ob-metaflow-stubs 6.0.4.0__py2.py3-none-any.whl → 6.0.4.1rc1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +1001 -995
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +3 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +6 -7
- metaflow-stubs/client/filecache.pyi +3 -3
- metaflow-stubs/events.pyi +3 -3
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +8 -8
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +2 -2
- metaflow-stubs/{info_file.pyi → meta_files.pyi} +2 -6
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +3 -3
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +6 -2
- metaflow-stubs/metaflow_current.pyi +45 -45
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +12 -8
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +13 -11
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +13 -11
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/packaging_sys/__init__.pyi +430 -0
- metaflow-stubs/packaging_sys/backend.pyi +73 -0
- metaflow-stubs/packaging_sys/distribution_support.pyi +57 -0
- metaflow-stubs/packaging_sys/tar_backend.pyi +53 -0
- metaflow-stubs/packaging_sys/utils.pyi +26 -0
- metaflow-stubs/packaging_sys/v1.pyi +145 -0
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +13 -13
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +5 -5
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +5 -5
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/argo/exit_hooks.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +4 -4
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +4 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +4 -4
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +3 -3
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -4
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +3 -3
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +4 -4
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +3 -3
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +4 -4
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +4 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +3 -3
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +3 -3
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +5 -8
- metaflow-stubs/plugins/pypi/conda_environment.pyi +6 -5
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +4 -4
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +3 -3
- metaflow-stubs/plugins/timeout_decorator.pyi +3 -3
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +3 -2
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +5 -5
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +3 -2
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +3 -3
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -3
- metaflow-stubs/user_configs/config_options.pyi +5 -6
- metaflow-stubs/user_configs/config_parameters.pyi +4 -6
- metaflow-stubs/user_decorators/__init__.pyi +15 -0
- metaflow-stubs/user_decorators/common.pyi +38 -0
- metaflow-stubs/user_decorators/mutable_flow.pyi +223 -0
- metaflow-stubs/user_decorators/mutable_step.pyi +152 -0
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +137 -0
- metaflow-stubs/user_decorators/user_step_decorator.pyi +323 -0
- {ob_metaflow_stubs-6.0.4.0.dist-info → ob_metaflow_stubs-6.0.4.1rc1.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.4.1rc1.dist-info/RECORD +260 -0
- metaflow-stubs/user_configs/config_decorators.pyi +0 -251
- ob_metaflow_stubs-6.0.4.0.dist-info/RECORD +0 -249
- {ob_metaflow_stubs-6.0.4.0.dist-info → ob_metaflow_stubs-6.0.4.1rc1.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.4.0.dist-info → ob_metaflow_stubs-6.0.4.1rc1.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
|
-
# MF version: 2.
|
4
|
-
# Generated on 2025-07-
|
3
|
+
# MF version: 2.16.0.1+obcheckpoint(0.2.4);ob(v1) #
|
4
|
+
# Generated on 2025-07-14T20:15:55.146353 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
@@ -13,7 +13,8 @@ if typing.TYPE_CHECKING:
|
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
15
15
|
|
16
|
-
from . import
|
16
|
+
from . import meta_files as meta_files
|
17
|
+
from . import packaging_sys as packaging_sys
|
17
18
|
from . import exception as exception
|
18
19
|
from . import metaflow_config as metaflow_config
|
19
20
|
from . import multicore_utils as multicore_utils
|
@@ -23,6 +24,7 @@ from . import metaflow_current as metaflow_current
|
|
23
24
|
from .metaflow_current import current as current
|
24
25
|
from . import parameters as parameters
|
25
26
|
from . import user_configs as user_configs
|
27
|
+
from . import user_decorators as user_decorators
|
26
28
|
from . import tagging_util as tagging_util
|
27
29
|
from . import metadata_provider as metadata_provider
|
28
30
|
from . import flowspec as flowspec
|
@@ -33,19 +35,21 @@ from .parameters import JSONType as JSONType
|
|
33
35
|
from .user_configs.config_parameters import Config as Config
|
34
36
|
from .user_configs.config_parameters import ConfigValue as ConfigValue
|
35
37
|
from .user_configs.config_parameters import config_expr as config_expr
|
36
|
-
from .
|
37
|
-
from .
|
38
|
-
from . import
|
38
|
+
from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDecorator
|
39
|
+
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
40
|
+
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
41
|
+
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
39
42
|
from . import tuple_util as tuple_util
|
40
|
-
from . import
|
43
|
+
from . import cards as cards
|
41
44
|
from . import metaflow_git as metaflow_git
|
45
|
+
from . import events as events
|
42
46
|
from . import runner as runner
|
43
47
|
from . import plugins as plugins
|
44
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
45
49
|
from . import includefile as includefile
|
46
50
|
from .includefile import IncludeFile as IncludeFile
|
47
|
-
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
48
51
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
52
|
+
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
49
53
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
50
54
|
from . import client as client
|
51
55
|
from .client.core import namespace as namespace
|
@@ -83,6 +87,8 @@ from . import ob_internal as ob_internal
|
|
83
87
|
|
84
88
|
EXT_PKG: str
|
85
89
|
|
90
|
+
USER_SKIP_STEP: dict
|
91
|
+
|
86
92
|
@typing.overload
|
87
93
|
def step(f: typing.Callable[[FlowSpecDerived], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
88
94
|
"""
|
@@ -156,372 +162,436 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
156
162
|
"""
|
157
163
|
...
|
158
164
|
|
159
|
-
|
160
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
165
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
161
166
|
"""
|
162
|
-
Decorator
|
163
|
-
|
167
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
168
|
+
|
169
|
+
> Examples
|
170
|
+
|
171
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
172
|
+
```python
|
173
|
+
@huggingface_hub
|
174
|
+
@step
|
175
|
+
def pull_model_from_huggingface(self):
|
176
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
177
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
178
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
179
|
+
# value of the function is a reference to the model in the backend storage.
|
180
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
181
|
+
|
182
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
183
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
184
|
+
repo_id=self.model_id,
|
185
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
186
|
+
)
|
187
|
+
self.next(self.train)
|
188
|
+
```
|
189
|
+
|
190
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
191
|
+
```python
|
192
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
193
|
+
@step
|
194
|
+
def pull_model_from_huggingface(self):
|
195
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
196
|
+
```
|
197
|
+
|
198
|
+
```python
|
199
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
200
|
+
@step
|
201
|
+
def finetune_model(self):
|
202
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
203
|
+
# path_to_model will be /my-directory
|
204
|
+
```
|
205
|
+
|
206
|
+
```python
|
207
|
+
# Takes all the arguments passed to `snapshot_download`
|
208
|
+
# except for `local_dir`
|
209
|
+
@huggingface_hub(load=[
|
210
|
+
{
|
211
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
212
|
+
},
|
213
|
+
{
|
214
|
+
"repo_id": "myorg/mistral-lora",
|
215
|
+
"repo_type": "model",
|
216
|
+
},
|
217
|
+
])
|
218
|
+
@step
|
219
|
+
def finetune_model(self):
|
220
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
221
|
+
# path_to_model will be /my-directory
|
222
|
+
```
|
223
|
+
|
224
|
+
|
225
|
+
Parameters
|
226
|
+
----------
|
227
|
+
temp_dir_root : str, optional
|
228
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
229
|
+
|
230
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
231
|
+
The list of repos (models/datasets) to load.
|
232
|
+
|
233
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
234
|
+
|
235
|
+
- If repo (model/dataset) is not found in the datastore:
|
236
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
237
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
238
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
239
|
+
|
240
|
+
- If repo is found in the datastore:
|
241
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
164
242
|
"""
|
165
243
|
...
|
166
244
|
|
167
245
|
@typing.overload
|
168
|
-
def
|
169
|
-
...
|
170
|
-
|
171
|
-
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
172
|
-
"""
|
173
|
-
Decorator prototype for all step decorators. This function gets specialized
|
174
|
-
and imported for all decorators types by _import_plugin_decorators().
|
175
|
-
"""
|
176
|
-
...
|
177
|
-
|
178
|
-
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
246
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
179
247
|
"""
|
180
|
-
Specifies
|
248
|
+
Specifies environment variables to be set prior to the execution of a step.
|
181
249
|
|
182
250
|
|
183
251
|
Parameters
|
184
252
|
----------
|
185
|
-
|
186
|
-
|
187
|
-
gpu_type : str
|
188
|
-
Type of Nvidia GPU to use.
|
253
|
+
vars : Dict[str, str], default {}
|
254
|
+
Dictionary of environment variables to set.
|
189
255
|
"""
|
190
256
|
...
|
191
257
|
|
192
258
|
@typing.overload
|
193
|
-
def
|
194
|
-
"""
|
195
|
-
Internal decorator to support Fast bakery
|
196
|
-
"""
|
259
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
197
260
|
...
|
198
261
|
|
199
262
|
@typing.overload
|
200
|
-
def
|
263
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
201
264
|
...
|
202
265
|
|
203
|
-
def
|
266
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
204
267
|
"""
|
205
|
-
|
268
|
+
Specifies environment variables to be set prior to the execution of a step.
|
269
|
+
|
270
|
+
|
271
|
+
Parameters
|
272
|
+
----------
|
273
|
+
vars : Dict[str, str], default {}
|
274
|
+
Dictionary of environment variables to set.
|
206
275
|
"""
|
207
276
|
...
|
208
277
|
|
209
|
-
|
278
|
+
@typing.overload
|
279
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
210
280
|
"""
|
211
|
-
|
212
|
-
|
213
|
-
User code call
|
214
|
-
--------------
|
215
|
-
@vllm(
|
216
|
-
model="...",
|
217
|
-
...
|
218
|
-
)
|
219
|
-
|
220
|
-
Valid backend options
|
221
|
-
---------------------
|
222
|
-
- 'local': Run as a separate process on the local task machine.
