ob-metaflow-stubs 6.0.4.0__py2.py3-none-any.whl → 6.0.4.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (261) hide show
  1. metaflow-stubs/__init__.pyi +1085 -1079
  2. metaflow-stubs/cards.pyi +2 -2
  3. metaflow-stubs/cli.pyi +3 -2
  4. metaflow-stubs/cli_components/__init__.pyi +2 -2
  5. metaflow-stubs/cli_components/utils.pyi +2 -2
  6. metaflow-stubs/client/__init__.pyi +2 -2
  7. metaflow-stubs/client/core.pyi +8 -9
  8. metaflow-stubs/client/filecache.pyi +3 -3
  9. metaflow-stubs/events.pyi +2 -2
  10. metaflow-stubs/exception.pyi +2 -2
  11. metaflow-stubs/flowspec.pyi +8 -8
  12. metaflow-stubs/generated_for.txt +1 -1
  13. metaflow-stubs/includefile.pyi +4 -4
  14. metaflow-stubs/{info_file.pyi → meta_files.pyi} +2 -6
  15. metaflow-stubs/metadata_provider/__init__.pyi +2 -2
  16. metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
  17. metaflow-stubs/metadata_provider/metadata.pyi +2 -2
  18. metaflow-stubs/metadata_provider/util.pyi +2 -2
  19. metaflow-stubs/metaflow_config.pyi +6 -2
  20. metaflow-stubs/metaflow_current.pyi +28 -28
  21. metaflow-stubs/metaflow_git.pyi +2 -2
  22. metaflow-stubs/mf_extensions/__init__.pyi +2 -2
  23. metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
  24. metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
  25. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
  26. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
  27. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +3 -3
  28. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
  29. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
  30. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
  31. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
  32. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +2 -2
  33. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
  34. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
  35. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
  36. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
  37. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +5 -5
  38. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
  39. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
  40. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
  41. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
  42. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +3 -3
  43. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
  44. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
  45. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
  46. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
  47. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
  48. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +3 -3
  49. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
  50. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
  51. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +3 -3
  52. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
  53. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
  54. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
  55. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
  56. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
  57. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
  58. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
  59. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +3 -3
  60. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
  61. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
  62. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
  63. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
  64. metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
  65. metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
  66. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
  67. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
  68. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
  69. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
  70. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
  71. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
  72. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
  73. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +3 -3
  74. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +4 -4
  75. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
  76. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
  77. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +3 -3
  78. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
  79. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
  80. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +5 -5
  81. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
  82. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
  83. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +4 -4
  84. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
  85. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +2 -2
  86. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
  87. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
  88. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +5 -5
  89. metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
  90. metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +12 -8
  91. metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
  92. metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +2 -2
  93. metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
  94. metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
  95. metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +13 -11
  96. metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +13 -11
  97. metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
  98. metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +4 -4
  99. metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +3 -3
  100. metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
  101. metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
  102. metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
  103. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
  104. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
  105. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
  106. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
  107. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
  108. metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
  109. metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
  110. metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
  111. metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
  112. metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
  113. metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
  114. metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
  115. metaflow-stubs/multicore_utils.pyi +2 -2
  116. metaflow-stubs/ob_internal.pyi +2 -2
  117. metaflow-stubs/packaging_sys/__init__.pyi +430 -0
  118. metaflow-stubs/packaging_sys/backend.pyi +73 -0
  119. metaflow-stubs/packaging_sys/distribution_support.pyi +57 -0
  120. metaflow-stubs/packaging_sys/tar_backend.pyi +53 -0
  121. metaflow-stubs/packaging_sys/utils.pyi +26 -0
  122. metaflow-stubs/packaging_sys/v1.pyi +145 -0
  123. metaflow-stubs/parameters.pyi +3 -3
  124. metaflow-stubs/plugins/__init__.pyi +11 -11
  125. metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
  126. metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
  127. metaflow-stubs/plugins/airflow/exception.pyi +2 -2
  128. metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
  129. metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
  130. metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
  131. metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
  132. metaflow-stubs/plugins/argo/__init__.pyi +2 -2
  133. metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
  134. metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
  135. metaflow-stubs/plugins/argo/argo_workflows.pyi +4 -4
  136. metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
