ob-metaflow-stubs 6.0.4.4__py2.py3-none-any.whl → 6.0.4.5__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +690 -696
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -3
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +7 -6
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +8 -8
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/{meta_files.pyi → info_file.pyi} +6 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -6
- metaflow-stubs/metaflow_current.pyi +40 -40
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +8 -12
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +11 -13
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +11 -13
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +10 -10
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +4 -4
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/argo/exit_hooks.pyi +3 -3
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +4 -4
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -4
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +3 -3
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +4 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +4 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +4 -4
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +4 -4
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -4
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
- metaflow-stubs/plugins/parallel_decorator.pyi +3 -3
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +3 -3
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +8 -5
- metaflow-stubs/plugins/pypi/conda_environment.pyi +5 -6
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +4 -4
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +3 -3
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +3 -3
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -3
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +4 -4
- metaflow-stubs/runner/deployer_impl.pyi +3 -3
- metaflow-stubs/runner/metaflow_runner.pyi +2 -2
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -3
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +3 -3
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +3 -2
- metaflow-stubs/user_configs/config_decorators.pyi +251 -0
- metaflow-stubs/user_configs/config_options.pyi +5 -4
- metaflow-stubs/user_configs/config_parameters.pyi +9 -7
- {ob_metaflow_stubs-6.0.4.4.dist-info → ob_metaflow_stubs-6.0.4.5.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.4.5.dist-info/RECORD +249 -0
- metaflow-stubs/packaging_sys/__init__.pyi +0 -430
- metaflow-stubs/packaging_sys/backend.pyi +0 -73
- metaflow-stubs/packaging_sys/distribution_support.pyi +0 -57
- metaflow-stubs/packaging_sys/tar_backend.pyi +0 -53
- metaflow-stubs/packaging_sys/utils.pyi +0 -26
- metaflow-stubs/packaging_sys/v1.pyi +0 -145
- metaflow-stubs/user_decorators/__init__.pyi +0 -15
- metaflow-stubs/user_decorators/common.pyi +0 -38
- metaflow-stubs/user_decorators/mutable_flow.pyi +0 -223
- metaflow-stubs/user_decorators/mutable_step.pyi +0 -152
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +0 -137
- metaflow-stubs/user_decorators/user_step_decorator.pyi +0 -323
- ob_metaflow_stubs-6.0.4.4.dist-info/RECORD +0 -260
- {ob_metaflow_stubs-6.0.4.4.dist-info → ob_metaflow_stubs-6.0.4.5.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.4.4.dist-info → ob_metaflow_stubs-6.0.4.5.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
|
-
# MF version: 2.
|
4
|
-
# Generated on 2025-07-
|
3
|
+
# MF version: 2.15.21.2+obcheckpoint(0.2.4);ob(v1) #
|
4
|
+
# Generated on 2025-07-16T21:13:36.500276 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
@@ -13,8 +13,7 @@ if typing.TYPE_CHECKING:
|
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
15
15
|
|
16
|
-
from . import
|
17
|
-
from . import packaging_sys as packaging_sys
|
16
|
+
from . import info_file as info_file
|
18
17
|
from . import exception as exception
|
19
18
|
from . import metaflow_config as metaflow_config
|
20
19
|
from . import multicore_utils as multicore_utils
|
@@ -24,7 +23,6 @@ from . import metaflow_current as metaflow_current
|
|
24
23
|
from .metaflow_current import current as current
|
25
24
|
from . import parameters as parameters
|
26
25
|
from . import user_configs as user_configs
|
27
|
-
from . import user_decorators as user_decorators
|
28
26
|
from . import tagging_util as tagging_util
|
29
27
|
from . import metadata_provider as metadata_provider
|
30
28
|
from . import flowspec as flowspec
|
@@ -35,12 +33,10 @@ from .parameters import JSONType as JSONType
|
|
35
33
|
from .user_configs.config_parameters import Config as Config
|
36
34
|
from .user_configs.config_parameters import ConfigValue as ConfigValue
|
37
35
|
from .user_configs.config_parameters import config_expr as config_expr
|
38
|
-
from .
|
39
|
-
from .
|
40
|
-
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
41
|
-
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
42
|
-
from . import tuple_util as tuple_util
|
36
|
+
from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
|
37
|
+
from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
|
43
38
|
from . import cards as cards
|
39
|
+
from . import tuple_util as tuple_util
|
44
40
|
from . import metaflow_git as metaflow_git
|
45
41
|
from . import events as events
|
46
42
|
from . import runner as runner
|
@@ -48,8 +44,8 @@ from . import plugins as plugins
|
|
48
44
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
49
45
|
from . import includefile as includefile
|
50
46
|
from .includefile import IncludeFile as IncludeFile
|
51
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
52
47
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
48
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
53
49
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
54
50
|
from . import client as client
|
55
51
|
from .client.core import namespace as namespace
|
@@ -87,8 +83,6 @@ from . import ob_internal as ob_internal
|
|
87
83
|
|
88
84
|
EXT_PKG: str
|
89
85
|
|
90
|
-
USER_SKIP_STEP: dict
|
91
|
-
|
92
86
|
@typing.overload
|
93
87
|
def step(f: typing.Callable[[FlowSpecDerived], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
94
88
|
"""
|
@@ -181,23 +175,6 @@ def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
181
175
|
"""
|
182
176
|
...
|
183
177
|
|
184
|
-
@typing.overload
|
185
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
186
|
-
"""
|
187
|
-
Internal decorator to support Fast bakery
|
188
|
-
"""
|
189
|
-
...
|
190
|
-
|
191
|
-
@typing.overload
|
192
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
193
|
-
...
|
194
|
-
|
195
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
196
|
-
"""
|
197
|
-
Internal decorator to support Fast bakery
|
198
|
-
"""
|
199
|
-
...
|
200
|
-
|
201
178
|
@typing.overload
|
202
179
|
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
203
180
|
"""
|
@@ -258,190 +235,319 @@ def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
258
235
|
...
|
259
236
|
|
260
237
|
@typing.overload
|
261
|
-
def
|
238
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
262
239
|
"""
|
263
|
-
|
240
|
+
Specifies the resources needed when executing this step.
|
264
241
|
|
265
|
-
|
266
|
-
|
267
|
-
```python
|
268
|
-
@model
|
269
|
-
@step
|
270
|
-
def train(self):
|
271
|
-
# current.model.save returns a dictionary reference to the model saved
|
272
|
-
self.my_model = current.model.save(
|
273
|
-
path_to_my_model,
|
274
|
-
label="my_model",
|
275
|
-
metadata={
|
276
|
-
"epochs": 10,
|
277
|
-
"batch-size": 32,
|
278
|
-
"learning-rate": 0.001,
|
279
|
-
}
|
280
|
-
)
|
281
|
-
self.next(self.test)
|
242
|
+
Use `@resources` to specify the resource requirements
|
243
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
282
244
|
|
283
|
-
|
284
|
-
@step
|
285
|
-
def test(self):
|
286
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
287
|
-
# where the key is the name of the artifact and the value is the path to the model
|
288
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
289
|
-
self.next(self.end)
|
245
|
+
You can choose the compute layer on the command line by executing e.g.