|
223
|
-
|
224
|
-
Valid model options
|
225
|
-
-------------------
|
226
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
281
|
+
Specifies the Conda environment for the step.
|
227
282
|
|
228
|
-
|
229
|
-
|
283
|
+
Information in this decorator will augment any
|
284
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
285
|
+
you can use `@conda_base` to set packages required by all
|
286
|
+
steps and use `@conda` to specify step-specific overrides.
|
230
287
|
|
231
288
|
|
232
289
|
Parameters
|
233
290
|
----------
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
card_refresh_interval: int
|
245
|
-
Interval in seconds for refreshing the vLLM status card.
|
246
|
-
Only used when openai_api_server=True.
|
247
|
-
max_retries: int
|
248
|
-
Maximum number of retries checking for vLLM server startup.
|
249
|
-
Only used when openai_api_server=True.
|
250
|
-
retry_alert_frequency: int
|
251
|
-
Frequency of alert logs for vLLM server startup retries.
|
252
|
-
Only used when openai_api_server=True.
|
253
|
-
engine_args : dict
|
254
|
-
Additional keyword arguments to pass to the vLLM engine.
|
255
|
-
For example, `tensor_parallel_size=2`.
|
291
|
+
packages : Dict[str, str], default {}
|
292
|
+
Packages to use for this step. The key is the name of the package
|
293
|
+
and the value is the version to use.
|
294
|
+
libraries : Dict[str, str], default {}
|
295
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
296
|
+
python : str, optional, default None
|
297
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
298
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
299
|
+
disabled : bool, default False
|
300
|
+
If set to True, disables @conda.
|
256
301
|
"""
|
257
302
|
...
|
258
303
|
|
259
|
-
|
304
|
+
@typing.overload
|
305
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
306
|
+
...
|
307
|
+
|
308
|
+
@typing.overload
|
309
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
310
|
+
...
|
311
|
+
|
312
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
260
313
|
"""
|
261
|
-
|
262
|
-
|
263
|
-
User code call
|
264
|
-
--------------
|
265
|
-
@ollama(
|
266
|
-
models=[...],
|
267
|
-
...
|
268
|
-
)
|
269
|
-
|
270
|
-
Valid backend options
|
271
|
-
---------------------
|
272
|
-
- 'local': Run as a separate process on the local task machine.
|
273
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
274
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
314
|
+
Specifies the Conda environment for the step.
|
275
315
|
|
276
|
-
|
277
|
-
|
278
|
-
|
316
|
+
Information in this decorator will augment any
|
317
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
318
|
+
you can use `@conda_base` to set packages required by all
|
319
|
+
steps and use `@conda` to specify step-specific overrides.
|
279
320
|
|
280
321
|
|
281
322
|
Parameters
|
282
323
|
----------
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
debug: bool
|
294
|
-
Whether to turn on verbose debugging logs.
|
295
|
-
circuit_breaker_config: dict
|
296
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
297
|
-
timeout_config: dict
|
298
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
324
|
+
packages : Dict[str, str], default {}
|
325
|
+
Packages to use for this step. The key is the name of the package
|
326
|
+
and the value is the version to use.
|
327
|
+
libraries : Dict[str, str], default {}
|
328
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
329
|
+
python : str, optional, default None
|
330
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
331
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
332
|
+
disabled : bool, default False
|
333
|
+
If set to True, disables @conda.
|
299
334
|
"""
|
300
335
|
...
|
301
336
|
|
302
337
|
@typing.overload
|
303
|
-
def
|
338
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
304
339
|
"""
|
305
|
-
Enables
|
340
|
+
Enables loading / saving of models within a step.
|
306
341
|
|
307
342
|
> Examples
|
308
|
-
|
309
|
-
- Saving Checkpoints
|
310
|
-
|
343
|
+
- Saving Models
|
311
344
|
```python
|
312
|
-
@
|
345
|
+
@model
|
313
346
|
@step
|
314
347
|
def train(self):
|
315
|
-
model
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
name="epoch_checkpoint",
|
327
|
-
metadata={
|
328
|
-
"epoch": i,
|
329
|
-
"loss": loss,
|
330
|
-
}
|
331
|
-
)
|
332
|
-
```
|
348
|
+
# current.model.save returns a dictionary reference to the model saved
|
349
|
+
self.my_model = current.model.save(
|
350
|
+
path_to_my_model,
|
351
|
+
label="my_model",
|
352
|
+
metadata={
|
353
|
+
"epochs": 10,
|
354
|
+
"batch-size": 32,
|
355
|
+
"learning-rate": 0.001,
|
356
|
+
}
|
357
|
+
)
|
358
|
+
self.next(self.test)
|
333
359
|
|
334
|
-
|
360
|
+
@model(load="my_model")
|
361
|
+
@step
|
362
|
+
def test(self):
|
363
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
364
|
+
# where the key is the name of the artifact and the value is the path to the model
|
365
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
366
|
+
self.next(self.end)
|
367
|
+
```
|
335
368
|
|
369
|
+
- Loading models
|
336
370
|
```python
|
337
|
-
@retry(times=3)
|
338
|
-
@checkpoint
|
339
371
|
@step
|
340
372
|
def train(self):
|
341
|
-
#
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
|
346
|
-
|
347
|
-
|
348
|
-
|
349
|
-
for i in range(self.epochs):
|
350
|
-
...
|
373
|
+
# current.model.load returns the path to the model loaded
|
374
|
+
checkpoint_path = current.model.load(
|
375
|
+
self.checkpoint_key,
|
376
|
+
)
|
377
|
+
model_path = current.model.load(
|
378
|
+
self.model,
|
379
|
+
)
|
380
|
+
self.next(self.test)
|
351
381
|
```
|
352
382
|
|
353
383
|
|
354
384
|
Parameters
|
355
385
|
----------
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
363
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
364
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
365
|
-
created within the task will be loaded when the task is retries execution on failure.
|
386
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
387
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
388
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
389
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
390
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
391
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
366
392
|
|
367
393
|
temp_dir_root : str, default: None
|
368
|
-
The root directory under which `current.
|
394
|
+
The root directory under which `current.model.loaded` will store loaded models
|
369
395
|
"""
|
370
396
|
...
|
371
397
|
|
372
398
|
@typing.overload
|
373
|
-
def
|
399
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
374
400
|
...
|
375
401
|
|
376
402
|
@typing.overload
|
377
|
-
def
|
403
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
378
404
|
...
|
379
405
|
|
380
|
-
def
|
406
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
381
407
|
"""
|
382
|
-
Enables
|
408
|
+
Enables loading / saving of models within a step.
|
383
409
|
|
384
410
|
> Examples
|
385
|
-
|
386
|
-
- Saving Checkpoints
|
387
|
-
|
411
|
+
- Saving Models
|
388
412
|
```python
|
389
|
-
@
|
413
|
+
@model
|
390
414
|
@step
|
391
415
|
def train(self):
|
392
|
-
model
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
name="epoch_checkpoint",
|
404
|
-
metadata={
|
405
|
-
"epoch": i,
|
406
|
-
"loss": loss,
|
407
|
-
}
|
408
|
-
)
|
409
|
-
```
|
416
|
+
# current.model.save returns a dictionary reference to the model saved
|
417
|
+
self.my_model = current.model.save(
|
418
|
+
path_to_my_model,
|
419
|
+
label="my_model",
|
420
|
+
metadata={
|
421
|
+
"epochs": 10,
|
422
|
+
"batch-size": 32,
|
423
|
+
"learning-rate": 0.001,
|
424
|
+
}
|
425
|
+
)
|
426
|
+
self.next(self.test)
|
410
427
|
|
411
|
-
|
428
|
+
@model(load="my_model")
|
429
|
+
@step
|
430
|
+
def test(self):
|
431
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
432
|
+
# where the key is the name of the artifact and the value is the path to the model
|
433
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
434
|
+
self.next(self.end)
|
435
|
+
```
|
412
436
|
|
437
|
+
- Loading models
|
413
438
|
```python
|
414
|
-
@retry(times=3)
|
415
|
-
@checkpoint
|
416
439
|
@step
|
417
440
|
def train(self):
|
418
|
-
#
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
for i in range(self.epochs):
|
427
|
-
...
|
441
|
+
# current.model.load returns the path to the model loaded
|
442
|
+
checkpoint_path = current.model.load(
|
443
|
+
self.checkpoint_key,
|
444
|
+
)
|
445
|
+
model_path = current.model.load(
|
446
|
+
self.model,
|
447
|
+
)
|
448
|
+
self.next(self.test)
|
428
449
|
```
|
429
450
|
|
430
451
|
|
431
452
|
Parameters
|
432
453
|
----------
|
433
|
-
|
434
|
-
|
435
|
-
|
436
|
-
|
437
|
-
|
438
|
-
|
439
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
440
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
441
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
442
|
-
created within the task will be loaded when the task is retries execution on failure.
|
454
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
455
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
456
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
457
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
458
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
459
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
443
460
|
|
444
461
|
temp_dir_root : str, default: None
|
445
|
-
The root directory under which `current.
|
462
|
+
The root directory under which `current.model.loaded` will store loaded models
|
446
463
|
"""
|
447
464
|
...
|
448
465
|
|
449
|
-
|
450
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
466
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
451
467
|
"""
|
452
|
-
Specifies
|
453
|
-
|
454
|
-
Use `@resources` to specify the resource requirements
|
455
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
456
|
-
|
457
|
-
You can choose the compute layer on the command line by executing e.g.
|
458
|
-
```
|
459
|
-
python myflow.py run --with batch
|
460
|
-
```
|
461
|
-
or
|
462
|
-
```
|
463
|
-
python myflow.py run --with kubernetes
|
464
|
-
```
|
465
|
-
which executes the flow on the desired system using the
|
466
|
-
requirements specified in `@resources`.
