
680
636
|
|
681
637
|
Parameters
|
682
638
|
----------
|
683
|
-
|
684
|
-
Number of
|
685
|
-
|
686
|
-
|
639
|
+
cpu : int, default 1
|
640
|
+
Number of CPUs required for this step.
|
641
|
+
gpu : int, optional, default None
|
642
|
+
Number of GPUs required for this step.
|
643
|
+
disk : int, optional, default None
|
644
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
645
|
+
memory : int, default 4096
|
646
|
+
Memory size (in MB) required for this step.
|
647
|
+
shared_memory : int, optional, default None
|
648
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
649
|
+
This parameter maps to the `--shm-size` option in Docker.
|
687
650
|
"""
|
688
651
|
...
|
689
652
|
|
690
|
-
|
653
|
+
@typing.overload
|
654
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
655
|
+
...
|
656
|
+
|
657
|
+
@typing.overload
|
658
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
659
|
+
...
|
660
|
+
|
661
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
691
662
|
"""
|
692
|
-
Specifies
|
663
|
+
Specifies the resources needed when executing this step.
|
664
|
+
|
665
|
+
Use `@resources` to specify the resource requirements
|
666
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
667
|
+
|
668
|
+
You can choose the compute layer on the command line by executing e.g.
|
669
|
+
```
|
670
|
+
python myflow.py run --with batch
|
671
|
+
```
|
672
|
+
or
|
673
|
+
```
|
674
|
+
python myflow.py run --with kubernetes
|
675
|
+
```
|
676
|
+
which executes the flow on the desired system using the
|
677
|
+
requirements specified in `@resources`.
|
693
678
|
|
694
679
|
|
695
680
|
Parameters
|
696
681
|
----------
|
697
|
-
|
698
|
-
Number of
|
699
|
-
|
700
|
-
|
701
|
-
|
702
|
-
|
682
|
+
cpu : int, default 1
|
683
|
+
Number of CPUs required for this step.
|
684
|
+
gpu : int, optional, default None
|
685
|
+
Number of GPUs required for this step.
|
686
|
+
disk : int, optional, default None
|
687
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
688
|
+
memory : int, default 4096
|
689
|
+
Memory size (in MB) required for this step.
|
690
|
+
shared_memory : int, optional, default None
|
691
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
692
|
+
This parameter maps to the `--shm-size` option in Docker.
|
703
693
|
"""
|
704
694
|
...
|
705
695
|
|
706
696
|
@typing.overload
|
707
|
-
def
|
697
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
708
698
|
"""
|
709
|
-
|
699
|
+
Specifies a timeout for your step.
|
710
700
|
|
711
|
-
|
701
|
+
This decorator is useful if this step may hang indefinitely.
|
702
|
+
|
703
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
704
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
705
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
706
|
+
|
707
|
+
Note that all the values specified in parameters are added together so if you specify
|
708
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
712
709
|
|
713
710
|
|
714
711
|
Parameters
|
715
712
|
----------
|
716
|
-
|
717
|
-
|
718
|
-
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
timeout : int, default 45
|
723
|
-
Interrupt reporting if it takes more than this many seconds.
|
713
|
+
seconds : int, default 0
|
714
|
+
Number of seconds to wait prior to timing out.
|
715
|
+
minutes : int, default 0
|
716
|
+
Number of minutes to wait prior to timing out.
|
717
|
+
hours : int, default 0
|
718
|
+
Number of hours to wait prior to timing out.
|
724
719
|
"""
|
725
720
|
...
|
726
721
|
|
727
722
|
@typing.overload
|
728
|
-
def
|
723
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
729
724
|
...
|
730
725
|
|
731
726
|
@typing.overload
|
732
|
-
def
|
727
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
733
728
|
...
|
734
729
|
|
735
|
-
def
|
730
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
736
731
|
"""
|
737
|
-
|
732
|
+
Specifies a timeout for your step.
|
738
733
|
|
739
|
-
|
734
|
+
This decorator is useful if this step may hang indefinitely.
|
740
735
|
|
736
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
737
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
738
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
741
739
|
|
742
|
-
|
743
|
-
|
744
|
-
type : str, default 'default'
|
745
|
-
Card type.
|
746
|
-
id : str, optional, default None
|
747
|
-
If multiple cards are present, use this id to identify this card.
|
748
|
-
options : Dict[str, Any], default {}
|
749
|
-
Options passed to the card. The contents depend on the card type.
|
750
|
-
timeout : int, default 45
|
751
|
-
Interrupt reporting if it takes more than this many seconds.
|
752
|
-
"""
|
753
|
-
...
|
754
|
-
|
755
|
-
@typing.overload
|
756
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
757
|
-
"""
|
758
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
759
|
-
the execution of a step.
|
740
|
+
Note that all the values specified in parameters are added together so if you specify
|
741
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
760
742
|
|
761
743
|
|
762
744
|
Parameters
|
763
745
|
----------
|
764
|
-
|
765
|
-
|
766
|
-
|
767
|
-
|
746
|
+
seconds : int, default 0
|
747
|
+
Number of seconds to wait prior to timing out.
|
748
|
+
minutes : int, default 0
|
749
|
+
Number of minutes to wait prior to timing out.
|
750
|
+
hours : int, default 0
|
751
|
+
Number of hours to wait prior to timing out.
|
768
752
|
"""
|
769
753
|
...
|
770
754
|
|
771
|
-
|
772
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
773
|
-
...
|
774
|
-
|
775
|
-
@typing.overload
|
776
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
777
|
-
...
|
778
|
-
|
779
|
-
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
755
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
780
756
|
"""
|
781
|
-
|
782
|
-
|
757
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
758
|
+
|
759
|
+
User code call
|
760
|
+
--------------
|
761
|
+
@vllm(
|
762
|
+
model="...",
|
763
|
+
...
|
764
|
+
)
|
765
|
+
|
766
|
+
Valid backend options
|
767
|
+
---------------------
|
768
|
+
- 'local': Run as a separate process on the local task machine.
|
769
|
+
|
770
|
+
Valid model options
|
771
|
+
-------------------
|
772
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
773
|
+
|
774
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
775
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
783
776
|
|
784
777
|
|
785
778
|
Parameters
|
786
779
|
----------
|
787
|
-
|
788
|
-
|
789
|
-
|
790
|
-
|
780
|
+
model: str
|
781
|
+
HuggingFace model identifier to be served by vLLM.
|
782
|
+
backend: str
|
783
|
+
Determines where and how to run the vLLM process.
|
784
|
+
openai_api_server: bool
|
785
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
786
|
+
Default is False (uses native engine).
