ob-metaflow-stubs 6.0.4.6rc0__py2.py3-none-any.whl → 6.0.4.7__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +944 -925
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +6 -6
- metaflow-stubs/client/filecache.pyi +3 -3
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/info_file.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -2
- metaflow-stubs/metaflow_current.pyi +53 -53
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +10 -10
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +20 -2
- metaflow-stubs/plugins/argo/exit_hooks.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +13 -2
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +3 -3
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +3 -3
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +3 -3
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +5 -5
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +3 -3
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +3 -3
- metaflow-stubs/plugins/timeout_decorator.pyi +3 -3
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +3 -3
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +30 -5
- metaflow-stubs/runner/deployer_impl.pyi +3 -3
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_decorators.pyi +7 -7
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +6 -6
- {ob_metaflow_stubs-6.0.4.6rc0.dist-info → ob_metaflow_stubs-6.0.4.7.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.4.7.dist-info/RECORD +249 -0
- ob_metaflow_stubs-6.0.4.6rc0.dist-info/RECORD +0 -249
- {ob_metaflow_stubs-6.0.4.6rc0.dist-info → ob_metaflow_stubs-6.0.4.7.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.4.6rc0.dist-info → ob_metaflow_stubs-6.0.4.7.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,15 +1,15 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
|
-
# MF version: 2.15.21.
|
4
|
-
# Generated on 2025-07-
|
3
|
+
# MF version: 2.15.21.4+obcheckpoint(0.2.4);ob(v1) #
|
4
|
+
# Generated on 2025-07-25T18:05:15.016391 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
8
8
|
|
9
9
|
import typing
|
10
10
|
if typing.TYPE_CHECKING:
|
11
|
-
import datetime
|
12
11
|
import typing
|
12
|
+
import datetime
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
15
15
|
|
@@ -36,17 +36,17 @@ from .user_configs.config_parameters import config_expr as config_expr
|
|
36
36
|
from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
|
37
37
|
from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
|
38
38
|
from . import events as events
|
39
|
-
from . import metaflow_git as metaflow_git
|
40
|
-
from . import cards as cards
|
41
39
|
from . import tuple_util as tuple_util
|
40
|
+
from . import cards as cards
|
41
|
+
from . import metaflow_git as metaflow_git
|
42
42
|
from . import runner as runner
|
43
43
|
from . import plugins as plugins
|
44
44
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
45
45
|
from . import includefile as includefile
|
46
46
|
from .includefile import IncludeFile as IncludeFile
|
47
|
+
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
47
48
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
48
49
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
49
|
-
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
50
50
|
from . import client as client
|
51
51
|
from .client.core import namespace as namespace
|
52
52
|
from .client.core import get_namespace as get_namespace
|
@@ -157,75 +157,41 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
157
157
|
...
|
158
158
|
|
159
159
|
@typing.overload
|
160
|
-
def
|
160
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
161
161
|
"""
|
162
|
-
Specifies
|
163
|
-
|
164
|
-
This decorator is useful if this step may hang indefinitely.
|
165
|
-
|
166
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
167
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
168
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
169
|
-
|
170
|
-
Note that all the values specified in parameters are added together so if you specify
|
171
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
162
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
163
|
+
the execution of a step.
|
172
164
|
|
173
165
|
|
174
166
|
Parameters
|
175
167
|
----------
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
hours : int, default 0
|
181
|
-
Number of hours to wait prior to timing out.
|
168
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
169
|
+
List of secret specs, defining how the secrets are to be retrieved
|
170
|
+
role : str, optional, default: None
|
171
|
+
Role to use for fetching secrets
|
182
172
|
"""
|
183
173
|
...
|
184
174
|
|
185
175
|
@typing.overload
|
186
|
-
def
|
176
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
187
177
|
...
|
188
178
|
|
189
179
|
@typing.overload
|
190
|
-
def
|
191
|
-
...
|
192
|
-
|
193
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
194
|
-
"""
|
195
|
-
Specifies a timeout for your step.
|
196
|
-
|
197
|
-
This decorator is useful if this step may hang indefinitely.
|
198
|
-
|
199
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
200
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
201
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
202
|
-
|
203
|
-
Note that all the values specified in parameters are added together so if you specify
|
204
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
205
|
-
|
206
|
-
|
207
|
-
Parameters
|
208
|
-
----------
|
209
|
-
seconds : int, default 0
|
210
|
-
Number of seconds to wait prior to timing out.
|
211
|
-
minutes : int, default 0
|
212
|
-
Number of minutes to wait prior to timing out.
|
213
|
-
hours : int, default 0
|
214
|
-
Number of hours to wait prior to timing out.
|
215
|
-
"""
|
180
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
216
181
|
...
|
217
182
|
|
218
|
-
def
|
183
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
219
184
|
"""
|
220
|
-
Specifies
|
185
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
186
|
+
the execution of a step.
|
221
187
|
|
222
188
|
|
223
189
|
Parameters
|
224
190
|
----------
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
191
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
192
|
+
List of secret specs, defining how the secrets are to be retrieved
|
193
|
+
role : str, optional, default: None
|
194
|
+
Role to use for fetching secrets
|
229
195
|
"""
|
230
196
|
...
|
231
197
|
|
@@ -249,317 +215,172 @@ def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
249
215
|
...
|
250
216
|
|
251
217
|
@typing.overload
|
252
|
-
def
|
218
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
253
219
|
"""
|
254
|
-
|
255
|
-
|
220
|
+
Enables checkpointing for a step.
|
221
|
+
|
222
|
+
> Examples
|
223
|
+
|
224
|
+
- Saving Checkpoints
|
225
|
+
|
226
|
+
```python
|
227
|
+
@checkpoint
|
228
|
+
@step
|
229
|
+
def train(self):
|
230
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
231
|
+
for i in range(self.epochs):
|
232
|
+
# some training logic
|
233
|
+
loss = model.train(self.dataset)
|
234
|
+
if i % 10 == 0:
|
235
|
+
model.save(
|
236
|
+
current.checkpoint.directory,
|
237
|
+
)
|
238
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
239
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
240
|
+
self.latest_checkpoint = current.checkpoint.save(
|
241
|
+
name="epoch_checkpoint",
|
242
|
+
metadata={
|
243
|
+
"epoch": i,
|
244
|
+
"loss": loss,
|
245
|
+
}
|
246
|
+
)
|
247
|
+
```
|
248
|
+
|
249
|
+
- Using Loaded Checkpoints
|
250
|
+
|
251
|
+
```python
|
252
|
+
@retry(times=3)
|
253
|
+
@checkpoint
|
254
|
+
@step
|
255
|
+
def train(self):
|
256
|
+
# Assume that the task has restarted and the previous attempt of the task
|
257
|
+
# saved a checkpoint
|
258
|
+
checkpoint_path = None
|
259
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
260
|
+
print("Loaded checkpoint from the previous attempt")
|
261
|
+
checkpoint_path = current.checkpoint.directory
|
262
|
+
|
263
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
264
|
+
for i in range(self.epochs):
|
265
|
+
...
|
266
|
+
```
|
256
267
|
|
257
268
|
|
258
269
|
Parameters
|
259
270
|
----------
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
271
|
+
load_policy : str, default: "fresh"
|
272
|
+
The policy for loading the checkpoint. The following policies are supported:
|
273
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
274
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
275
|
+
will be loaded at the start of the task.
|
276
|
+
- "none": Do not load any checkpoint
|
277
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
278
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
279
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
280
|
+
created within the task will be loaded when the task is retries execution on failure.
|
281
|
+
|
282
|
+
temp_dir_root : str, default: None
|
283
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
264
284
|
"""
|
265
285
|
...
|
266
286
|
|
267
287
|
@typing.overload
|
268
|
-
def
|
288
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
269
289
|
...
|
270
290
|
|
271
291
|
@typing.overload
|
272
|
-
def
|
292
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
273
293
|
...
|
274
294
|
|
275
|
-
def
|
295
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
276
296
|
"""
|
277
|
-
|
278
|
-
|
297
|
+
Enables checkpointing for a step.
|
298
|
+
|
299
|
+
> Examples
|
300
|
+
|
301
|
+
- Saving Checkpoints
|
302
|
+
|
303
|
+
```python
|
304
|
+
@checkpoint
|
305
|
+
@step
|
306
|
+
def train(self):
|
307
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
308
|
+
for i in range(self.epochs):
|
309
|
+
# some training logic
|
310
|
+
loss = model.train(self.dataset)
|
311
|
+
if i % 10 == 0:
|
312
|
+
model.save(
|
313
|
+
current.checkpoint.directory,
|
314
|
+
)
|
315
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
316
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
317
|
+
self.latest_checkpoint = current.checkpoint.save(
|
318
|
+
name="epoch_checkpoint",
|
319
|
+
metadata={
|
320
|
+
"epoch": i,
|
321
|
+
"loss": loss,
|
322
|
+
}
|
323
|
+
)
|
324
|
+
```
|
325
|
+
|
326
|
+
- Using Loaded Checkpoints
|
327
|
+
|
328
|
+
```python
|
329
|
+
@retry(times=3)
|
330
|
+
@checkpoint
|
331
|
+
@step
|
332
|
+
def train(self):
|
333
|
+
# Assume that the task has restarted and the previous attempt of the task
|
334
|
+
# saved a checkpoint
|
335
|
+
checkpoint_path = None
|
336
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
337
|
+
print("Loaded checkpoint from the previous attempt")
|
338
|
+
checkpoint_path = current.checkpoint.directory
|
339
|
+
|
340
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
341
|
+
for i in range(self.epochs):
|
342
|
+
...
