ob-metaflow-stubs 6.0.4.0__py2.py3-none-any.whl → 6.0.4.1rc0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +920 -914
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +3 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +7 -8
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +3 -3
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +10 -10
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +4 -4
- metaflow-stubs/{info_file.pyi → meta_files.pyi} +2 -6
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +6 -2
- metaflow-stubs/metaflow_current.pyi +35 -35
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +5 -5
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +12 -8
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +13 -11
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +13 -11
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/packaging_sys/__init__.pyi +430 -0
- metaflow-stubs/packaging_sys/backend.pyi +73 -0
- metaflow-stubs/packaging_sys/distribution_support.pyi +57 -0
- metaflow-stubs/packaging_sys/tar_backend.pyi +53 -0
- metaflow-stubs/packaging_sys/utils.pyi +26 -0
- metaflow-stubs/packaging_sys/v1.pyi +145 -0
- metaflow-stubs/parameters.pyi +4 -4
- metaflow-stubs/plugins/__init__.pyi +10 -10
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +4 -4
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/argo/exit_hooks.pyi +3 -3
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +4 -4
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +4 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +3 -5
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +4 -4
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +4 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
- metaflow-stubs/plugins/parallel_decorator.pyi +3 -3
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +3 -3
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +5 -8
- metaflow-stubs/plugins/pypi/conda_environment.pyi +5 -4
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +4 -4
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +4 -4
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +4 -3
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +28 -28
- metaflow-stubs/runner/deployer_impl.pyi +3 -3
- metaflow-stubs/runner/metaflow_runner.pyi +5 -5
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +3 -2
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +3 -3
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -3
- metaflow-stubs/user_configs/config_options.pyi +3 -4
- metaflow-stubs/user_configs/config_parameters.pyi +6 -8
- metaflow-stubs/user_decorators/__init__.pyi +15 -0
- metaflow-stubs/user_decorators/common.pyi +38 -0
- metaflow-stubs/user_decorators/mutable_flow.pyi +223 -0
- metaflow-stubs/user_decorators/mutable_step.pyi +152 -0
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +137 -0
- metaflow-stubs/user_decorators/user_step_decorator.pyi +323 -0
- {ob_metaflow_stubs-6.0.4.0.dist-info → ob_metaflow_stubs-6.0.4.1rc0.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.4.1rc0.dist-info/RECORD +260 -0
- metaflow-stubs/user_configs/config_decorators.pyi +0 -251
- ob_metaflow_stubs-6.0.4.0.dist-info/RECORD +0 -249
- {ob_metaflow_stubs-6.0.4.0.dist-info → ob_metaflow_stubs-6.0.4.1rc0.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.4.0.dist-info → ob_metaflow_stubs-6.0.4.1rc0.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,19 +1,20 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
|
-
# MF version: 2.
|
4
|
-
# Generated on 2025-07-
|
3
|
+
# MF version: 2.16.0.1+obcheckpoint(0.2.4);ob(v1) #
|
4
|
+
# Generated on 2025-07-14T20:03:25.730478 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
8
8
|
|
9
9
|
import typing
|
10
10
|
if typing.TYPE_CHECKING:
|
11
|
-
import typing
|
12
11
|
import datetime
|
12
|
+
import typing
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
15
15
|
|
16
|
-
from . import
|
16
|
+
from . import meta_files as meta_files
|
17
|
+
from . import packaging_sys as packaging_sys
|
17
18
|
from . import exception as exception
|
18
19
|
from . import metaflow_config as metaflow_config
|
19
20
|
from . import multicore_utils as multicore_utils
|
@@ -23,6 +24,7 @@ from . import metaflow_current as metaflow_current
|
|
23
24
|
from .metaflow_current import current as current
|
24
25
|
from . import parameters as parameters
|
25
26
|
from . import user_configs as user_configs
|
27
|
+
from . import user_decorators as user_decorators
|
26
28
|
from . import tagging_util as tagging_util
|
27
29
|
from . import metadata_provider as metadata_provider
|
28
30
|
from . import flowspec as flowspec
|
@@ -33,8 +35,10 @@ from .parameters import JSONType as JSONType
|
|
33
35
|
from .user_configs.config_parameters import Config as Config
|
34
36
|
from .user_configs.config_parameters import ConfigValue as ConfigValue
|
35
37
|
from .user_configs.config_parameters import config_expr as config_expr
|
36
|
-
from .
|
37
|
-
from .
|
38
|
+
from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDecorator
|
39
|
+
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
40
|
+
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
41
|
+
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
38
42
|
from . import cards as cards
|
39
43
|
from . import tuple_util as tuple_util
|
40
44
|
from . import events as events
|
@@ -83,6 +87,8 @@ from . import ob_internal as ob_internal
|
|
83
87
|
|
84
88
|
EXT_PKG: str
|
85
89
|
|
90
|
+
USER_SKIP_STEP: dict
|
91
|
+
|
86
92
|
@typing.overload
|
87
93
|
def step(f: typing.Callable[[FlowSpecDerived], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
88
94
|
"""
|
@@ -156,6 +162,57 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
156
162
|
"""
|
157
163
|
...
|
158
164
|
|
165
|
+
@typing.overload
|
166
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
167
|
+
"""
|
168
|
+
Specifies that the step will success under all circumstances.
|
169
|
+
|
170
|
+
The decorator will create an optional artifact, specified by `var`, which
|
171
|
+
contains the exception raised. You can use it to detect the presence
|
172
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
173
|
+
are missing.
|
174
|
+
|
175
|
+
|
176
|
+
Parameters
|
177
|
+
----------
|
178
|
+
var : str, optional, default None
|
179
|
+
Name of the artifact in which to store the caught exception.
|
180
|
+
If not specified, the exception is not stored.
|
181
|
+
print_exception : bool, default True
|
182
|
+
Determines whether or not the exception is printed to
|
183
|
+
stdout when caught.
|
184
|
+
"""
|
185
|
+
...
|
186
|
+
|
187
|
+
@typing.overload
|
188
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
189
|
+
...
|
190
|
+
|
191
|
+
@typing.overload
|
192
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
193
|
+
...
|
194
|
+
|
195
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
196
|
+
"""
|
197
|
+
Specifies that the step will success under all circumstances.
|
198
|
+
|
199
|
+
The decorator will create an optional artifact, specified by `var`, which
|
200
|
+
contains the exception raised. You can use it to detect the presence
|
201
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
202
|
+
are missing.
|
203
|
+
|
204
|
+
|
205
|
+
Parameters
|
206
|
+
----------
|
207
|
+
var : str, optional, default None
|
208
|
+
Name of the artifact in which to store the caught exception.
|
209
|
+
If not specified, the exception is not stored.
|
210
|
+
print_exception : bool, default True
|
211
|
+
Determines whether or not the exception is printed to
|
212
|
+
stdout when caught.
|
213
|
+
"""
|
214
|
+
...
|
215
|
+
|
159
216
|
@typing.overload
|
160
217
|
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
161
218
|
"""
|
@@ -175,84 +232,58 @@ def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
175
232
|
"""
|
176
233
|
...
|
177
234
|
|
178
|
-
|
235
|
+
@typing.overload
|
236
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
179
237
|
"""
|
180
|
-
Specifies
|
238
|
+
Specifies the number of times the task corresponding
|
239
|
+
to a step needs to be retried.
|
240
|
+
|
241
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
242
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
243
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
244
|
+
|
245
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
246
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
247
|
+
ensuring that the flow execution can continue.
|
181
248
|
|
182
249
|
|
183
250
|
Parameters
|
184
251
|
----------
|
185
|
-
|
186
|
-
Number of
|
187
|
-
|
188
|
-
|
252
|
+
times : int, default 3
|
253
|
+
Number of times to retry this task.
|
254
|
+
minutes_between_retries : int, default 2
|
255
|
+
Number of minutes between retries.
|
189
256
|
"""
|
190
257
|
...
|
191
258
|
|
192
259
|
@typing.overload
|
193
|
-
def
|
194
|
-
"""
|
195
|
-
Internal decorator to support Fast bakery
|
196
|
-
"""
|
260
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
197
261
|
...
|
198
262
|
|
199
263
|
@typing.overload
|
200
|
-
def
|
201
|
-
...
|
202
|
-
|
203
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
204
|
-
"""
|
205
|
-
Internal decorator to support Fast bakery
|
206
|
-
"""
|
264
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
207
265
|
...
|
208
266
|
|
209
|
-
def
|
267
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
210
268
|
"""
|
211
|
-
|
212
|
-
|
213
|
-
User code call
|
214
|
-
--------------
|
215
|
-
@vllm(
|
216
|
-
model="...",
|
217
|
-
...
|
218
|
-
)
|
219
|
-
|
220
|
-
Valid backend options
|
221
|
-
---------------------
|
222
|
-
- 'local': Run as a separate process on the local task machine.
|
269
|
+
Specifies the number of times the task corresponding
|
270
|
+
to a step needs to be retried.