  137. metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
  138. metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
  139. metaflow-stubs/plugins/argo/exit_hooks.pyi +3 -3
  140. metaflow-stubs/plugins/aws/__init__.pyi +2 -2
  141. metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
  142. metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
  143. metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
  144. metaflow-stubs/plugins/aws/batch/batch.pyi +4 -4
  145. metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
  146. metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +4 -2
  147. metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
  148. metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
  149. metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
  150. metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
  151. metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
  152. metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +3 -3
  153. metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
  154. metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +2 -2
  155. metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
  156. metaflow-stubs/plugins/azure/__init__.pyi +2 -2
  157. metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
  158. metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
  159. metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
  160. metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
  161. metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
  162. metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
  163. metaflow-stubs/plugins/cards/__init__.pyi +2 -2
  164. metaflow-stubs/plugins/cards/card_client.pyi +2 -2
  165. metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
  166. metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
  167. metaflow-stubs/plugins/cards/card_decorator.pyi +3 -5
  168. metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
  169. metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
  170. metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
  171. metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
  172. metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
  173. metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
  174. metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
  175. metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
  176. metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
  177. metaflow-stubs/plugins/cards/exception.pyi +2 -2
  178. metaflow-stubs/plugins/catch_decorator.pyi +3 -3
  179. metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
  180. metaflow-stubs/plugins/datatools/local.pyi +2 -2
  181. metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
  182. metaflow-stubs/plugins/datatools/s3/s3.pyi +5 -5
  183. metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
  184. metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
  185. metaflow-stubs/plugins/debug_logger.pyi +2 -2
  186. metaflow-stubs/plugins/debug_monitor.pyi +2 -2
  187. metaflow-stubs/plugins/environment_decorator.pyi +2 -2
  188. metaflow-stubs/plugins/events_decorator.pyi +2 -2
  189. metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
  190. metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
  191. metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
  192. metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
  193. metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
  194. metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
  195. metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
  196. metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
  197. metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
  198. metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
  199. metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
  200. metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
  201. metaflow-stubs/plugins/kubernetes/kubernetes.pyi +4 -4
  202. metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
  203. metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +4 -2
  204. metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
  205. metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
  206. metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
  207. metaflow-stubs/plugins/parallel_decorator.pyi +3 -3
  208. metaflow-stubs/plugins/perimeters.pyi +2 -2
  209. metaflow-stubs/plugins/project_decorator.pyi +2 -2
  210. metaflow-stubs/plugins/pypi/__init__.pyi +3 -3
  211. metaflow-stubs/plugins/pypi/conda_decorator.pyi +5 -8
  212. metaflow-stubs/plugins/pypi/conda_environment.pyi +5 -4
  213. metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
  214. metaflow-stubs/plugins/pypi/pypi_decorator.pyi +4 -4
  215. metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
  216. metaflow-stubs/plugins/pypi/utils.pyi +2 -2
  217. metaflow-stubs/plugins/resources_decorator.pyi +2 -2
  218. metaflow-stubs/plugins/retry_decorator.pyi +2 -2
  219. metaflow-stubs/plugins/secrets/__init__.pyi +3 -3
  220. metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +2 -2
  221. metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
  222. metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
  223. metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
  224. metaflow-stubs/plugins/secrets/utils.pyi +2 -2
  225. metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
  226. metaflow-stubs/plugins/storage_executor.pyi +2 -2
  227. metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +4 -4
  228. metaflow-stubs/plugins/timeout_decorator.pyi +3 -3
  229. metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
  230. metaflow-stubs/plugins/uv/__init__.pyi +2 -2
  231. metaflow-stubs/plugins/uv/uv_environment.pyi +3 -2
  232. metaflow-stubs/profilers/__init__.pyi +2 -2
  233. metaflow-stubs/pylint_wrapper.pyi +2 -2
  234. metaflow-stubs/runner/__init__.pyi +2 -2
  235. metaflow-stubs/runner/deployer.pyi +28 -28
  236. metaflow-stubs/runner/deployer_impl.pyi +2 -2
  237. metaflow-stubs/runner/metaflow_runner.pyi +4 -4
  238. metaflow-stubs/runner/nbdeploy.pyi +2 -2
  239. metaflow-stubs/runner/nbrun.pyi +2 -2
  240. metaflow-stubs/runner/subprocess_manager.pyi +3 -2
  241. metaflow-stubs/runner/utils.pyi +3 -3
  242. metaflow-stubs/system/__init__.pyi +2 -2
  243. metaflow-stubs/system/system_logger.pyi +3 -3
  244. metaflow-stubs/system/system_monitor.pyi +2 -2
  245. metaflow-stubs/tagging_util.pyi +2 -2
  246. metaflow-stubs/tuple_util.pyi +2 -2
  247. metaflow-stubs/user_configs/__init__.pyi +2 -3
  248. metaflow-stubs/user_configs/config_options.pyi +3 -4
  249. metaflow-stubs/user_configs/config_parameters.pyi +7 -9
  250. metaflow-stubs/user_decorators/__init__.pyi +15 -0
  251. metaflow-stubs/user_decorators/common.pyi +38 -0
  252. metaflow-stubs/user_decorators/mutable_flow.pyi +223 -0
  253. metaflow-stubs/user_decorators/mutable_step.pyi +152 -0
  254. metaflow-stubs/user_decorators/user_flow_decorator.pyi +137 -0
  255. metaflow-stubs/user_decorators/user_step_decorator.pyi +323 -0
  256. {ob_metaflow_stubs-6.0.4.0.dist-info → ob_metaflow_stubs-6.0.4.1.dist-info}/METADATA +1 -1
  257. ob_metaflow_stubs-6.0.4.1.dist-info/RECORD +260 -0
  258. metaflow-stubs/user_configs/config_decorators.pyi +0 -251
  259. ob_metaflow_stubs-6.0.4.0.dist-info/RECORD +0 -249
  260. {ob_metaflow_stubs-6.0.4.0.dist-info → ob_metaflow_stubs-6.0.4.1.dist-info}/WHEEL +0 -0
  261. {ob_metaflow_stubs-6.0.4.0.dist-info → ob_metaflow_stubs-6.0.4.1.dist-info}/top_level.txt +0 -0
@@ -1,7 +1,7 @@
1
1
  ######################################################################################################
2
2
  # Auto-generated Metaflow stub file #
3
- # MF version: 2.15.21.1+obcheckpoint(0.2.4);ob(v1) #
4
- # Generated on 2025-07-11T23:29:18.665907 #
3
+ # MF version: 2.16.0.1+obcheckpoint(0.2.4);ob(v1) #
4
+ # Generated on 2025-07-14T20:31:43.712498 #
5
5
  ######################################################################################################
6
6
 