|
468
|
+
Specifies that this step should execute on Kubernetes.
|
467
469
|
|
468
470
|
|
469
471
|
Parameters
|
470
472
|
----------
|
471
473
|
cpu : int, default 1
|
472
|
-
Number of CPUs required for this step.
|
473
|
-
|
474
|
-
Number of GPUs required for this step.
|
475
|
-
disk : int, optional, default None
|
476
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
474
|
+
Number of CPUs required for this step. If `@resources` is
|
475
|
+
also present, the maximum value from all decorators is used.
|
477
476
|
memory : int, default 4096
|
478
|
-
Memory size (in MB) required for this step.
|
479
|
-
|
480
|
-
|
481
|
-
|
482
|
-
|
483
|
-
|
484
|
-
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
|
496
|
-
|
497
|
-
|
498
|
-
|
499
|
-
|
500
|
-
|
501
|
-
|
502
|
-
|
503
|
-
|
504
|
-
|
505
|
-
|
506
|
-
|
507
|
-
|
508
|
-
which executes the flow on the desired system using the
|
509
|
-
requirements specified in `@resources`.
|
510
|
-
|
511
|
-
|
512
|
-
Parameters
|
513
|
-
----------
|
514
|
-
cpu : int, default 1
|
515
|
-
Number of CPUs required for this step.
|
477
|
+
Memory size (in MB) required for this step. If
|
478
|
+
`@resources` is also present, the maximum value from all decorators is
|
479
|
+
used.
|
480
|
+
disk : int, default 10240
|
481
|
+
Disk size (in MB) required for this step. If
|
482
|
+
`@resources` is also present, the maximum value from all decorators is
|
483
|
+
used.
|
484
|
+
image : str, optional, default None
|
485
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
486
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
487
|
+
not, a default Docker image mapping to the current version of Python is used.
|
488
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
489
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
490
|
+
image_pull_secrets: List[str], default []
|
491
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
492
|
+
Kubernetes image pull secrets to use when pulling container images
|
493
|
+
in Kubernetes.
|
494
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
495
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
496
|
+
secrets : List[str], optional, default None
|
497
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
498
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
499
|
+
in Metaflow configuration.
|
500
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
501
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
502
|
+
Can be passed in as a comma separated string of values e.g.
|
503
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
504
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
505
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
506
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
516
507
|
gpu : int, optional, default None
|
517
|
-
Number of GPUs required for this step.
|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
|
522
|
-
|
523
|
-
|
524
|
-
|
508
|
+
Number of GPUs required for this step. A value of zero implies that
|
509
|
+
the scheduled node should not have GPUs.
|
510
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
511
|
+
The vendor of the GPUs to be used for this step.
|
512
|
+
tolerations : List[str], default []
|
513
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
514
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
515
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
516
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
517
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
518
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
519
|
+
use_tmpfs : bool, default False
|
520
|
+
This enables an explicit tmpfs mount for this step.
|
521
|
+
tmpfs_tempdir : bool, default True
|
522
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
523
|
+
tmpfs_size : int, optional, default: None
|
524
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
525
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
526
|
+
memory allocated for this step.
|
527
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
528
|
+
Path to tmpfs mount for this step.
|
529
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
530
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
531
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
532
|
+
shared_memory: int, optional
|
533
|
+
Shared memory size (in MiB) required for this step
|
534
|
+
port: int, optional
|
535
|
+
Port number to specify in the Kubernetes job object
|
536
|
+
compute_pool : str, optional, default None
|
537
|
+
Compute pool to be used for for this step.
|
538
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
539
|
+
hostname_resolution_timeout: int, default 10 * 60
|
540
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
541
|
+
Only applicable when @parallel is used.
|
542
|
+
qos: str, default: Burstable
|
543
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
544
|
+
|
545
|
+
security_context: Dict[str, Any], optional, default None
|
546
|
+
Container security context. Applies to the task container. Allows the following keys:
|
547
|
+
- privileged: bool, optional, default None
|
548
|
+
- allow_privilege_escalation: bool, optional, default None
|
549
|
+
- run_as_user: int, optional, default None
|
550
|
+
- run_as_group: int, optional, default None
|
551
|
+
- run_as_non_root: bool, optional, default None
|
552
|
+
"""
|
553
|
+
...
|
554
|
+
|
555
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
556
|
+
"""
|
557
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
558
|
+
|
559
|
+
User code call
|
560
|
+
--------------
|
561
|
+
@ollama(
|
562
|
+
models=[...],
|
563
|
+
...
|
564
|
+
)
|
565
|
+
|
566
|
+
Valid backend options
|
567
|
+
---------------------
|
568
|
+
- 'local': Run as a separate process on the local task machine.
|
569
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
570
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
571
|
+
|
572
|
+
Valid model options
|
573
|
+
-------------------
|
574
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
575
|
+
|
576
|
+
|
577
|
+
Parameters
|
578
|
+
----------
|
579
|
+
models: list[str]
|
580
|
+
List of Ollama containers running models in sidecars.
|
581
|
+
backend: str
|
582
|
+
Determines where and how to run the Ollama process.
|
583
|
+
force_pull: bool
|
584
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
585
|
+
cache_update_policy: str
|
586
|
+
Cache update policy: "auto", "force", or "never".
|
587
|
+
force_cache_update: bool
|
588
|
+
Simple override for "force" cache update policy.
|
589
|
+
debug: bool
|
590
|
+
Whether to turn on verbose debugging logs.
|
591
|
+
circuit_breaker_config: dict
|
592
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
593
|
+
timeout_config: dict
|
594
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
525
595
|
"""
|
526
596
|
...
|
527
597
|
|
@@ -565,190 +635,137 @@ def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
565
635
|
...
|
566
636
|
|
567
637
|
@typing.overload
|
568
|
-
def
|
638
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
569
639
|
"""
|
570
|
-
Specifies
|
640
|
+
Specifies a timeout for your step.
|
571
641
|
|
572
|
-
|
573
|
-
|
574
|
-
|
575
|
-
|
642
|
+
This decorator is useful if this step may hang indefinitely.
|
643
|
+
|
644
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
645
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
646
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
647
|
+
|
648
|
+
Note that all the values specified in parameters are added together so if you specify
|
649
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
576
650
|
|
577
651
|
|
578
652
|
Parameters
|
579
653
|
----------
|
580
|
-
|
581
|
-
|
582
|
-
|
583
|
-
|
584
|
-
|
585
|
-
|
654
|
+
seconds : int, default 0
|
655
|
+
Number of seconds to wait prior to timing out.
|
656
|
+
minutes : int, default 0
|
657
|
+
Number of minutes to wait prior to timing out.
|
658
|
+
hours : int, default 0
|
659
|
+
Number of hours to wait prior to timing out.
|
586
660
|
"""
|
587
661
|
...
|
588
662
|
|
589
663
|
@typing.overload
|
590
|
-
def
|
664
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
591
665
|
...
|
592
666
|
|
593
667
|
@typing.overload
|
594
|
-
def
|
668
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
595
669
|
...
|
596
670
|
|
597
|
-
def
|
671
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
598
672
|
"""
|
599
|
-
Specifies
|
673
|
+
Specifies a timeout for your step.
|
600
674
|
|
601
|
-
|
602
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
603
|
-
you can use `@pypi_base` to set packages required by all
|
604
|
-
steps and use `@pypi` to specify step-specific overrides.
|
675
|
+
This decorator is useful if this step may hang indefinitely.
|
605
676
|
|
677
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
678
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
679
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
606
680
|
|
607
|
-
|
608
|
-
|
609
|
-
packages : Dict[str, str], default: {}
|
610
|
-
Packages to use for this step. The key is the name of the package
|
611
|
-
and the value is the version to use.
|
612
|
-
python : str, optional, default: None
|
613
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
614
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
615
|
-
"""
|
616
|
-
...
|
617
|
-
|
618
|
-
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
619
|
-
"""
|
620
|
-
Specifies that this step should execute on DGX cloud.
|
681
|
+
Note that all the values specified in parameters are added together so if you specify
|
682
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
621
683
|
|
622
684
|
|
623
685
|
Parameters
|
624
686
|
----------
|
625
|
-
|
626
|
-
Number of
|
627
|
-
|
628
|
-
|
629
|
-
|
630
|
-
|
687
|
+
seconds : int, default 0
|
688
|
+
Number of seconds to wait prior to timing out.
|
689
|
+
minutes : int, default 0
|
690
|
+
Number of minutes to wait prior to timing out.
|
691
|
+
hours : int, default 0
|
692
|
+
Number of hours to wait prior to timing out.
|
631
693
|
"""
|
632
694
|
...
|
633
695
|
|
634
696
|
@typing.overload
|
635
|
-
def
|
697
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
636
698
|
"""
|
637
|
-
|
638
|
-
|
639
|
-
|
640
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
641
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
642
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
643
|
-
|
644
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
645
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
646
|
-
ensuring that the flow execution can continue.
|
647
|
-
|
648
|
-
|
649
|
-
Parameters
|
650
|
-
----------
|
651
|
-
times : int, default 3
|
652
|
-
Number of times to retry this task.
|
653
|
-
minutes_between_retries : int, default 2
|
654
|
-
Number of minutes between retries.
|
699
|
+
Decorator prototype for all step decorators. This function gets specialized
|
700
|
+
and imported for all decorators types by _import_plugin_decorators().
|
655
701
|
"""
|
656
702
|
...
|
657
703
|
|
658
704
|
@typing.overload
|
659
|
-
def
|
705
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
660
706
|
...
|
661
707
|
|
662
|
-
|
663
|
-
|
708
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
709
|
+
"""
|
710
|
+
Decorator prototype for all step decorators. This function gets specialized
|
711
|
+
and imported for all decorators types by _import_plugin_decorators().