|
290
246
|
```
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
# current.model.load returns the path to the model loaded
|
297
|
-
checkpoint_path = current.model.load(
|
298
|
-
self.checkpoint_key,
|
299
|
-
)
|
300
|
-
model_path = current.model.load(
|
301
|
-
self.model,
|
302
|
-
)
|
303
|
-
self.next(self.test)
|
247
|
+
python myflow.py run --with batch
|
248
|
+
```
|
249
|
+
or
|
250
|
+
```
|
251
|
+
python myflow.py run --with kubernetes
|
304
252
|
```
|
253
|
+
which executes the flow on the desired system using the
|
254
|
+
requirements specified in `@resources`.
|
305
255
|
|
306
256
|
|
307
257
|
Parameters
|
308
258
|
----------
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
259
|
+
cpu : int, default 1
|
260
|
+
Number of CPUs required for this step.
|
261
|
+
gpu : int, optional, default None
|
262
|
+
Number of GPUs required for this step.
|
263
|
+
disk : int, optional, default None
|
264
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
265
|
+
memory : int, default 4096
|
266
|
+
Memory size (in MB) required for this step.
|
267
|
+
shared_memory : int, optional, default None
|
268
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
269
|
+
This parameter maps to the `--shm-size` option in Docker.
|
318
270
|
"""
|
319
271
|
...
|
320
272
|
|
321
273
|
@typing.overload
|
322
|
-
def
|
274
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
323
275
|
...
|
324
276
|
|
325
277
|
@typing.overload
|
326
|
-
def
|
278
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
327
279
|
...
|
328
280
|
|
329
|
-
def
|
281
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
330
282
|
"""
|
331
|
-
|
283
|
+
Specifies the resources needed when executing this step.
|
332
284
|
|
333
|
-
|
334
|
-
|
335
|
-
```python
|
336
|
-
@model
|
337
|
-
@step
|
338
|
-
def train(self):
|
339
|
-
# current.model.save returns a dictionary reference to the model saved
|
340
|
-
self.my_model = current.model.save(
|
341
|
-
path_to_my_model,
|
342
|
-
label="my_model",
|
343
|
-
metadata={
|
344
|
-
"epochs": 10,
|
345
|
-
"batch-size": 32,
|
346
|
-
"learning-rate": 0.001,
|
347
|
-
}
|
348
|
-
)
|
349
|
-
self.next(self.test)
|
285
|
+
Use `@resources` to specify the resource requirements
|
286
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
350
287
|
|
351
|
-
|
352
|
-
@step
|
353
|
-
def test(self):
|
354
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
355
|
-
# where the key is the name of the artifact and the value is the path to the model
|
356
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
357
|
-
self.next(self.end)
|
288
|
+
You can choose the compute layer on the command line by executing e.g.
|
358
289
|
```
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
@step
|
363
|
-
def train(self):
|
364
|
-
# current.model.load returns the path to the model loaded
|
365
|
-
checkpoint_path = current.model.load(
|
366
|
-
self.checkpoint_key,
|
367
|
-
)
|
368
|
-
model_path = current.model.load(
|
369
|
-
self.model,
|
370
|
-
)
|
371
|
-
self.next(self.test)
|
290
|
+
python myflow.py run --with batch
|
291
|
+
```
|
292
|
+
or
|
372
293
|
```
|
294
|
+
python myflow.py run --with kubernetes
|
295
|
+
```
|
296
|
+
which executes the flow on the desired system using the
|
297
|
+
requirements specified in `@resources`.
|
373
298
|
|
374
299
|
|
375
300
|
Parameters
|
376
301
|
----------
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
|
302
|
+
cpu : int, default 1
|
303
|
+
Number of CPUs required for this step.
|
304
|
+
gpu : int, optional, default None
|
305
|
+
Number of GPUs required for this step.
|
306
|
+
disk : int, optional, default None
|
307
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
308
|
+
memory : int, default 4096
|
309
|
+
Memory size (in MB) required for this step.
|
310
|
+
shared_memory : int, optional, default None
|
311
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
312
|
+
This parameter maps to the `--shm-size` option in Docker.
|
386
313
|
"""
|
387
314
|
...
|
388
315
|
|
389
|
-
|
390
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
316
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
391
317
|
"""
|
392
|
-
|
318
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
393
319
|
|
394
320
|
> Examples
|
395
321
|
|
396
|
-
|
397
|
-
|
322
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
398
323
|
```python
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
|
404
|
-
#
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
metadata={
|
415
|
-
"epoch": i,
|
416
|
-
"loss": loss,
|
417
|
-
}
|
418
|
-
)
|
324
|
+
@huggingface_hub
|
325
|
+
@step
|
326
|
+
def pull_model_from_huggingface(self):
|
327
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
328
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
329
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
330
|
+
# value of the function is a reference to the model in the backend storage.
|
331
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
332
|
+
|
333
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
334
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
335
|
+
repo_id=self.model_id,
|
336
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
337
|
+
)
|
338
|
+
self.next(self.train)
|
419
339
|
```
|
420
340
|
|
421
|
-
|
341
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
342
|
+
```python
|
343
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
344
|
+
@step
|
345
|
+
def pull_model_from_huggingface(self):
|
346
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
347
|
+
```
|
422
348
|
|
423
349
|
```python
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
430
|
-
checkpoint_path = None
|
431
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
432
|
-
print("Loaded checkpoint from the previous attempt")
|
433
|
-
checkpoint_path = current.checkpoint.directory
|
350
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
351
|
+
@step
|
352
|
+
def finetune_model(self):
|
353
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
354
|
+
# path_to_model will be /my-directory
|
355
|
+
```
|
434
356
|
|
435
|
-
|
436
|
-
|
437
|
-
|
357
|
+
```python
|
358
|
+
# Takes all the arguments passed to `snapshot_download`
|
359
|
+
# except for `local_dir`
|
360
|
+
@huggingface_hub(load=[
|
361
|
+
{
|
362
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
363
|
+
},
|
364
|
+
{
|
365
|
+
"repo_id": "myorg/mistral-lora",
|
366
|
+
"repo_type": "model",
|
367
|
+
},
|
368
|
+
])
|
369
|
+
@step
|
370
|
+
def finetune_model(self):
|
371
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
372
|
+
# path_to_model will be /my-directory
|
438
373
|
```
|
439
374
|
|
440
375
|
|
441
376
|
Parameters
|
442
377
|
----------
|
443
|
-
|
444
|
-
The
|
378
|
+
temp_dir_root : str, optional
|
379
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
380
|
+
|
381
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
382
|
+
The list of repos (models/datasets) to load.
|
383
|
+
|
384
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
385
|
+
|
386
|
+
- If repo (model/dataset) is not found in the datastore:
|
387
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
388
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
389
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
390
|
+
|
391
|
+
- If repo is found in the datastore:
|
392
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
393
|
+
"""
|
394
|
+
...
|
395
|
+
|
396
|
+
@typing.overload
|
397
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
398
|
+
"""
|
399
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
400
|
+
|
401
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
402
|
+
|
403
|
+
|
404
|
+
Parameters
|
405
|
+
----------
|
406
|
+
type : str, default 'default'
|
407
|
+
Card type.