7
7
  from __future__ import annotations
@@ -13,7 +13,8 @@ if typing.TYPE_CHECKING:
13
13
  FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
14
14
  StepFlag = typing.NewType("StepFlag", bool)
15
15
 
16
- from . import info_file as info_file
16
+ from . import meta_files as meta_files
17
+ from . import packaging_sys as packaging_sys
17
18
  from . import exception as exception
18
19
  from . import metaflow_config as metaflow_config
19
20
  from . import multicore_utils as multicore_utils
@@ -23,6 +24,7 @@ from . import metaflow_current as metaflow_current
23
24
  from .metaflow_current import current as current
24
25
  from . import parameters as parameters
25
26
  from . import user_configs as user_configs
27
+ from . import user_decorators as user_decorators
26
28
  from . import tagging_util as tagging_util
27
29
  from . import metadata_provider as metadata_provider
28
30
  from . import flowspec as flowspec
@@ -33,19 +35,21 @@ from .parameters import JSONType as JSONType
33
35
  from .user_configs.config_parameters import Config as Config
34
36
  from .user_configs.config_parameters import ConfigValue as ConfigValue
35
37
  from .user_configs.config_parameters import config_expr as config_expr
36
- from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
37
- from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
38
+ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDecorator
39
+ from .user_decorators.user_step_decorator import StepMutator as StepMutator
40
+ from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
41
+ from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
38
42
  from . import cards as cards
43
+ from . import metaflow_git as metaflow_git
39
44
  from . import tuple_util as tuple_util
40
45
  from . import events as events
41
- from . import metaflow_git as metaflow_git
42
46
  from . import runner as runner
43
47
  from . import plugins as plugins
44
48
  from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
45
49
  from . import includefile as includefile
46
50
  from .includefile import IncludeFile as IncludeFile
47
- from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
48
51
  from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
52
+ from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
49
53
  from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
50
54
  from . import client as client
51
55
  from .client.core import namespace as namespace
@@ -83,6 +87,8 @@ from . import ob_internal as ob_internal
83
87
 