|
343
|
+
```
|
279
344
|
|
280
345
|
|
281
346
|
Parameters
|
282
347
|
----------
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
348
|
+
load_policy : str, default: "fresh"
|
349
|
+
The policy for loading the checkpoint. The following policies are supported:
|
350
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
351
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
352
|
+
will be loaded at the start of the task.
|
353
|
+
- "none": Do not load any checkpoint
|
354
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
355
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
356
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
357
|
+
created within the task will be loaded when the task is retries execution on failure.
|
358
|
+
|
359
|
+
temp_dir_root : str, default: None
|
360
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
287
361
|
"""
|
288
362
|
...
|
289
363
|
|
290
|
-
|
291
|
-
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
364
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
292
365
|
"""
|
293
|
-
Specifies
|
294
|
-
|
295
|
-
Information in this decorator will augment any
|
296
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
297
|
-
you can use `@pypi_base` to set packages required by all
|
298
|
-
steps and use `@pypi` to specify step-specific overrides.
|
366
|
+
Specifies that this step should execute on DGX cloud.
|
299
367
|
|
300
368
|
|
301
369
|
Parameters
|
302
370
|
----------
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
371
|
+
gpu : int
|
372
|
+
Number of GPUs to use.
|
373
|
+
gpu_type : str
|
374
|
+
Type of Nvidia GPU to use.
|
375
|
+
queue_timeout : int
|
376
|
+
Time to keep the job in NVCF's queue.
|
309
377
|
"""
|
310
378
|
...
|
311
379
|
|
312
380
|
@typing.overload
|
313
|
-
def
|
314
|
-
...
|
315
|
-
|
316
|
-
@typing.overload
|
317
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
318
|
-
...
|
319
|
-
|
320
|
-
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
381
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
321
382
|
"""
|
322
|
-
|
323
|
-
|
324
|
-
Information in this decorator will augment any
|
325
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
326
|
-
you can use `@pypi_base` to set packages required by all
|
327
|
-
steps and use `@pypi` to specify step-specific overrides.
|
328
|
-
|
329
|
-
|
330
|
-
Parameters
|
331
|
-
----------
|
332
|
-
packages : Dict[str, str], default: {}
|
333
|
-
Packages to use for this step. The key is the name of the package
|
334
|
-
and the value is the version to use.
|
335
|
-
python : str, optional, default: None
|
336
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
337
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
338
|
-
"""
|
339
|
-
...
|
340
|
-
|
341
|
-
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
342
|
-
"""
|
343
|
-
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
344
|
-
|
345
|
-
User code call
|
346
|
-
--------------
|
347
|
-
@ollama(
|
348
|
-
models=[...],
|
349
|
-
...
|
350
|
-
)
|
351
|
-
|
352
|
-
Valid backend options
|
353
|
-
---------------------
|
354
|
-
- 'local': Run as a separate process on the local task machine.
|
355
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
356
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
357
|
-
|
358
|
-
Valid model options
|
359
|
-
-------------------
|
360
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
361
|
-
|
362
|
-
|
363
|
-
Parameters
|
364
|
-
----------
|
365
|
-
models: list[str]
|
366
|
-
List of Ollama containers running models in sidecars.
|
367
|
-
backend: str
|
368
|
-
Determines where and how to run the Ollama process.
|
369
|
-
force_pull: bool
|
370
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
371
|
-
cache_update_policy: str
|
372
|
-
Cache update policy: "auto", "force", or "never".
|
373
|
-
force_cache_update: bool
|
374
|
-
Simple override for "force" cache update policy.
|
375
|
-
debug: bool
|
376
|
-
Whether to turn on verbose debugging logs.
|
377
|
-
circuit_breaker_config: dict
|
378
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
379
|
-
timeout_config: dict
|
380
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
381
|
-
"""
|
382
|
-
...
|
383
|
-
|
384
|
-
@typing.overload
|
385
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
386
|
-
"""
|
387
|
-
Internal decorator to support Fast bakery
|
388
|
-
"""
|
389
|
-
...
|
390
|
-
|
391
|
-
@typing.overload
|
392
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
393
|
-
...
|
394
|
-
|
395
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
396
|
-
"""
|
397
|
-
Internal decorator to support Fast bakery
|
398
|
-
"""
|
399
|
-
...
|
400
|
-
|
401
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
402
|
-
"""
|
403
|
-
Specifies that this step should execute on Kubernetes.
|
404
|
-
|
405
|
-
|
406
|
-
Parameters
|
407
|
-
----------
|
408
|
-
cpu : int, default 1
|
409
|
-
Number of CPUs required for this step. If `@resources` is
|
410
|
-
also present, the maximum value from all decorators is used.
|
411
|
-
memory : int, default 4096
|
412
|
-
Memory size (in MB) required for this step. If
|
413
|
-
`@resources` is also present, the maximum value from all decorators is
|
414
|
-
used.
|
415
|
-
disk : int, default 10240
|
416
|
-
Disk size (in MB) required for this step. If
|
417
|
-
`@resources` is also present, the maximum value from all decorators is
|
418
|
-
used.
|
419
|
-
image : str, optional, default None
|
420
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
421
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
422
|
-
not, a default Docker image mapping to the current version of Python is used.
|
423
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
424
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
425
|
-
image_pull_secrets: List[str], default []
|
426
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
427
|
-
Kubernetes image pull secrets to use when pulling container images
|
428
|
-
in Kubernetes.
|
429
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
430
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
431
|
-
secrets : List[str], optional, default None
|
432
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
433
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
434
|
-
in Metaflow configuration.
|
435
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
436
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
437
|
-
Can be passed in as a comma separated string of values e.g.
|
438
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
439
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
440
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
441
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
442
|
-
gpu : int, optional, default None
|
443
|
-
Number of GPUs required for this step. A value of zero implies that
|
444
|
-
the scheduled node should not have GPUs.
|
445
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
446
|
-
The vendor of the GPUs to be used for this step.
|
447
|
-
tolerations : List[str], default []
|
448
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
449
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
450
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
451
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
452
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
453
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
454
|
-
use_tmpfs : bool, default False
|
455
|
-
This enables an explicit tmpfs mount for this step.
|
456
|
-
tmpfs_tempdir : bool, default True
|
457
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
458
|
-
tmpfs_size : int, optional, default: None
|
459
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
460
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
461
|
-
memory allocated for this step.
|
462
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
463
|
-
Path to tmpfs mount for this step.
|
464
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
465
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
466
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
467
|
-
shared_memory: int, optional
|
468
|
-
Shared memory size (in MiB) required for this step
|
469
|
-
port: int, optional
|
470
|
-
Port number to specify in the Kubernetes job object
|
471
|
-
compute_pool : str, optional, default None
|
472
|
-
Compute pool to be used for for this step.
|
473
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
474
|
-
hostname_resolution_timeout: int, default 10 * 60
|
475
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
476
|
-
Only applicable when @parallel is used.
|
477
|
-
qos: str, default: Burstable
|
478
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
479
|
-
|
480
|
-
security_context: Dict[str, Any], optional, default None
|
481
|
-
Container security context. Applies to the task container. Allows the following keys:
|
482
|
-
- privileged: bool, optional, default None
|
483
|
-
- allow_privilege_escalation: bool, optional, default None
|
484
|
-
- run_as_user: int, optional, default None
|
485
|
-
- run_as_group: int, optional, default None
|
486
|
-
- run_as_non_root: bool, optional, default None
|
487
|
-
"""
|
488
|
-
...
|
489
|
-
|
490
|
-
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
491
|
-
"""
|
492
|
-
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
493
|
-
|
494
|
-
User code call
|
495
|
-
--------------
|
496
|
-
@vllm(
|
497
|
-
model="...",
|
498
|
-
...
|
499
|
-
)
|
500
|
-
|
501
|
-
Valid backend options
|
502
|
-
---------------------
|
503
|
-
- 'local': Run as a separate process on the local task machine.
|
504
|
-
|
505
|
-
Valid model options
|
506
|
-
-------------------
|
507
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
508
|
-
|
509
|
-
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
510
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
511
|
-
|
512
|
-
|
513
|
-
Parameters
|
514
|
-
----------
|
515
|
-
model: str
|
516
|
-
HuggingFace model identifier to be served by vLLM.
|
517
|
-
backend: str
|
518
|
-
Determines where and how to run the vLLM process.
|
519
|
-
openai_api_server: bool
|
520
|
-
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
521
|
-
Default is False (uses native engine).