|
408
|
+
id : str, optional, default None
|
409
|
+
If multiple cards are present, use this id to identify this card.
|
410
|
+
options : Dict[str, Any], default {}
|
411
|
+
Options passed to the card. The contents depend on the card type.
|
412
|
+
timeout : int, default 45
|
413
|
+
Interrupt reporting if it takes more than this many seconds.
|
414
|
+
"""
|
415
|
+
...
|
416
|
+
|
417
|
+
@typing.overload
|
418
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
419
|
+
...
|
420
|
+
|
421
|
+
@typing.overload
|
422
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
423
|
+
...
|
424
|
+
|
425
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
426
|
+
"""
|
427
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
428
|
+
|
429
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
430
|
+
|
431
|
+
|
432
|
+
Parameters
|
433
|
+
----------
|
434
|
+
type : str, default 'default'
|
435
|
+
Card type.
|
436
|
+
id : str, optional, default None
|
437
|
+
If multiple cards are present, use this id to identify this card.
|
438
|
+
options : Dict[str, Any], default {}
|
439
|
+
Options passed to the card. The contents depend on the card type.
|
440
|
+
timeout : int, default 45
|
441
|
+
Interrupt reporting if it takes more than this many seconds.
|
442
|
+
"""
|
443
|
+
...
|
444
|
+
|
445
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
446
|
+
"""
|
447
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
448
|
+
|
449
|
+
User code call
|
450
|
+
--------------
|
451
|
+
@vllm(
|
452
|
+
model="...",
|
453
|
+
...
|
454
|
+
)
|
455
|
+
|
456
|
+
Valid backend options
|
457
|
+
---------------------
|
458
|
+
- 'local': Run as a separate process on the local task machine.
|
459
|
+
|
460
|
+
Valid model options
|
461
|
+
-------------------
|
462
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
463
|
+
|
464
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
465
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
466
|
+
|
467
|
+
|
468
|
+
Parameters
|
469
|
+
----------
|
470
|
+
model: str
|
471
|
+
HuggingFace model identifier to be served by vLLM.
|
472
|
+
backend: str
|
473
|
+
Determines where and how to run the vLLM process.
|
474
|
+
openai_api_server: bool
|
475
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
476
|
+
Default is False (uses native engine).
|
477
|
+
Set to True for backward compatibility with existing code.
|
478
|
+
debug: bool
|
479
|
+
Whether to turn on verbose debugging logs.
|
480
|
+
card_refresh_interval: int
|
481
|
+
Interval in seconds for refreshing the vLLM status card.
|
482
|
+
Only used when openai_api_server=True.
|
483
|
+
max_retries: int
|
484
|
+
Maximum number of retries checking for vLLM server startup.
|
485
|
+
Only used when openai_api_server=True.
|
486
|
+
retry_alert_frequency: int
|
487
|
+
Frequency of alert logs for vLLM server startup retries.
|
488
|
+
Only used when openai_api_server=True.
|
489
|
+
engine_args : dict
|
490
|
+
Additional keyword arguments to pass to the vLLM engine.
|
491
|
+
For example, `tensor_parallel_size=2`.
|
492
|
+
"""
|
493
|
+
...
|
494
|
+
|
495
|
+
@typing.overload
|
496
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
497
|
+
"""
|
498
|
+
Enables checkpointing for a step.
|
499
|
+
|
500
|
+
> Examples
|
501
|
+
|
502
|
+
- Saving Checkpoints
|
503
|
+
|
504
|
+
```python
|
505
|
+
@checkpoint
|
506
|
+
@step
|
507
|
+
def train(self):
|
508
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
509
|
+
for i in range(self.epochs):
|
510
|
+
# some training logic
|
511
|
+
loss = model.train(self.dataset)
|
512
|
+
if i % 10 == 0:
|
513
|
+
model.save(
|
514
|
+
current.checkpoint.directory,
|
515
|
+
)
|
516
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
517
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
518
|
+
self.latest_checkpoint = current.checkpoint.save(
|
519
|
+
name="epoch_checkpoint",
|
520
|
+
metadata={
|
521
|
+
"epoch": i,
|
522
|
+
"loss": loss,
|
523
|
+
}
|
524
|
+
)
|
525
|
+
```
|
526
|
+
|
527
|
+
- Using Loaded Checkpoints
|
528
|
+
|
529
|
+
```python
|
530
|
+
@retry(times=3)
|
531
|
+
@checkpoint
|
532
|
+
@step
|
533
|
+
def train(self):
|
534
|
+
# Assume that the task has restarted and the previous attempt of the task
|
535
|
+
# saved a checkpoint
|
536
|
+
checkpoint_path = None
|
537
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
538
|
+
print("Loaded checkpoint from the previous attempt")
|
539
|
+
checkpoint_path = current.checkpoint.directory
|
540
|
+
|
541
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
542
|
+
for i in range(self.epochs):
|
543
|
+
...
|
544
|
+
```
|
545
|
+
|
546
|
+
|
547
|
+
Parameters
|
548
|
+
----------
|
549
|
+
load_policy : str, default: "fresh"
|
550
|
+
The policy for loading the checkpoint. The following policies are supported:
|
445
551
|
- "eager": Loads the the latest available checkpoint within the namespace.
|
446
552
|
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
447
553
|
will be loaded at the start of the task.
|
@@ -533,68 +639,42 @@ def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
533
639
|
"""
|
534
640
|
...
|
535
641
|
|
536
|
-
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
537
|
-
"""
|
538
|
-
Specifies that this step should execute on DGX cloud.
|
539
|
-
|
540
|
-
|
541
|
-
Parameters
|
542
|
-
----------
|
543
|
-
gpu : int
|
544
|
-
Number of GPUs to use.
|
545
|
-
gpu_type : str
|
546
|
-
Type of Nvidia GPU to use.
|
547
|
-
"""
|
548
|
-
...
|
549
|
-
|
550
642
|
@typing.overload
|
551
|
-
def
|
643
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
552
644
|
"""
|
553
|
-
Specifies
|
554
|
-
|
555
|
-
Information in this decorator will augment any
|
556
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
557
|
-
you can use `@pypi_base` to set packages required by all
|
558
|
-
steps and use `@pypi` to specify step-specific overrides.
|
645
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
646
|
+
the execution of a step.
|
559
647
|
|
560
648
|
|
561
649
|
Parameters
|
562
650
|
----------
|
563
|
-
|
564
|
-
|
565
|
-
|
566
|
-
|
567
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
568
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
651
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
652
|
+
List of secret specs, defining how the secrets are to be retrieved
|
653
|
+
role : str, optional, default: None
|
654
|
+
Role to use for fetching secrets
|
569
655
|
"""
|
570
656
|
...
|
571
657
|
|
572
658
|
@typing.overload
|
573
|
-
def
|
659
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
574
660
|
...
|
575
661
|
|
576
662
|
@typing.overload
|
577
|
-
def
|
663
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
578
664
|
...