84
88
  EXT_PKG: str
85
89
 
90
+ USER_SKIP_STEP: dict
91
+
86
92
  @typing.overload
87
93
  def step(f: typing.Callable[[FlowSpecDerived], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
88
94
  """
@@ -156,56 +162,6 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
156
162
  """
157
163
  ...
158
164
 
159
- @typing.overload
160
- def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
161
- """
162
- Decorator prototype for all step decorators. This function gets specialized
163
- and imported for all decorators types by _import_plugin_decorators().
164
- """
165
- ...
166
-
167
- @typing.overload
168
- def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
169
- ...
170
-
171
- def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
172
- """
173
- Decorator prototype for all step decorators. This function gets specialized
174
- and imported for all decorators types by _import_plugin_decorators().
175
- """
176
- ...
177
-
178
- def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
179
- """
180
- Specifies that this step should execute on DGX cloud.
181
-
182
-
183
- Parameters
184
- ----------
185
- gpu : int
186
- Number of GPUs to use.
187
- gpu_type : str
188
- Type of Nvidia GPU to use.
189
- """
190
- ...
191
-
192
- @typing.overload
193
- def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
194
- """
195
- Internal decorator to support Fast bakery
196
- """
197
- ...
198
-
199
- @typing.overload
200
- def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
201
- ...
202
-
203
- def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
204
- """
205
- Internal decorator to support Fast bakery
206
- """
207
- ...
208
-
209
165
  def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
210
166
  """
211
167
  This decorator is used to run vllm APIs as Metaflow task sidecars.
@@ -256,272 +212,127 @@ def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card
256
212
  """
257
213
  ...
258
214
 
259
- def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
215
+ @typing.overload
216
+ def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
260
217
  """
261
- This decorator is used to run Ollama APIs as Metaflow task sidecars.
262
-
263
- User code call
264
- --------------
265
- @ollama(
266
- models=[...],
267
- ...
268
- )
269
-
270
- Valid backend options
271
- ---------------------
272
- - 'local': Run as a separate process on the local task machine.
273
- - (TODO) 'managed': Outerbounds hosts and selects compute provider.
274
- - (TODO) 'remote': Spin up separate instance to serve Ollama models.
218
+ Specifies the Conda environment for the step.
275
219
 
276
- Valid model options
277
- -------------------
278
- Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
220
+ Information in this decorator will augment any
221
+ attributes set in the `@conda_base` flow-level decorator. Hence,
222
+ you can use `@conda_base` to set packages required by all
223
+ steps and use `@conda` to specify step-specific overrides.
279
224
 
280
225
 
281
226
  Parameters
282
227
  ----------
283
- models: list[str]
284
- List of Ollama containers running models in sidecars.
285
- backend: str
286
- Determines where and how to run the Ollama process.
287
- force_pull: bool
288
- Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
289
- cache_update_policy: str
290
- Cache update policy: "auto", "force", or "never".
291
- force_cache_update: bool
292
- Simple override for "force" cache update policy.
293
- debug: bool
294
- Whether to turn on verbose debugging logs.
295
- circuit_breaker_config: dict
296
- Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
297
- timeout_config: dict
298
- Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
228
+ packages : Dict[str, str], default {}
229
+ Packages to use for this step. The key is the name of the package
230
+ and the value is the version to use.
231
+ libraries : Dict[str, str], default {}
232
+ Supported for backward compatibility. When used with packages, packages will take precedence.
233
+ python : str, optional, default None
234
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
235
+ that the version used will correspond to the version of the Python interpreter used to start the run.
236
+ disabled : bool, default False
237
+ If set to True, disables @conda.
299
238
  """
300
239
  ...
301
240
 
302
241
  @typing.overload
303
- def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
242
+ def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
243
+ ...
244
+
245
+ @typing.overload
246
+ def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
247
+ ...
248
+
249
+ def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
304
250
  """
305
- Enables checkpointing for a step.
251
+ Specifies the Conda environment for the step.
306
252
 
307
- > Examples
253
+ Information in this decorator will augment any
254
+ attributes set in the `@conda_base` flow-level decorator. Hence,
255
+ you can use `@conda_base` to set packages required by all
256
+ steps and use `@conda` to specify step-specific overrides.
308
257
 