|
787
|
+
Set to True for backward compatibility with existing code.
|
788
|
+
debug: bool
|
789
|
+
Whether to turn on verbose debugging logs.
|
790
|
+
card_refresh_interval: int
|
791
|
+
Interval in seconds for refreshing the vLLM status card.
|
792
|
+
Only used when openai_api_server=True.
|
793
|
+
max_retries: int
|
794
|
+
Maximum number of retries checking for vLLM server startup.
|
795
|
+
Only used when openai_api_server=True.
|
796
|
+
retry_alert_frequency: int
|
797
|
+
Frequency of alert logs for vLLM server startup retries.
|
798
|
+
Only used when openai_api_server=True.
|
799
|
+
engine_args : dict
|
800
|
+
Additional keyword arguments to pass to the vLLM engine.
|
801
|
+
For example, `tensor_parallel_size=2`.
|
791
802
|
"""
|
792
803
|
...
|
793
804
|
|
@@ -846,92 +857,123 @@ def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
846
857
|
"""
|
847
858
|
...
|
848
859
|
|
849
|
-
|
860
|
+
@typing.overload
|
861
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
850
862
|
"""
|
851
|
-
|
863
|
+
Decorator prototype for all step decorators. This function gets specialized
|
864
|
+
and imported for all decorators types by _import_plugin_decorators().
|
865
|
+
"""
|
866
|
+
...
|
867
|
+
|
868
|
+
@typing.overload
|
869
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
870
|
+
...
|
871
|
+
|
872
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
873
|
+
"""
|
874
|
+
Decorator prototype for all step decorators. This function gets specialized
|
875
|
+
and imported for all decorators types by _import_plugin_decorators().
|
876
|
+
"""
|
877
|
+
...
|
878
|
+
|
879
|
+
@typing.overload
|
880
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
881
|
+
"""
|
882
|
+
Internal decorator to support Fast bakery
|
883
|
+
"""
|
884
|
+
...
|
885
|
+
|
886
|
+
@typing.overload
|
887
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
888
|
+
...
|
889
|
+
|
890
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
891
|
+
"""
|
892
|
+
Internal decorator to support Fast bakery
|
893
|
+
"""
|
894
|
+
...
|
895
|
+
|
896
|
+
@typing.overload
|
897
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
898
|
+
"""
|
899
|
+
Specifies that the step will success under all circumstances.
|
900
|
+
|
901
|
+
The decorator will create an optional artifact, specified by `var`, which
|
902
|
+
contains the exception raised. You can use it to detect the presence
|
903
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
904
|
+
are missing.
|
852
905
|
|
853
906
|
|
854
907
|
Parameters
|
855
908
|
----------
|
856
|
-
|
857
|
-
|
858
|
-
|
859
|
-
|
860
|
-
|
861
|
-
|
862
|
-
|
863
|
-
|
864
|
-
|
865
|
-
|
866
|
-
|
867
|
-
|
868
|
-
|
869
|
-
|
870
|
-
|
871
|
-
|
872
|
-
|
873
|
-
|
874
|
-
|
875
|
-
|
876
|
-
|
877
|
-
|
878
|
-
|
879
|
-
|
880
|
-
|
881
|
-
|
882
|
-
|
883
|
-
|
884
|
-
|
885
|
-
|
886
|
-
|
887
|
-
|
888
|
-
|
889
|
-
|
890
|
-
|
891
|
-
|
892
|
-
|
893
|
-
|
894
|
-
|
895
|
-
|
896
|
-
|
897
|
-
|
898
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
899
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
900
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
901
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
902
|
-
use_tmpfs : bool, default False
|
903
|
-
This enables an explicit tmpfs mount for this step.
|
904
|
-
tmpfs_tempdir : bool, default True
|
905
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
906
|
-
tmpfs_size : int, optional, default: None
|
907
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
908
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
909
|
-
memory allocated for this step.
|
910
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
911
|
-
Path to tmpfs mount for this step.
|
912
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
913
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
914
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
915
|
-
shared_memory: int, optional
|
916
|
-
Shared memory size (in MiB) required for this step
|
917
|
-
port: int, optional
|
918
|
-
Port number to specify in the Kubernetes job object
|
919
|
-
compute_pool : str, optional, default None
|
920
|
-
Compute pool to be used for for this step.
|
921
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
922
|
-
hostname_resolution_timeout: int, default 10 * 60
|
923
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
924
|
-
Only applicable when @parallel is used.
|
925
|
-
qos: str, default: Burstable
|
926
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
909
|
+
var : str, optional, default None
|
910
|
+
Name of the artifact in which to store the caught exception.
|
911
|
+
If not specified, the exception is not stored.
|
912
|
+
print_exception : bool, default True
|
913
|
+
Determines whether or not the exception is printed to
|
914
|
+
stdout when caught.
|
915
|
+
"""
|
916
|
+
...
|
917
|
+
|
918
|
+
@typing.overload
|
919
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
920
|
+
...
|
921
|
+
|
922
|
+
@typing.overload
|
923
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
924
|
+
...
|
925
|
+
|
926
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
927
|
+
"""
|
928
|
+
Specifies that the step will success under all circumstances.
|
929
|
+
|
930
|
+
The decorator will create an optional artifact, specified by `var`, which
|
931
|
+
contains the exception raised. You can use it to detect the presence
|
932
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
933
|
+
are missing.
|
934
|
+
|
935
|
+
|
936
|
+
Parameters
|
937
|
+
----------
|
938
|
+
var : str, optional, default None
|
939
|
+
Name of the artifact in which to store the caught exception.
|
940
|
+
If not specified, the exception is not stored.
|
941
|
+
print_exception : bool, default True
|
942
|
+
Determines whether or not the exception is printed to
|
943
|
+
stdout when caught.
|
944
|
+
"""
|
945
|
+
...
|
946
|
+
|
947
|
+
@typing.overload
|
948
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
949
|
+
"""
|
950
|
+
Specifies environment variables to be set prior to the execution of a step.
|
927
951
|
|
928
|
-
|
929
|
-
|
930
|
-
|
931
|
-
|
932
|
-
|
933
|
-
|
934
|
-
|
952
|
+
|
953
|
+
Parameters
|
954
|
+
----------
|
955
|
+
vars : Dict[str, str], default {}
|
956
|
+
Dictionary of environment variables to set.
|
957
|
+
"""
|
958
|
+
...
|
959
|
+
|
960
|
+
@typing.overload
|
961
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
962
|
+
...
|
963
|
+
|
964
|
+
@typing.overload
|
965
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
966
|
+
...