|
223
271
|
|
224
|
-
|
225
|
-
|
226
|
-
|
272
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
273
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
274
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
227
275
|
|
228
|
-
|
229
|
-
|
276
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
277
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
278
|
+
ensuring that the flow execution can continue.
|
230
279
|
|
231
280
|
|
232
281
|
Parameters
|
233
282
|
----------
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
openai_api_server: bool
|
239
|
-
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
240
|
-
Default is False (uses native engine).
|
241
|
-
Set to True for backward compatibility with existing code.
|
242
|
-
debug: bool
|
243
|
-
Whether to turn on verbose debugging logs.
|
244
|
-
card_refresh_interval: int
|
245
|
-
Interval in seconds for refreshing the vLLM status card.
|
246
|
-
Only used when openai_api_server=True.
|
247
|
-
max_retries: int
|
248
|
-
Maximum number of retries checking for vLLM server startup.
|
249
|
-
Only used when openai_api_server=True.
|
250
|
-
retry_alert_frequency: int
|
251
|
-
Frequency of alert logs for vLLM server startup retries.
|
252
|
-
Only used when openai_api_server=True.
|
253
|
-
engine_args : dict
|
254
|
-
Additional keyword arguments to pass to the vLLM engine.
|
255
|
-
For example, `tensor_parallel_size=2`.
|
283
|
+
times : int, default 3
|
284
|
+
Number of times to retry this task.
|
285
|
+
minutes_between_retries : int, default 2
|
286
|
+
Number of minutes between retries.
|
256
287
|
"""
|
257
288
|
...
|
258
289
|
|
@@ -300,448 +331,512 @@ def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy:
|
|
300
331
|
...
|
301
332
|
|
302
333
|
@typing.overload
|
303
|
-
def
|
334
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
304
335
|
"""
|
305
|
-
|
306
|
-
|
307
|
-
> Examples
|
308
|
-
|
309
|
-
- Saving Checkpoints
|
310
|
-
|
311
|
-
```python
|
312
|
-
@checkpoint
|
313
|
-
@step
|
314
|
-
def train(self):
|
315
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
316
|
-
for i in range(self.epochs):
|
317
|
-
# some training logic
|
318
|
-
loss = model.train(self.dataset)
|
319
|
-
if i % 10 == 0:
|
320
|
-
model.save(
|
321
|
-
current.checkpoint.directory,
|
322
|
-
)
|
323
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
324
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
325
|
-
self.latest_checkpoint = current.checkpoint.save(
|
326
|
-
name="epoch_checkpoint",
|
327
|
-
metadata={
|
328
|
-
"epoch": i,
|
329
|
-
"loss": loss,
|
330
|
-
}
|
331
|
-
)
|
332
|
-
```
|
333
|
-
|
334
|
-
- Using Loaded Checkpoints
|
335
|
-
|
336
|
-
```python
|
337
|
-
@retry(times=3)
|
338
|
-
@checkpoint
|
339
|
-
@step
|
340
|
-
def train(self):
|
341
|
-
# Assume that the task has restarted and the previous attempt of the task
|
342
|
-
# saved a checkpoint
|
343
|
-
checkpoint_path = None
|
344
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
345
|
-
print("Loaded checkpoint from the previous attempt")
|
346
|
-
checkpoint_path = current.checkpoint.directory
|
347
|
-
|
348
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
349
|
-
for i in range(self.epochs):
|
350
|
-
...
|
351
|
-
```
|
336
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
337
|
+
the execution of a step.
|
352
338
|
|
353
339
|
|
354
340
|
Parameters
|
355
341
|
----------
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
|
360
|
-
will be loaded at the start of the task.
|
361
|
-
- "none": Do not load any checkpoint
|
362
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
363
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
364
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
365
|
-
created within the task will be loaded when the task is retries execution on failure.
|
366
|
-
|
367
|
-
temp_dir_root : str, default: None
|
368
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
342
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
343
|
+
List of secret specs, defining how the secrets are to be retrieved
|
344
|
+
role : str, optional, default: None
|
345
|
+
Role to use for fetching secrets
|
369
346
|
"""
|
370
347
|
...
|
371
348
|
|
372
349
|
@typing.overload
|
373
|
-
def
|
350
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
374
351
|
...
|
375
352
|
|
376
353
|
@typing.overload
|
377
|
-
def
|
354
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
378
355
|
...
|
379
356
|
|
380
|
-
def
|
357
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
381
358
|
"""
|
382
|
-
|
359
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
360
|
+
the execution of a step.
|
383
361
|
|
384
|
-
> Examples
|
385
362
|
|
386
|
-
|
363
|
+
Parameters
|
364
|
+
----------
|
365
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
366
|
+
List of secret specs, defining how the secrets are to be retrieved
|
367
|
+
role : str, optional, default: None
|
368
|
+
Role to use for fetching secrets
|
369
|
+
"""
|
370
|
+
...
|
371
|
+
|
372
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
373
|
+
"""
|
374
|
+
Specifies that this step should execute on DGX cloud.
|
375
|
+
|
376
|
+
|
377
|
+
Parameters
|
378
|
+
----------
|
379
|
+
gpu : int
|
380
|
+
Number of GPUs to use.
|
381
|
+
gpu_type : str
|
382
|
+
Type of Nvidia GPU to use.
|
383
|
+
"""
|
384
|
+
...
|
385
|
+
|
386
|
+
@typing.overload
|
387
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
388
|
+
"""
|
389
|
+
Enables loading / saving of models within a step.
|
387
390
|
|
391
|
+
> Examples
|
392
|
+
- Saving Models
|
388
393
|
```python
|
389
|
-
@
|
394
|
+
@model
|
390
395
|
@step
|
391
396
|
def train(self):
|
392
|
-
model
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
name="epoch_checkpoint",
|
404
|
-
metadata={
|
405
|
-
"epoch": i,
|
406
|
-
"loss": loss,
|
407
|
-
}
|
408
|
-
)
|
409
|
-
```
|
397
|
+
# current.model.save returns a dictionary reference to the model saved
|
398
|
+
self.my_model = current.model.save(
|
399
|
+
path_to_my_model,
|
400
|
+
label="my_model",
|
401
|
+
metadata={
|
402
|
+
"epochs": 10,
|
403
|
+
"batch-size": 32,
|
404
|
+
"learning-rate": 0.001,
|
405
|
+
}
|
406
|
+
)
|
407
|
+
self.next(self.test)
|
410
408
|
|
411
|
-
|
409
|
+
@model(load="my_model")
|
410
|
+
@step
|
411
|
+
def test(self):
|
412
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
413
|
+
# where the key is the name of the artifact and the value is the path to the model
|
414
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
415
|
+
self.next(self.end)
|
416
|
+
```
|
412
417
|
|
418
|
+
- Loading models
|
413
419
|
```python
|
414
|
-
@retry(times=3)
|
415
|
-
@checkpoint
|
416
420
|
@step
|
417
421
|
def train(self):
|
418
|
-
#
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
for i in range(self.epochs):
|
427
|
-
...
|
422
|
+
# current.model.load returns the path to the model loaded
|
423
|
+
checkpoint_path = current.model.load(
|
424
|
+
self.checkpoint_key,
|
425
|
+
)
|
426
|
+
model_path = current.model.load(
|
427
|
+
self.model,
|
428
|
+
)
|
429
|
+
self.next(self.test)
|
428
430
|
```
|
429
431
|
|
430
432
|
|
431
433
|
Parameters
|
432
434
|
----------
|
433
|
-
|
434
|
-
|
435
|
-
|
436
|
-
|
437
|
-
|
438
|
-
|
439
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
440
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
441
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
442
|
-
created within the task will be loaded when the task is retries execution on failure.
|
435
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
436
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
437
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
438
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
439
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
440
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
443
441
|
|
444
442
|
temp_dir_root : str, default: None
|
445
|
-
The root directory under which `current.
|
446
|
-
"""
|
447
|
-
...
|
448
|
-
|
449
|
-
@typing.overload
|
450
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
451
|
-
"""
|
452
|
-
Specifies the resources needed when executing this step.
|
453
|
-
|
454
|
-
Use `@resources` to specify the resource requirements
|
455
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
456
|
-
|
457
|
-
You can choose the compute layer on the command line by executing e.g.
|
458
|
-
```
|
459
|
-
python myflow.py run --with batch
|
460
|
-
```
|
461
|
-
or
|
462
|
-
```
|
463
|
-
python myflow.py run --with kubernetes
|
464
|
-
```
|
465
|
-
which executes the flow on the desired system using the
|
466
|
-
requirements specified in `@resources`.
|
467
|
-
|
468
|
-
|
469
|
-
Parameters
|
470
|
-
----------
|
471
|
-
cpu : int, default 1
|
472
|
-
Number of CPUs required for this step.
|
473
|
-
gpu : int, optional, default None
|
474
|
-
Number of GPUs required for this step.
|
475
|
-
disk : int, optional, default None
|
476
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
477
|
-
memory : int, default 4096
|
478
|
-
Memory size (in MB) required for this step.
|
479
|
-
shared_memory : int, optional, default None
|
480
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
481
|
-
This parameter maps to the `--shm-size` option in Docker.