|
712
|
+
"""
|
664
713
|
...
|
665
714
|
|
666
|
-
def
|
715
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
667
716
|
"""
|
668
|
-
|
669
|
-
to a step needs to be retried.
|
717
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
670
718
|
|
671
|
-
|
672
|
-
|
673
|
-
|
719
|
+
User code call
|
720
|
+
--------------
|
721
|
+
@vllm(
|
722
|
+
model="...",
|
723
|
+
...
|
724
|
+
)
|
674
725
|
|
675
|
-
|
676
|
-
|
677
|
-
|
726
|
+
Valid backend options
|
727
|
+
---------------------
|
728
|
+
- 'local': Run as a separate process on the local task machine.
|
729
|
+
|
730
|
+
Valid model options
|
731
|
+
-------------------
|
732
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
733
|
+
|
734
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
735
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
678
736
|
|
679
737
|
|
680
738
|
Parameters
|
681
739
|
----------
|
682
|
-
|
683
|
-
|
684
|
-
|
685
|
-
|
740
|
+
model: str
|
741
|
+
HuggingFace model identifier to be served by vLLM.
|
742
|
+
backend: str
|
743
|
+
Determines where and how to run the vLLM process.
|
744
|
+
openai_api_server: bool
|
745
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
746
|
+
Default is False (uses native engine).
|
747
|
+
Set to True for backward compatibility with existing code.
|
748
|
+
debug: bool
|
749
|
+
Whether to turn on verbose debugging logs.
|
750
|
+
card_refresh_interval: int
|
751
|
+
Interval in seconds for refreshing the vLLM status card.
|
752
|
+
Only used when openai_api_server=True.
|
753
|
+
max_retries: int
|
754
|
+
Maximum number of retries checking for vLLM server startup.
|
755
|
+
Only used when openai_api_server=True.
|
756
|
+
retry_alert_frequency: int
|
757
|
+
Frequency of alert logs for vLLM server startup retries.
|
758
|
+
Only used when openai_api_server=True.
|
759
|
+
engine_args : dict
|
760
|
+
Additional keyword arguments to pass to the vLLM engine.
|
761
|
+
For example, `tensor_parallel_size=2`.
|
686
762
|
"""
|
687
763
|
...
|
688
764
|
|
689
765
|
@typing.overload
|
690
|
-
def
|
766
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
691
767
|
"""
|
692
|
-
|
693
|
-
|
694
|
-
Information in this decorator will augment any
|
695
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
696
|
-
you can use `@conda_base` to set packages required by all
|
697
|
-
steps and use `@conda` to specify step-specific overrides.
|
698
|
-
|
699
|
-
|
700
|
-
Parameters
|
701
|
-
----------
|
702
|
-
packages : Dict[str, str], default {}
|
703
|
-
Packages to use for this step. The key is the name of the package
|
704
|
-
and the value is the version to use.
|
705
|
-
libraries : Dict[str, str], default {}
|
706
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
707
|
-
python : str, optional, default None
|
708
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
709
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
710
|
-
disabled : bool, default False
|
711
|
-
If set to True, disables @conda.
|
712
|
-
"""
|
713
|
-
...
|
714
|
-
|
715
|
-
@typing.overload
|
716
|
-
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
717
|
-
...
|
718
|
-
|
719
|
-
@typing.overload
|
720
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
721
|
-
...
|
722
|
-
|
723
|
-
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
724
|
-
"""
|
725
|
-
Specifies the Conda environment for the step.
|
726
|
-
|
727
|
-
Information in this decorator will augment any
|
728
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
729
|
-
you can use `@conda_base` to set packages required by all
|
730
|
-
steps and use `@conda` to specify step-specific overrides.
|
731
|
-
|
732
|
-
|
733
|
-
Parameters
|
734
|
-
----------
|
735
|
-
packages : Dict[str, str], default {}
|
736
|
-
Packages to use for this step. The key is the name of the package
|
737
|
-
and the value is the version to use.
|
738
|
-
libraries : Dict[str, str], default {}
|
739
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
740
|
-
python : str, optional, default None
|
741
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
742
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
743
|
-
disabled : bool, default False
|
744
|
-
If set to True, disables @conda.
|
745
|
-
"""
|
746
|
-
...
|
747
|
-
|
748
|
-
@typing.overload
|
749
|
-
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
750
|
-
"""
|
751
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
768
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
752
769
|
|
753
770
|
Note that you may add multiple `@card` decorators in a step with different parameters.
|
754
771
|
|
@@ -794,113 +811,74 @@ def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
794
811
|
"""
|
795
812
|
...
|
796
813
|
|
797
|
-
|
798
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
799
|
-
"""
|
800
|
-
Specifies that the step will success under all circumstances.
|
801
|
-
|
802
|
-
The decorator will create an optional artifact, specified by `var`, which
|
803
|
-
contains the exception raised. You can use it to detect the presence
|
804
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
805
|
-
are missing.
|
806
|
-
|
807
|
-
|
808
|
-
Parameters
|
809
|
-
----------
|
810
|
-
var : str, optional, default None
|
811
|
-
Name of the artifact in which to store the caught exception.
|
812
|
-
If not specified, the exception is not stored.
|
813
|
-
print_exception : bool, default True
|
814
|
-
Determines whether or not the exception is printed to
|
815
|
-
stdout when caught.
|
816
|
-
"""
|
817
|
-
...
|
818
|
-
|
819
|
-
@typing.overload
|
820
|
-
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
821
|
-
...
|
822
|
-
|
823
|
-
@typing.overload
|
824
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
825
|
-
...
|
826
|
-
|
827
|
-
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
814
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
828
815
|
"""
|
829
|
-
Specifies that
|
830
|
-
|
831
|
-
The decorator will create an optional artifact, specified by `var`, which
|
832
|
-
contains the exception raised. You can use it to detect the presence
|
833
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
834
|
-
are missing.
|
816
|
+
Specifies that this step should execute on DGX cloud.
|
835
817
|
|
836
818
|
|
837
819
|
Parameters
|
838
820
|
----------
|
839
|
-
|
840
|
-
|
841
|
-
|
842
|
-
|
843
|
-
|
844
|
-
|
821
|
+
gpu : int
|
822
|
+
Number of GPUs to use.
|
823
|
+
gpu_type : str
|
824
|
+
Type of Nvidia GPU to use.
|
825
|
+
queue_timeout : int
|
826
|
+
Time to keep the job in NVCF's queue.
|
845
827
|
"""
|
846
828
|
...
|
847
829
|
|
848
830
|
@typing.overload
|
849
|
-
def
|
831
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
850
832
|
"""
|
851
|
-
Specifies
|
852
|
-
|
853
|
-
This decorator is useful if this step may hang indefinitely.
|
833
|
+
Specifies the number of times the task corresponding
|
834
|
+
to a step needs to be retried.
|
854
835
|
|
855
|
-
This
|
856
|
-
|
857
|
-
|
836
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
837
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
838
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
858
839
|
|
859
|
-
|
860
|
-
|
840
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
841
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
842
|
+
ensuring that the flow execution can continue.
|
861
843
|
|
862
844
|
|
863
845
|
Parameters
|
864
846
|
----------
|
865
|
-
|
866
|
-
Number of
|
867
|
-
|
868
|
-
Number of minutes
|
869
|
-
hours : int, default 0
|
870
|
-
Number of hours to wait prior to timing out.
|
847
|
+
times : int, default 3
|
848
|
+
Number of times to retry this task.
|
849
|
+
minutes_between_retries : int, default 2
|
850
|
+
Number of minutes between retries.
|
871
851
|
"""
|
872
852
|
...
|
873
853
|
|
874
854
|
@typing.overload
|
875
|
-
def
|
855
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
876
856
|
...
|
877
857
|
|
878
858
|
@typing.overload
|
879
|
-
def
|
859
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
880
860
|
...
|
881
861
|
|
882
|
-
def
|
862
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
883
863
|
"""
|
884
|
-
Specifies
|
885
|
-
|
886
|
-
This decorator is useful if this step may hang indefinitely.
|
864
|
+
Specifies the number of times the task corresponding
|
865
|
+
to a step needs to be retried.
|
887
866
|
|
888
|
-
This
|
889
|
-
|
890
|
-
|
867
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
868
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
869
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
891
870
|
|
892
|
-
|
893
|
-
|
871
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
872
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
873
|
+
ensuring that the flow execution can continue.
|
894
874
|
|
895
875
|
|
896
876
|
Parameters
|
897
877
|
----------
|
898
|
-
|
899
|
-
Number of
|
900
|
-
|
901
|
-
Number of minutes
|
902
|
-
hours : int, default 0
|
903
|
-
Number of hours to wait prior to timing out.
|
878
|
+
times : int, default 3
|
879
|
+
Number of times to retry this task.
|
880
|
+
minutes_between_retries : int, default 2
|
881
|
+
Number of minutes between retries.
|
904
882
|
"""
|
905
883
|
...
|
906
884
|
|
@@ -924,519 +902,371 @@ def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
924
902
|
...
|
925
903
|
|
926
904
|
@typing.overload
|
927
|
-
def
|
928
|
-
"""
|
929
|
-
Enables loading / saving of models within a step.