|
967
|
+
|
968
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
969
|
+
"""
|
970
|
+
Specifies environment variables to be set prior to the execution of a step.
|
971
|
+
|
972
|
+
|
973
|
+
Parameters
|
974
|
+
----------
|
975
|
+
vars : Dict[str, str], default {}
|
976
|
+
Dictionary of environment variables to set.
|
935
977
|
"""
|
936
978
|
...
|
937
979
|
|
@@ -1016,61 +1058,78 @@ def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.
|
|
1016
1058
|
...
|
1017
1059
|
|
1018
1060
|
@typing.overload
|
1019
|
-
def
|
1061
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1020
1062
|
"""
|
1021
|
-
|
1022
|
-
|
1023
|
-
Information in this decorator will augment any
|
1024
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
1025
|
-
you can use `@conda_base` to set packages required by all
|
1026
|
-
steps and use `@conda` to specify step-specific overrides.
|
1027
|
-
|
1028
|
-
|
1029
|
-
Parameters
|
1030
|
-
----------
|
1031
|
-
packages : Dict[str, str], default {}
|
1032
|
-
Packages to use for this step. The key is the name of the package
|
1033
|
-
and the value is the version to use.
|
1034
|
-
libraries : Dict[str, str], default {}
|
1035
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1036
|
-
python : str, optional, default None
|
1037
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1038
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1039
|
-
disabled : bool, default False
|
1040
|
-
If set to True, disables @conda.
|
1063
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
1064
|
+
to inject a card and render simple markdown content.
|
1041
1065
|
"""
|
1042
1066
|
...
|
1043
1067
|
|
1044
1068
|
@typing.overload
|
1045
|
-
def
|
1069
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1046
1070
|
...
|
1047
1071
|
|
1048
|
-
|
1049
|
-
|
1072
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1073
|
+
"""
|
1074
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
1075
|
+
to inject a card and render simple markdown content.
|
1076
|
+
"""
|
1050
1077
|
...
|
1051
1078
|
|
1052
|
-
def
|
1079
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1053
1080
|
"""
|
1054
|
-
|
1081
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
1055
1082
|
|
1056
|
-
|
1057
|
-
|
1058
|
-
|
1059
|
-
|
1083
|
+
User code call
|
1084
|
+
--------------
|
1085
|
+
@ollama(
|
1086
|
+
models=[...],
|
1087
|
+
...
|
1088
|
+
)
|
1089
|
+
|
1090
|
+
Valid backend options
|
1091
|
+
---------------------
|
1092
|
+
- 'local': Run as a separate process on the local task machine.
|
1093
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
1094
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
1095
|
+
|
1096
|
+
Valid model options
|
1097
|
+
-------------------
|
1098
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
1060
1099
|
|
1061
1100
|
|
1062
1101
|
Parameters
|
1063
1102
|
----------
|
1064
|
-
|
1065
|
-
|
1066
|
-
|
1067
|
-
|
1068
|
-
|
1069
|
-
|
1070
|
-
|
1071
|
-
|
1072
|
-
|
1073
|
-
|
1103
|
+
models: list[str]
|
1104
|
+
List of Ollama containers running models in sidecars.
|
1105
|
+
backend: str
|
1106
|
+
Determines where and how to run the Ollama process.
|
1107
|
+
force_pull: bool
|
1108
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
1109
|
+
cache_update_policy: str
|
1110
|
+
Cache update policy: "auto", "force", or "never".
|
1111
|
+
force_cache_update: bool
|
1112
|
+
Simple override for "force" cache update policy.
|
1113
|
+
debug: bool
|
1114
|
+
Whether to turn on verbose debugging logs.
|
1115
|
+
circuit_breaker_config: dict
|
1116
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
1117
|
+
timeout_config: dict
|
1118
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
1119
|
+
"""
|
1120
|
+
...
|
1121
|
+
|
1122
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1123
|
+
"""
|
1124
|
+
Specifies that this step should execute on DGX cloud.
|
1125
|
+
|
1126
|
+
|
1127
|
+
Parameters
|
1128
|
+
----------
|
1129
|
+
gpu : int
|
1130
|
+
Number of GPUs to use.
|
1131
|
+
gpu_type : str
|
1132
|
+
Type of Nvidia GPU to use.
|
1074
1133
|
"""
|
1075
1134
|
...
|
1076
1135
|
|
@@ -1125,132 +1184,92 @@ def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
1125
1184
|
"""
|
1126
1185
|
...
|
1127
1186
|
|
1128
|
-
|
1129
|
-
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1130
|
-
"""
|
1131
|
-
Enables loading / saving of models within a step.
|
1132
|
-
|
1133
|
-
> Examples
|
1134
|
-
- Saving Models
|
1135
|
-
```python
|
1136
|
-
@model
|
1137
|
-
@step
|
1138
|
-
def train(self):
|
1139
|
-
# current.model.save returns a dictionary reference to the model saved
|
1140
|
-
self.my_model = current.model.save(
|
1141
|
-
path_to_my_model,
|
1142
|
-
label="my_model",
|
1143
|
-
metadata={
|
1144
|
-
"epochs": 10,
|
1145
|
-
"batch-size": 32,
|
1146
|
-
"learning-rate": 0.001,
|
1147
|
-
}
|
1148
|
-
)
|
1149
|
-
self.next(self.test)
|
1150
|
-
|
1151
|
-
@model(load="my_model")
|
1152
|
-
@step
|
1153
|
-
def test(self):
|
1154
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
1155
|
-
# where the key is the name of the artifact and the value is the path to the model
|
1156
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
1157
|
-
self.next(self.end)
|
1158
|
-
```
|
1159
|
-
|
1160
|
-
- Loading models
|
1161
|
-
```python
|
1162
|
-
@step
|
1163
|
-
def train(self):
|
1164
|
-
# current.model.load returns the path to the model loaded
|
1165
|
-
checkpoint_path = current.model.load(
|
1166
|
-
self.checkpoint_key,
|
1167
|
-
)
|
1168
|
-
model_path = current.model.load(
|
1169
|
-
self.model,
|
1170
|
-
)
|
1171
|
-
self.next(self.test)
|
1172
|
-
```
|
1173
|
-
|
1174
|
-
|
1175
|
-
Parameters
|
1176
|
-
----------
|
1177
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
1178
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
1179
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
1180
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
1181
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
1182
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
1183
|
-
|
1184
|
-
temp_dir_root : str, default: None
|
1185
|
-
The root directory under which `current.model.loaded` will store loaded models
|
1186
|
-
"""
|
1187
|
-
...
|
1188
|
-
|
1189
|
-
@typing.overload
|
1190
|
-
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1191
|
-
...