|
443
|
+
The root directory under which `current.model.loaded` will store loaded models
|
482
444
|
"""
|
483
445
|
...
|
484
446
|
|
485
447
|
@typing.overload
|
486
|
-
def
|
448
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
487
449
|
...
|
488
450
|
|
489
451
|
@typing.overload
|
490
|
-
def
|
452
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
491
453
|
...
|
492
454
|
|
493
|
-
def
|
455
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
494
456
|
"""
|
495
|
-
|
457
|
+
Enables loading / saving of models within a step.
|
496
458
|
|
497
|
-
|
498
|
-
|
459
|
+
> Examples
|
460
|
+
- Saving Models
|
461
|
+
```python
|
462
|
+
@model
|
463
|
+
@step
|
464
|
+
def train(self):
|
465
|
+
# current.model.save returns a dictionary reference to the model saved
|
466
|
+
self.my_model = current.model.save(
|
467
|
+
path_to_my_model,
|
468
|
+
label="my_model",
|
469
|
+
metadata={
|
470
|
+
"epochs": 10,
|
471
|
+
"batch-size": 32,
|
472
|
+
"learning-rate": 0.001,
|
473
|
+
}
|
474
|
+
)
|
475
|
+
self.next(self.test)
|
499
476
|
|
500
|
-
|
501
|
-
|
502
|
-
|
503
|
-
|
504
|
-
|
477
|
+
@model(load="my_model")
|
478
|
+
@step
|
479
|
+
def test(self):
|
480
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
481
|
+
# where the key is the name of the artifact and the value is the path to the model
|
482
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
483
|
+
self.next(self.end)
|
505
484
|
```
|
506
|
-
|
485
|
+
|
486
|
+
- Loading models
|
487
|
+
```python
|
488
|
+
@step
|
489
|
+
def train(self):
|
490
|
+
# current.model.load returns the path to the model loaded
|
491
|
+
checkpoint_path = current.model.load(
|
492
|
+
self.checkpoint_key,
|
493
|
+
)
|
494
|
+
model_path = current.model.load(
|
495
|
+
self.model,
|
496
|
+
)
|
497
|
+
self.next(self.test)
|
507
498
|
```
|
508
|
-
which executes the flow on the desired system using the
|
509
|
-
requirements specified in `@resources`.
|
510
499
|
|
511
500
|
|
512
501
|
Parameters
|
513
502
|
----------
|
514
|
-
|
515
|
-
|
516
|
-
|
517
|
-
|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
|
522
|
-
|
523
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
524
|
-
This parameter maps to the `--shm-size` option in Docker.
|
503
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
504
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
505
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
506
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
507
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
508
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
509
|
+
|
510
|
+
temp_dir_root : str, default: None
|
511
|
+
The root directory under which `current.model.loaded` will store loaded models
|
525
512
|
"""
|
526
513
|
...
|
527
514
|
|
528
515
|
@typing.overload
|
529
|
-
def
|
516
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
530
517
|
"""
|
531
|
-
Specifies
|
532
|
-
|
518
|
+
Specifies a timeout for your step.
|
519
|
+
|
520
|
+
This decorator is useful if this step may hang indefinitely.
|
521
|
+
|
522
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
523
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
524
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
525
|
+
|
526
|
+
Note that all the values specified in parameters are added together so if you specify
|
527
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
533
528
|
|
534
529
|
|
535
530
|
Parameters
|
536
531
|
----------
|
537
|
-
|
538
|
-
|
539
|
-
|
540
|
-
|
532
|
+
seconds : int, default 0
|
533
|
+
Number of seconds to wait prior to timing out.
|
534
|
+
minutes : int, default 0
|
535
|
+
Number of minutes to wait prior to timing out.
|
536
|
+
hours : int, default 0
|
537
|
+
Number of hours to wait prior to timing out.
|
541
538
|
"""
|
542
539
|
...
|
543
540
|
|
544
541
|
@typing.overload
|
545
|
-
def
|
542
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
546
543
|
...
|
547
544
|
|
548
545
|
@typing.overload
|
549
|
-
def
|
546
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
550
547
|
...
|
551
548
|
|
552
|
-
def
|
549
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
553
550
|
"""
|
554
|
-
Specifies
|
555
|
-
|
551
|
+
Specifies a timeout for your step.
|
552
|
+
|
553
|
+
This decorator is useful if this step may hang indefinitely.
|
554
|
+
|
555
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
556
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
557
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
558
|
+
|
559
|
+
Note that all the values specified in parameters are added together so if you specify
|
560
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
556
561
|
|
557
562
|
|
558
563
|
Parameters
|
559
564
|
----------
|
560
|
-
|
561
|
-
|
562
|
-
|
563
|
-
|
565
|
+
seconds : int, default 0
|
566
|
+
Number of seconds to wait prior to timing out.
|
567
|
+
minutes : int, default 0
|
568
|
+
Number of minutes to wait prior to timing out.
|
569
|
+
hours : int, default 0
|
570
|
+
Number of hours to wait prior to timing out.
|
564
571
|
"""
|
565
572
|
...
|
566
573
|
|
567
|
-
|
568
|
-
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
574
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
569
575
|
"""
|
570
|
-
|
576
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
571
577
|
|
572
|
-
|
573
|
-
|
574
|
-
|
575
|
-
|
578
|
+
> Examples
|
579
|
+
|
580
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
581
|
+
```python
|
582
|
+
@huggingface_hub
|
583
|
+
@step
|
584
|
+
def pull_model_from_huggingface(self):
|
585
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
586
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
587
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
588
|
+
# value of the function is a reference to the model in the backend storage.
|
589
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
590
|
+
|
591
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
592
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
593
|
+
repo_id=self.model_id,
|
594
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
595
|
+
)
|
596
|
+
self.next(self.train)
|
597
|
+
```
|
598
|
+
|
599
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
600
|
+
```python
|
601
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
602
|
+
@step
|
603
|
+
def pull_model_from_huggingface(self):
|
604
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
605
|
+
```
|
606
|
+
|
607
|
+
```python
|
608
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
609
|
+
@step
|
610
|
+
def finetune_model(self):
|
611
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
612
|
+
# path_to_model will be /my-directory
|
613
|
+
```
|
614
|
+
|
615
|
+
```python
|
616
|
+
# Takes all the arguments passed to `snapshot_download`
|
617
|
+
# except for `local_dir`
|
618
|
+
@huggingface_hub(load=[
|
619
|
+
{
|
620
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
621
|
+
},
|
622
|
+
{
|
623
|
+
"repo_id": "myorg/mistral-lora",
|
624
|
+
"repo_type": "model",
|
625
|
+
},
|
626
|
+
])
|
627
|
+
@step
|
628
|
+
def finetune_model(self):
|
629
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
630
|
+
# path_to_model will be /my-directory
|
631
|
+
```
|
576
632
|
|
577
633
|
|
578
634
|
Parameters
|
579
635
|
----------
|
580
|
-
|
636
|
+
temp_dir_root : str, optional
|
637
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
638
|
+
|
639
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
640
|
+
The list of repos (models/datasets) to load.
|
641
|
+
|
642
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
643
|
+
|
644
|
+
- If repo (model/dataset) is not found in the datastore:
|
645
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
646
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
647
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
648
|
+
|
649
|
+
- If repo is found in the datastore:
|
650
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
651
|
+
"""
|
652
|
+
...
|
653
|
+
|
654
|
+
@typing.overload
|
655
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
656
|
+
"""
|
657
|
+
Specifies the Conda environment for the step.
|
658
|
+
|
659
|
+
Information in this decorator will augment any
|
660
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
661
|
+
you can use `@conda_base` to set packages required by all
|
662
|
+
steps and use `@conda` to specify step-specific overrides.
|
663
|
+
|
664
|
+
|
665
|
+
Parameters
|
666
|
+
----------
|
667
|
+
packages : Dict[str, str], default {}
|
581
668
|
Packages to use for this step. The key is the name of the package
|
582
669
|
and the value is the version to use.
|
583
|
-
|
670
|
+
libraries : Dict[str, str], default {}
|
671
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
672
|
+
python : str, optional, default None
|
584
673
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
585
674
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
675
|
+
disabled : bool, default False
|
676
|
+
If set to True, disables @conda.
|
586
677
|
"""
|
587
678
|
...
|
588
679
|
|
589
680
|
@typing.overload
|
590
|
-
def
|
681
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
591
682
|
...
|
592
683
|
|
593
684
|
@typing.overload
|
594
|
-
def
|
685
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
595
686
|
...
|
596
687
|
|
597
|
-
def
|
688
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
598
689
|
"""
|
599
|
-
Specifies the
|
690
|
+
Specifies the Conda environment for the step.
|
600
691
|
|
601
692
|
Information in this decorator will augment any
|
602
|
-
attributes set in the `@
|
603
|
-
you can use `@
|
604
|
-
steps and use `@
|
693
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
694
|
+
you can use `@conda_base` to set packages required by all
|
695
|
+
steps and use `@conda` to specify step-specific overrides.