|
930
|
-
|
931
|
-
> Examples
|
932
|
-
- Saving Models
|
933
|
-
```python
|
934
|
-
@model
|
935
|
-
@step
|
936
|
-
def train(self):
|
937
|
-
# current.model.save returns a dictionary reference to the model saved
|
938
|
-
self.my_model = current.model.save(
|
939
|
-
path_to_my_model,
|
940
|
-
label="my_model",
|
941
|
-
metadata={
|
942
|
-
"epochs": 10,
|
943
|
-
"batch-size": 32,
|
944
|
-
"learning-rate": 0.001,
|
945
|
-
}
|
946
|
-
)
|
947
|
-
self.next(self.test)
|
948
|
-
|
949
|
-
@model(load="my_model")
|
950
|
-
@step
|
951
|
-
def test(self):
|
952
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
953
|
-
# where the key is the name of the artifact and the value is the path to the model
|
954
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
955
|
-
self.next(self.end)
|
956
|
-
```
|
957
|
-
|
958
|
-
- Loading models
|
959
|
-
```python
|
960
|
-
@step
|
961
|
-
def train(self):
|
962
|
-
# current.model.load returns the path to the model loaded
|
963
|
-
checkpoint_path = current.model.load(
|
964
|
-
self.checkpoint_key,
|
965
|
-
)
|
966
|
-
model_path = current.model.load(
|
967
|
-
self.model,
|
968
|
-
)
|
969
|
-
self.next(self.test)
|
970
|
-
```
|
971
|
-
|
972
|
-
|
973
|
-
Parameters
|
974
|
-
----------
|
975
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
976
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
977
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
978
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
979
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
980
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
981
|
-
|
982
|
-
temp_dir_root : str, default: None
|
983
|
-
The root directory under which `current.model.loaded` will store loaded models
|
984
|
-
"""
|
985
|
-
...
|
986
|
-
|
987
|
-
@typing.overload
|
988
|
-
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
989
|
-
...
|
990
|
-
|
991
|
-
@typing.overload
|
992
|
-
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
993
|
-
...
|
994
|
-
|
995
|
-
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
996
|
-
"""
|
997
|
-
Enables loading / saving of models within a step.
|
998
|
-
|
999
|
-
> Examples
|
1000
|
-
- Saving Models
|
1001
|
-
```python
|
1002
|
-
@model
|
1003
|
-
@step
|
1004
|
-
def train(self):
|
1005
|
-
# current.model.save returns a dictionary reference to the model saved
|
1006
|
-
self.my_model = current.model.save(
|
1007
|
-
path_to_my_model,
|
1008
|
-
label="my_model",
|
1009
|
-
metadata={
|
1010
|
-
"epochs": 10,
|
1011
|
-
"batch-size": 32,
|
1012
|
-
"learning-rate": 0.001,
|
1013
|
-
}
|
1014
|
-
)
|
1015
|
-
self.next(self.test)
|
1016
|
-
|
1017
|
-
@model(load="my_model")
|
1018
|
-
@step
|
1019
|
-
def test(self):
|
1020
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
1021
|
-
# where the key is the name of the artifact and the value is the path to the model
|
1022
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
1023
|
-
self.next(self.end)
|
1024
|
-
```
|
1025
|
-
|
1026
|
-
- Loading models
|
1027
|
-
```python
|
1028
|
-
@step
|
1029
|
-
def train(self):
|
1030
|
-
# current.model.load returns the path to the model loaded
|
1031
|
-
checkpoint_path = current.model.load(
|
1032
|
-
self.checkpoint_key,
|
1033
|
-
)
|
1034
|
-
model_path = current.model.load(
|
1035
|
-
self.model,
|
1036
|
-
)
|
1037
|
-
self.next(self.test)
|
1038
|
-
```
|
1039
|
-
|
1040
|
-
|
1041
|
-
Parameters
|
1042
|
-
----------
|
1043
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
1044
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
1045
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
1046
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
1047
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
1048
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
1049
|
-
|
1050
|
-
temp_dir_root : str, default: None
|
1051
|
-
The root directory under which `current.model.loaded` will store loaded models
|
1052
|
-
"""
|
1053
|
-
...
|
1054
|
-
|
1055
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1056
|
-
"""
|
1057
|
-
Specifies that this step should execute on Kubernetes.
|
1058
|
-
|
1059
|
-
|
1060
|
-
Parameters
|
1061
|
-
----------
|
1062
|
-
cpu : int, default 1
|
1063
|
-
Number of CPUs required for this step. If `@resources` is
|
1064
|
-
also present, the maximum value from all decorators is used.
|
1065
|
-
memory : int, default 4096
|
1066
|
-
Memory size (in MB) required for this step. If
|
1067
|
-
`@resources` is also present, the maximum value from all decorators is
|
1068
|
-
used.
|
1069
|
-
disk : int, default 10240
|
1070
|
-
Disk size (in MB) required for this step. If
|
1071
|
-
`@resources` is also present, the maximum value from all decorators is
|
1072
|
-
used.
|
1073
|
-
image : str, optional, default None
|
1074
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
1075
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
1076
|
-
not, a default Docker image mapping to the current version of Python is used.
|
1077
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
1078
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
1079
|
-
image_pull_secrets: List[str], default []
|
1080
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
1081
|
-
Kubernetes image pull secrets to use when pulling container images
|
1082
|
-
in Kubernetes.
|
1083
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
1084
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
1085
|
-
secrets : List[str], optional, default None
|
1086
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
1087
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
1088
|
-
in Metaflow configuration.
|
1089
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
1090
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
1091
|
-
Can be passed in as a comma separated string of values e.g.
|
1092
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
1093
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
1094
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
1095
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
1096
|
-
gpu : int, optional, default None
|
1097
|
-
Number of GPUs required for this step. A value of zero implies that
|
1098
|
-
the scheduled node should not have GPUs.
|
1099
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
1100
|
-
The vendor of the GPUs to be used for this step.
|
1101
|
-
tolerations : List[str], default []
|
1102
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
1103
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
1104
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
1105
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
1106
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
1107
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
1108
|
-
use_tmpfs : bool, default False
|
1109
|
-
This enables an explicit tmpfs mount for this step.
|
1110
|
-
tmpfs_tempdir : bool, default True
|
1111
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
1112
|
-
tmpfs_size : int, optional, default: None
|
1113
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
1114
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
1115
|
-
memory allocated for this step.
|
1116
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
1117
|
-
Path to tmpfs mount for this step.
|
1118
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
1119
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
1120
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
1121
|
-
shared_memory: int, optional
|
1122
|
-
Shared memory size (in MiB) required for this step
|
1123
|
-
port: int, optional
|
1124
|
-
Port number to specify in the Kubernetes job object
|
1125
|
-
compute_pool : str, optional, default None
|
1126
|
-
Compute pool to be used for for this step.
|
1127
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
1128
|
-
hostname_resolution_timeout: int, default 10 * 60
|
1129
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
1130
|
-
Only applicable when @parallel is used.
|
1131
|
-
qos: str, default: Burstable
|
1132
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
1133
|
-
|
1134
|
-
security_context: Dict[str, Any], optional, default None
|
1135
|
-
Container security context. Applies to the task container. Allows the following keys:
|
1136
|
-
- privileged: bool, optional, default None
|
1137
|
-
- allow_privilege_escalation: bool, optional, default None
|
1138
|
-
- run_as_user: int, optional, default None
|
1139
|
-
- run_as_group: int, optional, default None
|
1140
|
-
- run_as_non_root: bool, optional, default None
|
1141
|
-
"""
|
1142
|
-
...
|
1143
|
-
|
1144
|
-
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
905
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1145
906
|
"""
|
1146
|
-
|
1147
|
-
|
1148
|
-
> Examples
|
1149
|
-
|
1150
|
-
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
1151
|
-
```python
|
1152
|
-
@huggingface_hub
|
1153
|
-
@step
|
1154
|
-
def pull_model_from_huggingface(self):
|
1155
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
1156
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
1157
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
1158
|
-
# value of the function is a reference to the model in the backend storage.
|
1159
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
907
|
+
Specifies the resources needed when executing this step.
|
1160
908
|
|
1161
|
-
|
1162
|
-
|
1163
|
-
repo_id=self.model_id,
|
1164
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
1165
|
-
)
|
1166
|
-
self.next(self.train)
|
1167
|
-
```
|
909
|
+
Use `@resources` to specify the resource requirements
|
910
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
1168
911
|
|
1169
|
-
|
1170
|
-
```python
|
1171
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
1172
|
-
@step
|
1173
|
-
def pull_model_from_huggingface(self):
|
1174
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
912
|
+
You can choose the compute layer on the command line by executing e.g.
|
1175
913
|
```
|
1176
|
-
|
1177
|
-
```python
|
1178
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
1179
|
-
@step
|
1180
|
-
def finetune_model(self):
|
1181
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1182
|
-
# path_to_model will be /my-directory
|
914
|
+
python myflow.py run --with batch
|
1183
915
|
```
|
1184
|
-
|
1185
|
-
```python
|
1186
|
-
# Takes all the arguments passed to `snapshot_download`
|
1187
|
-
# except for `local_dir`
|
1188
|
-
@huggingface_hub(load=[
|
1189
|
-
{
|
1190
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
1191
|
-
},
|
1192
|
-
{
|
1193
|
-
"repo_id": "myorg/mistral-lora",
|
1194
|
-
"repo_type": "model",
|
1195
|
-
},
|
1196
|
-
])
|
1197
|
-
@step
|
1198
|
-
def finetune_model(self):
|
1199
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1200
|
-
# path_to_model will be /my-directory
|
916
|
+
or
|
1201
917
|
```
|
918
|
+
python myflow.py run --with kubernetes
|
919
|
+
```
|
920
|
+
which executes the flow on the desired system using the
|
921
|
+
requirements specified in `@resources`.
|
1202
922
|
|
1203
923
|
|
1204
924
|
Parameters
|
1205
925
|
----------
|
1206
|
-
|
1207
|
-
|
926
|
+
cpu : int, default 1
|
927
|
+
Number of CPUs required for this step.
|
928
|
+
gpu : int, optional, default None
|
929
|
+
Number of GPUs required for this step.
|
930
|
+
disk : int, optional, default None
|
931
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
932
|
+
memory : int, default 4096
|
933
|
+
Memory size (in MB) required for this step.