|
1192
|
-
|
1193
|
-
@typing.overload
|
1194
|
-
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1195
|
-
...
|
1196
|
-
|
1197
|
-
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
1187
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1198
1188
|
"""
|
1199
|
-
|
1200
|
-
|
1201
|
-
> Examples
|
1202
|
-
- Saving Models
|
1203
|
-
```python
|
1204
|
-
@model
|
1205
|
-
@step
|
1206
|
-
def train(self):
|
1207
|
-
# current.model.save returns a dictionary reference to the model saved
|
1208
|
-
self.my_model = current.model.save(
|
1209
|
-
path_to_my_model,
|
1210
|
-
label="my_model",
|
1211
|
-
metadata={
|
1212
|
-
"epochs": 10,
|
1213
|
-
"batch-size": 32,
|
1214
|
-
"learning-rate": 0.001,
|
1215
|
-
}
|
1216
|
-
)
|
1217
|
-
self.next(self.test)
|
1218
|
-
|
1219
|
-
@model(load="my_model")
|
1220
|
-
@step
|
1221
|
-
def test(self):
|
1222
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
1223
|
-
# where the key is the name of the artifact and the value is the path to the model
|
1224
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
1225
|
-
self.next(self.end)
|
1226
|
-
```
|
1227
|
-
|
1228
|
-
- Loading models
|
1229
|
-
```python
|
1230
|
-
@step
|
1231
|
-
def train(self):
|
1232
|
-
# current.model.load returns the path to the model loaded
|
1233
|
-
checkpoint_path = current.model.load(
|
1234
|
-
self.checkpoint_key,
|
1235
|
-
)
|
1236
|
-
model_path = current.model.load(
|
1237
|
-
self.model,
|
1238
|
-
)
|
1239
|
-
self.next(self.test)
|
1240
|
-
```
|
1189
|
+
Specifies that this step should execute on Kubernetes.
|
1241
1190
|
|
1242
1191
|
|
1243
1192
|
Parameters
|
1244
1193
|
----------
|
1245
|
-
|
1246
|
-
|
1247
|
-
|
1248
|
-
|
1249
|
-
|
1250
|
-
|
1194
|
+
cpu : int, default 1
|
1195
|
+
Number of CPUs required for this step. If `@resources` is
|
1196
|
+
also present, the maximum value from all decorators is used.
|
1197
|
+
memory : int, default 4096
|
1198
|
+
Memory size (in MB) required for this step. If
|
1199
|
+
`@resources` is also present, the maximum value from all decorators is
|
1200
|
+
used.
|
1201
|
+
disk : int, default 10240
|
1202
|
+
Disk size (in MB) required for this step. If
|
1203
|
+
`@resources` is also present, the maximum value from all decorators is
|
1204
|
+
used.
|
1205
|
+
image : str, optional, default None
|
1206
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
1207
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
1208
|
+
not, a default Docker image mapping to the current version of Python is used.
|
1209
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
1210
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
1211
|
+
image_pull_secrets: List[str], default []
|
1212
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
1213
|
+
Kubernetes image pull secrets to use when pulling container images
|
1214
|
+
in Kubernetes.
|
1215
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
1216
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
1217
|
+
secrets : List[str], optional, default None
|
1218
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
1219
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
1220
|
+
in Metaflow configuration.
|
1221
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
1222
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
1223
|
+
Can be passed in as a comma separated string of values e.g.
|
1224
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
1225
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
1226
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
1227
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
1228
|
+
gpu : int, optional, default None
|
1229
|
+
Number of GPUs required for this step. A value of zero implies that
|
1230
|
+
the scheduled node should not have GPUs.
|
1231
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
1232
|
+
The vendor of the GPUs to be used for this step.
|
1233
|
+
tolerations : List[str], default []
|
1234
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
1235
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
1236
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
1237
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
1238
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
1239
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
1240
|
+
use_tmpfs : bool, default False
|
1241
|
+
This enables an explicit tmpfs mount for this step.
|
1242
|
+
tmpfs_tempdir : bool, default True
|
1243
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
1244
|
+
tmpfs_size : int, optional, default: None
|
1245
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
1246
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
1247
|
+
memory allocated for this step.
|
1248
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
1249
|
+
Path to tmpfs mount for this step.
|
1250
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
1251
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
1252
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
1253
|
+
shared_memory: int, optional
|
1254
|
+
Shared memory size (in MiB) required for this step
|
1255
|
+
port: int, optional
|
1256
|
+
Port number to specify in the Kubernetes job object
|
1257
|
+
compute_pool : str, optional, default None
|
1258
|
+
Compute pool to be used for for this step.
|
1259
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
1260
|
+
hostname_resolution_timeout: int, default 10 * 60
|
1261
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
1262
|
+
Only applicable when @parallel is used.
|
1263
|
+
qos: str, default: Burstable
|
1264
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
1251
1265
|
|
1252
|
-
|
1253
|
-
|
1266
|
+
security_context: Dict[str, Any], optional, default None
|
1267
|
+
Container security context. Applies to the task container. Allows the following keys:
|
1268
|
+
- privileged: bool, optional, default None
|
1269
|
+
- allow_privilege_escalation: bool, optional, default None
|
1270
|
+
- run_as_user: int, optional, default None
|
1271
|
+
- run_as_group: int, optional, default None
|
1272
|
+
- run_as_non_root: bool, optional, default None
|
1254
1273
|
"""
|
1255
1274
|
...
|
1256
1275
|
|
@@ -1297,168 +1316,223 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
1297
1316
|
"""
|
1298
1317
|
...
|
1299
1318
|
|
1300
|
-
def
|
1319
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1301
1320
|
"""
|
1302
|
-
|
1303
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1321
|
+
Specifies what flows belong to the same project.
|
1304
1322
|
|
1305
|
-
|
1306
|
-
|
1323
|
+
A project-specific namespace is created for all flows that
|
1324
|
+
use the same `@project(name)`.
|
1307
1325
|
|
1308
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1309
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1310
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1311
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1312
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1313
1326
|
|
1314
|
-
|
1327
|
+
Parameters
|
1315
1328
|
----------
|
1329
|
+
name : str
|
1330
|
+
Project name. Make sure that the name is unique amongst all
|
1331
|
+
projects that use the same production scheduler. The name may
|
1332
|
+
contain only lowercase alphanumeric characters and underscores.