|
605
696
|
|
606
697
|
|
607
698
|
Parameters
|
608
699
|
----------
|
609
|
-
packages : Dict[str, str], default
|
700
|
+
packages : Dict[str, str], default {}
|
610
701
|
Packages to use for this step. The key is the name of the package
|
611
702
|
and the value is the version to use.
|
612
|
-
|
703
|
+
libraries : Dict[str, str], default {}
|
704
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
705
|
+
python : str, optional, default None
|
613
706
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
614
707
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
615
|
-
|
616
|
-
|
617
|
-
|
618
|
-
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
619
|
-
"""
|
620
|
-
Specifies that this step should execute on DGX cloud.
|
621
|
-
|
622
|
-
|
623
|
-
Parameters
|
624
|
-
----------
|
625
|
-
gpu : int
|
626
|
-
Number of GPUs to use.
|
627
|
-
gpu_type : str
|
628
|
-
Type of Nvidia GPU to use.
|
629
|
-
queue_timeout : int
|
630
|
-
Time to keep the job in NVCF's queue.
|
708
|
+
disabled : bool, default False
|
709
|
+
If set to True, disables @conda.
|
631
710
|
"""
|
632
711
|
...
|
633
712
|
|
634
713
|
@typing.overload
|
635
|
-
def
|
714
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
636
715
|
"""
|
637
|
-
Specifies the
|
638
|
-
to a step needs to be retried.
|
716
|
+
Specifies the resources needed when executing this step.
|
639
717
|
|
640
|
-
|
641
|
-
|
642
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
718
|
+
Use `@resources` to specify the resource requirements
|
719
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
643
720
|
|
644
|
-
|
645
|
-
|
646
|
-
|
721
|
+
You can choose the compute layer on the command line by executing e.g.
|
722
|
+
```
|
723
|
+
python myflow.py run --with batch
|
724
|
+
```
|
725
|
+
or
|
726
|
+
```
|
727
|
+
python myflow.py run --with kubernetes
|
728
|
+
```
|
729
|
+
which executes the flow on the desired system using the
|
730
|
+
requirements specified in `@resources`.
|
647
731
|
|
648
732
|
|
649
733
|
Parameters
|
650
734
|
----------
|
651
|
-
|
652
|
-
Number of
|
653
|
-
|
654
|
-
Number of
|
735
|
+
cpu : int, default 1
|
736
|
+
Number of CPUs required for this step.
|
737
|
+
gpu : int, optional, default None
|
738
|
+
Number of GPUs required for this step.
|
739
|
+
disk : int, optional, default None
|
740
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
741
|
+
memory : int, default 4096
|
742
|
+
Memory size (in MB) required for this step.
|
743
|
+
shared_memory : int, optional, default None
|
744
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
745
|
+
This parameter maps to the `--shm-size` option in Docker.
|
655
746
|
"""
|
656
747
|
...
|
657
748
|
|
658
749
|
@typing.overload
|
659
|
-
def
|
750
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
660
751
|
...
|
661
752
|
|
662
753
|
@typing.overload
|
663
|
-
def
|
754
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
664
755
|
...
|
665
756
|
|
666
|
-
def
|
757
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
667
758
|
"""
|
668
|
-
Specifies the
|
669
|
-
to a step needs to be retried.
|
759
|
+
Specifies the resources needed when executing this step.
|
670
760
|
|
671
|
-
|
672
|
-
|
673
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
761
|
+
Use `@resources` to specify the resource requirements
|
762
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
674
763
|
|
675
|
-
|
676
|
-
|
677
|
-
|
764
|
+
You can choose the compute layer on the command line by executing e.g.
|
765
|
+
```
|
766
|
+
python myflow.py run --with batch
|
767
|
+
```
|
768
|
+
or
|
769
|
+
```
|
770
|
+
python myflow.py run --with kubernetes
|
771
|
+
```
|
772
|
+
which executes the flow on the desired system using the
|
773
|
+
requirements specified in `@resources`.
|
678
774
|
|
679
775
|
|
680
776
|
Parameters
|
681
777
|
----------
|
682
|
-
|
683
|
-
Number of
|
684
|
-
|
685
|
-
Number of
|
778
|
+
cpu : int, default 1
|
779
|
+
Number of CPUs required for this step.
|
780
|
+
gpu : int, optional, default None
|
781
|
+
Number of GPUs required for this step.
|
782
|
+
disk : int, optional, default None
|
783
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
784
|
+
memory : int, default 4096
|
785
|
+
Memory size (in MB) required for this step.
|
786
|
+
shared_memory : int, optional, default None
|
787
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
788
|
+
This parameter maps to the `--shm-size` option in Docker.
|
686
789
|
"""
|
687
790
|
...
|
688
791
|
|
689
792
|
@typing.overload
|
690
|
-
def
|
793
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
691
794
|
"""
|
692
|
-
Specifies the
|
795
|
+
Specifies the PyPI packages for the step.
|
693
796
|
|
694
797
|
Information in this decorator will augment any
|
695
|
-
attributes set in the `@
|
696
|
-
you can use `@
|
697
|
-
steps and use `@
|
798
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
799
|
+
you can use `@pypi_base` to set packages required by all
|
800
|
+
steps and use `@pypi` to specify step-specific overrides.
|
698
801
|
|
699
802
|
|
700
803
|
Parameters
|
701
804
|
----------
|
702
|
-
packages : Dict[str, str], default {}
|
805
|
+
packages : Dict[str, str], default: {}
|
703
806
|
Packages to use for this step. The key is the name of the package
|
704
807
|
and the value is the version to use.
|
705
|
-
|
706
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
707
|
-
python : str, optional, default None
|
808
|
+
python : str, optional, default: None
|
708
809
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
709
810
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
710
|
-
disabled : bool, default False
|
711
|
-
If set to True, disables @conda.
|
712
811
|
"""
|
713
812
|
...
|
714
813
|
|
715
814
|
@typing.overload
|
716
|
-
def
|
815
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
717
816
|
...
|
718
817
|
|
719
818
|
@typing.overload
|
720
|
-
def
|
819
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
721
820
|
...
|
722
821
|
|
723
|
-
def
|
822
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
724
823
|
"""
|
725
|
-
Specifies the
|
824
|
+
Specifies the PyPI packages for the step.
|
726
825
|
|
727
826
|
Information in this decorator will augment any
|
728
|
-
attributes set in the `@
|
729
|
-
you can use `@
|
730
|
-
steps and use `@
|
827
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
828
|
+
you can use `@pypi_base` to set packages required by all
|
829
|
+
steps and use `@pypi` to specify step-specific overrides.
|
731
830
|
|
732
831
|
|
733
832
|
Parameters
|
734
833
|
----------
|
735
|
-
packages : Dict[str, str], default {}
|
834
|
+
packages : Dict[str, str], default: {}
|
736
835
|
Packages to use for this step. The key is the name of the package
|
737
836
|
and the value is the version to use.
|
738
|
-
|
739
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
740
|
-
python : str, optional, default None
|
837
|
+
python : str, optional, default: None
|
741
838
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
742
839
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
743
|
-
disabled : bool, default False
|
744
|
-
If set to True, disables @conda.
|
745
840
|
"""
|
746
841
|
...
|
747
842
|
|
@@ -794,267 +889,9 @@ def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
794
889
|
"""
|
795
890
|
...
|
796
891
|
|
797
|
-
|
798
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
892
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
799
893
|
"""
|
800
|
-
Specifies that
|
801
|
-
|
802
|
-
The decorator will create an optional artifact, specified by `var`, which
|
803
|
-
contains the exception raised. You can use it to detect the presence
|
804
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
805
|
-
are missing.
|
806
|
-
|
807
|
-
|
808
|
-
Parameters
|
809
|
-
----------
|
810
|
-
var : str, optional, default None
|
811
|
-
Name of the artifact in which to store the caught exception.
|
812
|
-
If not specified, the exception is not stored.
|
813
|
-
print_exception : bool, default True
|
814
|
-
Determines whether or not the exception is printed to
|
815
|
-
stdout when caught.
|
816
|
-
"""
|
817
|
-
...
|
818
|
-
|
819
|
-
@typing.overload
|
820
|
-
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
821
|
-
...
|
822
|
-
|
823
|
-
@typing.overload
|
824
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
825
|
-
...
|
826
|
-
|
827
|
-
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
828
|
-
"""
|
829
|
-
Specifies that the step will success under all circumstances.
|
830
|
-
|
831
|
-
The decorator will create an optional artifact, specified by `var`, which
|
832
|
-
contains the exception raised. You can use it to detect the presence
|
833
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
834
|
-
are missing.
|
835
|
-
|
836
|
-
|
837
|
-
Parameters
|
838
|
-
----------
|
839
|
-
var : str, optional, default None
|
840
|
-
Name of the artifact in which to store the caught exception.
|
841
|
-
If not specified, the exception is not stored.
|
842
|
-
print_exception : bool, default True
|
843
|
-
Determines whether or not the exception is printed to
|
844
|
-
stdout when caught.