|
934
|
+
shared_memory : int, optional, default None
|
935
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
936
|
+
This parameter maps to the `--shm-size` option in Docker.
|
937
|
+
"""
|
938
|
+
...
|
939
|
+
|
940
|
+
@typing.overload
|
941
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
942
|
+
...
|
943
|
+
|
944
|
+
@typing.overload
|
945
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
946
|
+
...
|
947
|
+
|
948
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
949
|
+
"""
|
950
|
+
Specifies the resources needed when executing this step.
|
1208
951
|
|
1209
|
-
|
1210
|
-
|
952
|
+
Use `@resources` to specify the resource requirements
|
953
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
1211
954
|
|
1212
|
-
|
955
|
+
You can choose the compute layer on the command line by executing e.g.
|
956
|
+
```
|
957
|
+
python myflow.py run --with batch
|
958
|
+
```
|
959
|
+
or
|
960
|
+
```
|
961
|
+
python myflow.py run --with kubernetes
|
962
|
+
```
|
963
|
+
which executes the flow on the desired system using the
|
964
|
+
requirements specified in `@resources`.
|
1213
965
|
|
1214
|
-
- If repo (model/dataset) is not found in the datastore:
|
1215
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
1216
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
1217
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
1218
966
|
|
1219
|
-
|
1220
|
-
|
967
|
+
Parameters
|
968
|
+
----------
|
969
|
+
cpu : int, default 1
|
970
|
+
Number of CPUs required for this step.
|
971
|
+
gpu : int, optional, default None
|
972
|
+
Number of GPUs required for this step.
|
973
|
+
disk : int, optional, default None
|
974
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
975
|
+
memory : int, default 4096
|
976
|
+
Memory size (in MB) required for this step.
|
977
|
+
shared_memory : int, optional, default None
|
978
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
979
|
+
This parameter maps to the `--shm-size` option in Docker.
|
1221
980
|
"""
|
1222
981
|
...
|
1223
982
|
|
1224
983
|
@typing.overload
|
1225
|
-
def
|
984
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1226
985
|
"""
|
1227
|
-
Specifies
|
986
|
+
Specifies that the step will success under all circumstances.
|
987
|
+
|
988
|
+
The decorator will create an optional artifact, specified by `var`, which
|
989
|
+
contains the exception raised. You can use it to detect the presence
|
990
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
991
|
+
are missing.
|
1228
992
|
|
1229
993
|
|
1230
994
|
Parameters
|
1231
995
|
----------
|
1232
|
-
|
1233
|
-
|
996
|
+
var : str, optional, default None
|
997
|
+
Name of the artifact in which to store the caught exception.
|
998
|
+
If not specified, the exception is not stored.
|
999
|
+
print_exception : bool, default True
|
1000
|
+
Determines whether or not the exception is printed to
|
1001
|
+
stdout when caught.
|
1234
1002
|
"""
|
1235
1003
|
...
|
1236
1004
|
|
1237
1005
|
@typing.overload
|
1238
|
-
def
|
1006
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1239
1007
|
...
|
1240
1008
|
|
1241
1009
|
@typing.overload
|
1242
|
-
def
|
1010
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1243
1011
|
...
|
1244
1012
|
|
1245
|
-
def
|
1013
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
1246
1014
|
"""
|
1247
|
-
Specifies
|
1015
|
+
Specifies that the step will success under all circumstances.
|
1016
|
+
|
1017
|
+
The decorator will create an optional artifact, specified by `var`, which
|
1018
|
+
contains the exception raised. You can use it to detect the presence
|
1019
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
1020
|
+
are missing.
|
1248
1021
|
|
1249
1022
|
|
1250
1023
|
Parameters
|
1251
1024
|
----------
|
1252
|
-
|
1253
|
-
|
1025
|
+
var : str, optional, default None
|
1026
|
+
Name of the artifact in which to store the caught exception.
|
1027
|
+
If not specified, the exception is not stored.
|
1028
|
+
print_exception : bool, default True
|
1029
|
+
Determines whether or not the exception is printed to
|
1030
|
+
stdout when caught.
|
1254
1031
|
"""
|
1255
1032
|
...
|
1256
1033
|
|
1257
|
-
|
1258
|
-
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1034
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1259
1035
|
"""
|
1260
|
-
Specifies
|
1261
|
-
production scheduler.
|
1036
|
+
Specifies that this step should execute on DGX cloud.
|
1262
1037
|
|
1263
1038
|
|
1264
1039
|
Parameters
|
1265
1040
|
----------
|
1266
|
-
|
1267
|
-
|
1268
|
-
|
1269
|
-
|
1270
|
-
weekly : bool, default False
|
1271
|
-
Run the workflow weekly.
|
1272
|
-
cron : str, optional, default None
|
1273
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1274
|
-
specified by this expression.
|
1275
|
-
timezone : str, optional, default None
|
1276
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1277
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1041
|
+
gpu : int
|
1042
|
+
Number of GPUs to use.
|
1043
|
+
gpu_type : str
|
1044
|
+
Type of Nvidia GPU to use.
|
1278
1045
|
"""
|
1279
1046
|
...
|
1280
1047
|
|
1281
1048
|
@typing.overload
|
1282
|
-
def
|
1283
|
-
...
|
1284
|
-
|
1285
|
-
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1049
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1286
1050
|
"""
|
1287
|
-
Specifies the
|
1288
|
-
|
1051
|
+
Specifies the PyPI packages for the step.
|
1052
|
+
|
1053
|
+
Information in this decorator will augment any
|
1054
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
1055
|
+
you can use `@pypi_base` to set packages required by all
|
1056
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1289
1057
|
|
1290
1058
|
|
1291
1059
|
Parameters
|
1292
1060
|
----------
|
1293
|
-
|
1294
|
-
|
1295
|
-
|
1296
|
-
|
1297
|
-
|
1298
|
-
|
1299
|
-
cron : str, optional, default None
|
1300
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1301
|
-
specified by this expression.
|
1302
|
-
timezone : str, optional, default None
|
1303
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1304
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1061
|
+
packages : Dict[str, str], default: {}
|
1062
|
+
Packages to use for this step. The key is the name of the package
|
1063
|
+
and the value is the version to use.
|
1064
|
+
python : str, optional, default: None
|
1065
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1066
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1305
1067
|
"""
|
1306
1068
|
...
|
1307
1069
|
|
1308
|
-
|
1070
|
+
@typing.overload
|
1071
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1072
|
+
...
|
1073
|
+
|
1074
|
+
@typing.overload
|
1075
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1076
|
+
...
|
1077
|
+
|
1078
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1309
1079
|
"""
|
1310
|
-
Specifies
|
1080
|
+
Specifies the PyPI packages for the step.
|
1311
1081
|
|
1312
|
-
|
1313
|
-
|
1082
|
+
Information in this decorator will augment any
|
1083
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
1084
|
+
you can use `@pypi_base` to set packages required by all
|
1085
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1314
1086
|
|
1315
1087
|
|
1316
1088
|
Parameters
|
1317
1089
|
----------
|
1318
|
-
|
1319
|
-
|
1320
|
-
|
1321
|
-
|
1322
|
-
|
1323
|
-
|
1324
|
-
The branch to use. If not specified, the branch is set to
|
1325
|
-
`user.<username>` unless `production` is set to `True`. This can
|
1326
|
-
also be set on the command line using `--branch` as a top-level option.
|
1327
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
1328
|
-
|
1329
|
-
production : bool, default False
|
1330
|
-
Whether or not the branch is the production branch. This can also be set on the
|
1331
|
-
command line using `--production` as a top-level option. It is an error to specify
|
1332
|
-
`production` in the decorator and on the command line.
|
1333
|
-
The project branch name will be:
|
1334
|
-
- if `branch` is specified:
|
1335
|
-
- if `production` is True: `prod.<branch>`
|
1336
|
-
- if `production` is False: `test.<branch>`
|
1337
|
-
- if `branch` is not specified:
|
1338
|
-
- if `production` is True: `prod`
|
1339
|
-
- if `production` is False: `user.<username>`
|
1090
|
+
packages : Dict[str, str], default: {}
|
1091
|
+
Packages to use for this step. The key is the name of the package
|
1092
|
+
and the value is the version to use.
|
1093
|
+
python : str, optional, default: None
|
1094
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1095
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1340
1096
|
"""
|
1341
1097
|
...
|
1342
1098
|
|
1343
1099
|
@typing.overload
|
1344
|
-
def
|
1100
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1345
1101
|
"""
|
1346
|
-
|
1102
|
+
Enables checkpointing for a step.
|
1347
1103
|
|
1348
|
-
|
1349
|
-
@trigger(event='foo')
|
1350
|
-
```
|
1351
|
-
or
|
1352
|
-
```
|
1353
|
-
@trigger(events=['foo', 'bar'])
|
1354
|
-
```
|
1104
|
+
> Examples
|
1355
1105
|
|
1356
|
-
|
1357
|
-
|
1358
|
-
```
|
1359
|
-
@
|
1360
|
-
|
1361
|
-
|
1362
|
-
|
1363
|
-
|
1364
|
-
|
1106
|
+
- Saving Checkpoints
|
1107
|
+
|
1108
|
+
```python
|
1109
|
+
@checkpoint
|
1110
|
+
@step
|
1111
|
+
def train(self):
|
1112
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
1113
|
+
for i in range(self.epochs):
|
1114
|
+
# some training logic
|
1115
|
+
loss = model.train(self.dataset)
|
1116
|
+
if i % 10 == 0:
|
1117
|
+
model.save(
|
1118
|
+
current.checkpoint.directory,
|
1119
|
+
)
|
1120
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
1121
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
1122
|
+
self.latest_checkpoint = current.checkpoint.save(
|
1123
|
+
name="epoch_checkpoint",
|
1124
|
+
metadata={
|
1125
|
+
"epoch": i,
|
1126
|
+
"loss": loss,
|
1127
|
+
}
|
1128
|
+
)
|
1365
1129
|
```
|
1366
1130
|
|
1367
|
-
|
1368
|
-
|
1369
|
-
|
1370
|
-
|
1371
|
-
|
1372
|
-
|
1373
|
-
|
1131
|
+
- Using Loaded Checkpoints
|
1132
|
+
|
1133
|
+
```python
|
1134
|
+
@retry(times=3)
|
1135
|
+
@checkpoint
|
1136
|
+
@step
|
1137
|
+
def train(self):
|
1138
|
+
# Assume that the task has restarted and the previous attempt of the task
|
1139
|
+
# saved a checkpoint
|
1140
|
+
checkpoint_path = None
|
1141
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
1142
|
+
print("Loaded checkpoint from the previous attempt")
|
1143
|
+
checkpoint_path = current.checkpoint.directory
|
1144
|
+
|
1145
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
1146
|
+
for i in range(self.epochs):
|
1147
|
+
...