|
1316
1333
|
|
1317
|
-
|
1318
|
-
|
1319
|
-
|
1320
|
-
|
1321
|
-
|
1322
|
-
config=lambda: {
|
1323
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1324
|
-
"role_arn": ROLE,
|
1325
|
-
},
|
1326
|
-
)
|
1327
|
-
class MyFlow(FlowSpec):
|
1334
|
+
branch : Optional[str], default None
|
1335
|
+
The branch to use. If not specified, the branch is set to
|
1336
|
+
`user.<username>` unless `production` is set to `True`. This can
|
1337
|
+
also be set on the command line using `--branch` as a top-level option.
|
1338
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
1328
1339
|
|
1329
|
-
|
1330
|
-
|
1331
|
-
|
1332
|
-
|
1333
|
-
|
1334
|
-
|
1335
|
-
|
1340
|
+
production : bool, default False
|
1341
|
+
Whether or not the branch is the production branch. This can also be set on the
|
1342
|
+
command line using `--production` as a top-level option. It is an error to specify
|
1343
|
+
`production` in the decorator and on the command line.
|
1344
|
+
The project branch name will be:
|
1345
|
+
- if `branch` is specified:
|
1346
|
+
- if `production` is True: `prod.<branch>`
|
1347
|
+
- if `production` is False: `test.<branch>`
|
1348
|
+
- if `branch` is not specified:
|
1349
|
+
- if `production` is True: `prod`
|
1350
|
+
- if `production` is False: `user.<username>`
|
1351
|
+
"""
|
1352
|
+
...
|
1353
|
+
|
1354
|
+
@typing.overload
|
1355
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1356
|
+
"""
|
1357
|
+
Specifies the PyPI packages for all steps of the flow.
|
1336
1358
|
|
1337
|
-
|
1359
|
+
Use `@pypi_base` to set common packages required by all
|
1360
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1338
1361
|
|
1339
|
-
|
1362
|
+
Parameters
|
1363
|
+
----------
|
1364
|
+
packages : Dict[str, str], default: {}
|
1365
|
+
Packages to use for this flow. The key is the name of the package
|
1366
|
+
and the value is the version to use.
|
1367
|
+
python : str, optional, default: None
|
1368
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1369
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1370
|
+
"""
|
1371
|
+
...
|
1372
|
+
|
1373
|
+
@typing.overload
|
1374
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1375
|
+
...
|
1376
|
+
|
1377
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1378
|
+
"""
|
1379
|
+
Specifies the PyPI packages for all steps of the flow.
|
1340
1380
|
|
1341
|
-
|
1342
|
-
|
1343
|
-
type="s3",
|
1344
|
-
config=lambda: {
|
1345
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1346
|
-
"client_params": {
|
1347
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1348
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1349
|
-
},
|
1350
|
-
},
|
1351
|
-
)
|
1352
|
-
class MyFlow(FlowSpec):
|
1381
|
+
Use `@pypi_base` to set common packages required by all
|
1382
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1353
1383
|
|
1354
|
-
|
1355
|
-
|
1356
|
-
|
1357
|
-
|
1358
|
-
|
1359
|
-
|
1360
|
-
|
1384
|
+
Parameters
|
1385
|
+
----------
|
1386
|
+
packages : Dict[str, str], default: {}
|
1387
|
+
Packages to use for this flow. The key is the name of the package
|
1388
|
+
and the value is the version to use.
|
1389
|
+
python : str, optional, default: None
|
1390
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1391
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1392
|
+
"""
|
1393
|
+
...
|
1394
|
+
|
1395
|
+
@typing.overload
|
1396
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1397
|
+
"""
|
1398
|
+
Specifies the flow(s) that this flow depends on.
|
1361
1399
|
|
1362
|
-
|
1400
|
+
```
|
1401
|
+
@trigger_on_finish(flow='FooFlow')
|
1402
|
+
```
|
1403
|
+
or
|
1404
|
+
```
|
1405
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1406
|
+
```
|
1407
|
+
This decorator respects the @project decorator and triggers the flow
|
1408
|
+
when upstream runs within the same namespace complete successfully
|
1363
1409
|
|
1364
|
-
|
1410
|
+
Additionally, you can specify project aware upstream flow dependencies
|
1411
|
+
by specifying the fully qualified project_flow_name.
|
1412
|
+
```
|
1413
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1414
|
+
```
|
1415
|
+
or
|
1416
|
+
```
|
1417
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1418
|
+
```
|
1365
1419
|
|
1366
|
-
|
1367
|
-
|
1368
|
-
|
1369
|
-
|
1370
|
-
|
1371
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1372
|
-
},
|
1373
|
-
}):
|
1374
|
-
with Checkpoint() as cp:
|
1375
|
-
latest = cp.list(
|
1376
|
-
task=run["start"].task
|
1377
|
-
)[0]
|
1378
|
-
print(latest)
|
1379
|
-
cp.load(
|
1380
|
-
latest,
|
1381
|
-
"test-checkpoints"
|
1382
|
-
)
|
1420
|
+
You can also specify just the project or project branch (other values will be
|
1421
|
+
inferred from the current project or project branch):
|
1422
|
+
```
|
1423
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1424
|
+
```
|
1383
1425
|
|
1384
|
-
|
1385
|
-
|
1386
|
-
|
1387
|
-
|
1388
|
-
|
1389
|
-
},
|
1390
|
-
}):
|
1391
|
-
load_model(
|
1392
|
-
task.data.model_ref,
|
1393
|
-
"test-models"
|
1394
|
-
)
|
1395
|
-
```
|
1396
|
-
Parameters:
|
1397
|
-
----------
|
1426
|
+
Note that `branch` is typically one of:
|
1427
|
+
- `prod`
|
1428
|
+
- `user.bob`
|
1429
|
+
- `test.my_experiment`
|
1430
|
+
- `prod.staging`
|
1398
1431
|
|
1399
|
-
type: str
|
1400
|
-
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1401
1432
|
|
1402
|
-
|
1403
|
-
|
1404
|
-
|
1405
|
-
|
1406
|
-
|
1407
|
-
|
1408
|
-
|
1409
|
-
-
|
1410
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1433
|
+
Parameters
|
1434
|
+
----------
|
1435
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
1436
|
+
Upstream flow dependency for this flow.
|
1437
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
1438
|
+
Upstream flow dependencies for this flow.
|
1439
|
+
options : Dict[str, Any], default {}
|
1440
|
+
Backend-specific configuration for tuning eventing behavior.
|
1411
1441
|
"""
|
1412
1442
|
...
|
1413
1443
|
|
1414
1444
|
@typing.overload
|
1415
|
-
def
|
1445
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1446
|
+
...
|
1447
|
+
|
1448
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1416
1449
|
"""
|
1417
|
-
Specifies the
|
1450
|
+
Specifies the flow(s) that this flow depends on.