309
- - Saving Checkpoints
310
258
 
311
- ```python
312
- @checkpoint
313
- @step
314
- def train(self):
315
- model = create_model(self.parameters, checkpoint_path = None)
316
- for i in range(self.epochs):
317
- # some training logic
318
- loss = model.train(self.dataset)
319
- if i % 10 == 0:
320
- model.save(
321
- current.checkpoint.directory,
322
- )
323
- # saves the contents of the `current.checkpoint.directory` as a checkpoint
324
- # and returns a reference dictionary to the checkpoint saved in the datastore
325
- self.latest_checkpoint = current.checkpoint.save(
326
- name="epoch_checkpoint",
327
- metadata={
328
- "epoch": i,
329
- "loss": loss,
330
- }
331
- )
332
- ```
259
+ Parameters
260
+ ----------
261
+ packages : Dict[str, str], default {}
262
+ Packages to use for this step. The key is the name of the package
263
+ and the value is the version to use.
264
+ libraries : Dict[str, str], default {}
265
+ Supported for backward compatibility. When used with packages, packages will take precedence.
266
+ python : str, optional, default None
267
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
268
+ that the version used will correspond to the version of the Python interpreter used to start the run.
269
+ disabled : bool, default False
270
+ If set to True, disables @conda.
271
+ """
272
+ ...
273
+
274
+ def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
275
+ """
276
+ Specifies that this step should execute on DGX cloud.
333
277
 
334
- - Using Loaded Checkpoints
335
278
 
336
- ```python
337
- @retry(times=3)
338
- @checkpoint
339
- @step
340
- def train(self):
341
- # Assume that the task has restarted and the previous attempt of the task
342
- # saved a checkpoint
343
- checkpoint_path = None
344
- if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
345
- print("Loaded checkpoint from the previous attempt")
346
- checkpoint_path = current.checkpoint.directory
279
+ Parameters
280
+ ----------
281
+ gpu : int
282
+ Number of GPUs to use.
283
+ gpu_type : str
284
+ Type of Nvidia GPU to use.
285
+ """
286
+ ...
287
+
288
+ @typing.overload
289
+ def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
290
+ """
291
+ Specifies the PyPI packages for the step.
347
292
 
348
- model = create_model(self.parameters, checkpoint_path = checkpoint_path)
349
- for i in range(self.epochs):
350
- ...
351
- ```
293
+ Information in this decorator will augment any
294
+ attributes set in the `@pyi_base` flow-level decorator. Hence,
295
+ you can use `@pypi_base` to set packages required by all
296
+ steps and use `@pypi` to specify step-specific overrides.
352
297
 
353
298
 
354
299
  Parameters
355
300
  ----------
356
- load_policy : str, default: "fresh"
357
- The policy for loading the checkpoint. The following policies are supported:
358
- - "eager": Loads the the latest available checkpoint within the namespace.
359
- With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
360
- will be loaded at the start of the task.
361
- - "none": Do not load any checkpoint
362
- - "fresh": Loads the lastest checkpoint created within the running Task.
363
- This mode helps loading checkpoints across various retry attempts of the same task.
364
- With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
365
- created within the task will be loaded when the task is retries execution on failure.
366
-
367
- temp_dir_root : str, default: None
368
- The root directory under which `current.checkpoint.directory` will be created.
301
+ packages : Dict[str, str], default: {}
302
+ Packages to use for this step. The key is the name of the package
303
+ and the value is the version to use.
304
+ python : str, optional, default: None
305
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
306
+ that the version used will correspond to the version of the Python interpreter used to start the run.
369
307
  """
370
308
  ...
371
309
 
372
310
  @typing.overload
373
- def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
311
+ def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
374
312
  ...
375
313
 
376
314
  @typing.overload
377
- def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
315
+ def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
378
316
  ...
379
317
 
380
- def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
318
+ def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
381
319
  """
382
- Enables checkpointing for a step.
383
-
384
- > Examples
385
-
386
- - Saving Checkpoints
320
+ Specifies the PyPI packages for the step.
387
321
 