|
845
|
-
"""
|
846
|
-
...
|
847
|
-
|
848
|
-
@typing.overload
|
849
|
-
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
850
|
-
"""
|
851
|
-
Specifies a timeout for your step.
|
852
|
-
|
853
|
-
This decorator is useful if this step may hang indefinitely.
|
854
|
-
|
855
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
856
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
857
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
858
|
-
|
859
|
-
Note that all the values specified in parameters are added together so if you specify
|
860
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
861
|
-
|
862
|
-
|
863
|
-
Parameters
|
864
|
-
----------
|
865
|
-
seconds : int, default 0
|
866
|
-
Number of seconds to wait prior to timing out.
|
867
|
-
minutes : int, default 0
|
868
|
-
Number of minutes to wait prior to timing out.
|
869
|
-
hours : int, default 0
|
870
|
-
Number of hours to wait prior to timing out.
|
871
|
-
"""
|
872
|
-
...
|
873
|
-
|
874
|
-
@typing.overload
|
875
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
876
|
-
...
|
877
|
-
|
878
|
-
@typing.overload
|
879
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
880
|
-
...
|
881
|
-
|
882
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
883
|
-
"""
|
884
|
-
Specifies a timeout for your step.
|
885
|
-
|
886
|
-
This decorator is useful if this step may hang indefinitely.
|
887
|
-
|
888
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
889
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
890
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
891
|
-
|
892
|
-
Note that all the values specified in parameters are added together so if you specify
|
893
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
894
|
-
|
895
|
-
|
896
|
-
Parameters
|
897
|
-
----------
|
898
|
-
seconds : int, default 0
|
899
|
-
Number of seconds to wait prior to timing out.
|
900
|
-
minutes : int, default 0
|
901
|
-
Number of minutes to wait prior to timing out.
|
902
|
-
hours : int, default 0
|
903
|
-
Number of hours to wait prior to timing out.
|
904
|
-
"""
|
905
|
-
...
|
906
|
-
|
907
|
-
@typing.overload
|
908
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
909
|
-
"""
|
910
|
-
Decorator prototype for all step decorators. This function gets specialized
|
911
|
-
and imported for all decorators types by _import_plugin_decorators().
|
912
|
-
"""
|
913
|
-
...
|
914
|
-
|
915
|
-
@typing.overload
|
916
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
917
|
-
...
|
918
|
-
|
919
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
920
|
-
"""
|
921
|
-
Decorator prototype for all step decorators. This function gets specialized
|
922
|
-
and imported for all decorators types by _import_plugin_decorators().
|
923
|
-
"""
|
924
|
-
...
|
925
|
-
|
926
|
-
@typing.overload
|
927
|
-
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
928
|
-
"""
|
929
|
-
Enables loading / saving of models within a step.
|
930
|
-
|
931
|
-
> Examples
|
932
|
-
- Saving Models
|
933
|
-
```python
|
934
|
-
@model
|
935
|
-
@step
|
936
|
-
def train(self):
|
937
|
-
# current.model.save returns a dictionary reference to the model saved
|
938
|
-
self.my_model = current.model.save(
|
939
|
-
path_to_my_model,
|
940
|
-
label="my_model",
|
941
|
-
metadata={
|
942
|
-
"epochs": 10,
|
943
|
-
"batch-size": 32,
|
944
|
-
"learning-rate": 0.001,
|
945
|
-
}
|
946
|
-
)
|
947
|
-
self.next(self.test)
|
948
|
-
|
949
|
-
@model(load="my_model")
|
950
|
-
@step
|
951
|
-
def test(self):
|
952
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
953
|
-
# where the key is the name of the artifact and the value is the path to the model
|
954
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
955
|
-
self.next(self.end)
|
956
|
-
```
|
957
|
-
|
958
|
-
- Loading models
|
959
|
-
```python
|
960
|
-
@step
|
961
|
-
def train(self):
|
962
|
-
# current.model.load returns the path to the model loaded
|
963
|
-
checkpoint_path = current.model.load(
|
964
|
-
self.checkpoint_key,
|
965
|
-
)
|
966
|
-
model_path = current.model.load(
|
967
|
-
self.model,
|
968
|
-
)
|
969
|
-
self.next(self.test)
|
970
|
-
```
|
971
|
-
|
972
|
-
|
973
|
-
Parameters
|
974
|
-
----------
|
975
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
976
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
977
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
978
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
979
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
980
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
981
|
-
|
982
|
-
temp_dir_root : str, default: None
|
983
|
-
The root directory under which `current.model.loaded` will store loaded models
|
984
|
-
"""
|
985
|
-
...
|
986
|
-
|
987
|
-
@typing.overload
|
988
|
-
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
989
|
-
...
|
990
|
-
|
991
|
-
@typing.overload
|
992
|
-
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
993
|
-
...
|
994
|
-
|
995
|
-
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
996
|
-
"""
|
997
|
-
Enables loading / saving of models within a step.
|
998
|
-
|
999
|
-
> Examples
|
1000
|
-
- Saving Models
|
1001
|
-
```python
|
1002
|
-
@model
|
1003
|
-
@step
|
1004
|
-
def train(self):
|
1005
|
-
# current.model.save returns a dictionary reference to the model saved
|
1006
|
-
self.my_model = current.model.save(
|
1007
|
-
path_to_my_model,
|
1008
|
-
label="my_model",
|
1009
|
-
metadata={
|
1010
|
-
"epochs": 10,
|
1011
|
-
"batch-size": 32,
|
1012
|
-
"learning-rate": 0.001,
|
1013
|
-
}
|
1014
|
-
)
|
1015
|
-
self.next(self.test)
|
1016
|
-
|
1017
|
-
@model(load="my_model")
|
1018
|
-
@step
|
1019
|
-
def test(self):
|
1020
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
1021
|
-
# where the key is the name of the artifact and the value is the path to the model
|
1022
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
1023
|
-
self.next(self.end)
|
1024
|
-
```
|
1025
|
-
|
1026
|
-
- Loading models
|
1027
|
-
```python
|
1028
|
-
@step
|
1029
|
-
def train(self):
|
1030
|
-
# current.model.load returns the path to the model loaded
|
1031
|
-
checkpoint_path = current.model.load(
|
1032
|
-
self.checkpoint_key,
|
1033
|
-
)
|
1034
|
-
model_path = current.model.load(
|
1035
|
-
self.model,
|
1036
|
-
)
|
1037
|
-
self.next(self.test)
|
1038
|
-
```
|
1039
|
-
|
1040
|
-
|
1041
|
-
Parameters
|
1042
|
-
----------
|
1043
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
1044
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
1045
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
1046
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
1047
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
1048
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
1049
|
-
|
1050
|
-
temp_dir_root : str, default: None
|
1051
|
-
The root directory under which `current.model.loaded` will store loaded models
|
1052
|
-
"""
|
1053
|
-
...
|
1054
|
-
|
1055
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1056
|
-
"""
|
1057
|
-
Specifies that this step should execute on Kubernetes.
|
894
|
+
Specifies that this step should execute on Kubernetes.
|
1058
895
|
|
1059
896
|
|
1060
897
|
Parameters
|
@@ -1141,83 +978,39 @@ def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: ty
|
|
1141
978
|
"""
|
1142
979
|
...
|
1143
980
|
|
1144
|
-
|
981
|
+
@typing.overload
|
982
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1145
983
|
"""
|
1146
|
-
Decorator
|
1147
|
-
|
1148
|
-
|
1149
|
-
|
1150
|
-
|
1151
|
-
|
1152
|
-
|
1153
|
-
|
1154
|
-
|
1155
|
-
|
1156
|
-
|
1157
|
-
|
1158
|
-
|
1159
|
-
|
1160
|
-
|
1161
|
-
|
1162
|
-
|
1163
|
-
|
1164
|
-
|
1165
|
-
|
1166
|
-
|
1167
|
-
|
1168
|
-
|
1169
|
-
|
1170
|
-
|
1171
|
-
|
1172
|
-
|
1173
|
-
|
1174
|
-
|
1175
|
-
|
1176
|
-
|
1177
|
-
```python
|
1178
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
1179
|
-
@step
|
1180
|
-
def finetune_model(self):
|
1181
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1182
|
-
# path_to_model will be /my-directory
|
1183
|
-
```
|
1184
|
-
|
1185
|
-
```python
|
1186
|
-
# Takes all the arguments passed to `snapshot_download`
|
1187
|
-
# except for `local_dir`
|
1188
|
-
@huggingface_hub(load=[
|
1189
|
-
{
|
1190
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
1191
|
-
},
|
1192
|
-
{
|
1193
|
-
"repo_id": "myorg/mistral-lora",
|
1194
|
-
"repo_type": "model",
|
1195
|
-
},
|
1196
|
-
])
|
1197
|
-
@step
|
1198
|
-
def finetune_model(self):
|
1199
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1200
|
-
# path_to_model will be /my-directory
|
1201
|
-
```
|
1202
|
-
|
1203
|
-
|
1204
|
-
Parameters
|
1205
|
-
----------
|
1206
|
-
temp_dir_root : str, optional
|
1207
|
-
The root directory that will hold the temporary directory where objects will be downloaded.