|
522
|
-
Set to True for backward compatibility with existing code.
|
523
|
-
debug: bool
|
524
|
-
Whether to turn on verbose debugging logs.
|
525
|
-
card_refresh_interval: int
|
526
|
-
Interval in seconds for refreshing the vLLM status card.
|
527
|
-
Only used when openai_api_server=True.
|
528
|
-
max_retries: int
|
529
|
-
Maximum number of retries checking for vLLM server startup.
|
530
|
-
Only used when openai_api_server=True.
|
531
|
-
retry_alert_frequency: int
|
532
|
-
Frequency of alert logs for vLLM server startup retries.
|
533
|
-
Only used when openai_api_server=True.
|
534
|
-
engine_args : dict
|
535
|
-
Additional keyword arguments to pass to the vLLM engine.
|
536
|
-
For example, `tensor_parallel_size=2`.
|
537
|
-
"""
|
538
|
-
...
|
539
|
-
|
540
|
-
@typing.overload
|
541
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
542
|
-
"""
|
543
|
-
Decorator prototype for all step decorators. This function gets specialized
|
544
|
-
and imported for all decorators types by _import_plugin_decorators().
|
545
|
-
"""
|
546
|
-
...
|
547
|
-
|
548
|
-
@typing.overload
|
549
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
550
|
-
...
|
551
|
-
|
552
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
553
|
-
"""
|
554
|
-
Decorator prototype for all step decorators. This function gets specialized
|
555
|
-
and imported for all decorators types by _import_plugin_decorators().
|
556
|
-
"""
|
557
|
-
...
|
558
|
-
|
559
|
-
@typing.overload
|
560
|
-
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
561
|
-
"""
|
562
|
-
Enables loading / saving of models within a step.
|
383
|
+
Enables loading / saving of models within a step.
|
563
384
|
|
564
385
|
> Examples
|
565
386
|
- Saving Models
|
@@ -686,366 +507,160 @@ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
686
507
|
...
|
687
508
|
|
688
509
|
@typing.overload
|
689
|
-
def
|
510
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
690
511
|
"""
|
691
|
-
|
512
|
+
Specifies the Conda environment for the step.
|
692
513
|
|
693
|
-
|
694
|
-
|
695
|
-
|
696
|
-
|
697
|
-
```python
|
698
|
-
@checkpoint
|
699
|
-
@step
|
700
|
-
def train(self):
|
701
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
702
|
-
for i in range(self.epochs):
|
703
|
-
# some training logic
|
704
|
-
loss = model.train(self.dataset)
|
705
|
-
if i % 10 == 0:
|
706
|
-
model.save(
|
707
|
-
current.checkpoint.directory,
|
708
|
-
)
|
709
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
710
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
711
|
-
self.latest_checkpoint = current.checkpoint.save(
|
712
|
-
name="epoch_checkpoint",
|
713
|
-
metadata={
|
714
|
-
"epoch": i,
|
715
|
-
"loss": loss,
|
716
|
-
}
|
717
|
-
)
|
718
|
-
```
|
719
|
-
|
720
|
-
- Using Loaded Checkpoints
|
721
|
-
|
722
|
-
```python
|
723
|
-
@retry(times=3)
|
724
|
-
@checkpoint
|
725
|
-
@step
|
726
|
-
def train(self):
|
727
|
-
# Assume that the task has restarted and the previous attempt of the task
|
728
|
-
# saved a checkpoint
|
729
|
-
checkpoint_path = None
|
730
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
731
|
-
print("Loaded checkpoint from the previous attempt")
|
732
|
-
checkpoint_path = current.checkpoint.directory
|
733
|
-
|
734
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
735
|
-
for i in range(self.epochs):
|
736
|
-
...
|
737
|
-
```
|
514
|
+
Information in this decorator will augment any
|
515
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
516
|
+
you can use `@conda_base` to set packages required by all
|
517
|
+
steps and use `@conda` to specify step-specific overrides.
|
738
518
|
|
739
519
|
|
740
520
|
Parameters
|
741
521
|
----------
|
742
|
-
|
743
|
-
|
744
|
-
|
745
|
-
|
746
|
-
|
747
|
-
|
748
|
-
|
749
|
-
|
750
|
-
|
751
|
-
|
752
|
-
|
753
|
-
temp_dir_root : str, default: None
|
754
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
522
|
+
packages : Dict[str, str], default {}
|
523
|
+
Packages to use for this step. The key is the name of the package
|
524
|
+
and the value is the version to use.
|
525
|
+
libraries : Dict[str, str], default {}
|
526
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
527
|
+
python : str, optional, default None
|
528
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
529
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
530
|
+
disabled : bool, default False
|
531
|
+
If set to True, disables @conda.
|
755
532
|
"""
|
756
533
|
...
|
757
534
|
|
758
535
|
@typing.overload
|
759
|
-
def
|
536
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
760
537
|
...
|
761
538
|
|
762
539
|
@typing.overload
|
763
|
-
def
|
540
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
764
541
|
...
|
765
542
|
|
766
|
-
def
|
543
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
767
544
|
"""
|
768
|
-
|
769
|
-
|
770
|
-
> Examples
|
771
|
-
|
772
|
-
- Saving Checkpoints
|
773
|
-
|
774
|
-
```python
|
775
|
-
@checkpoint
|
776
|
-
@step
|
777
|
-
def train(self):
|
778
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
779
|
-
for i in range(self.epochs):
|
780
|
-
# some training logic
|
781
|
-
loss = model.train(self.dataset)
|
782
|
-
if i % 10 == 0:
|
783
|
-
model.save(
|
784
|
-
current.checkpoint.directory,
|
785
|
-
)
|
786
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
787
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
788
|
-
self.latest_checkpoint = current.checkpoint.save(
|
789
|
-
name="epoch_checkpoint",
|
790
|
-
metadata={
|
791
|
-
"epoch": i,
|
792
|
-
"loss": loss,
|
793
|
-
}
|
794
|
-
)
|
795
|
-
```
|
796
|
-
|
797
|
-
- Using Loaded Checkpoints
|
798
|
-
|
799
|
-
```python
|
800
|
-
@retry(times=3)
|
801
|
-
@checkpoint
|
802
|
-
@step
|
803
|
-
def train(self):
|
804
|
-
# Assume that the task has restarted and the previous attempt of the task
|
805
|
-
# saved a checkpoint
|
806
|
-
checkpoint_path = None
|
807
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
808
|
-
print("Loaded checkpoint from the previous attempt")
|
809
|
-
checkpoint_path = current.checkpoint.directory
|
810
|
-
|
811
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
812
|
-
for i in range(self.epochs):
|
813
|
-
...
|
814
|
-
```
|
815
|
-
|
816
|
-
|
817
|
-
Parameters
|
818
|
-
----------
|
819
|
-
load_policy : str, default: "fresh"
|
820
|
-
The policy for loading the checkpoint. The following policies are supported:
|
821
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
822
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
823
|
-
will be loaded at the start of the task.
|
824
|
-
- "none": Do not load any checkpoint
|
825
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
826
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
827
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
828
|
-
created within the task will be loaded when the task is retries execution on failure.
|
545
|
+
Specifies the Conda environment for the step.
|
829
546
|
|
830
|
-
|
831
|
-
|
832
|
-
|
833
|
-
|
834
|
-
|
835
|
-
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
836
|
-
"""
|
837
|
-
Specifies that this step should execute on DGX cloud.
|
547
|
+
Information in this decorator will augment any
|
548
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
549
|
+
you can use `@conda_base` to set packages required by all
|
550
|
+
steps and use `@conda` to specify step-specific overrides.
|
838
551
|
|
839
552
|
|
840
553
|
Parameters
|
841
554
|
----------
|
842
|
-
|
843
|
-
|
844
|
-
|
845
|
-
|
846
|
-
|
847
|
-
|
555
|
+
packages : Dict[str, str], default {}
|
556
|
+
Packages to use for this step. The key is the name of the package
|
557
|
+
and the value is the version to use.
|
558
|
+
libraries : Dict[str, str], default {}
|
559
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
560
|
+
python : str, optional, default None
|
561
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
562
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
563
|
+
disabled : bool, default False
|
564
|
+
If set to True, disables @conda.
|
848
565
|
"""
|
849
566
|
...
|
850
567
|
|
851
568
|
@typing.overload
|
852
|
-
def
|
569
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
853
570
|
"""
|
854
|
-
|
855
|
-
to a step needs to be retried.
|
856
|
-
|
857
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
858
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
859
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
571
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
860
572
|
|
861
|
-
|
862
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
863
|
-
ensuring that the flow execution can continue.
|
573
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
864
574
|
|
865
575
|
|
866
576
|
Parameters
|
867
577
|
----------
|
868
|
-
|
869
|
-
|
870
|
-
|
871
|
-
|
578
|
+
type : str, default 'default'
|
579
|
+
Card type.
|
580
|
+
id : str, optional, default None
|
581
|
+
If multiple cards are present, use this id to identify this card.