|
579
665
|
|
580
|
-
def
|
666
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
581
667
|
"""
|
582
|
-
Specifies
|
583
|
-
|
584
|
-
Information in this decorator will augment any
|
585
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
586
|
-
you can use `@pypi_base` to set packages required by all
|
587
|
-
steps and use `@pypi` to specify step-specific overrides.
|
668
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
669
|
+
the execution of a step.
|
588
670
|
|
589
671
|
|
590
672
|
Parameters
|
591
673
|
----------
|
592
|
-
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
597
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
674
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
675
|
+
List of secret specs, defining how the secrets are to be retrieved
|
676
|
+
role : str, optional, default: None
|
677
|
+
Role to use for fetching secrets
|
598
678
|
"""
|
599
679
|
...
|
600
680
|
|
@@ -688,139 +768,211 @@ def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: ty
|
|
688
768
|
...
|
689
769
|
|
690
770
|
@typing.overload
|
691
|
-
def
|
771
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
692
772
|
"""
|
693
|
-
|
694
|
-
|
773
|
+
Specifies the Conda environment for the step.
|
774
|
+
|
775
|
+
Information in this decorator will augment any
|
776
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
777
|
+
you can use `@conda_base` to set packages required by all
|
778
|
+
steps and use `@conda` to specify step-specific overrides.
|
779
|
+
|
780
|
+
|
781
|
+
Parameters
|
782
|
+
----------
|
783
|
+
packages : Dict[str, str], default {}
|
784
|
+
Packages to use for this step. The key is the name of the package
|
785
|
+
and the value is the version to use.
|
786
|
+
libraries : Dict[str, str], default {}
|
787
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
788
|
+
python : str, optional, default None
|
789
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
790
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
791
|
+
disabled : bool, default False
|
792
|
+
If set to True, disables @conda.
|
695
793
|
"""
|
696
794
|
...
|
697
795
|
|
698
796
|
@typing.overload
|
699
|
-
def
|
797
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
700
798
|
...
|
701
799
|
|
702
|
-
|
800
|
+
@typing.overload
|
801
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
802
|
+
...
|
803
|
+
|
804
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
703
805
|
"""
|
704
|
-
|
705
|
-
|
806
|
+
Specifies the Conda environment for the step.
|
807
|
+
|
808
|
+
Information in this decorator will augment any
|
809
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
810
|
+
you can use `@conda_base` to set packages required by all
|
811
|
+
steps and use `@conda` to specify step-specific overrides.
|
812
|
+
|
813
|
+
|
814
|
+
Parameters
|
815
|
+
----------
|
816
|
+
packages : Dict[str, str], default {}
|
817
|
+
Packages to use for this step. The key is the name of the package
|
818
|
+
and the value is the version to use.
|
819
|
+
libraries : Dict[str, str], default {}
|
820
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
821
|
+
python : str, optional, default None
|
822
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
823
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
824
|
+
disabled : bool, default False
|
825
|
+
If set to True, disables @conda.
|
706
826
|
"""
|
707
827
|
...
|
708
828
|
|
709
829
|
@typing.overload
|
710
|
-
def
|
830
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
711
831
|
"""
|
712
|
-
|
713
|
-
to a step needs to be retried.
|
832
|
+
Enables loading / saving of models within a step.
|
714
833
|
|
715
|
-
|
716
|
-
|
717
|
-
|
834
|
+
> Examples
|
835
|
+
- Saving Models
|
836
|
+
```python
|
837
|
+
@model
|
838
|
+
@step
|
839
|
+
def train(self):
|
840
|
+
# current.model.save returns a dictionary reference to the model saved
|
841
|
+
self.my_model = current.model.save(
|
842
|
+
path_to_my_model,
|
843
|
+
label="my_model",
|
844
|
+
metadata={
|
845
|
+
"epochs": 10,
|
846
|
+
"batch-size": 32,
|
847
|
+
"learning-rate": 0.001,
|
848
|
+
}
|
849
|
+
)
|
850
|
+
self.next(self.test)
|
718
851
|
|
719
|
-
|
720
|
-
|
721
|
-
|
852
|
+
@model(load="my_model")
|
853
|
+
@step
|
854
|
+
def test(self):
|
855
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
856
|
+
# where the key is the name of the artifact and the value is the path to the model
|
857
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
858
|
+
self.next(self.end)
|
859
|
+
```
|
860
|
+
|
861
|
+
- Loading models
|
862
|
+
```python
|
863
|
+
@step
|
864
|
+
def train(self):
|
865
|
+
# current.model.load returns the path to the model loaded
|
866
|
+
checkpoint_path = current.model.load(
|
867
|
+
self.checkpoint_key,
|
868
|
+
)
|
869
|
+
model_path = current.model.load(
|
870
|
+
self.model,
|
871
|
+
)
|
872
|
+
self.next(self.test)
|
873
|
+
```
|
722
874
|
|
723
875
|
|
724
876
|
Parameters
|
725
877
|
----------
|
726
|
-
|
727
|
-
|
728
|
-
|
729
|
-
|
878
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
879
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
880
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
881
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
882
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
883
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
884
|
+
|
885
|
+
temp_dir_root : str, default: None
|
886
|
+
The root directory under which `current.model.loaded` will store loaded models
|
730
887
|
"""
|
731
888
|
...
|
732
889
|
|
733
890
|
@typing.overload
|
734
|
-
def
|
891
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
735
892
|
...
|
736
893
|
|
737
894
|
@typing.overload
|
738
|
-
def
|
895
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
739
896
|
...
|
740
897
|
|
741
|
-
def
|
898
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
742
899
|
"""
|
743
|
-
|
744
|
-
to a step needs to be retried.
|
900
|
+
Enables loading / saving of models within a step.
|
745
901
|
|
746
|
-
|
747
|
-
|
748
|
-
|
902
|
+
> Examples
|
903
|
+
- Saving Models
|
904
|
+
```python
|
905
|
+
@model
|
906
|
+
@step
|
907
|
+
def train(self):
|
908
|
+
# current.model.save returns a dictionary reference to the model saved
|
909
|
+
self.my_model = current.model.save(
|
910
|
+
path_to_my_model,
|
911
|
+
label="my_model",
|
912
|
+
metadata={
|
913
|
+
"epochs": 10,
|
914
|
+
"batch-size": 32,
|
915
|
+
"learning-rate": 0.001,
|
916
|
+
}
|
917
|
+
)
|
918
|
+
self.next(self.test)
|
749
919
|
|
750
|
-
|
751
|
-
|
752
|
-
|
920
|
+
@model(load="my_model")
|
921
|
+
@step
|
922
|
+
def test(self):
|
923
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
924
|
+
# where the key is the name of the artifact and the value is the path to the model
|
925
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
926
|
+
self.next(self.end)
|
927
|
+
```
|
928
|
+
|
929
|
+
- Loading models
|
930
|
+
```python
|
931
|
+
@step
|
932
|
+
def train(self):
|
933
|
+
# current.model.load returns the path to the model loaded
|
934
|
+
checkpoint_path = current.model.load(
|
935
|
+
self.checkpoint_key,
|
936
|
+
)
|
937
|
+
model_path = current.model.load(
|
938
|
+
self.model,
|
939
|
+
)
|
940
|
+
self.next(self.test)
|
941
|
+
```
|
753
942
|
|
754
943
|
|
755
944
|
Parameters
|
756
945
|
----------
|
757
|
-
|
758
|
-
|
759
|
-
|
760
|
-
|
946
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
947
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
948
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
949
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
950
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
951
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
952
|
+
|
953
|
+
temp_dir_root : str, default: None
|
954
|
+
The root directory under which `current.model.loaded` will store loaded models
|
761
955
|
"""
|
762
956
|
...