|
1418
1451
|
|
1419
|
-
|
1420
|
-
|
1452
|
+
```
|
1453
|
+
@trigger_on_finish(flow='FooFlow')
|
1454
|
+
```
|
1455
|
+
or
|
1456
|
+
```
|
1457
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1458
|
+
```
|
1459
|
+
This decorator respects the @project decorator and triggers the flow
|
1460
|
+
when upstream runs within the same namespace complete successfully
|
1461
|
+
|
1462
|
+
Additionally, you can specify project aware upstream flow dependencies
|
1463
|
+
by specifying the fully qualified project_flow_name.
|
1464
|
+
```
|
1465
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1466
|
+
```
|
1467
|
+
or
|
1468
|
+
```
|
1469
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1470
|
+
```
|
1471
|
+
|
1472
|
+
You can also specify just the project or project branch (other values will be
|
1473
|
+
inferred from the current project or project branch):
|
1474
|
+
```
|
1475
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1476
|
+
```
|
1477
|
+
|
1478
|
+
Note that `branch` is typically one of:
|
1479
|
+
- `prod`
|
1480
|
+
- `user.bob`
|
1481
|
+
- `test.my_experiment`
|
1482
|
+
- `prod.staging`
|
1421
1483
|
|
1422
1484
|
|
1423
1485
|
Parameters
|
1424
1486
|
----------
|
1425
|
-
|
1426
|
-
|
1427
|
-
|
1428
|
-
|
1429
|
-
|
1430
|
-
|
1431
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1432
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1433
|
-
disabled : bool, default False
|
1434
|
-
If set to True, disables Conda.
|
1487
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
1488
|
+
Upstream flow dependency for this flow.
|
1489
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
1490
|
+
Upstream flow dependencies for this flow.
|
1491
|
+
options : Dict[str, Any], default {}
|
1492
|
+
Backend-specific configuration for tuning eventing behavior.
|
1435
1493
|
"""
|
1436
1494
|
...
|
1437
1495
|
|
1438
|
-
|
1439
|
-
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1440
|
-
...
|
1441
|
-
|
1442
|
-
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1496
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1443
1497
|
"""
|
1444
|
-
|
1445
|
-
|
1446
|
-
Use `@conda_base` to set common libraries required by all
|
1447
|
-
steps and use `@conda` to specify step-specific additions.
|
1498
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1499
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1448
1500
|
|
1449
1501
|
|
1450
1502
|
Parameters
|
1451
1503
|
----------
|
1452
|
-
|
1453
|
-
|
1454
|
-
|
1455
|
-
|
1456
|
-
|
1457
|
-
|
1458
|
-
|
1459
|
-
|
1460
|
-
|
1461
|
-
|
1504
|
+
timeout : int
|
1505
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1506
|
+
poke_interval : int
|
1507
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1508
|
+
mode : str
|
1509
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1510
|
+
exponential_backoff : bool
|
1511
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1512
|
+
pool : str
|
1513
|
+
the slot pool this task should run in,
|
1514
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1515
|
+
soft_fail : bool
|
1516
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1517
|
+
name : str
|
1518
|
+
Name of the sensor on Airflow
|
1519
|
+
description : str
|
1520
|
+
Description of sensor in the Airflow UI
|
1521
|
+
external_dag_id : str
|
1522
|
+
The dag_id that contains the task you want to wait for.
|
1523
|
+
external_task_ids : List[str]
|
1524
|
+
The list of task_ids that you want to wait for.
|
1525
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1526
|
+
allowed_states : List[str]
|
1527
|
+
Iterable of allowed states, (Default: ['success'])
|
1528
|
+
failed_states : List[str]
|
1529
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1530
|
+
execution_delta : datetime.timedelta
|
1531
|
+
time difference with the previous execution to look at,
|
1532
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1533
|
+
check_existence: bool
|
1534
|
+
Set to True to check if the external task exists or check if
|
1535
|
+
the DAG to wait for exists. (Default: True)
|
1462
1536
|
"""
|
1463
1537
|
...
|
1464
1538
|
|
@@ -1539,290 +1613,235 @@ def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = No
|
|
1539
1613
|
|
1540
1614
|
'parameters' can also be a list of strings and tuples like so:
|
1541
1615
|
```
|
1542
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1543
|
-
```
|
1544
|
-
This is equivalent to:
|
1545
|
-
```
|
1546
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1547
|
-
```
|
1548
|
-
|
1549
|
-
|
1550
|
-
Parameters
|
1551
|
-
----------
|
1552
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
1553
|
-
Event dependency for this flow.
|
1554
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
1555
|
-
Events dependency for this flow.
|
1556
|
-
options : Dict[str, Any], default {}
|
1557
|
-
Backend-specific configuration for tuning eventing behavior.
|
1558
|
-
"""
|
1559
|
-
...
|
1560
|
-
|
1561
|
-
@typing.overload
|
1562
|
-
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1563
|
-
...
|
1564
|
-
|
1565
|
-
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1566
|
-
"""
|
1567
|
-
Specifies the event(s) that this flow depends on.
|
1568
|
-
|
1569
|
-
```
|
1570
|
-
@trigger(event='foo')
|
1571
|
-
```
|
1572
|
-
or
|
1573
|
-
```
|
1574
|
-
@trigger(events=['foo', 'bar'])
|
1575
|
-
```
|
1576
|
-
|
1577
|
-
Additionally, you can specify the parameter mappings
|
1578
|
-
to map event payload to Metaflow parameters for the flow.
|
1579
|
-
```
|
1580
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1581
|
-
```
|
1582
|
-
or
|
1583
|
-
```
|
1584
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1585
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1586
|
-
```
|
1587
|
-
|
1588
|
-
'parameters' can also be a list of strings and tuples like so:
|
1589
|
-
```
|
1590
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1591
|
-
```
|
1592
|
-
This is equivalent to:
|
1593
|
-
```
|
1594
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1595
|
-
```
|
1596
|
-
|
1597
|
-
|
1598
|
-
Parameters
|
1599
|
-
----------
|
1600
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
1601
|
-
Event dependency for this flow.
|
1602
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
1603
|
-
Events dependency for this flow.
|
1604
|
-
options : Dict[str, Any], default {}
|
1605
|
-
Backend-specific configuration for tuning eventing behavior.
|
1606
|
-
"""
|
1607
|
-
...
|
1608
|
-
|
1609
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1610
|
-
"""
|
1611
|
-
Specifies what flows belong to the same project.
|
1612
|
-
|
1613
|
-
A project-specific namespace is created for all flows that
|
1614
|
-
use the same `@project(name)`.