388
- ```python
389
- @checkpoint
390
- @step
391
- def train(self):
392
- model = create_model(self.parameters, checkpoint_path = None)
393
- for i in range(self.epochs):
394
- # some training logic
395
- loss = model.train(self.dataset)
396
- if i % 10 == 0:
397
- model.save(
398
- current.checkpoint.directory,
399
- )
400
- # saves the contents of the `current.checkpoint.directory` as a checkpoint
401
- # and returns a reference dictionary to the checkpoint saved in the datastore
402
- self.latest_checkpoint = current.checkpoint.save(
403
- name="epoch_checkpoint",
404
- metadata={
405
- "epoch": i,
406
- "loss": loss,
407
- }
408
- )
409
- ```
410
-
411
- - Using Loaded Checkpoints
412
-
413
- ```python
414
- @retry(times=3)
415
- @checkpoint
416
- @step
417
- def train(self):
418
- # Assume that the task has restarted and the previous attempt of the task
419
- # saved a checkpoint
420
- checkpoint_path = None
421
- if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
422
- print("Loaded checkpoint from the previous attempt")
423
- checkpoint_path = current.checkpoint.directory
424
-
425
- model = create_model(self.parameters, checkpoint_path = checkpoint_path)
426
- for i in range(self.epochs):
427
- ...
428
- ```
429
-
430
-
431
- Parameters
432
- ----------
433
- load_policy : str, default: "fresh"
434
- The policy for loading the checkpoint. The following policies are supported:
435
- - "eager": Loads the the latest available checkpoint within the namespace.
436
- With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
437
- will be loaded at the start of the task.
438
- - "none": Do not load any checkpoint
439
- - "fresh": Loads the lastest checkpoint created within the running Task.
440
- This mode helps loading checkpoints across various retry attempts of the same task.
441
- With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
442
- created within the task will be loaded when the task is retries execution on failure.
443
-
444
- temp_dir_root : str, default: None
445
- The root directory under which `current.checkpoint.directory` will be created.
446
- """
447
- ...
448
-
449
- @typing.overload
450
- def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
451
- """
452
- Specifies the resources needed when executing this step.
453
-
454
- Use `@resources` to specify the resource requirements
455
- independently of the specific compute layer (`@batch`, `@kubernetes`).
456
-
457
- You can choose the compute layer on the command line by executing e.g.
458
- ```
459
- python myflow.py run --with batch
460
- ```
461
- or
462
- ```
463
- python myflow.py run --with kubernetes
464
- ```
465
- which executes the flow on the desired system using the
466
- requirements specified in `@resources`.
467
-
468
-
469
- Parameters
470
- ----------
471
- cpu : int, default 1
472
- Number of CPUs required for this step.
473
- gpu : int, optional, default None
474
- Number of GPUs required for this step.
475
- disk : int, optional, default None
476
- Disk size (in MB) required for this step. Only applies on Kubernetes.
477
- memory : int, default 4096
478
- Memory size (in MB) required for this step.
479
- shared_memory : int, optional, default None
480
- The value for the size (in MiB) of the /dev/shm volume for this step.
481
- This parameter maps to the `--shm-size` option in Docker.
482
- """
483
- ...
484
-
485
- @typing.overload
486
- def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
487
- ...
488
-
489
- @typing.overload
490
- def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
491
- ...
492
-
493
- def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
494
- """
495
- Specifies the resources needed when executing this step.
496
-
497
- Use `@resources` to specify the resource requirements
498
- independently of the specific compute layer (`@batch`, `@kubernetes`).
499
-
500
- You can choose the compute layer on the command line by executing e.g.
501
- ```
502
- python myflow.py run --with batch
503
- ```
504
- or
505
- ```
506
- python myflow.py run --with kubernetes
507
- ```
508
- which executes the flow on the desired system using the
509
- requirements specified in `@resources`.
322
+ Information in this decorator will augment any
323
+ attributes set in the `@pyi_base` flow-level decorator. Hence,
324
+ you can use `@pypi_base` to set packages required by all
325
+ steps and use `@pypi` to specify step-specific overrides.
510
326
 