|
763
957
|
|
764
958
|
@typing.overload
|
765
|
-
def
|
959
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
766
960
|
"""
|
767
|
-
|
768
|
-
|
769
|
-
Information in this decorator will augment any
|
770
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
771
|
-
you can use `@conda_base` to set packages required by all
|
772
|
-
steps and use `@conda` to specify step-specific overrides.
|
773
|
-
|
774
|
-
|
775
|
-
Parameters
|
776
|
-
----------
|
777
|
-
packages : Dict[str, str], default {}
|
778
|
-
Packages to use for this step. The key is the name of the package
|
779
|
-
and the value is the version to use.
|
780
|
-
libraries : Dict[str, str], default {}
|
781
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
782
|
-
python : str, optional, default None
|
783
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
784
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
785
|
-
disabled : bool, default False
|
786
|
-
If set to True, disables @conda.
|
961
|
+
Internal decorator to support Fast bakery
|
787
962
|
"""
|
788
963
|
...
|
789
964
|
|
790
965
|
@typing.overload
|
791
|
-
def
|
792
|
-
...
|
793
|
-
|
794
|
-
@typing.overload
|
795
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
966
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
796
967
|
...
|
797
968
|
|
798
|
-
def
|
969
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
799
970
|
"""
|
800
|
-
|
801
|
-
|
802
|
-
Information in this decorator will augment any
|
803
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
804
|
-
you can use `@conda_base` to set packages required by all
|
805
|
-
steps and use `@conda` to specify step-specific overrides.
|
806
|
-
|
807
|
-
|
808
|
-
Parameters
|
809
|
-
----------
|
810
|
-
packages : Dict[str, str], default {}
|
811
|
-
Packages to use for this step. The key is the name of the package
|
812
|
-
and the value is the version to use.
|
813
|
-
libraries : Dict[str, str], default {}
|
814
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
815
|
-
python : str, optional, default None
|
816
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
817
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
818
|
-
disabled : bool, default False
|
819
|
-
If set to True, disables @conda.
|
971
|
+
Internal decorator to support Fast bakery
|
820
972
|
"""
|
821
973
|
...
|
822
974
|
|
823
|
-
def
|
975
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
824
976
|
"""
|
825
977
|
Specifies that this step should execute on DGX cloud.
|
826
978
|
|
@@ -831,137 +983,112 @@ def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[t
|
|
831
983
|
Number of GPUs to use.
|
832
984
|
gpu_type : str
|
833
985
|
Type of Nvidia GPU to use.
|
834
|
-
queue_timeout : int
|
835
|
-
Time to keep the job in NVCF's queue.
|
836
986
|
"""
|
837
987
|
...
|
838
988
|
|
839
989
|
@typing.overload
|
840
|
-
def
|
990
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
841
991
|
"""
|
842
|
-
Specifies the
|
843
|
-
|
844
|
-
Use `@resources` to specify the resource requirements
|
845
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
992
|
+
Specifies the PyPI packages for the step.
|
846
993
|
|
847
|
-
|
848
|
-
|
849
|
-
|
850
|
-
|
851
|
-
or
|
852
|
-
```
|
853
|
-
python myflow.py run --with kubernetes
|
854
|
-
```
|
855
|
-
which executes the flow on the desired system using the
|
856
|
-
requirements specified in `@resources`.
|
994
|
+
Information in this decorator will augment any
|
995
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
996
|
+
you can use `@pypi_base` to set packages required by all
|
997
|
+
steps and use `@pypi` to specify step-specific overrides.
|
857
998
|
|
858
999
|
|
859
1000
|
Parameters
|
860
1001
|
----------
|
861
|
-
|
862
|
-
|
863
|
-
|
864
|
-
|
865
|
-
|
866
|
-
|
867
|
-
memory : int, default 4096
|
868
|
-
Memory size (in MB) required for this step.
|
869
|
-
shared_memory : int, optional, default None
|
870
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
871
|
-
This parameter maps to the `--shm-size` option in Docker.
|
1002
|
+
packages : Dict[str, str], default: {}
|
1003
|
+
Packages to use for this step. The key is the name of the package
|
1004
|
+
and the value is the version to use.
|
1005
|
+
python : str, optional, default: None
|
1006
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1007
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
872
1008
|
"""
|
873
1009
|
...
|
874
1010
|
|
875
1011
|
@typing.overload
|
876
|
-
def
|
1012
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
877
1013
|
...
|
878
1014
|
|
879
1015
|
@typing.overload
|
880
|
-
def
|
1016
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
881
1017
|
...
|
882
1018
|
|
883
|
-
def
|
1019
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
884
1020
|
"""
|
885
|
-
Specifies the
|
886
|
-
|
887
|
-
Use `@resources` to specify the resource requirements
|
888
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
1021
|
+
Specifies the PyPI packages for the step.
|
889
1022
|
|
890
|
-
|
891
|
-
|
892
|
-
|
893
|
-
|
894
|
-
or
|
895
|
-
```
|
896
|
-
python myflow.py run --with kubernetes
|
897
|
-
```
|
898
|
-
which executes the flow on the desired system using the
|
899
|
-
requirements specified in `@resources`.
|
1023
|
+
Information in this decorator will augment any
|
1024
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
1025
|
+
you can use `@pypi_base` to set packages required by all
|
1026
|
+
steps and use `@pypi` to specify step-specific overrides.
|
900
1027
|
|
901
1028
|
|
902
1029
|
Parameters
|
903
1030
|
----------
|
904
|
-
|
905
|
-
|
906
|
-
|
907
|
-
|
908
|
-
|
909
|
-
|
910
|
-
memory : int, default 4096
|
911
|
-
Memory size (in MB) required for this step.
|
912
|
-
shared_memory : int, optional, default None
|
913
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
914
|
-
This parameter maps to the `--shm-size` option in Docker.
|
1031
|
+
packages : Dict[str, str], default: {}
|
1032
|
+
Packages to use for this step. The key is the name of the package
|
1033
|
+
and the value is the version to use.
|
1034
|
+
python : str, optional, default: None
|
1035
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1036
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
915
1037
|
"""
|
916
1038
|
...
|
917
1039
|
|
918
|
-
|
1040
|
+
@typing.overload
|
1041
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
919
1042
|
"""
|
920
|
-
|
1043
|
+
Specifies the number of times the task corresponding
|
1044
|
+
to a step needs to be retried.
|
921
1045
|
|
922
|
-
|
923
|
-
|
924
|
-
|
925
|
-
model="...",
|
926
|
-
...