|
582
|
+
options : Dict[str, Any], default {}
|
583
|
+
Options passed to the card. The contents depend on the card type.
|
584
|
+
timeout : int, default 45
|
585
|
+
Interrupt reporting if it takes more than this many seconds.
|
872
586
|
"""
|
873
587
|
...
|
874
588
|
|
875
589
|
@typing.overload
|
876
|
-
def
|
590
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
877
591
|
...
|
878
592
|
|
879
593
|
@typing.overload
|
880
|
-
def
|
594
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
881
595
|
...
|
882
596
|
|
883
|
-
def
|
597
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
884
598
|
"""
|
885
|
-
|
886
|
-
to a step needs to be retried.
|
887
|
-
|
888
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
889
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
890
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
599
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
891
600
|
|
892
|
-
|
893
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
894
|
-
ensuring that the flow execution can continue.
|
601
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
895
602
|
|
896
603
|
|
897
604
|
Parameters
|
898
605
|
----------
|
899
|
-
|
900
|
-
|
901
|
-
|
902
|
-
|
606
|
+
type : str, default 'default'
|
607
|
+
Card type.
|
608
|
+
id : str, optional, default None
|
609
|
+
If multiple cards are present, use this id to identify this card.
|
610
|
+
options : Dict[str, Any], default {}
|
611
|
+
Options passed to the card. The contents depend on the card type.
|
612
|
+
timeout : int, default 45
|
613
|
+
Interrupt reporting if it takes more than this many seconds.
|
903
614
|
"""
|
904
615
|
...
|
905
616
|
|
906
617
|
@typing.overload
|
907
|
-
def
|
618
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
908
619
|
"""
|
909
|
-
Specifies the
|
620
|
+
Specifies the resources needed when executing this step.
|
910
621
|
|
911
|
-
|
912
|
-
|
913
|
-
|
914
|
-
|
622
|
+
Use `@resources` to specify the resource requirements
|
623
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
624
|
+
|
625
|
+
You can choose the compute layer on the command line by executing e.g.
|
626
|
+
```
|
627
|
+
python myflow.py run --with batch
|
628
|
+
```
|
629
|
+
or
|
630
|
+
```
|
631
|
+
python myflow.py run --with kubernetes
|
632
|
+
```
|
633
|
+
which executes the flow on the desired system using the
|
634
|
+
requirements specified in `@resources`.
|
915
635
|
|
916
636
|
|
917
637
|
Parameters
|
918
638
|
----------
|
919
|
-
|
920
|
-
|
921
|
-
|
922
|
-
|
923
|
-
|
924
|
-
|
925
|
-
|
926
|
-
|
927
|
-
|
928
|
-
|
639
|
+
cpu : int, default 1
|
640
|
+
Number of CPUs required for this step.
|
641
|
+
gpu : int, optional, default None
|
642
|
+
Number of GPUs required for this step.
|
643
|
+
disk : int, optional, default None
|
644
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
645
|
+
memory : int, default 4096
|
646
|
+
Memory size (in MB) required for this step.
|
647
|
+
shared_memory : int, optional, default None
|
648
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
649
|
+
This parameter maps to the `--shm-size` option in Docker.
|
929
650
|
"""
|
930
651
|
...
|
931
652
|
|
932
653
|
@typing.overload
|
933
|
-
def
|
654
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
934
655
|
...
|
935
656
|
|
936
657
|
@typing.overload
|
937
|
-
def
|
658
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
938
659
|
...
|
939
660
|
|
940
|
-
def
|
661
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
941
662
|
"""
|
942
|
-
Specifies the
|
943
|
-
|
944
|
-
Information in this decorator will augment any
|
945
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
946
|
-
you can use `@conda_base` to set packages required by all
|
947
|
-
steps and use `@conda` to specify step-specific overrides.
|
948
|
-
|
949
|
-
|
950
|
-
Parameters
|
951
|
-
----------
|
952
|
-
packages : Dict[str, str], default {}
|
953
|
-
Packages to use for this step. The key is the name of the package
|
954
|
-
and the value is the version to use.
|
955
|
-
libraries : Dict[str, str], default {}
|
956
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
957
|
-
python : str, optional, default None
|
958
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
959
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
960
|
-
disabled : bool, default False
|
961
|
-
If set to True, disables @conda.
|
962
|
-
"""
|
963
|
-
...
|
964
|
-
|
965
|
-
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
966
|
-
"""
|
967
|
-
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
968
|
-
|
969
|
-
> Examples
|
970
|
-
|
971
|
-
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
972
|
-
```python
|
973
|
-
@huggingface_hub
|
974
|
-
@step
|
975
|
-
def pull_model_from_huggingface(self):
|
976
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
977
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
978
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
979
|
-
# value of the function is a reference to the model in the backend storage.
|
980
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
981
|
-
|
982
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
983
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
984
|
-
repo_id=self.model_id,
|
985
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
986
|
-
)
|
987
|
-
self.next(self.train)
|
988
|
-
```
|
989
|
-
|
990
|
-
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
991
|
-
```python
|
992
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
993
|
-
@step
|
994
|
-
def pull_model_from_huggingface(self):
|
995
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
996
|
-
```
|
997
|
-
|
998
|
-
```python
|
999
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
1000
|
-
@step
|
1001
|
-
def finetune_model(self):
|
1002
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1003
|
-
# path_to_model will be /my-directory
|
1004
|
-
```
|
1005
|
-
|
1006
|
-
```python
|
1007
|
-
# Takes all the arguments passed to `snapshot_download`
|
1008
|
-
# except for `local_dir`
|
1009
|
-
@huggingface_hub(load=[
|
1010
|
-
{
|
1011
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
1012
|
-
},
|
1013
|
-
{
|
1014
|
-
"repo_id": "myorg/mistral-lora",
|
1015
|
-
"repo_type": "model",
|
1016
|
-
},
|
1017
|
-
])
|
1018
|
-
@step
|
1019
|
-
def finetune_model(self):
|
1020
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1021
|
-
# path_to_model will be /my-directory
|
1022
|
-
```
|
1023
|
-
|
1024
|
-
|
1025
|
-
Parameters
|
1026
|
-
----------
|
1027
|
-
temp_dir_root : str, optional
|
1028
|
-
The root directory that will hold the temporary directory where objects will be downloaded.
|
1029
|
-
|
1030
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
1031
|
-
The list of repos (models/datasets) to load.
|
1032
|
-
|
1033
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
1034
|
-
|
1035
|
-
- If repo (model/dataset) is not found in the datastore:
|
1036
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
1037
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
1038
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
1039
|
-
|
1040
|
-
- If repo is found in the datastore:
|
1041
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
1042
|
-
"""
|
1043
|
-
...
|
1044
|
-
|
1045
|
-
@typing.overload
|
1046
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1047
|
-
"""
|
1048
|
-
Specifies the resources needed when executing this step.
|
663
|
+
Specifies the resources needed when executing this step.
|
1049
664
|
|
1050
665
|
Use `@resources` to specify the resource requirements
|
1051
666
|
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
@@ -1079,421 +694,582 @@ def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Op
|
|
1079
694
|
...
|
1080
695
|
|
1081
696
|
@typing.overload
|
1082
|
-
def
|
1083
|
-
...
|
1084
|
-
|
1085
|
-
@typing.overload
|
1086
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1087
|
-
...
|
1088
|
-
|
1089
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
697
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1090
698
|
"""
|
1091
|
-
Specifies
|
1092
|
-
|
1093
|
-
Use `@resources` to specify the resource requirements
|
1094
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
1095
|
-
|
1096
|
-
You can choose the compute layer on the command line by executing e.g.
|
1097
|
-
```
|
1098
|
-
python myflow.py run --with batch
|
1099
|
-
```
|
1100
|
-
or
|
1101
|
-
```
|
1102
|
-
python myflow.py run --with kubernetes
|
1103
|
-
```
|
1104
|
-
which executes the flow on the desired system using the
|
1105
|
-
requirements specified in `@resources`.
|
699
|
+
Specifies a timeout for your step.
|
1106
700
|
|
701
|
+
This decorator is useful if this step may hang indefinitely.
|
1107
702
|
|
1108
|
-
|
1109
|
-
|
1110
|
-
|
1111
|
-
Number of CPUs required for this step.
|
1112
|
-
gpu : int, optional, default None
|
1113
|
-
Number of GPUs required for this step.
|
1114
|
-
disk : int, optional, default None
|
1115
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
1116
|
-
memory : int, default 4096
|
1117
|
-
Memory size (in MB) required for this step.
|
1118
|
-
shared_memory : int, optional, default None
|
1119
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
1120
|
-
This parameter maps to the `--shm-size` option in Docker.
|
1121
|
-
"""
|
1122
|
-
...
|
1123
|
-
|
1124
|
-
@typing.overload
|
1125
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1126
|
-
"""
|
1127
|
-
Specifies that the step will success under all circumstances.
|
703
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
704
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
705
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
1128
706
|
|
1129
|
-
|
1130
|
-
|
1131
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
1132
|
-
are missing.