511
327
 
512
328
  Parameters
513
329
  ----------
514
- cpu : int, default 1
515
- Number of CPUs required for this step.
516
- gpu : int, optional, default None
517
- Number of GPUs required for this step.
518
- disk : int, optional, default None
519
- Disk size (in MB) required for this step. Only applies on Kubernetes.
520
- memory : int, default 4096
521
- Memory size (in MB) required for this step.
522
- shared_memory : int, optional, default None
523
- The value for the size (in MiB) of the /dev/shm volume for this step.
524
- This parameter maps to the `--shm-size` option in Docker.
330
+ packages : Dict[str, str], default: {}
331
+ Packages to use for this step. The key is the name of the package
332
+ and the value is the version to use.
333
+ python : str, optional, default: None
334
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
335
+ that the version used will correspond to the version of the Python interpreter used to start the run.
525
336
  """
526
337
  ...
527
338
 
@@ -564,184 +375,239 @@ def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
564
375
  """
565
376
  ...
566
377
 
567
- @typing.overload
568
- def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
378
+ def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
569
379
  """
570
- Specifies the PyPI packages for the step.
571
-
572
- Information in this decorator will augment any
573
- attributes set in the `@pyi_base` flow-level decorator. Hence,
574
- you can use `@pypi_base` to set packages required by all
575
- steps and use `@pypi` to specify step-specific overrides.
380
+ Specifies that this step should execute on Kubernetes.
576
381
 
577
382
 
578
383
  Parameters
579
384
  ----------
580
- packages : Dict[str, str], default: {}
581
- Packages to use for this step. The key is the name of the package
582
- and the value is the version to use.
583
- python : str, optional, default: None
584
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
585
- that the version used will correspond to the version of the Python interpreter used to start the run.
385
+ cpu : int, default 1
386
+ Number of CPUs required for this step. If `@resources` is
387
+ also present, the maximum value from all decorators is used.
388
+ memory : int, default 4096
389
+ Memory size (in MB) required for this step. If
390
+ `@resources` is also present, the maximum value from all decorators is
391
+ used.
392
+ disk : int, default 10240
393
+ Disk size (in MB) required for this step. If
394
+ `@resources` is also present, the maximum value from all decorators is
395
+ used.
396
+ image : str, optional, default None
397
+ Docker image to use when launching on Kubernetes. If not specified, and
398
+ METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
399
+ not, a default Docker image mapping to the current version of Python is used.
400
+ image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
401
+ If given, the imagePullPolicy to be applied to the Docker image of the step.
402
+ image_pull_secrets: List[str], default []
403
+ The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
404
+ Kubernetes image pull secrets to use when pulling container images
405
+ in Kubernetes.
406
+ service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
407
+ Kubernetes service account to use when launching pod in Kubernetes.
408
+ secrets : List[str], optional, default None
409
+ Kubernetes secrets to use when launching pod in Kubernetes. These
410
+ secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
411
+ in Metaflow configuration.
412
+ node_selector: Union[Dict[str,str], str], optional, default None
413
+ Kubernetes node selector(s) to apply to the pod running the task.
414
+ Can be passed in as a comma separated string of values e.g.
415
+ 'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
416
+ {'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
417
+ namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
418
+ Kubernetes namespace to use when launching pod in Kubernetes.
419
+ gpu : int, optional, default None
420
+ Number of GPUs required for this step. A value of zero implies that
421
+ the scheduled node should not have GPUs.
422
+ gpu_vendor : str, default KUBERNETES_GPU_VENDOR
423
+ The vendor of the GPUs to be used for this step.
424
+ tolerations : List[str], default []
425
+ The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
426
+ Kubernetes tolerations to use when launching pod in Kubernetes.
427
+ labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
428
+ Kubernetes labels to use when launching pod in Kubernetes.
429
+ annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
430
+ Kubernetes annotations to use when launching pod in Kubernetes.
431
+ use_tmpfs : bool, default False
432
+ This enables an explicit tmpfs mount for this step.
433
+ tmpfs_tempdir : bool, default True
434
+ sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
435
+ tmpfs_size : int, optional, default: None
436
+ The value for the size (in MiB) of the tmpfs mount for this step.
437
+ This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
438
+ memory allocated for this step.
439
+ tmpfs_path : str, optional, default /metaflow_temp
440
+ Path to tmpfs mount for this step.
441
+ persistent_volume_claims : Dict[str, str], optional, default None
442
+ A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
443
+ volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
444
+ shared_memory: int, optional
445
+ Shared memory size (in MiB) required for this step
446
+ port: int, optional
447
+ Port number to specify in the Kubernetes job object
448
+ compute_pool : str, optional, default None
449
+ Compute pool to be used for for this step.
450
+ If not specified, any accessible compute pool within the perimeter is used.
451
+ hostname_resolution_timeout: int, default 10 * 60
452
+ Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
453
+ Only applicable when @parallel is used.
454
+ qos: str, default: Burstable
455
+ Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
456
+
457
+ security_context: Dict[str, Any], optional, default None
458
+ Container security context. Applies to the task container. Allows the following keys:
459
+ - privileged: bool, optional, default None
460
+ - allow_privilege_escalation: bool, optional, default None
461
+ - run_as_user: int, optional, default None
462
+ - run_as_group: int, optional, default None
463
+ - run_as_non_root: bool, optional, default None
586
464
  """
587
465
  ...
588
466
 