|
927
|
-
)
|
1046
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
1047
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
1048
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
928
1049
|
|
929
|
-
|
930
|
-
|
931
|
-
|
1050
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
1051
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
1052
|
+
ensuring that the flow execution can continue.
|
932
1053
|
|
933
|
-
Valid model options
|
934
|
-
-------------------
|
935
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
936
1054
|
|
937
|
-
|
938
|
-
|
1055
|
+
Parameters
|
1056
|
+
----------
|
1057
|
+
times : int, default 3
|
1058
|
+
Number of times to retry this task.
|
1059
|
+
minutes_between_retries : int, default 2
|
1060
|
+
Number of minutes between retries.
|
1061
|
+
"""
|
1062
|
+
...
|
1063
|
+
|
1064
|
+
@typing.overload
|
1065
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1066
|
+
...
|
1067
|
+
|
1068
|
+
@typing.overload
|
1069
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1070
|
+
...
|
1071
|
+
|
1072
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
1073
|
+
"""
|
1074
|
+
Specifies the number of times the task corresponding
|
1075
|
+
to a step needs to be retried.
|
1076
|
+
|
1077
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
1078
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
1079
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
1080
|
+
|
1081
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
1082
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
1083
|
+
ensuring that the flow execution can continue.
|
939
1084
|
|
940
1085
|
|
941
1086
|
Parameters
|
942
1087
|
----------
|
943
|
-
|
944
|
-
|
945
|
-
|
946
|
-
|
947
|
-
openai_api_server: bool
|
948
|
-
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
949
|
-
Default is False (uses native engine).
|
950
|
-
Set to True for backward compatibility with existing code.
|
951
|
-
debug: bool
|
952
|
-
Whether to turn on verbose debugging logs.
|
953
|
-
card_refresh_interval: int
|
954
|
-
Interval in seconds for refreshing the vLLM status card.
|
955
|
-
Only used when openai_api_server=True.
|
956
|
-
max_retries: int
|
957
|
-
Maximum number of retries checking for vLLM server startup.
|
958
|
-
Only used when openai_api_server=True.
|
959
|
-
retry_alert_frequency: int
|
960
|
-
Frequency of alert logs for vLLM server startup retries.
|
961
|
-
Only used when openai_api_server=True.
|
962
|
-
engine_args : dict
|
963
|
-
Additional keyword arguments to pass to the vLLM engine.
|
964
|
-
For example, `tensor_parallel_size=2`.
|
1088
|
+
times : int, default 3
|
1089
|
+
Number of times to retry this task.
|
1090
|
+
minutes_between_retries : int, default 2
|
1091
|
+
Number of minutes between retries.
|
965
1092
|
"""
|
966
1093
|
...
|
967
1094
|
|
@@ -998,166 +1125,86 @@ def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], Non
|
|
998
1125
|
"""
|
999
1126
|
...
|
1000
1127
|
|
1001
|
-
def
|
1128
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1002
1129
|
"""
|
1003
|
-
|
1004
|
-
|
1005
|
-
> Examples
|
1006
|
-
|
1007
|
-
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
1008
|
-
```python
|
1009
|
-
@huggingface_hub
|
1010
|
-
@step
|
1011
|
-
def pull_model_from_huggingface(self):
|
1012
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
1013
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
1014
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
1015
|
-
# value of the function is a reference to the model in the backend storage.
|
1016
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
1017
|
-
|
1018
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
1019
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
1020
|
-
repo_id=self.model_id,
|
1021
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
1022
|
-
)
|
1023
|
-
self.next(self.train)
|
1024
|
-
```
|
1025
|
-
|
1026
|
-
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
1027
|
-
```python
|
1028
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
1029
|
-
@step
|
1030
|
-
def pull_model_from_huggingface(self):
|
1031
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1032
|
-
```
|
1033
|
-
|
1034
|
-
```python
|
1035
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
1036
|
-
@step
|
1037
|
-
def finetune_model(self):
|
1038
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1039
|
-
# path_to_model will be /my-directory
|
1040
|
-
```
|
1041
|
-
|
1042
|
-
```python
|
1043
|
-
# Takes all the arguments passed to `snapshot_download`
|
1044
|
-
# except for `local_dir`
|
1045
|
-
@huggingface_hub(load=[
|
1046
|
-
{
|
1047
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
1048
|
-
},
|
1049
|
-
{
|
1050
|
-
"repo_id": "myorg/mistral-lora",
|
1051
|
-
"repo_type": "model",
|
1052
|
-
},
|
1053
|
-
])
|
1054
|
-
@step
|
1055
|
-
def finetune_model(self):
|
1056
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1057
|
-
# path_to_model will be /my-directory
|
1058
|
-
```
|
1130
|
+
Specifies that this step should execute on DGX cloud.
|
1059
1131
|
|
1060
1132
|
|
1061
1133
|
Parameters
|
1062
1134
|
----------
|
1063
|
-
|
1064
|
-
|
1065
|
-
|
1066
|
-
|
1067
|
-
|
1068
|
-
|
1069
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
1070
|
-
|
1071
|
-
- If repo (model/dataset) is not found in the datastore:
|
1072
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
1073
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
1074
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
1075
|
-
|
1076
|
-
- If repo is found in the datastore:
|
1077
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
1135
|
+
gpu : int
|
1136
|
+
Number of GPUs to use.
|
1137
|
+
gpu_type : str
|
1138
|
+
Type of Nvidia GPU to use.
|
1139
|
+
queue_timeout : int
|
1140
|
+
Time to keep the job in NVCF's queue.
|
1078
1141
|
"""
|
1079
1142
|
...
|
1080
1143
|
|
1081
|
-
|
1082
|
-
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1144
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1083
1145
|
"""
|
1084
|
-
|
1085
|
-
|
1086
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
1146
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
1087
1147
|
|
1148
|
+
User code call
|
1149
|
+
--------------
|
1150
|
+
@ollama(
|
1151
|
+
models=[...],
|
1152
|
+
...
|
1153
|
+
)
|
1088
1154
|
|
1089
|
-
|
1090
|
-
|
1091
|
-
|
1092
|
-
|
1093
|
-
|
1094
|
-
If multiple cards are present, use this id to identify this card.
|
1095
|
-
options : Dict[str, Any], default {}
|
1096
|
-
Options passed to the card. The contents depend on the card type.
|
1097
|
-
timeout : int, default 45
|
1098
|
-
Interrupt reporting if it takes more than this many seconds.
|
1099
|
-
"""
|
1100
|
-
...
|
1101
|
-
|
1102
|
-
@typing.overload
|
1103
|
-
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1104
|
-
...
|
1105
|
-
|
1106
|
-
@typing.overload
|
1107
|
-
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1108
|
-
...
|
1109
|
-
|
1110
|
-
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
1111
|
-
"""
|
1112
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
1155
|
+
Valid backend options
|
1156
|
+
---------------------
|
1157
|
+
- 'local': Run as a separate process on the local task machine.