|
1374
1148
|
```
|
1375
1149
|
|
1376
1150
|
|
1377
1151
|
Parameters
|
1378
1152
|
----------
|
1379
|
-
|
1380
|
-
|
1381
|
-
|
1382
|
-
|
1383
|
-
|
1384
|
-
|
1153
|
+
load_policy : str, default: "fresh"
|
1154
|
+
The policy for loading the checkpoint. The following policies are supported:
|
1155
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
1156
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
1157
|
+
will be loaded at the start of the task.
|
1158
|
+
- "none": Do not load any checkpoint
|
1159
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
1160
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
1161
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
1162
|
+
created within the task will be loaded when the task is retries execution on failure.
|
1163
|
+
|
1164
|
+
temp_dir_root : str, default: None
|
1165
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
1385
1166
|
"""
|
1386
1167
|
...
|
1387
1168
|
|
1388
1169
|
@typing.overload
|
1389
|
-
def
|
1170
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1390
1171
|
...
|
1391
1172
|
|
1392
|
-
|
1173
|
+
@typing.overload
|
1174
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1175
|
+
...
|
1176
|
+
|
1177
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
1393
1178
|
"""
|
1394
|
-
|
1179
|
+
Enables checkpointing for a step.
|
1395
1180
|
|
1396
|
-
|
1397
|
-
@trigger(event='foo')
|
1398
|
-
```
|
1399
|
-
or
|
1400
|
-
```
|
1401
|
-
@trigger(events=['foo', 'bar'])
|
1402
|
-
```
|
1181
|
+
> Examples
|
1403
1182
|
|
1404
|
-
|
1405
|
-
to map event payload to Metaflow parameters for the flow.
|
1406
|
-
```
|
1407
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1408
|
-
```
|
1409
|
-
or
|
1410
|
-
```
|
1411
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1412
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1413
|
-
```
|
1183
|
+
- Saving Checkpoints
|
1414
1184
|
|
1415
|
-
|
1416
|
-
|
1417
|
-
@
|
1418
|
-
|
1419
|
-
|
1185
|
+
```python
|
1186
|
+
@checkpoint
|
1187
|
+
@step
|
1188
|
+
def train(self):
|
1189
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
1190
|
+
for i in range(self.epochs):
|
1191
|
+
# some training logic
|
1192
|
+
loss = model.train(self.dataset)
|
1193
|
+
if i % 10 == 0:
|
1194
|
+
model.save(
|
1195
|
+
current.checkpoint.directory,
|
1196
|
+
)
|
1197
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
1198
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
1199
|
+
self.latest_checkpoint = current.checkpoint.save(
|
1200
|
+
name="epoch_checkpoint",
|
1201
|
+
metadata={
|
1202
|
+
"epoch": i,
|
1203
|
+
"loss": loss,
|
1204
|
+
}
|
1205
|
+
)
|
1420
1206
|
```
|
1421
|
-
|
1207
|
+
|
1208
|
+
- Using Loaded Checkpoints
|
1209
|
+
|
1210
|
+
```python
|
1211
|
+
@retry(times=3)
|
1212
|
+
@checkpoint
|
1213
|
+
@step
|
1214
|
+
def train(self):
|
1215
|
+
# Assume that the task has restarted and the previous attempt of the task
|
1216
|
+
# saved a checkpoint
|
1217
|
+
checkpoint_path = None
|
1218
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
1219
|
+
print("Loaded checkpoint from the previous attempt")
|
1220
|
+
checkpoint_path = current.checkpoint.directory
|
1221
|
+
|
1222
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
1223
|
+
for i in range(self.epochs):
|
1224
|
+
...
|
1422
1225
|
```
|
1423
1226
|
|
1424
1227
|
|
1425
1228
|
Parameters
|
1426
1229
|
----------
|
1427
|
-
|
1428
|
-
|
1429
|
-
|
1430
|
-
|
1431
|
-
|
1432
|
-
|
1230
|
+
load_policy : str, default: "fresh"
|
1231
|
+
The policy for loading the checkpoint. The following policies are supported:
|
1232
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
1233
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
1234
|
+
will be loaded at the start of the task.
|
1235
|
+
- "none": Do not load any checkpoint
|
1236
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
1237
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
1238
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
1239
|
+
created within the task will be loaded when the task is retries execution on failure.
|
1240
|
+
|
1241
|
+
temp_dir_root : str, default: None
|
1242
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
1433
1243
|
"""
|
1434
1244
|
...
|
1435
1245
|
|
1436
|
-
|
1246
|
+
@typing.overload
|
1247
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1437
1248
|
"""
|
1438
|
-
|
1439
|
-
|
1249
|
+
Internal decorator to support Fast bakery
|
1250
|
+
"""
|
1251
|
+
...
|
1252
|
+
|
1253
|
+
@typing.overload
|
1254
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1255
|
+
...
|
1256
|
+
|
1257
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1258
|
+
"""
|
1259
|
+
Internal decorator to support Fast bakery
|
1260
|
+
"""
|
1261
|
+
...
|
1262
|
+
|
1263
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1264
|
+
"""
|
1265
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1266
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1267
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1268
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1269
|
+
starts only after all sensors finish.
|
1440
1270
|
|
1441
1271
|
|
1442
1272
|
Parameters
|
@@ -1458,21 +1288,18 @@ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str,
|
|
1458
1288
|
Name of the sensor on Airflow
|
1459
1289
|
description : str
|
1460
1290
|
Description of sensor in the Airflow UI
|
1461
|
-
|
1462
|
-
The
|
1463
|
-
|
1464
|
-
|
1465
|
-
|
1466
|
-
|
1467
|
-
|
1468
|
-
|
1469
|
-
|
1470
|
-
|
1471
|
-
|
1472
|
-
|
1473
|
-
check_existence: bool
|
1474
|
-
Set to True to check if the external task exists or check if
|
1475
|
-
the DAG to wait for exists. (Default: True)
|
1291
|
+
bucket_key : Union[str, List[str]]
|
1292
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1293
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1294
|
+
bucket_name : str
|
1295
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1296
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1297
|
+
wildcard_match : bool
|
1298
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1299
|
+
aws_conn_id : str
|
1300
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1301
|
+
verify : bool
|
1302
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1476
1303
|
"""
|
1477
1304
|
...
|
1478
1305
|
|
@@ -1540,83 +1367,40 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
1540
1367
|
```
|
1541
1368
|
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1542
1369
|
```
|
1543
|
-
This decorator respects the @project decorator and triggers the flow
|
1544
|
-
when upstream runs within the same namespace complete successfully
|
1545
|
-
|
1546
|
-
Additionally, you can specify project aware upstream flow dependencies
|
1547
|
-
by specifying the fully qualified project_flow_name.
|
1548
|
-
```
|
1549
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1550
|
-
```
|
1551
|
-
or
|
1552
|
-
```
|
1553
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1554
|
-
```
|
1555
|
-
|
1556
|
-
You can also specify just the project or project branch (other values will be
|
1557
|
-
inferred from the current project or project branch):
|
1558
|
-
```
|
1559
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1560
|
-
```
|
1561
|
-
|
1562
|
-
Note that `branch` is typically one of:
|
1563
|
-
- `prod`
|
1564
|
-
- `user.bob`
|
1565
|
-
- `test.my_experiment`
|
1566
|
-
- `prod.staging`
|
1567
|
-
|
1568
|
-
|
1569
|
-
Parameters
|
1570
|
-
----------
|
1571
|
-
flow : Union[str, Dict[str, str]], optional, default None
|
1572
|
-
Upstream flow dependency for this flow.
|
1573
|
-
flows : List[Union[str, Dict[str, str]]], default []
|
1574
|
-
Upstream flow dependencies for this flow.
|
1575
|
-
options : Dict[str, Any], default {}
|
1576
|
-
Backend-specific configuration for tuning eventing behavior.
|
1577
|
-
"""
|
1578
|
-
...
|
1579
|
-
|
1580
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1581
|
-
"""
|
1582
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1583
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1584
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1585
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1586
|
-
starts only after all sensors finish.