|
707
|
+
Note that all the values specified in parameters are added together so if you specify
|
708
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
1133
709
|
|
1134
710
|
|
1135
711
|
Parameters
|
1136
712
|
----------
|
1137
|
-
|
1138
|
-
|
1139
|
-
|
1140
|
-
|
1141
|
-
|
1142
|
-
|
713
|
+
seconds : int, default 0
|
714
|
+
Number of seconds to wait prior to timing out.
|
715
|
+
minutes : int, default 0
|
716
|
+
Number of minutes to wait prior to timing out.
|
717
|
+
hours : int, default 0
|
718
|
+
Number of hours to wait prior to timing out.
|
1143
719
|
"""
|
1144
720
|
...
|
1145
721
|
|
1146
722
|
@typing.overload
|
1147
|
-
def
|
723
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1148
724
|
...
|
1149
725
|
|
1150
726
|
@typing.overload
|
1151
|
-
def
|
727
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1152
728
|
...
|
1153
729
|
|
1154
|
-
def
|
730
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
1155
731
|
"""
|
1156
|
-
Specifies
|
732
|
+
Specifies a timeout for your step.
|
1157
733
|
|
1158
|
-
|
1159
|
-
contains the exception raised. You can use it to detect the presence
|
1160
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
1161
|
-
are missing.
|
734
|
+
This decorator is useful if this step may hang indefinitely.
|
1162
735
|
|
736
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
737
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
738
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
1163
739
|
|
1164
|
-
|
1165
|
-
|
1166
|
-
var : str, optional, default None
|
1167
|
-
Name of the artifact in which to store the caught exception.
|
1168
|
-
If not specified, the exception is not stored.
|
1169
|
-
print_exception : bool, default True
|
1170
|
-
Determines whether or not the exception is printed to
|
1171
|
-
stdout when caught.
|
1172
|
-
"""
|
1173
|
-
...
|
1174
|
-
|
1175
|
-
@typing.overload
|
1176
|
-
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1177
|
-
"""
|
1178
|
-
Specifies environment variables to be set prior to the execution of a step.
|
740
|
+
Note that all the values specified in parameters are added together so if you specify
|
741
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
1179
742
|
|
1180
743
|
|
1181
744
|
Parameters
|
1182
745
|
----------
|
1183
|
-
|
1184
|
-
|
746
|
+
seconds : int, default 0
|
747
|
+
Number of seconds to wait prior to timing out.
|
748
|
+
minutes : int, default 0
|
749
|
+
Number of minutes to wait prior to timing out.
|
750
|
+
hours : int, default 0
|
751
|
+
Number of hours to wait prior to timing out.
|
1185
752
|
"""
|
1186
753
|
...
|
1187
754
|
|
1188
|
-
|
1189
|
-
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1190
|
-
...
|
1191
|
-
|
1192
|
-
@typing.overload
|
1193
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1194
|
-
...
|
1195
|
-
|
1196
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
755
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1197
756
|
"""
|
1198
|
-
|
757
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
758
|
+
|
759
|
+
User code call
|
760
|
+
--------------
|
761
|
+
@vllm(
|
762
|
+
model="...",
|
763
|
+
...
|
764
|
+
)
|
1199
765
|
|
766
|
+
Valid backend options
|
767
|
+
---------------------
|
768
|
+
- 'local': Run as a separate process on the local task machine.
|
1200
769
|
|
1201
|
-
|
1202
|
-
|
1203
|
-
|
1204
|
-
Dictionary of environment variables to set.
|
1205
|
-
"""
|
1206
|
-
...
|
1207
|
-
|
1208
|
-
@typing.overload
|
1209
|
-
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1210
|
-
"""
|
1211
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
770
|
+
Valid model options
|
771
|
+
-------------------
|
772
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
1212
773
|
|
1213
|
-
|
774
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
775
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
1214
776
|
|
1215
777
|
|
1216
778
|
Parameters
|
1217
779
|
----------
|
1218
|
-
|
1219
|
-
|
1220
|
-
|
1221
|
-
|
1222
|
-
|
1223
|
-
|
1224
|
-
|
1225
|
-
|
780
|
+
model: str
|
781
|
+
HuggingFace model identifier to be served by vLLM.
|
782
|
+
backend: str
|
783
|
+
Determines where and how to run the vLLM process.
|
784
|
+
openai_api_server: bool
|
785
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
786
|
+
Default is False (uses native engine).
|
787
|
+
Set to True for backward compatibility with existing code.
|
788
|
+
debug: bool
|
789
|
+
Whether to turn on verbose debugging logs.
|
790
|
+
card_refresh_interval: int
|
791
|
+
Interval in seconds for refreshing the vLLM status card.
|
792
|
+
Only used when openai_api_server=True.
|
793
|
+
max_retries: int
|
794
|
+
Maximum number of retries checking for vLLM server startup.
|
795
|
+
Only used when openai_api_server=True.
|
796
|
+
retry_alert_frequency: int
|
797
|
+
Frequency of alert logs for vLLM server startup retries.
|
798
|
+
Only used when openai_api_server=True.
|
799
|
+
engine_args : dict
|
800
|
+
Additional keyword arguments to pass to the vLLM engine.
|
801
|
+
For example, `tensor_parallel_size=2`.
|
1226
802
|
"""
|
1227
803
|
...
|
1228
804
|
|
1229
805
|
@typing.overload
|
1230
|
-
def
|
806
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
807
|
+
"""
|
808
|
+
Specifies the number of times the task corresponding
|
809
|
+
to a step needs to be retried.
|
810
|
+
|
811
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
812
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
813
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
814
|
+
|
815
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
816
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
817
|
+
ensuring that the flow execution can continue.
|
818
|
+
|
819
|
+
|
820
|
+
Parameters
|
821
|
+
----------
|
822
|
+
times : int, default 3
|
823
|
+
Number of times to retry this task.
|
824
|
+
minutes_between_retries : int, default 2
|
825
|
+
Number of minutes between retries.
|
826
|
+
"""
|
1231
827
|
...
|
1232
828
|
|
1233
829
|
@typing.overload
|
1234
|
-
def
|
830
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1235
831
|
...
|
1236
832
|
|
1237
|
-
|
833
|
+
@typing.overload
|
834
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
835
|
+
...
|
836
|
+
|
837
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
1238
838
|
"""
|
1239
|
-
|
839
|
+
Specifies the number of times the task corresponding
|
840
|
+
to a step needs to be retried.
|
1240
841
|
|
1241
|
-
|
842
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
843
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
844
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
845
|
+
|
846
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
847
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
848
|
+
ensuring that the flow execution can continue.
|
1242
849
|
|
1243
850
|
|
1244
851
|
Parameters
|
1245
852
|
----------
|
1246
|
-
|
1247
|
-
|
1248
|
-
|
1249
|
-
|
1250
|
-
options : Dict[str, Any], default {}
|
1251
|
-
Options passed to the card. The contents depend on the card type.
|
1252
|
-
timeout : int, default 45
|
1253
|
-
Interrupt reporting if it takes more than this many seconds.
|
853
|
+
times : int, default 3
|
854
|
+
Number of times to retry this task.
|
855
|
+
minutes_between_retries : int, default 2
|
856
|
+
Number of minutes between retries.
|
1254
857
|
"""
|
1255
858
|
...
|
1256
859
|
|
1257
|
-
|
860
|
+
@typing.overload
|
861
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1258
862
|
"""
|
1259
|
-
|
1260
|
-
|
863
|
+
Decorator prototype for all step decorators. This function gets specialized
|
864
|
+
and imported for all decorators types by _import_plugin_decorators().
|
865
|
+
"""
|
866
|
+
...
|
867
|
+
|
868
|
+
@typing.overload
|
869
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
870
|
+
...
|
871
|
+
|
872
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
873
|
+
"""
|
874
|
+
Decorator prototype for all step decorators. This function gets specialized
|
875
|
+
and imported for all decorators types by _import_plugin_decorators().
|
876
|
+
"""
|
877
|
+
...
|
878
|
+
|
879
|
+
@typing.overload
|
880
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
881
|
+
"""
|
882
|
+
Internal decorator to support Fast bakery
|
883
|
+
"""
|
884
|
+
...
|
885
|
+
|
886
|
+
@typing.overload
|
887
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
888
|
+
...
|
889
|
+
|
890
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
891
|
+
"""
|
892
|
+
Internal decorator to support Fast bakery
|
893
|
+
"""
|
894
|
+
...
|
895
|
+
|
896
|
+
@typing.overload
|
897
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
898
|
+
"""
|
899
|
+
Specifies that the step will success under all circumstances.
|
900
|
+
|
901
|
+
The decorator will create an optional artifact, specified by `var`, which
|
902
|
+
contains the exception raised. You can use it to detect the presence
|
903
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
904
|
+
are missing.