|
1615
|
-
|
1616
|
-
|
1617
|
-
Parameters
|
1618
|
-
----------
|
1619
|
-
name : str
|
1620
|
-
Project name. Make sure that the name is unique amongst all
|
1621
|
-
projects that use the same production scheduler. The name may
|
1622
|
-
contain only lowercase alphanumeric characters and underscores.
|
1623
|
-
|
1624
|
-
branch : Optional[str], default None
|
1625
|
-
The branch to use. If not specified, the branch is set to
|
1626
|
-
`user.<username>` unless `production` is set to `True`. This can
|
1627
|
-
also be set on the command line using `--branch` as a top-level option.
|
1628
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
1629
|
-
|
1630
|
-
production : bool, default False
|
1631
|
-
Whether or not the branch is the production branch. This can also be set on the
|
1632
|
-
command line using `--production` as a top-level option. It is an error to specify
|
1633
|
-
`production` in the decorator and on the command line.
|
1634
|
-
The project branch name will be:
|
1635
|
-
- if `branch` is specified:
|
1636
|
-
- if `production` is True: `prod.<branch>`
|
1637
|
-
- if `production` is False: `test.<branch>`
|
1638
|
-
- if `branch` is not specified:
|
1639
|
-
- if `production` is True: `prod`
|
1640
|
-
- if `production` is False: `user.<username>`
|
1641
|
-
"""
|
1642
|
-
...
|
1643
|
-
|
1644
|
-
@typing.overload
|
1645
|
-
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1646
|
-
"""
|
1647
|
-
Specifies the flow(s) that this flow depends on.
|
1648
|
-
|
1649
|
-
```
|
1650
|
-
@trigger_on_finish(flow='FooFlow')
|
1651
|
-
```
|
1652
|
-
or
|
1653
|
-
```
|
1654
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1655
|
-
```
|
1656
|
-
This decorator respects the @project decorator and triggers the flow
|
1657
|
-
when upstream runs within the same namespace complete successfully
|
1658
|
-
|
1659
|
-
Additionally, you can specify project aware upstream flow dependencies
|
1660
|
-
by specifying the fully qualified project_flow_name.
|
1661
|
-
```
|
1662
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1663
|
-
```
|
1664
|
-
or
|
1665
|
-
```
|
1666
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1667
|
-
```
|
1668
|
-
|
1669
|
-
You can also specify just the project or project branch (other values will be
|
1670
|
-
inferred from the current project or project branch):
|
1616
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1671
1617
|
```
|
1672
|
-
|
1618
|
+
This is equivalent to:
|
1619
|
+
```
|
1620
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1673
1621
|
```
|
1674
|
-
|
1675
|
-
Note that `branch` is typically one of:
|
1676
|
-
- `prod`
|
1677
|
-
- `user.bob`
|
1678
|
-
- `test.my_experiment`
|
1679
|
-
- `prod.staging`
|
1680
1622
|
|
1681
1623
|
|
1682
1624
|
Parameters
|
1683
1625
|
----------
|
1684
|
-
|
1685
|
-
|
1686
|
-
|
1687
|
-
|
1626
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1627
|
+
Event dependency for this flow.
|
1628
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1629
|
+
Events dependency for this flow.
|
1688
1630
|
options : Dict[str, Any], default {}
|
1689
1631
|
Backend-specific configuration for tuning eventing behavior.
|
1690
1632
|
"""
|
1691
1633
|
...
|
1692
1634
|
|
1693
1635
|
@typing.overload
|
1694
|
-
def
|
1636
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1695
1637
|
...
|
1696
1638
|
|
1697
|
-
def
|
1639
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1698
1640
|
"""
|
1699
|
-
Specifies the
|
1641
|
+
Specifies the event(s) that this flow depends on.
|
1700
1642
|
|
1701
1643
|
```
|
1702
|
-
@
|
1644
|
+
@trigger(event='foo')
|
1703
1645
|
```
|
1704
1646
|
or
|
1705
1647
|
```
|
1706
|
-
@
|
1648
|
+
@trigger(events=['foo', 'bar'])
|
1707
1649
|
```
|
1708
|
-
This decorator respects the @project decorator and triggers the flow
|
1709
|
-
when upstream runs within the same namespace complete successfully
|
1710
1650
|
|
1711
|
-
Additionally, you can specify
|
1712
|
-
|
1651
|
+
Additionally, you can specify the parameter mappings
|
1652
|
+
to map event payload to Metaflow parameters for the flow.
|
1713
1653
|
```
|
1714
|
-
@
|
1654
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1715
1655
|
```
|
1716
1656
|
or
|
1717
1657
|
```
|
1718
|
-
@
|
1658
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1659
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1719
1660
|
```
|
1720
1661
|
|
1721
|
-
|
1722
|
-
inferred from the current project or project branch):
|
1662
|
+
'parameters' can also be a list of strings and tuples like so:
|
1723
1663
|
```
|
1724
|
-
@
|
1664
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1665
|
+
```
|
1666
|
+
This is equivalent to:
|
1667
|
+
```
|
1668
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1725
1669
|
```
|
1726
|
-
|
1727
|
-
Note that `branch` is typically one of:
|
1728
|
-
- `prod`
|
1729
|
-
- `user.bob`
|
1730
|
-
- `test.my_experiment`
|
1731
|
-
- `prod.staging`
|
1732
1670
|
|
1733
1671
|
|
1734
1672
|
Parameters
|
1735
1673
|
----------
|
1736
|
-
|
1737
|
-
|
1738
|
-
|
1739
|
-
|
1674
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1675
|
+
Event dependency for this flow.
|
1676
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1677
|
+
Events dependency for this flow.
|
1740
1678
|
options : Dict[str, Any], default {}
|
1741
1679
|
Backend-specific configuration for tuning eventing behavior.
|
1742
1680
|
"""
|
1743
1681
|
...
|
1744
1682
|
|
1745
|
-
|
1746
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1683
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1747
1684
|
"""
|
1748
|
-
|
1685
|
+
Allows setting external datastores to save data for the
|
1686
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1749
1687
|
|
1750
|
-
|
1751
|
-
|
1688
|
+
This decorator is useful when users wish to save data to a different datastore
|
1689
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1752
1690
|
|
1753
|
-
|
1691
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1692
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1693
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1694
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1695
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1696
|
+
|
1697
|
+
Usage:
|
1754
1698
|
----------
|
1755
|
-
|
1756
|
-
|
1757
|
-
|
1758
|
-
|
1759
|
-
|
1760
|
-
|
1699
|
+
|
1700
|
+
- Using a custom IAM role to access the datastore.