|
1208
|
-
|
1209
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
1210
|
-
The list of repos (models/datasets) to load.
|
1211
|
-
|
1212
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
1213
|
-
|
1214
|
-
- If repo (model/dataset) is not found in the datastore:
|
1215
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
1216
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
1217
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
1218
|
-
|
1219
|
-
- If repo is found in the datastore:
|
1220
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
984
|
+
Decorator prototype for all step decorators. This function gets specialized
|
985
|
+
and imported for all decorators types by _import_plugin_decorators().
|
986
|
+
"""
|
987
|
+
...
|
988
|
+
|
989
|
+
@typing.overload
|
990
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
991
|
+
...
|
992
|
+
|
993
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
994
|
+
"""
|
995
|
+
Decorator prototype for all step decorators. This function gets specialized
|
996
|
+
and imported for all decorators types by _import_plugin_decorators().
|
997
|
+
"""
|
998
|
+
...
|
999
|
+
|
1000
|
+
@typing.overload
|
1001
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1002
|
+
"""
|
1003
|
+
Internal decorator to support Fast bakery
|
1004
|
+
"""
|
1005
|
+
...
|
1006
|
+
|
1007
|
+
@typing.overload
|
1008
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1009
|
+
...
|
1010
|
+
|
1011
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1012
|
+
"""
|
1013
|
+
Internal decorator to support Fast bakery
|
1221
1014
|
"""
|
1222
1015
|
...
|
1223
1016
|
|
@@ -1254,54 +1047,216 @@ def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], Non
|
|
1254
1047
|
"""
|
1255
1048
|
...
|
1256
1049
|
|
1050
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1051
|
+
"""
|
1052
|
+
Specifies that this step should execute on DGX cloud.
|
1053
|
+
|
1054
|
+
|
1055
|
+
Parameters
|
1056
|
+
----------
|
1057
|
+
gpu : int
|
1058
|
+
Number of GPUs to use.
|
1059
|
+
gpu_type : str
|
1060
|
+
Type of Nvidia GPU to use.
|
1061
|
+
queue_timeout : int
|
1062
|
+
Time to keep the job in NVCF's queue.
|
1063
|
+
"""
|
1064
|
+
...
|
1065
|
+
|
1257
1066
|
@typing.overload
|
1258
|
-
def
|
1067
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1259
1068
|
"""
|
1260
|
-
|
1261
|
-
|
1069
|
+
Enables checkpointing for a step.
|
1070
|
+
|
1071
|
+
> Examples
|
1072
|
+
|
1073
|
+
- Saving Checkpoints
|
1074
|
+
|
1075
|
+
```python
|
1076
|
+
@checkpoint
|
1077
|
+
@step
|
1078
|
+
def train(self):
|
1079
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
1080
|
+
for i in range(self.epochs):
|
1081
|
+
# some training logic
|
1082
|
+
loss = model.train(self.dataset)
|
1083
|
+
if i % 10 == 0:
|
1084
|
+
model.save(
|
1085
|
+
current.checkpoint.directory,
|
1086
|
+
)
|
1087
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
1088
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
1089
|
+
self.latest_checkpoint = current.checkpoint.save(
|
1090
|
+
name="epoch_checkpoint",
|
1091
|
+
metadata={
|
1092
|
+
"epoch": i,
|
1093
|
+
"loss": loss,
|
1094
|
+
}
|
1095
|
+
)
|
1096
|
+
```
|
1097
|
+
|
1098
|
+
- Using Loaded Checkpoints
|
1099
|
+
|
1100
|
+
```python
|
1101
|
+
@retry(times=3)
|
1102
|
+
@checkpoint
|
1103
|
+
@step
|
1104
|
+
def train(self):
|
1105
|
+
# Assume that the task has restarted and the previous attempt of the task
|
1106
|
+
# saved a checkpoint
|
1107
|
+
checkpoint_path = None
|
1108
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
1109
|
+
print("Loaded checkpoint from the previous attempt")
|
1110
|
+
checkpoint_path = current.checkpoint.directory
|
1111
|
+
|
1112
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
1113
|
+
for i in range(self.epochs):
|
1114
|
+
...
|
1115
|
+
```
|
1262
1116
|
|
1263
1117
|
|
1264
1118
|
Parameters
|
1265
1119
|
----------
|
1266
|
-
|
1267
|
-
|
1268
|
-
|
1269
|
-
|
1270
|
-
|
1271
|
-
|
1272
|
-
|
1273
|
-
|
1274
|
-
|
1275
|
-
|
1276
|
-
|
1277
|
-
|
1120
|
+
load_policy : str, default: "fresh"
|
1121
|
+
The policy for loading the checkpoint. The following policies are supported:
|
1122
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
1123
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
1124
|
+
will be loaded at the start of the task.
|
1125
|
+
- "none": Do not load any checkpoint
|
1126
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
1127
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
1128
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
1129
|
+
created within the task will be loaded when the task is retries execution on failure.
|
1130
|
+
|
1131
|
+
temp_dir_root : str, default: None
|
1132
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
1278
1133
|
"""
|
1279
1134
|
...
|
1280
1135
|
|
1281
1136
|
@typing.overload
|
1282
|
-
def
|
1137
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1283
1138
|
...
|
1284
1139
|
|
1285
|
-
|
1140
|
+
@typing.overload
|
1141
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1142
|
+
...
|
1143
|
+
|
1144
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
1286
1145
|
"""
|
1287
|
-
|
1288
|
-
|
1146
|
+
Enables checkpointing for a step.
|
1147
|
+
|
1148
|
+
> Examples
|
1149
|
+
|
1150
|
+
- Saving Checkpoints
|
1151
|
+
|
1152
|
+
```python
|
1153
|
+
@checkpoint
|
1154
|
+
@step
|
1155
|
+
def train(self):
|
1156
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
1157
|
+
for i in range(self.epochs):
|
1158
|
+
# some training logic
|
1159
|
+
loss = model.train(self.dataset)
|
1160
|
+
if i % 10 == 0:
|
1161
|
+
model.save(
|
1162
|
+
current.checkpoint.directory,
|
1163
|
+
)
|
1164
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
1165
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
1166
|
+
self.latest_checkpoint = current.checkpoint.save(
|
1167
|
+
name="epoch_checkpoint",
|
1168
|
+
metadata={
|
1169
|
+
"epoch": i,
|
1170
|
+
"loss": loss,
|
1171
|
+
}
|
1172
|
+
)
|
1173
|
+
```
|
1174
|
+
|
1175
|
+
- Using Loaded Checkpoints
|
1176
|
+
|
1177
|
+
```python
|
1178
|
+
@retry(times=3)
|
1179
|
+
@checkpoint
|
1180
|
+
@step
|
1181
|
+
def train(self):
|
1182
|
+
# Assume that the task has restarted and the previous attempt of the task
|
1183
|
+
# saved a checkpoint
|
1184
|
+
checkpoint_path = None
|
1185
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
1186
|
+
print("Loaded checkpoint from the previous attempt")
|
1187
|
+
checkpoint_path = current.checkpoint.directory
|
1188
|
+
|
1189
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
1190
|
+
for i in range(self.epochs):
|
1191
|
+
...
|
1192
|
+
```
|
1193
|
+
|
1194
|
+
|
1195
|
+
Parameters
|
1196
|
+
----------
|
1197
|
+
load_policy : str, default: "fresh"
|
1198
|
+
The policy for loading the checkpoint. The following policies are supported:
|
1199
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
1200
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
1201
|
+
will be loaded at the start of the task.
|
1202
|
+
- "none": Do not load any checkpoint
|
1203
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
1204
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
1205
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
1206
|
+
created within the task will be loaded when the task is retries execution on failure.
|
1207
|
+
|
1208
|
+
temp_dir_root : str, default: None
|
1209
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
1210
|
+
"""
|
1211
|
+
...
|
1212
|
+
|
1213
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1214
|
+
"""
|
1215
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
1216
|
+
|
1217
|
+
User code call
|
1218
|
+
--------------
|
1219
|
+
@vllm(
|
1220
|
+
model="...",
|
1221
|
+
...
|
1222
|
+
)
|
1223
|
+
|
1224
|
+
Valid backend options
|
1225
|
+
---------------------
|
1226
|
+
- 'local': Run as a separate process on the local task machine.
|
1227
|
+
|
1228
|
+
Valid model options
|
1229
|
+
-------------------
|
1230
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
1231
|
+
|
1232
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
1233
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
1289
1234
|
|
1290
1235
|
|
1291
1236
|
Parameters
|
1292
1237
|
----------
|
1293
|
-
|
1294
|
-
|
1295
|
-
|
1296
|
-
|
1297
|
-
|
1298
|
-
|
1299
|
-
|
1300
|
-
|
1301
|
-
|
1302
|
-
|
1303
|
-
|
1304
|
-
|
1238
|
+
model: str
|
1239
|
+
HuggingFace model identifier to be served by vLLM.