|
1158
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
1159
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
1113
1160
|
|
1114
|
-
|
1161
|
+
Valid model options
|
1162
|
+
-------------------
|
1163
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
1115
1164
|
|
1116
1165
|
|
1117
1166
|
Parameters
|
1118
1167
|
----------
|
1119
|
-
|
1120
|
-
|
1121
|
-
|
1122
|
-
|
1123
|
-
|
1124
|
-
|
1125
|
-
|
1126
|
-
|
1168
|
+
models: list[str]
|
1169
|
+
List of Ollama containers running models in sidecars.
|
1170
|
+
backend: str
|
1171
|
+
Determines where and how to run the Ollama process.
|
1172
|
+
force_pull: bool
|
1173
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
1174
|
+
cache_update_policy: str
|
1175
|
+
Cache update policy: "auto", "force", or "never".
|
1176
|
+
force_cache_update: bool
|
1177
|
+
Simple override for "force" cache update policy.
|
1178
|
+
debug: bool
|
1179
|
+
Whether to turn on verbose debugging logs.
|
1180
|
+
circuit_breaker_config: dict
|
1181
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
1182
|
+
timeout_config: dict
|
1183
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
1127
1184
|
"""
|
1128
1185
|
...
|
1129
1186
|
|
1130
1187
|
@typing.overload
|
1131
|
-
def
|
1188
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1132
1189
|
"""
|
1133
|
-
|
1134
|
-
|
1135
|
-
The decorator will create an optional artifact, specified by `var`, which
|
1136
|
-
contains the exception raised. You can use it to detect the presence
|
1137
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
1138
|
-
are missing.
|
1139
|
-
|
1140
|
-
|
1141
|
-
Parameters
|
1142
|
-
----------
|
1143
|
-
var : str, optional, default None
|
1144
|
-
Name of the artifact in which to store the caught exception.
|
1145
|
-
If not specified, the exception is not stored.
|
1146
|
-
print_exception : bool, default True
|
1147
|
-
Determines whether or not the exception is printed to
|
1148
|
-
stdout when caught.
|
1190
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1191
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1149
1192
|
"""
|
1150
1193
|
...
|
1151
1194
|
|
1152
1195
|
@typing.overload
|
1153
|
-
def
|
1196
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1154
1197
|
...
|
1155
1198
|
|
1156
|
-
|
1157
|
-
|
1199
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1200
|
+
"""
|
1201
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1202
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1203
|
+
"""
|
1158
1204
|
...
|
1159
1205
|
|
1160
|
-
|
1206
|
+
@typing.overload
|
1207
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1161
1208
|
"""
|
1162
1209
|
Specifies that the step will success under all circumstances.
|
1163
1210
|
|
@@ -1169,94 +1216,41 @@ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
1169
1216
|
|
1170
1217
|
Parameters
|
1171
1218
|
----------
|
1172
|
-
var : str, optional, default None
|
1173
|
-
Name of the artifact in which to store the caught exception.
|
1174
|
-
If not specified, the exception is not stored.
|
1175
|
-
print_exception : bool, default True
|
1176
|
-
Determines whether or not the exception is printed to
|
1177
|
-
stdout when caught.
|
1178
|
-
"""
|
1179
|
-
...
|
1180
|
-
|
1181
|
-
@typing.overload
|
1182
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1183
|
-
"""
|
1184
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
1185
|
-
the execution of a step.
|
1186
|
-
|
1187
|
-
|
1188
|
-
Parameters
|
1189
|
-
----------
|
1190
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
1191
|
-
List of secret specs, defining how the secrets are to be retrieved
|
1192
|
-
role : str, optional, default: None
|
1193
|
-
Role to use for fetching secrets
|
1194
|
-
"""
|
1195
|
-
...
|
1196
|
-
|
1197
|
-
@typing.overload
|
1198
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1199
|
-
...
|
1200
|
-
|
1201
|
-
@typing.overload
|
1202
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1203
|
-
...
|
1204
|
-
|
1205
|
-
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
1206
|
-
"""
|
1207
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
1208
|
-
the execution of a step.
|
1209
|
-
|
1210
|
-
|
1211
|
-
Parameters
|
1212
|
-
----------
|
1213
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
1214
|
-
List of secret specs, defining how the secrets are to be retrieved
|
1215
|
-
role : str, optional, default: None
|
1216
|
-
Role to use for fetching secrets
|
1219
|
+
var : str, optional, default None
|
1220
|
+
Name of the artifact in which to store the caught exception.
|
1221
|
+
If not specified, the exception is not stored.
|
1222
|
+
print_exception : bool, default True
|
1223
|
+
Determines whether or not the exception is printed to
|
1224
|
+
stdout when caught.
|
1217
1225
|
"""
|
1218
1226
|
...
|
1219
1227
|
|
1220
|
-
|
1228
|
+
@typing.overload
|
1229
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1230
|
+
...
|
1231
|
+
|
1232
|
+
@typing.overload
|
1233
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1234
|
+
...
|
1235
|
+
|
1236
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
1221
1237
|
"""
|
1222
|
-
|
1223
|
-
|
1224
|
-
User code call
|
1225
|
-
--------------
|
1226
|
-
@ollama(
|
1227
|
-
models=[...],
|
1228
|
-
...
|
1229
|
-
)
|
1230
|
-
|
1231
|
-
Valid backend options
|
1232
|
-
---------------------
|
1233
|
-
- 'local': Run as a separate process on the local task machine.
|
1234
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
1235
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
1238
|
+
Specifies that the step will success under all circumstances.
|
1236
1239
|
|
1237
|
-
|
1238
|
-
|
1239
|
-
|
1240
|
+
The decorator will create an optional artifact, specified by `var`, which
|
1241
|
+
contains the exception raised. You can use it to detect the presence
|
1242
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
1243
|
+
are missing.
|
1240
1244
|
|
1241
1245
|
|
1242
1246
|
Parameters
|
1243
1247
|
----------
|
1244
|
-
|
1245
|
-
|
1246
|
-
|
1247
|
-
|
1248
|
-
|
1249
|
-
|
1250
|
-
cache_update_policy: str
|
1251
|
-
Cache update policy: "auto", "force", or "never".
|
1252
|
-
force_cache_update: bool
|
1253
|
-
Simple override for "force" cache update policy.
|
1254
|
-
debug: bool
|
1255
|
-
Whether to turn on verbose debugging logs.
|
1256
|
-
circuit_breaker_config: dict
|
1257
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
1258
|
-
timeout_config: dict
|
1259
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
1248
|
+
var : str, optional, default None
|
1249
|
+
Name of the artifact in which to store the caught exception.
|
1250
|
+
If not specified, the exception is not stored.
|
1251
|
+
print_exception : bool, default True
|
1252
|
+
Determines whether or not the exception is printed to
|
1253
|
+
stdout when caught.
|
1260
1254
|
"""
|
1261
1255
|
...
|
1262
1256
|
|
@@ -1526,38 +1520,44 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
1526
1520
|
"""
|
1527
1521
|
...
|
1528
1522
|
|
1529
|
-
|
1523
|
+
@typing.overload
|
1524
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1530
1525
|
"""
|
1531
|
-
Specifies
|
1532
|
-
|
1533
|
-
A project-specific namespace is created for all flows that
|
1534
|
-
use the same `@project(name)`.
|
1526
|
+
Specifies the PyPI packages for all steps of the flow.