|
1261
905
|
|
1262
906
|
|
1263
907
|
Parameters
|
1264
908
|
----------
|
1265
|
-
|
1266
|
-
|
1267
|
-
|
1268
|
-
|
1269
|
-
|
1270
|
-
|
1271
|
-
exponential_backoff : bool
|
1272
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1273
|
-
pool : str
|
1274
|
-
the slot pool this task should run in,
|
1275
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1276
|
-
soft_fail : bool
|
1277
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1278
|
-
name : str
|
1279
|
-
Name of the sensor on Airflow
|
1280
|
-
description : str
|
1281
|
-
Description of sensor in the Airflow UI
|
1282
|
-
external_dag_id : str
|
1283
|
-
The dag_id that contains the task you want to wait for.
|
1284
|
-
external_task_ids : List[str]
|
1285
|
-
The list of task_ids that you want to wait for.
|
1286
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
1287
|
-
allowed_states : List[str]
|
1288
|
-
Iterable of allowed states, (Default: ['success'])
|
1289
|
-
failed_states : List[str]
|
1290
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1291
|
-
execution_delta : datetime.timedelta
|
1292
|
-
time difference with the previous execution to look at,
|
1293
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1294
|
-
check_existence: bool
|
1295
|
-
Set to True to check if the external task exists or check if
|
1296
|
-
the DAG to wait for exists. (Default: True)
|
909
|
+
var : str, optional, default None
|
910
|
+
Name of the artifact in which to store the caught exception.
|
911
|
+
If not specified, the exception is not stored.
|
912
|
+
print_exception : bool, default True
|
913
|
+
Determines whether or not the exception is printed to
|
914
|
+
stdout when caught.
|
1297
915
|
"""
|
1298
916
|
...
|
1299
917
|
|
1300
|
-
|
918
|
+
@typing.overload
|
919
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
920
|
+
...
|
921
|
+
|
922
|
+
@typing.overload
|
923
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
924
|
+
...
|
925
|
+
|
926
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
1301
927
|
"""
|
1302
|
-
|
1303
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
928
|
+
Specifies that the step will success under all circumstances.
|
1304
929
|
|
1305
|
-
|
1306
|
-
|
930
|
+
The decorator will create an optional artifact, specified by `var`, which
|
931
|
+
contains the exception raised. You can use it to detect the presence
|
932
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
933
|
+
are missing.
|
1307
934
|
|
1308
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1309
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1310
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1311
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1312
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1313
935
|
|
1314
|
-
|
936
|
+
Parameters
|
1315
937
|
----------
|
938
|
+
var : str, optional, default None
|
939
|
+
Name of the artifact in which to store the caught exception.
|
940
|
+
If not specified, the exception is not stored.
|
941
|
+
print_exception : bool, default True
|
942
|
+
Determines whether or not the exception is printed to
|
943
|
+
stdout when caught.
|
944
|
+
"""
|
945
|
+
...
|
946
|
+
|
947
|
+
@typing.overload
|
948
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
949
|
+
"""
|
950
|
+
Specifies environment variables to be set prior to the execution of a step.
|
1316
951
|
|
1317
|
-
- Using a custom IAM role to access the datastore.
|
1318
|
-
|
1319
|
-
```python
|
1320
|
-
@with_artifact_store(
|
1321
|
-
type="s3",
|
1322
|
-
config=lambda: {
|
1323
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1324
|
-
"role_arn": ROLE,
|
1325
|
-
},
|
1326
|
-
)
|
1327
|
-
class MyFlow(FlowSpec):
|
1328
|
-
|
1329
|
-
@checkpoint
|
1330
|
-
@step
|
1331
|
-
def start(self):
|
1332
|
-
with open("my_file.txt", "w") as f:
|
1333
|
-
f.write("Hello, World!")
|
1334
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1335
|
-
self.next(self.end)
|
1336
952
|
|
1337
|
-
|
953
|
+
Parameters
|
954
|
+
----------
|
955
|
+
vars : Dict[str, str], default {}
|
956
|
+
Dictionary of environment variables to set.
|
957
|
+
"""
|
958
|
+
...
|
959
|
+
|
960
|
+
@typing.overload
|
961
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
962
|
+
...
|
963
|
+
|
964
|
+
@typing.overload
|
965
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
966
|
+
...
|
967
|
+
|
968
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
969
|
+
"""
|
970
|
+
Specifies environment variables to be set prior to the execution of a step.
|
1338
971
|
|
1339
|
-
- Using credentials to access the s3-compatible datastore.
|
1340
972
|
|
1341
|
-
|
1342
|
-
|
1343
|
-
|
1344
|
-
|
1345
|
-
|
1346
|
-
|
1347
|
-
|
1348
|
-
|
1349
|
-
|
1350
|
-
|
1351
|
-
)
|
1352
|
-
class MyFlow(FlowSpec):
|
973
|
+
Parameters
|
974
|
+
----------
|
975
|
+
vars : Dict[str, str], default {}
|
976
|
+
Dictionary of environment variables to set.
|
977
|
+
"""
|
978
|
+
...
|
979
|
+
|
980
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
981
|
+
"""
|
982
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
1353
983
|
|
1354
|
-
|
1355
|
-
@step
|
1356
|
-
def start(self):
|
1357
|
-
with open("my_file.txt", "w") as f:
|
1358
|
-
f.write("Hello, World!")
|
1359
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1360
|
-
self.next(self.end)
|
984
|
+
> Examples
|
1361
985
|
|
1362
|
-
|
986
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
987
|
+
```python
|
988
|
+
@huggingface_hub
|
989
|
+
@step
|
990
|
+
def pull_model_from_huggingface(self):
|
991
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
992
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
993
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
994
|
+
# value of the function is a reference to the model in the backend storage.
|
995
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
1363
996
|
|
1364
|
-
|
997
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
998
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
999
|
+
repo_id=self.model_id,
|
1000
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
1001
|
+
)
|
1002
|
+
self.next(self.train)
|
1003
|
+
```
|
1365
1004
|
|
1366
|
-
|
1367
|
-
|
1368
|
-
|
1369
|
-
|
1370
|
-
|
1371
|
-
|
1372
|
-
|
1373
|
-
}):
|
1374
|
-
with Checkpoint() as cp:
|
1375
|
-
latest = cp.list(
|
1376
|
-
task=run["start"].task
|
1377
|
-
)[0]
|
1378
|
-
print(latest)
|
1379
|
-
cp.load(
|
1380
|
-
latest,
|
1381
|
-
"test-checkpoints"
|
1382
|
-
)
|
1005
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
1006
|
+
```python
|
1007
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
1008
|
+
@step
|
1009
|
+
def pull_model_from_huggingface(self):
|
1010
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1011
|
+
```
|
1383
1012
|
|
1384
|
-
|
1385
|
-
|
1386
|
-
|
1387
|
-
|
1388
|
-
|
1013
|
+
```python
|
1014
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
1015
|
+
@step
|
1016
|
+
def finetune_model(self):
|
1017
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1018
|
+
# path_to_model will be /my-directory
|
1019
|
+
```
|
1020
|
+
|
1021
|
+
```python
|
1022
|
+
# Takes all the arguments passed to `snapshot_download`
|
1023
|
+
# except for `local_dir`
|
1024
|
+
@huggingface_hub(load=[
|
1025
|
+
{
|
1026
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
1389
1027
|
},
|
1390
|
-
|
1391
|
-
|
1392
|
-
|
1393
|
-
|
1394
|
-
|
1395
|
-
|
1396
|
-
|
1028
|
+
{
|
1029
|
+
"repo_id": "myorg/mistral-lora",
|
1030
|
+
"repo_type": "model",
|
1031
|
+
},
|
1032
|
+
])
|
1033
|
+
@step
|
1034
|
+
def finetune_model(self):
|
1035
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1036
|
+
# path_to_model will be /my-directory
|
1037
|
+
```
|
1038
|
+
|
1039
|
+
|
1040
|
+
Parameters
|
1397
1041
|
----------
|
1042
|
+
temp_dir_root : str, optional
|
1043
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
1398
1044
|
|
1399
|
-
|
1400
|
-
The
|
1045
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
1046
|
+
The list of repos (models/datasets) to load.
|
1401
1047
|
|
1402
|
-
|
1403
|
-
|
1404
|
-
-
|
1405
|
-
-
|
1406
|
-
-
|
1407
|
-
|
1408
|
-
|
1409
|
-
-
|
1410
|
-
|
1048
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
1049
|
+
|
1050
|
+
- If repo (model/dataset) is not found in the datastore:
|
1051
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
1052
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
1053
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
1054
|
+
|
1055
|
+
- If repo is found in the datastore:
|
1056
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
1411
1057
|
"""
|
1412
1058
|
...
|
1413
1059
|
|
1414
|
-
|
1060
|
+
@typing.overload
|
1061
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1415
1062
|
"""
|
1416
|
-
|
1063
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
1064
|
+
to inject a card and render simple markdown content.
|
1065
|
+
"""
|
1066
|
+
...
|
1067
|
+
|
1068
|
+
@typing.overload
|
1069
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1070
|
+
...
|
1071
|
+
|
1072
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1073
|
+
"""
|
1074
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
1075
|
+
to inject a card and render simple markdown content.