|
1240
|
+
backend: str
|
1241
|
+
Determines where and how to run the vLLM process.
|
1242
|
+
openai_api_server: bool
|
1243
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
1244
|
+
Default is False (uses native engine).
|
1245
|
+
Set to True for backward compatibility with existing code.
|
1246
|
+
debug: bool
|
1247
|
+
Whether to turn on verbose debugging logs.
|
1248
|
+
card_refresh_interval: int
|
1249
|
+
Interval in seconds for refreshing the vLLM status card.
|
1250
|
+
Only used when openai_api_server=True.
|
1251
|
+
max_retries: int
|
1252
|
+
Maximum number of retries checking for vLLM server startup.
|
1253
|
+
Only used when openai_api_server=True.
|
1254
|
+
retry_alert_frequency: int
|
1255
|
+
Frequency of alert logs for vLLM server startup retries.
|
1256
|
+
Only used when openai_api_server=True.
|
1257
|
+
engine_args : dict
|
1258
|
+
Additional keyword arguments to pass to the vLLM engine.
|
1259
|
+
For example, `tensor_parallel_size=2`.
|
1305
1260
|
"""
|
1306
1261
|
...
|
1307
1262
|
|
@@ -1340,142 +1295,6 @@ def project(*, name: str, branch: typing.Optional[str] = None, production: bool
|
|
1340
1295
|
"""
|
1341
1296
|
...
|
1342
1297
|
|
1343
|
-
@typing.overload
|
1344
|
-
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1345
|
-
"""
|
1346
|
-
Specifies the event(s) that this flow depends on.
|
1347
|
-
|
1348
|
-
```
|
1349
|
-
@trigger(event='foo')
|
1350
|
-
```
|
1351
|
-
or
|
1352
|
-
```
|
1353
|
-
@trigger(events=['foo', 'bar'])
|
1354
|
-
```
|
1355
|
-
|
1356
|
-
Additionally, you can specify the parameter mappings
|
1357
|
-
to map event payload to Metaflow parameters for the flow.
|
1358
|
-
```
|
1359
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1360
|
-
```
|
1361
|
-
or
|
1362
|
-
```
|
1363
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1364
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1365
|
-
```
|
1366
|
-
|
1367
|
-
'parameters' can also be a list of strings and tuples like so:
|
1368
|
-
```
|
1369
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1370
|
-
```
|
1371
|
-
This is equivalent to:
|
1372
|
-
```
|
1373
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1374
|
-
```
|
1375
|
-
|
1376
|
-
|
1377
|
-
Parameters
|
1378
|
-
----------
|
1379
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
1380
|
-
Event dependency for this flow.
|
1381
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
1382
|
-
Events dependency for this flow.
|
1383
|
-
options : Dict[str, Any], default {}
|
1384
|
-
Backend-specific configuration for tuning eventing behavior.
|
1385
|
-
"""
|
1386
|
-
...
|
1387
|
-
|
1388
|
-
@typing.overload
|
1389
|
-
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1390
|
-
...
|
1391
|
-
|
1392
|
-
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1393
|
-
"""
|
1394
|
-
Specifies the event(s) that this flow depends on.
|
1395
|
-
|
1396
|
-
```
|
1397
|
-
@trigger(event='foo')
|
1398
|
-
```
|
1399
|
-
or
|
1400
|
-
```
|
1401
|
-
@trigger(events=['foo', 'bar'])
|
1402
|
-
```
|
1403
|
-
|
1404
|
-
Additionally, you can specify the parameter mappings
|
1405
|
-
to map event payload to Metaflow parameters for the flow.
|
1406
|
-
```
|
1407
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1408
|
-
```
|
1409
|
-
or
|
1410
|
-
```
|
1411
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1412
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1413
|
-
```
|
1414
|
-
|
1415
|
-
'parameters' can also be a list of strings and tuples like so:
|
1416
|
-
```
|
1417
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1418
|
-
```
|
1419
|
-
This is equivalent to:
|
1420
|
-
```
|
1421
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1422
|
-
```
|
1423
|
-
|
1424
|
-
|
1425
|
-
Parameters
|
1426
|
-
----------
|
1427
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
1428
|
-
Event dependency for this flow.
|
1429
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
1430
|
-
Events dependency for this flow.
|
1431
|
-
options : Dict[str, Any], default {}
|
1432
|
-
Backend-specific configuration for tuning eventing behavior.
|
1433
|
-
"""
|
1434
|
-
...
|
1435
|
-
|
1436
|
-
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1437
|
-
"""
|
1438
|
-
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1439
|
-
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1440
|
-
|
1441
|
-
|
1442
|
-
Parameters
|
1443
|
-
----------
|
1444
|
-
timeout : int
|
1445
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
1446
|
-
poke_interval : int
|
1447
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
1448
|
-
mode : str
|
1449
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1450
|
-
exponential_backoff : bool
|
1451
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1452
|
-
pool : str
|
1453
|
-
the slot pool this task should run in,
|
1454
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1455
|
-
soft_fail : bool
|
1456
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1457
|
-
name : str
|
1458
|
-
Name of the sensor on Airflow
|
1459
|
-
description : str
|
1460
|
-
Description of sensor in the Airflow UI
|
1461
|
-
external_dag_id : str
|
1462
|
-
The dag_id that contains the task you want to wait for.
|
1463
|
-
external_task_ids : List[str]
|
1464
|
-
The list of task_ids that you want to wait for.
|
1465
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
1466
|
-
allowed_states : List[str]
|
1467
|
-
Iterable of allowed states, (Default: ['success'])
|
1468
|
-
failed_states : List[str]
|
1469
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1470
|
-
execution_delta : datetime.timedelta
|
1471
|
-
time difference with the previous execution to look at,
|
1472
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1473
|
-
check_existence: bool
|
1474
|
-
Set to True to check if the external task exists or check if
|
1475
|
-
the DAG to wait for exists. (Default: True)
|
1476
|
-
"""
|
1477
|
-
...
|
1478
|
-
|
1479
1298
|
@typing.overload
|
1480
1299
|
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1481
1300
|
"""
|
@@ -1577,97 +1396,54 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
1577
1396
|
"""
|
1578
1397
|
...
|
1579
1398
|
|
1580
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1581
|
-
"""
|
1582
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1583
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1584
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1585
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1586
|
-
starts only after all sensors finish.
|
1587
|
-
|
1588
|
-
|
1589
|
-
Parameters
|
1590
|
-
----------
|
1591
|
-
timeout : int
|
1592
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
1593
|
-
poke_interval : int
|
1594
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
1595
|
-
mode : str
|
1596
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1597
|
-
exponential_backoff : bool
|
1598
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1599
|
-
pool : str
|
1600
|
-
the slot pool this task should run in,
|
1601
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1602
|
-
soft_fail : bool
|
1603
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1604
|
-
name : str
|
1605
|
-
Name of the sensor on Airflow
|
1606
|
-
description : str
|
1607
|
-
Description of sensor in the Airflow UI
|
1608
|
-
bucket_key : Union[str, List[str]]
|
1609
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1610
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1611
|
-
bucket_name : str
|
1612
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1613
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1614
|
-
wildcard_match : bool
|
1615
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1616
|
-
aws_conn_id : str
|
1617
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
1618
|
-
verify : bool
|
1619
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1620
|
-
"""
|
1621
|
-
...
|
1622
|
-
|
1623
1399
|
@typing.overload
|
1624
|
-
def
|
1400
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1625
1401
|
"""
|
1626
|
-
Specifies the
|
1627
|
-
|
1628
|
-
Use `@conda_base` to set common libraries required by all
|
1629
|
-
steps and use `@conda` to specify step-specific additions.
|
1402
|
+
Specifies the times when the flow should be run when running on a
|
1403
|
+
production scheduler.
|
1630
1404
|
|
1631
1405
|
|
1632
1406
|
Parameters
|
1633
1407
|
----------
|
1634
|
-
|
1635
|
-
|
1636
|
-
|
1637
|
-
|
1638
|
-
|
1639
|
-
|
1640
|
-
|
1641
|
-
|
1642
|
-
|
1643
|
-
|
1408
|
+
hourly : bool, default False
|
1409
|
+
Run the workflow hourly.
|
1410
|
+
daily : bool, default True
|
1411
|
+
Run the workflow daily.
|
1412
|
+
weekly : bool, default False
|
1413
|
+
Run the workflow weekly.
|
1414
|
+
cron : str, optional, default None
|
1415
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1416
|
+
specified by this expression.
|
1417
|
+
timezone : str, optional, default None
|
1418
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1419
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1644
1420
|
"""
|
1645
1421
|
...
|
1646
1422
|
|
1647
1423
|
@typing.overload
|
1648
|
-
def
|
1424
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1649
1425
|
...
|
1650
1426
|
|
1651
|
-
def
|
1652
|
-
"""
|
1653
|
-
Specifies the
|
1654
|
-
|
1655
|
-
Use `@conda_base` to set common libraries required by all
|
1656
|
-
steps and use `@conda` to specify step-specific additions.