|
1535
1527
|
|
1528
|
+
Use `@pypi_base` to set common packages required by all
|
1529
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1536
1530
|
|
1537
1531
|
Parameters
|
1538
1532
|
----------
|
1539
|
-
|
1540
|
-
|
1541
|
-
|
1542
|
-
|
1533
|
+
packages : Dict[str, str], default: {}
|
1534
|
+
Packages to use for this flow. The key is the name of the package
|
1535
|
+
and the value is the version to use.
|
1536
|
+
python : str, optional, default: None
|
1537
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1538
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1539
|
+
"""
|
1540
|
+
...
|
1541
|
+
|
1542
|
+
@typing.overload
|
1543
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1544
|
+
...
|
1545
|
+
|
1546
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1547
|
+
"""
|
1548
|
+
Specifies the PyPI packages for all steps of the flow.
|
1543
1549
|
|
1544
|
-
|
1545
|
-
|
1546
|
-
`user.<username>` unless `production` is set to `True`. This can
|
1547
|
-
also be set on the command line using `--branch` as a top-level option.
|
1548
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
1550
|
+
Use `@pypi_base` to set common packages required by all
|
1551
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1549
1552
|
|
1550
|
-
|
1551
|
-
|
1552
|
-
|
1553
|
-
|
1554
|
-
|
1555
|
-
|
1556
|
-
|
1557
|
-
|
1558
|
-
- if `branch` is not specified:
|
1559
|
-
- if `production` is True: `prod`
|
1560
|
-
- if `production` is False: `user.<username>`
|
1553
|
+
Parameters
|
1554
|
+
----------
|
1555
|
+
packages : Dict[str, str], default: {}
|
1556
|
+
Packages to use for this flow. The key is the name of the package
|
1557
|
+
and the value is the version to use.
|
1558
|
+
python : str, optional, default: None
|
1559
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1560
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1561
1561
|
"""
|
1562
1562
|
...
|
1563
1563
|
|
@@ -1604,6 +1604,49 @@ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str,
|
|
1604
1604
|
"""
|
1605
1605
|
...
|
1606
1606
|
|
1607
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1608
|
+
"""
|
1609
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1610
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1611
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1612
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1613
|
+
starts only after all sensors finish.
|
1614
|
+
|
1615
|
+
|
1616
|
+
Parameters
|
1617
|
+
----------
|
1618
|
+
timeout : int
|
1619
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1620
|
+
poke_interval : int
|
1621
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1622
|
+
mode : str
|
1623
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1624
|
+
exponential_backoff : bool
|
1625
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1626
|
+
pool : str
|
1627
|
+
the slot pool this task should run in,
|
1628
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1629
|
+
soft_fail : bool
|
1630
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1631
|
+
name : str
|
1632
|
+
Name of the sensor on Airflow
|
1633
|
+
description : str
|
1634
|
+
Description of sensor in the Airflow UI
|
1635
|
+
bucket_key : Union[str, List[str]]
|
1636
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1637
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1638
|
+
bucket_name : str
|
1639
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1640
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1641
|
+
wildcard_match : bool
|
1642
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1643
|
+
aws_conn_id : str
|
1644
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1645
|
+
verify : bool
|
1646
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1647
|
+
"""
|
1648
|
+
...
|
1649
|
+
|
1607
1650
|
@typing.overload
|
1608
1651
|
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1609
1652
|
"""
|
@@ -1748,87 +1791,38 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
1748
1791
|
"""
|
1749
1792
|
...
|
1750
1793
|
|
1751
|
-
def
|
1794
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1752
1795
|
"""
|
1753
|
-
|
1754
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1755
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1756
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1757
|
-
starts only after all sensors finish.
|
1758
|
-
|
1796
|
+
Specifies what flows belong to the same project.
|
1759
1797
|
|
1760
|
-
|
1761
|
-
|
1762
|
-
timeout : int
|
1763
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
1764
|
-
poke_interval : int
|
1765
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
1766
|
-
mode : str
|
1767
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1768
|
-
exponential_backoff : bool
|
1769
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1770
|
-
pool : str
|
1771
|
-
the slot pool this task should run in,
|
1772
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1773
|
-
soft_fail : bool
|
1774
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1775
|
-
name : str
|
1776
|
-
Name of the sensor on Airflow
|
1777
|
-
description : str
|
1778
|
-
Description of sensor in the Airflow UI
|
1779
|
-
bucket_key : Union[str, List[str]]
|
1780
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1781
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1782
|
-
bucket_name : str
|
1783
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1784
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1785
|
-
wildcard_match : bool
|
1786
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1787
|
-
aws_conn_id : str
|
1788
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
1789
|
-
verify : bool
|
1790
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1791
|
-
"""
|
1792
|
-
...
|
1793
|
-
|
1794
|
-
@typing.overload
|
1795
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1796
|
-
"""
|
1797
|
-
Specifies the PyPI packages for all steps of the flow.
|
1798
|
+
A project-specific namespace is created for all flows that
|
1799
|
+
use the same `@project(name)`.
|
1798
1800
|
|
1799
|
-
Use `@pypi_base` to set common packages required by all
|
1800
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1801
1801
|
|
1802
1802
|
Parameters
|
1803
1803
|
----------
|
1804
|
-
|
1805
|
-
|
1806
|
-
|
1807
|
-
|
1808
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1809
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1810
|
-
"""
|
1811
|
-
...
|
1812
|
-
|
1813
|
-
@typing.overload
|
1814
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1815
|
-
...
|
1816
|
-
|
1817
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1818
|
-
"""
|
1819
|
-
Specifies the PyPI packages for all steps of the flow.
|
1804
|
+
name : str
|
1805
|
+
Project name. Make sure that the name is unique amongst all
|
1806
|
+
projects that use the same production scheduler. The name may
|
1807
|
+
contain only lowercase alphanumeric characters and underscores.
|
1820
1808
|
|
1821
|
-
|
1822
|
-
|
1809
|
+
branch : Optional[str], default None
|
1810
|
+
The branch to use. If not specified, the branch is set to
|
1811
|
+
`user.<username>` unless `production` is set to `True`. This can
|
1812
|
+
also be set on the command line using `--branch` as a top-level option.
|
1813
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
1823
1814
|
|
1824
|
-
|
1825
|
-
|
1826
|
-
|
1827
|
-
|
1828
|
-
|
1829
|
-
|
1830
|
-
|
1831
|
-
|
1815
|
+
production : bool, default False
|
1816
|
+
Whether or not the branch is the production branch. This can also be set on the
|
1817
|
+
command line using `--production` as a top-level option. It is an error to specify
|
1818
|
+
`production` in the decorator and on the command line.
|
1819
|
+
The project branch name will be:
|
1820
|
+
- if `branch` is specified:
|
1821
|
+
- if `production` is True: `prod.<branch>`
|
1822
|
+
- if `production` is False: `test.<branch>`
|
1823
|
+
- if `branch` is not specified:
|
1824
|
+
- if `production` is True: `prod`
|
1825
|
+
- if `production` is False: `user.<username>`
|
1832
1826
|
"""
|
1833
1827
|
...
|
1834
1828
|
|