|
1076
|
+
"""
|
1077
|
+
...
|
1078
|
+
|
1079
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1080
|
+
"""
|
1081
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
1417
1082
|
|
1418
|
-
|
1419
|
-
|
1083
|
+
User code call
|
1084
|
+
--------------
|
1085
|
+
@ollama(
|
1086
|
+
models=[...],
|
1087
|
+
...
|
1088
|
+
)
|
1089
|
+
|
1090
|
+
Valid backend options
|
1091
|
+
---------------------
|
1092
|
+
- 'local': Run as a separate process on the local task machine.
|
1093
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
1094
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
1095
|
+
|
1096
|
+
Valid model options
|
1097
|
+
-------------------
|
1098
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
1420
1099
|
|
1421
1100
|
|
1422
1101
|
Parameters
|
1423
1102
|
----------
|
1424
|
-
|
1425
|
-
|
1426
|
-
|
1427
|
-
|
1103
|
+
models: list[str]
|
1104
|
+
List of Ollama containers running models in sidecars.
|
1105
|
+
backend: str
|
1106
|
+
Determines where and how to run the Ollama process.
|
1107
|
+
force_pull: bool
|
1108
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
1109
|
+
cache_update_policy: str
|
1110
|
+
Cache update policy: "auto", "force", or "never".
|
1111
|
+
force_cache_update: bool
|
1112
|
+
Simple override for "force" cache update policy.
|
1113
|
+
debug: bool
|
1114
|
+
Whether to turn on verbose debugging logs.
|
1115
|
+
circuit_breaker_config: dict
|
1116
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
1117
|
+
timeout_config: dict
|
1118
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
1119
|
+
"""
|
1120
|
+
...
|
1121
|
+
|
1122
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1123
|
+
"""
|
1124
|
+
Specifies that this step should execute on DGX cloud.
|
1428
1125
|
|
1429
|
-
branch : Optional[str], default None
|
1430
|
-
The branch to use. If not specified, the branch is set to
|
1431
|
-
`user.<username>` unless `production` is set to `True`. This can
|
1432
|
-
also be set on the command line using `--branch` as a top-level option.
|
1433
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
1434
1126
|
|
1435
|
-
|
1436
|
-
|
1437
|
-
|
1438
|
-
|
1439
|
-
|
1440
|
-
|
1441
|
-
- if `production` is True: `prod.<branch>`
|
1442
|
-
- if `production` is False: `test.<branch>`
|
1443
|
-
- if `branch` is not specified:
|
1444
|
-
- if `production` is True: `prod`
|
1445
|
-
- if `production` is False: `user.<username>`
|
1127
|
+
Parameters
|
1128
|
+
----------
|
1129
|
+
gpu : int
|
1130
|
+
Number of GPUs to use.
|
1131
|
+
gpu_type : str
|
1132
|
+
Type of Nvidia GPU to use.
|
1446
1133
|
"""
|
1447
1134
|
...
|
1448
1135
|
|
1449
1136
|
@typing.overload
|
1450
|
-
def
|
1137
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1451
1138
|
"""
|
1452
|
-
Specifies the
|
1139
|
+
Specifies the PyPI packages for the step.
|
1453
1140
|
|
1454
|
-
|
1455
|
-
|
1141
|
+
Information in this decorator will augment any
|
1142
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
1143
|
+
you can use `@pypi_base` to set packages required by all
|
1144
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1456
1145
|
|
1457
1146
|
|
1458
1147
|
Parameters
|
1459
1148
|
----------
|
1460
|
-
packages : Dict[str, str], default {}
|
1461
|
-
Packages to use for this
|
1149
|
+
packages : Dict[str, str], default: {}
|
1150
|
+
Packages to use for this step. The key is the name of the package
|
1462
1151
|
and the value is the version to use.
|
1463
|
-
|
1464
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1465
|
-
python : str, optional, default None
|
1152
|
+
python : str, optional, default: None
|
1466
1153
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1467
1154
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1468
|
-
disabled : bool, default False
|
1469
|
-
If set to True, disables Conda.
|
1470
1155
|
"""
|
1471
1156
|
...
|
1472
1157
|
|
1473
1158
|
@typing.overload
|
1474
|
-
def
|
1159
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1475
1160
|
...
|
1476
1161
|
|
1477
|
-
|
1162
|
+
@typing.overload
|
1163
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1164
|
+
...
|
1165
|
+
|
1166
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1478
1167
|
"""
|
1479
|
-
Specifies the
|
1168
|
+
Specifies the PyPI packages for the step.
|
1480
1169
|
|
1481
|
-
|
1482
|
-
|
1170
|
+
Information in this decorator will augment any
|
1171
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
1172
|
+
you can use `@pypi_base` to set packages required by all
|
1173
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1483
1174
|
|
1484
1175
|
|
1485
1176
|
Parameters
|
1486
1177
|
----------
|
1487
|
-
packages : Dict[str, str], default {}
|
1488
|
-
Packages to use for this
|
1178
|
+
packages : Dict[str, str], default: {}
|
1179
|
+
Packages to use for this step. The key is the name of the package
|
1489
1180
|
and the value is the version to use.
|
1490
|
-
|
1491
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1492
|
-
python : str, optional, default None
|
1181
|
+
python : str, optional, default: None
|
1493
1182
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1494
1183
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1495
|
-
|
1496
|
-
|
1184
|
+
"""
|
1185
|
+
...
|
1186
|
+
|
1187
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1188
|
+
"""
|
1189
|
+
Specifies that this step should execute on Kubernetes.
|
1190
|
+
|
1191
|
+
|
1192
|
+
Parameters
|
1193
|
+
----------
|
1194
|
+
cpu : int, default 1
|
1195
|
+
Number of CPUs required for this step. If `@resources` is
|
1196
|
+
also present, the maximum value from all decorators is used.
|
1197
|
+
memory : int, default 4096
|
1198
|
+
Memory size (in MB) required for this step. If
|
1199
|
+
`@resources` is also present, the maximum value from all decorators is
|
1200
|
+
used.
|
1201
|
+
disk : int, default 10240
|
1202
|
+
Disk size (in MB) required for this step. If
|
1203
|
+
`@resources` is also present, the maximum value from all decorators is
|
1204
|
+
used.
|
1205
|
+
image : str, optional, default None
|
1206
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
1207
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
1208
|
+
not, a default Docker image mapping to the current version of Python is used.
|
1209
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
1210
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
1211
|
+
image_pull_secrets: List[str], default []
|
1212
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
1213
|
+
Kubernetes image pull secrets to use when pulling container images
|
1214
|
+
in Kubernetes.
|
1215
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
1216
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
1217
|
+
secrets : List[str], optional, default None
|
1218
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
1219
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
1220
|
+
in Metaflow configuration.
|
1221
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
1222
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
1223
|
+
Can be passed in as a comma separated string of values e.g.
|
1224
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
1225
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
1226
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
1227
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
1228
|
+
gpu : int, optional, default None
|
1229
|
+
Number of GPUs required for this step. A value of zero implies that
|
1230
|
+
the scheduled node should not have GPUs.
|
1231
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
1232
|
+
The vendor of the GPUs to be used for this step.
|
1233
|
+
tolerations : List[str], default []
|
1234
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
1235
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
1236
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
1237
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
1238
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
1239
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
1240
|
+
use_tmpfs : bool, default False
|
1241
|
+
This enables an explicit tmpfs mount for this step.
|
1242
|
+
tmpfs_tempdir : bool, default True
|
1243
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
1244
|
+
tmpfs_size : int, optional, default: None
|
1245
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
1246
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
1247
|
+
memory allocated for this step.
|
1248
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
1249
|
+
Path to tmpfs mount for this step.
|
1250
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
1251
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
1252
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
1253
|
+
shared_memory: int, optional
|
1254
|
+
Shared memory size (in MiB) required for this step
|
1255
|
+
port: int, optional
|
1256
|
+
Port number to specify in the Kubernetes job object
|
1257
|
+
compute_pool : str, optional, default None
|
1258
|
+
Compute pool to be used for for this step.
|
1259
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
1260
|
+
hostname_resolution_timeout: int, default 10 * 60
|
1261
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
1262
|
+
Only applicable when @parallel is used.
|
1263
|
+
qos: str, default: Burstable
|
1264
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
1265
|
+
|
1266
|
+
security_context: Dict[str, Any], optional, default None
|
1267
|
+
Container security context. Applies to the task container. Allows the following keys:
|
1268
|
+
- privileged: bool, optional, default None
|
1269
|
+
- allow_privilege_escalation: bool, optional, default None
|
1270
|
+
- run_as_user: int, optional, default None
|
1271
|
+
- run_as_group: int, optional, default None
|
1272
|
+
- run_as_non_root: bool, optional, default None
|
1497
1273
|
"""
|
1498
1274
|
...
|
1499
1275
|
|
@@ -1540,6 +1316,41 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
1540
1316
|
"""
|
1541
1317
|
...
|
1542
1318
|
|
1319
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1320
|
+
"""
|
1321
|
+
Specifies what flows belong to the same project.