|
1701
|
+
|
1702
|
+
```python
|
1703
|
+
@with_artifact_store(
|
1704
|
+
type="s3",
|
1705
|
+
config=lambda: {
|
1706
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1707
|
+
"role_arn": ROLE,
|
1708
|
+
},
|
1709
|
+
)
|
1710
|
+
class MyFlow(FlowSpec):
|
1711
|
+
|
1712
|
+
@checkpoint
|
1713
|
+
@step
|
1714
|
+
def start(self):
|
1715
|
+
with open("my_file.txt", "w") as f:
|
1716
|
+
f.write("Hello, World!")
|
1717
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1718
|
+
self.next(self.end)
|
1719
|
+
|
1720
|
+
```
|
1721
|
+
|
1722
|
+
- Using credentials to access the s3-compatible datastore.
|
1723
|
+
|
1724
|
+
```python
|
1725
|
+
@with_artifact_store(
|
1726
|
+
type="s3",
|
1727
|
+
config=lambda: {
|
1728
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1729
|
+
"client_params": {
|
1730
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1731
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1732
|
+
},
|
1733
|
+
},
|
1734
|
+
)
|
1735
|
+
class MyFlow(FlowSpec):
|
1736
|
+
|
1737
|
+
@checkpoint
|
1738
|
+
@step
|
1739
|
+
def start(self):
|
1740
|
+
with open("my_file.txt", "w") as f:
|
1741
|
+
f.write("Hello, World!")
|
1742
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1743
|
+
self.next(self.end)
|
1744
|
+
|
1745
|
+
```
|
1746
|
+
|
1747
|
+
- Accessing objects stored in external datastores after task execution.
|
1748
|
+
|
1749
|
+
```python
|
1750
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1751
|
+
with artifact_store_from(run=run, config={
|
1752
|
+
"client_params": {
|
1753
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1754
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1755
|
+
},
|
1756
|
+
}):
|
1757
|
+
with Checkpoint() as cp:
|
1758
|
+
latest = cp.list(
|
1759
|
+
task=run["start"].task
|
1760
|
+
)[0]
|
1761
|
+
print(latest)
|
1762
|
+
cp.load(
|
1763
|
+
latest,
|
1764
|
+
"test-checkpoints"
|
1765
|
+
)
|
1766
|
+
|
1767
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1768
|
+
with artifact_store_from(run=run, config={
|
1769
|
+
"client_params": {
|
1770
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1771
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1772
|
+
},
|
1773
|
+
}):
|
1774
|
+
load_model(
|
1775
|
+
task.data.model_ref,
|
1776
|
+
"test-models"
|
1777
|
+
)
|
1778
|
+
```
|
1779
|
+
Parameters:
|
1780
|
+
----------
|
1781
|
+
|
1782
|
+
type: str
|
1783
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1784
|
+
|
1785
|
+
config: dict or Callable
|
1786
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1787
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1788
|
+
- example: 's3://bucket-name/path/to/root'
|
1789
|
+
- example: 'gs://bucket-name/path/to/root'
|
1790
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1791
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1792
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1793
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1761
1794
|
"""
|
1762
1795
|
...
|
1763
1796
|
|
1764
1797
|
@typing.overload
|
1765
|
-
def
|
1766
|
-
...
|
1767
|
-
|
1768
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1798
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1769
1799
|
"""
|
1770
|
-
Specifies the
|
1800
|
+
Specifies the Conda environment for all steps of the flow.
|
1801
|
+
|
1802
|
+
Use `@conda_base` to set common libraries required by all
|
1803
|
+
steps and use `@conda` to specify step-specific additions.
|
1771
1804
|
|
1772
|
-
Use `@pypi_base` to set common packages required by all
|
1773
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1774
1805
|
|
1775
1806
|
Parameters
|
1776
1807
|
----------
|
1777
|
-
packages : Dict[str, str], default
|
1808
|
+
packages : Dict[str, str], default {}
|
1778
1809
|
Packages to use for this flow. The key is the name of the package
|
1779
1810
|
and the value is the version to use.
|
1780
|
-
|
1811
|
+
libraries : Dict[str, str], default {}
|
1812
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1813
|
+
python : str, optional, default None
|
1781
1814
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1782
1815
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1816
|
+
disabled : bool, default False
|
1817
|
+
If set to True, disables Conda.
|
1783
1818
|
"""
|
1784
1819
|
...
|
1785
1820
|
|
1786
|
-
|
1821
|
+
@typing.overload
|
1822
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1823
|
+
...
|
1824
|
+
|
1825
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1787
1826
|
"""
|
1788
|
-
|
1789
|
-
|
1827
|
+
Specifies the Conda environment for all steps of the flow.
|
1828
|
+
|
1829
|
+
Use `@conda_base` to set common libraries required by all
|
1830
|
+
steps and use `@conda` to specify step-specific additions.
|
1790
1831
|
|
1791
1832
|
|
1792
1833
|
Parameters
|
1793
1834
|
----------
|
1794
|
-
|
1795
|
-
|
1796
|
-
|
1797
|
-
|
1798
|
-
|
1799
|
-
|
1800
|
-
|
1801
|
-
|
1802
|
-
|
1803
|
-
|
1804
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1805
|
-
soft_fail : bool
|
1806
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1807
|
-
name : str
|
1808
|
-
Name of the sensor on Airflow
|
1809
|
-
description : str
|
1810
|
-
Description of sensor in the Airflow UI
|
1811
|
-
external_dag_id : str
|
1812
|
-
The dag_id that contains the task you want to wait for.
|
1813
|
-
external_task_ids : List[str]
|
1814
|
-
The list of task_ids that you want to wait for.
|
1815
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
1816
|
-
allowed_states : List[str]
|
1817
|
-
Iterable of allowed states, (Default: ['success'])
|
1818
|
-
failed_states : List[str]
|
1819
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1820
|
-
execution_delta : datetime.timedelta
|
1821
|
-
time difference with the previous execution to look at,
|
1822
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1823
|
-
check_existence: bool
|
1824
|
-
Set to True to check if the external task exists or check if
|
1825
|
-
the DAG to wait for exists. (Default: True)
|
1835
|
+
packages : Dict[str, str], default {}
|
1836
|
+
Packages to use for this flow. The key is the name of the package
|
1837
|
+
and the value is the version to use.
|
1838
|
+
libraries : Dict[str, str], default {}
|
1839
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1840
|
+
python : str, optional, default None
|
1841
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1842
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1843
|
+
disabled : bool, default False
|
1844
|
+
If set to True, disables Conda.
|
1826
1845
|
"""
|
1827
1846
|
...
|
1828
1847
|
|