|
1427
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1428
|
+
"""
|
1429
|
+
Specifies the times when the flow should be run when running on a
|
1430
|
+
production scheduler.
|
1657
1431
|
|
1658
1432
|
|
1659
1433
|
Parameters
|
1660
1434
|
----------
|
1661
|
-
|
1662
|
-
|
1663
|
-
|
1664
|
-
|
1665
|
-
|
1666
|
-
|
1667
|
-
|
1668
|
-
|
1669
|
-
|
1670
|
-
|
1435
|
+
hourly : bool, default False
|
1436
|
+
Run the workflow hourly.
|
1437
|
+
daily : bool, default True
|
1438
|
+
Run the workflow daily.
|
1439
|
+
weekly : bool, default False
|
1440
|
+
Run the workflow weekly.
|
1441
|
+
cron : str, optional, default None
|
1442
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1443
|
+
specified by this expression.
|
1444
|
+
timezone : str, optional, default None
|
1445
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1446
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1671
1447
|
"""
|
1672
1448
|
...
|
1673
1449
|
|
@@ -1785,6 +1561,193 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
1785
1561
|
"""
|
1786
1562
|
...
|
1787
1563
|
|
1564
|
+
@typing.overload
|
1565
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1566
|
+
"""
|
1567
|
+
Specifies the event(s) that this flow depends on.
|
1568
|
+
|
1569
|
+
```
|
1570
|
+
@trigger(event='foo')
|
1571
|
+
```
|
1572
|
+
or
|
1573
|
+
```
|
1574
|
+
@trigger(events=['foo', 'bar'])
|
1575
|
+
```
|
1576
|
+
|
1577
|
+
Additionally, you can specify the parameter mappings
|
1578
|
+
to map event payload to Metaflow parameters for the flow.
|
1579
|
+
```
|
1580
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1581
|
+
```
|
1582
|
+
or
|
1583
|
+
```
|
1584
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1585
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1586
|
+
```
|
1587
|
+
|
1588
|
+
'parameters' can also be a list of strings and tuples like so:
|
1589
|
+
```
|
1590
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1591
|
+
```
|
1592
|
+
This is equivalent to:
|
1593
|
+
```
|
1594
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1595
|
+
```
|
1596
|
+
|
1597
|
+
|
1598
|
+
Parameters
|
1599
|
+
----------
|
1600
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1601
|
+
Event dependency for this flow.
|
1602
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1603
|
+
Events dependency for this flow.
|
1604
|
+
options : Dict[str, Any], default {}
|
1605
|
+
Backend-specific configuration for tuning eventing behavior.
|
1606
|
+
"""
|
1607
|
+
...
|
1608
|
+
|
1609
|
+
@typing.overload
|
1610
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1611
|
+
...
|
1612
|
+
|
1613
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1614
|
+
"""
|
1615
|
+
Specifies the event(s) that this flow depends on.
|
1616
|
+
|
1617
|
+
```
|
1618
|
+
@trigger(event='foo')
|
1619
|
+
```
|
1620
|
+
or
|
1621
|
+
```
|
1622
|
+
@trigger(events=['foo', 'bar'])
|
1623
|
+
```
|
1624
|
+
|
1625
|
+
Additionally, you can specify the parameter mappings
|
1626
|
+
to map event payload to Metaflow parameters for the flow.
|
1627
|
+
```
|
1628
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1629
|
+
```
|
1630
|
+
or
|
1631
|
+
```
|
1632
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1633
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1634
|
+
```
|
1635
|
+
|
1636
|
+
'parameters' can also be a list of strings and tuples like so:
|
1637
|
+
```
|
1638
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1639
|
+
```
|
1640
|
+
This is equivalent to:
|
1641
|
+
```
|
1642
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1643
|
+
```
|
1644
|
+
|
1645
|
+
|
1646
|
+
Parameters
|
1647
|
+
----------
|
1648
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1649
|
+
Event dependency for this flow.
|
1650
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1651
|
+
Events dependency for this flow.
|
1652
|
+
options : Dict[str, Any], default {}
|
1653
|
+
Backend-specific configuration for tuning eventing behavior.
|
1654
|
+
"""
|
1655
|
+
...
|
1656
|
+
|
1657
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1658
|
+
"""
|
1659
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1660
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1661
|
+
|
1662
|
+
|
1663
|
+
Parameters
|
1664
|
+
----------
|
1665
|
+
timeout : int
|
1666
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1667
|
+
poke_interval : int
|
1668
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1669
|
+
mode : str
|
1670
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1671
|
+
exponential_backoff : bool
|
1672
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1673
|
+
pool : str
|
1674
|
+
the slot pool this task should run in,
|
1675
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1676
|
+
soft_fail : bool
|
1677
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1678
|
+
name : str
|
1679
|
+
Name of the sensor on Airflow
|
1680
|
+
description : str
|
1681
|
+
Description of sensor in the Airflow UI
|
1682
|
+
external_dag_id : str
|
1683
|
+
The dag_id that contains the task you want to wait for.
|
1684
|
+
external_task_ids : List[str]
|
1685
|
+
The list of task_ids that you want to wait for.
|
1686
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1687
|
+
allowed_states : List[str]
|
1688
|
+
Iterable of allowed states, (Default: ['success'])
|
1689
|
+
failed_states : List[str]
|
1690
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1691
|
+
execution_delta : datetime.timedelta
|
1692
|
+
time difference with the previous execution to look at,
|
1693
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1694
|
+
check_existence: bool
|
1695
|
+
Set to True to check if the external task exists or check if
|
1696
|
+
the DAG to wait for exists. (Default: True)
|
1697
|
+
"""
|
1698
|
+
...
|
1699
|
+
|
1700
|
+
@typing.overload
|
1701
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1702
|
+
"""
|
1703
|
+
Specifies the Conda environment for all steps of the flow.
|
1704
|
+
|
1705
|
+
Use `@conda_base` to set common libraries required by all
|
1706
|
+
steps and use `@conda` to specify step-specific additions.
|
1707
|
+
|
1708
|
+
|
1709
|
+
Parameters
|
1710
|
+
----------
|
1711
|
+
packages : Dict[str, str], default {}
|
1712
|
+
Packages to use for this flow. The key is the name of the package
|
1713
|
+
and the value is the version to use.
|
1714
|
+
libraries : Dict[str, str], default {}
|
1715
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1716
|
+
python : str, optional, default None
|
1717
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1718
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1719
|
+
disabled : bool, default False
|
1720
|
+
If set to True, disables Conda.
|
1721
|
+
"""
|
1722
|
+
...
|
1723
|
+
|
1724
|
+
@typing.overload
|
1725
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1726
|
+
...
|
1727
|
+
|
1728
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1729
|
+
"""
|
1730
|
+
Specifies the Conda environment for all steps of the flow.
|
1731
|
+
|
1732
|
+
Use `@conda_base` to set common libraries required by all
|
1733
|
+
steps and use `@conda` to specify step-specific additions.
|
1734
|
+
|
1735
|
+
|
1736
|
+
Parameters
|
1737
|
+
----------
|
1738
|
+
packages : Dict[str, str], default {}
|
1739
|
+
Packages to use for this flow. The key is the name of the package
|
1740
|
+
and the value is the version to use.
|
1741
|
+
libraries : Dict[str, str], default {}
|
1742
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1743
|
+
python : str, optional, default None
|
1744
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1745
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1746
|
+
disabled : bool, default False
|
1747
|
+
If set to True, disables Conda.
|
1748
|
+
"""
|
1749
|
+
...
|
1750
|
+
|
1788
1751
|
@typing.overload
|
1789
1752
|
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1790
1753
|
"""
|
@@ -1826,5 +1789,48 @@ def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packag
|
|
1826
1789
|
"""
|
1827
1790
|
...
|
1828
1791
|
|
1792
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1793
|
+
"""
|
1794
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1795
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1796
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1797
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1798
|
+
starts only after all sensors finish.
|
1799
|
+
|
1800
|
+
|
1801
|
+
Parameters
|
1802
|
+
----------
|
1803
|
+
timeout : int
|
1804
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1805
|
+
poke_interval : int
|
1806
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1807
|
+
mode : str
|
1808
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1809
|
+
exponential_backoff : bool
|
1810
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1811
|
+
pool : str
|
1812
|
+
the slot pool this task should run in,
|
1813
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1814
|
+
soft_fail : bool
|
1815
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1816
|
+
name : str
|
1817
|
+
Name of the sensor on Airflow
|
1818
|
+
description : str
|
1819
|
+
Description of sensor in the Airflow UI
|
1820
|
+
bucket_key : Union[str, List[str]]
|
1821
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1822
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1823
|
+
bucket_name : str
|
1824
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1825
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1826
|
+
wildcard_match : bool
|
1827
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1828
|
+
aws_conn_id : str
|
1829
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1830
|
+
verify : bool
|
1831
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1832
|
+
"""
|
1833
|
+
...
|
1834
|
+
|
1829
1835
|
pkg_name: str
|
1830
1836
|
|