|
1322
|
+
|
1323
|
+
A project-specific namespace is created for all flows that
|
1324
|
+
use the same `@project(name)`.
|
1325
|
+
|
1326
|
+
|
1327
|
+
Parameters
|
1328
|
+
----------
|
1329
|
+
name : str
|
1330
|
+
Project name. Make sure that the name is unique amongst all
|
1331
|
+
projects that use the same production scheduler. The name may
|
1332
|
+
contain only lowercase alphanumeric characters and underscores.
|
1333
|
+
|
1334
|
+
branch : Optional[str], default None
|
1335
|
+
The branch to use. If not specified, the branch is set to
|
1336
|
+
`user.<username>` unless `production` is set to `True`. This can
|
1337
|
+
also be set on the command line using `--branch` as a top-level option.
|
1338
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
1339
|
+
|
1340
|
+
production : bool, default False
|
1341
|
+
Whether or not the branch is the production branch. This can also be set on the
|
1342
|
+
command line using `--production` as a top-level option. It is an error to specify
|
1343
|
+
`production` in the decorator and on the command line.
|
1344
|
+
The project branch name will be:
|
1345
|
+
- if `branch` is specified:
|
1346
|
+
- if `production` is True: `prod.<branch>`
|
1347
|
+
- if `production` is False: `test.<branch>`
|
1348
|
+
- if `branch` is not specified:
|
1349
|
+
- if `production` is True: `prod`
|
1350
|
+
- if `production` is False: `user.<username>`
|
1351
|
+
"""
|
1352
|
+
...
|
1353
|
+
|
1543
1354
|
@typing.overload
|
1544
1355
|
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1545
1356
|
"""
|
@@ -1682,6 +1493,49 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
1682
1493
|
"""
|
1683
1494
|
...
|
1684
1495
|
|
1496
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1497
|
+
"""
|
1498
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1499
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1500
|
+
|
1501
|
+
|
1502
|
+
Parameters
|
1503
|
+
----------
|
1504
|
+
timeout : int
|
1505
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1506
|
+
poke_interval : int
|
1507
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1508
|
+
mode : str
|
1509
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1510
|
+
exponential_backoff : bool
|
1511
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1512
|
+
pool : str
|
1513
|
+
the slot pool this task should run in,
|
1514
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1515
|
+
soft_fail : bool
|
1516
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1517
|
+
name : str
|
1518
|
+
Name of the sensor on Airflow
|
1519
|
+
description : str
|
1520
|
+
Description of sensor in the Airflow UI
|
1521
|
+
external_dag_id : str
|
1522
|
+
The dag_id that contains the task you want to wait for.
|
1523
|
+
external_task_ids : List[str]
|
1524
|
+
The list of task_ids that you want to wait for.
|
1525
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1526
|
+
allowed_states : List[str]
|
1527
|
+
Iterable of allowed states, (Default: ['success'])
|
1528
|
+
failed_states : List[str]
|
1529
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1530
|
+
execution_delta : datetime.timedelta
|
1531
|
+
time difference with the previous execution to look at,
|
1532
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1533
|
+
check_existence: bool
|
1534
|
+
Set to True to check if the external task exists or check if
|
1535
|
+
the DAG to wait for exists. (Default: True)
|
1536
|
+
"""
|
1537
|
+
...
|
1538
|
+
|
1685
1539
|
@typing.overload
|
1686
1540
|
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1687
1541
|
"""
|
@@ -1826,5 +1680,170 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
1826
1680
|
"""
|
1827
1681
|
...
|
1828
1682
|
|
1683
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1684
|
+
"""
|
1685
|
+
Allows setting external datastores to save data for the
|
1686
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1687
|
+
|
1688
|
+
This decorator is useful when users wish to save data to a different datastore
|
1689
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1690
|
+
|
1691
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1692
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1693
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1694
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1695
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1696
|
+
|
1697
|
+
Usage:
|
1698
|
+
----------
|
1699
|
+
|
1700
|
+
- Using a custom IAM role to access the datastore.
|
1701
|
+
|
1702
|
+
```python
|
1703
|
+
@with_artifact_store(
|
1704
|
+
type="s3",
|
1705
|
+
config=lambda: {
|
1706
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1707
|
+
"role_arn": ROLE,
|
1708
|
+
},
|
1709
|
+
)
|
1710
|
+
class MyFlow(FlowSpec):
|
1711
|
+
|
1712
|
+
@checkpoint
|
1713
|
+
@step
|
1714
|
+
def start(self):
|
1715
|
+
with open("my_file.txt", "w") as f:
|
1716
|
+
f.write("Hello, World!")
|
1717
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1718
|
+
self.next(self.end)
|
1719
|
+
|
1720
|
+
```
|
1721
|
+
|
1722
|
+
- Using credentials to access the s3-compatible datastore.
|
1723
|
+
|
1724
|
+
```python
|
1725
|
+
@with_artifact_store(
|
1726
|
+
type="s3",
|
1727
|
+
config=lambda: {
|
1728
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1729
|
+
"client_params": {
|
1730
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1731
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1732
|
+
},
|
1733
|
+
},
|
1734
|
+
)
|
1735
|
+
class MyFlow(FlowSpec):
|
1736
|
+
|
1737
|
+
@checkpoint
|
1738
|
+
@step
|
1739
|
+
def start(self):
|
1740
|
+
with open("my_file.txt", "w") as f:
|
1741
|
+
f.write("Hello, World!")
|
1742
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1743
|
+
self.next(self.end)
|
1744
|
+
|
1745
|
+
```
|
1746
|
+
|
1747
|
+
- Accessing objects stored in external datastores after task execution.
|
1748
|
+
|
1749
|
+
```python
|
1750
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1751
|
+
with artifact_store_from(run=run, config={
|
1752
|
+
"client_params": {
|
1753
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1754
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1755
|
+
},
|
1756
|
+
}):
|
1757
|
+
with Checkpoint() as cp:
|
1758
|
+
latest = cp.list(
|
1759
|
+
task=run["start"].task
|
1760
|
+
)[0]
|
1761
|
+
print(latest)
|
1762
|
+
cp.load(
|
1763
|
+
latest,
|
1764
|
+
"test-checkpoints"
|
1765
|
+
)
|
1766
|
+
|
1767
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1768
|
+
with artifact_store_from(run=run, config={
|
1769
|
+
"client_params": {
|
1770
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1771
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1772
|
+
},
|
1773
|
+
}):
|
1774
|
+
load_model(
|
1775
|
+
task.data.model_ref,
|
1776
|
+
"test-models"
|
1777
|
+
)
|
1778
|
+
```
|
1779
|
+
Parameters:
|
1780
|
+
----------
|
1781
|
+
|
1782
|
+
type: str
|
1783
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1784
|
+
|
1785
|
+
config: dict or Callable
|
1786
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1787
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1788
|
+
- example: 's3://bucket-name/path/to/root'
|
1789
|
+
- example: 'gs://bucket-name/path/to/root'
|
1790
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1791
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1792
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1793
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1794
|
+
"""
|
1795
|
+
...
|
1796
|
+
|
1797
|
+
@typing.overload
|
1798
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1799
|
+
"""
|
1800
|
+
Specifies the Conda environment for all steps of the flow.
|
1801
|
+
|
1802
|
+
Use `@conda_base` to set common libraries required by all
|
1803
|
+
steps and use `@conda` to specify step-specific additions.
|
1804
|
+
|
1805
|
+
|
1806
|
+
Parameters
|
1807
|
+
----------
|
1808
|
+
packages : Dict[str, str], default {}
|
1809
|
+
Packages to use for this flow. The key is the name of the package
|
1810
|
+
and the value is the version to use.
|
1811
|
+
libraries : Dict[str, str], default {}
|
1812
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1813
|
+
python : str, optional, default None
|
1814
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1815
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1816
|
+
disabled : bool, default False
|
1817
|
+
If set to True, disables Conda.
|
1818
|
+
"""
|
1819
|
+
...
|
1820
|
+
|
1821
|
+
@typing.overload
|
1822
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1823
|
+
...
|
1824
|
+
|
1825
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1826
|
+
"""
|
1827
|
+
Specifies the Conda environment for all steps of the flow.
|
1828
|
+
|
1829
|
+
Use `@conda_base` to set common libraries required by all
|
1830
|
+
steps and use `@conda` to specify step-specific additions.
|
1831
|
+
|
1832
|
+
|
1833
|
+
Parameters
|
1834
|
+
----------
|
1835
|
+
packages : Dict[str, str], default {}
|
1836
|
+
Packages to use for this flow. The key is the name of the package
|
1837
|
+
and the value is the version to use.
|
1838
|
+
libraries : Dict[str, str], default {}
|
1839
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1840
|
+
python : str, optional, default None
|
1841
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1842
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1843
|
+
disabled : bool, default False
|
1844
|
+
If set to True, disables Conda.
|
1845
|
+
"""
|
1846
|
+
...
|
1847
|
+
|
1829
1848
|
pkg_name: str
|
1830
1849
|
|