|
1587
|
-
|
1588
|
-
|
1589
|
-
Parameters
|
1590
|
-
----------
|
1591
|
-
timeout : int
|
1592
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
1593
|
-
poke_interval : int
|
1594
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
1595
|
-
mode : str
|
1596
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1597
|
-
exponential_backoff : bool
|
1598
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1599
|
-
pool : str
|
1600
|
-
the slot pool this task should run in,
|
1601
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1602
|
-
soft_fail : bool
|
1603
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1604
|
-
name : str
|
1605
|
-
Name of the sensor on Airflow
|
1606
|
-
description : str
|
1607
|
-
Description of sensor in the Airflow UI
|
1608
|
-
bucket_key : Union[str, List[str]]
|
1609
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1610
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1611
|
-
bucket_name : str
|
1612
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1613
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1614
|
-
wildcard_match : bool
|
1615
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1616
|
-
aws_conn_id : str
|
1617
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
1618
|
-
verify : bool
|
1619
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1370
|
+
This decorator respects the @project decorator and triggers the flow
|
1371
|
+
when upstream runs within the same namespace complete successfully
|
1372
|
+
|
1373
|
+
Additionally, you can specify project aware upstream flow dependencies
|
1374
|
+
by specifying the fully qualified project_flow_name.
|
1375
|
+
```
|
1376
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1377
|
+
```
|
1378
|
+
or
|
1379
|
+
```
|
1380
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1381
|
+
```
|
1382
|
+
|
1383
|
+
You can also specify just the project or project branch (other values will be
|
1384
|
+
inferred from the current project or project branch):
|
1385
|
+
```
|
1386
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1387
|
+
```
|
1388
|
+
|
1389
|
+
Note that `branch` is typically one of:
|
1390
|
+
- `prod`
|
1391
|
+
- `user.bob`
|
1392
|
+
- `test.my_experiment`
|
1393
|
+
- `prod.staging`
|
1394
|
+
|
1395
|
+
|
1396
|
+
Parameters
|
1397
|
+
----------
|
1398
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
1399
|
+
Upstream flow dependency for this flow.
|
1400
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
1401
|
+
Upstream flow dependencies for this flow.
|
1402
|
+
options : Dict[str, Any], default {}
|
1403
|
+
Backend-specific configuration for tuning eventing behavior.
|
1620
1404
|
"""
|
1621
1405
|
...
|
1622
1406
|
|
@@ -1785,6 +1569,228 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
1785
1569
|
"""
|
1786
1570
|
...
|
1787
1571
|
|
1572
|
+
@typing.overload
|
1573
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1574
|
+
"""
|
1575
|
+
Specifies the event(s) that this flow depends on.
|
1576
|
+
|
1577
|
+
```
|
1578
|
+
@trigger(event='foo')
|
1579
|
+
```
|
1580
|
+
or
|
1581
|
+
```
|
1582
|
+
@trigger(events=['foo', 'bar'])
|
1583
|
+
```
|
1584
|
+
|
1585
|
+
Additionally, you can specify the parameter mappings
|
1586
|
+
to map event payload to Metaflow parameters for the flow.
|
1587
|
+
```
|
1588
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1589
|
+
```
|
1590
|
+
or
|
1591
|
+
```
|
1592
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1593
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1594
|
+
```
|
1595
|
+
|
1596
|
+
'parameters' can also be a list of strings and tuples like so:
|
1597
|
+
```
|
1598
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1599
|
+
```
|
1600
|
+
This is equivalent to:
|
1601
|
+
```
|
1602
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1603
|
+
```
|
1604
|
+
|
1605
|
+
|
1606
|
+
Parameters
|
1607
|
+
----------
|
1608
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1609
|
+
Event dependency for this flow.
|
1610
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1611
|
+
Events dependency for this flow.
|
1612
|
+
options : Dict[str, Any], default {}
|
1613
|
+
Backend-specific configuration for tuning eventing behavior.
|
1614
|
+
"""
|
1615
|
+
...
|
1616
|
+
|
1617
|
+
@typing.overload
|
1618
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1619
|
+
...
|
1620
|
+
|
1621
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1622
|
+
"""
|
1623
|
+
Specifies the event(s) that this flow depends on.
|
1624
|
+
|
1625
|
+
```
|
1626
|
+
@trigger(event='foo')
|
1627
|
+
```
|
1628
|
+
or
|
1629
|
+
```
|
1630
|
+
@trigger(events=['foo', 'bar'])
|
1631
|
+
```
|
1632
|
+
|
1633
|
+
Additionally, you can specify the parameter mappings
|
1634
|
+
to map event payload to Metaflow parameters for the flow.
|
1635
|
+
```
|
1636
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1637
|
+
```
|
1638
|
+
or
|
1639
|
+
```
|
1640
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1641
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1642
|
+
```
|
1643
|
+
|
1644
|
+
'parameters' can also be a list of strings and tuples like so:
|
1645
|
+
```
|
1646
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1647
|
+
```
|
1648
|
+
This is equivalent to:
|
1649
|
+
```
|
1650
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1651
|
+
```
|
1652
|
+
|
1653
|
+
|
1654
|
+
Parameters
|
1655
|
+
----------
|
1656
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1657
|
+
Event dependency for this flow.
|
1658
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1659
|
+
Events dependency for this flow.
|
1660
|
+
options : Dict[str, Any], default {}
|
1661
|
+
Backend-specific configuration for tuning eventing behavior.
|
1662
|
+
"""
|
1663
|
+
...
|
1664
|
+
|
1665
|
+
@typing.overload
|
1666
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1667
|
+
"""
|
1668
|
+
Specifies the times when the flow should be run when running on a
|
1669
|
+
production scheduler.
|
1670
|
+
|
1671
|
+
|
1672
|
+
Parameters
|
1673
|
+
----------
|
1674
|
+
hourly : bool, default False
|
1675
|
+
Run the workflow hourly.
|
1676
|
+
daily : bool, default True
|
1677
|
+
Run the workflow daily.
|
1678
|
+
weekly : bool, default False
|
1679
|
+
Run the workflow weekly.
|
1680
|
+
cron : str, optional, default None
|
1681
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1682
|
+
specified by this expression.
|
1683
|
+
timezone : str, optional, default None
|
1684
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1685
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1686
|
+
"""
|
1687
|
+
...
|
1688
|
+
|
1689
|
+
@typing.overload
|
1690
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1691
|
+
...
|
1692
|
+
|
1693
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1694
|
+
"""
|
1695
|
+
Specifies the times when the flow should be run when running on a
|
1696
|
+
production scheduler.
|
1697
|
+
|
1698
|
+
|
1699
|
+
Parameters
|
1700
|
+
----------
|
1701
|
+
hourly : bool, default False
|
1702
|
+
Run the workflow hourly.
|
1703
|
+
daily : bool, default True
|
1704
|
+
Run the workflow daily.
|
1705
|
+
weekly : bool, default False
|
1706
|
+
Run the workflow weekly.
|
1707
|
+
cron : str, optional, default None
|
1708
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1709
|
+
specified by this expression.
|
1710
|
+
timezone : str, optional, default None
|
1711
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1712
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1713
|
+
"""
|
1714
|
+
...
|
1715
|
+
|
1716
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1717
|
+
"""
|
1718
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1719
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1720
|
+
|
1721
|
+
|
1722
|
+
Parameters
|
1723
|
+
----------
|
1724
|
+
timeout : int
|
1725
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1726
|
+
poke_interval : int
|
1727
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1728
|
+
mode : str
|
1729
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1730
|
+
exponential_backoff : bool
|
1731
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1732
|
+
pool : str
|
1733
|
+
the slot pool this task should run in,
|
1734
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1735
|
+
soft_fail : bool
|
1736
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1737
|
+
name : str
|
1738
|
+
Name of the sensor on Airflow
|
1739
|
+
description : str
|
1740
|
+
Description of sensor in the Airflow UI
|
1741
|
+
external_dag_id : str
|
1742
|
+
The dag_id that contains the task you want to wait for.
|
1743
|
+
external_task_ids : List[str]
|
1744
|
+
The list of task_ids that you want to wait for.
|
1745
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1746
|
+
allowed_states : List[str]
|
1747
|
+
Iterable of allowed states, (Default: ['success'])
|
1748
|
+
failed_states : List[str]
|
1749
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1750
|
+
execution_delta : datetime.timedelta
|
1751
|
+
time difference with the previous execution to look at,
|
1752
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1753
|
+
check_existence: bool
|
1754
|
+
Set to True to check if the external task exists or check if
|
1755
|
+
the DAG to wait for exists. (Default: True)
|
1756
|
+
"""
|
1757
|
+
...
|
1758
|
+
|
1759
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1760
|
+
"""
|
1761
|
+
Specifies what flows belong to the same project.
|
1762
|
+
|
1763
|
+
A project-specific namespace is created for all flows that
|
1764
|
+
use the same `@project(name)`.
|
1765
|
+
|
1766
|
+
|
1767
|
+
Parameters
|
1768
|
+
----------
|
1769
|
+
name : str
|
1770
|
+
Project name. Make sure that the name is unique amongst all
|
1771
|
+
projects that use the same production scheduler. The name may
|
1772
|
+
contain only lowercase alphanumeric characters and underscores.
|
1773
|
+
|
1774
|
+
branch : Optional[str], default None
|
1775
|
+
The branch to use. If not specified, the branch is set to
|
1776
|
+
`user.<username>` unless `production` is set to `True`. This can
|
1777
|
+
also be set on the command line using `--branch` as a top-level option.
|
1778
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
1779
|
+
|
1780
|
+
production : bool, default False
|
1781
|
+
Whether or not the branch is the production branch. This can also be set on the
|
1782
|
+
command line using `--production` as a top-level option. It is an error to specify
|
1783
|
+
`production` in the decorator and on the command line.
|
1784
|
+
The project branch name will be:
|
1785
|
+
- if `branch` is specified:
|
1786
|
+
- if `production` is True: `prod.<branch>`
|
1787
|
+
- if `production` is False: `test.<branch>`
|
1788
|
+
- if `branch` is not specified:
|
1789
|
+
- if `production` is True: `prod`
|
1790
|
+
- if `production` is False: `user.<username>`
|
1791
|
+
"""
|
1792
|
+
...
|
1793
|
+
|
1788
1794
|
@typing.overload
|
1789
1795
|
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1790
1796
|
"""
|