589
467
  @typing.overload
590
- def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
591
- ...
592
-
593
- @typing.overload
594
- def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
595
- ...
596
-
597
- def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
468
+ def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
598
469
  """
599
- Specifies the PyPI packages for the step.
600
-
601
- Information in this decorator will augment any
602
- attributes set in the `@pyi_base` flow-level decorator. Hence,
603
- you can use `@pypi_base` to set packages required by all
604
- steps and use `@pypi` to specify step-specific overrides.
605
-
470
+ Enables checkpointing for a step.
606
471
 
607
- Parameters
608
- ----------
609
- packages : Dict[str, str], default: {}
610
- Packages to use for this step. The key is the name of the package
611
- and the value is the version to use.
612
- python : str, optional, default: None
613
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
614
- that the version used will correspond to the version of the Python interpreter used to start the run.
615
- """
616
- ...
617
-
618
- def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
619
- """
620
- Specifies that this step should execute on DGX cloud.
472
+ > Examples
621
473
 
474
+ - Saving Checkpoints
622
475
 
623
- Parameters
624
- ----------
625
- gpu : int
626
- Number of GPUs to use.
627
- gpu_type : str
628
- Type of Nvidia GPU to use.
629
- queue_timeout : int
630
- Time to keep the job in NVCF's queue.
631
- """
632
- ...
633
-
634
- @typing.overload
635
- def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
636
- """
637
- Specifies the number of times the task corresponding
638
- to a step needs to be retried.
476
+ ```python
477
+ @checkpoint
478
+ @step
479
+ def train(self):
480
+ model = create_model(self.parameters, checkpoint_path = None)
481
+ for i in range(self.epochs):
482
+ # some training logic
483
+ loss = model.train(self.dataset)
484
+ if i % 10 == 0:
485
+ model.save(
486
+ current.checkpoint.directory,
487
+ )
488
+ # saves the contents of the `current.checkpoint.directory` as a checkpoint
489
+ # and returns a reference dictionary to the checkpoint saved in the datastore
490
+ self.latest_checkpoint = current.checkpoint.save(
491
+ name="epoch_checkpoint",
492
+ metadata={
493
+ "epoch": i,
494
+ "loss": loss,
495
+ }
496
+ )
497
+ ```
639
498
 
640
- This decorator is useful for handling transient errors, such as networking issues.
641
- If your task contains operations that can't be retried safely, e.g. database updates,
642
- it is advisable to annotate it with `@retry(times=0)`.
499
+ - Using Loaded Checkpoints
643
500
 
644
- This can be used in conjunction with the `@catch` decorator. The `@catch`
645
- decorator will execute a no-op task after all retries have been exhausted,
646
- ensuring that the flow execution can continue.
501
+ ```python
502
+ @retry(times=3)
503
+ @checkpoint
504
+ @step
505
+ def train(self):
506
+ # Assume that the task has restarted and the previous attempt of the task
507
+ # saved a checkpoint
508
+ checkpoint_path = None
509
+ if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
510
+ print("Loaded checkpoint from the previous attempt")
511
+ checkpoint_path = current.checkpoint.directory
512
+
513
+ model = create_model(self.parameters, checkpoint_path = checkpoint_path)
514
+ for i in range(self.epochs):
515
+ ...
516
+ ```
647
517
 
648
518
 
649
519
  Parameters
650
520
  ----------
651
- times : int, default 3
652
- Number of times to retry this task.
653
- minutes_between_retries : int, default 2
654
- Number of minutes between retries.
521
+ load_policy : str, default: "fresh"
522
+ The policy for loading the checkpoint. The following policies are supported:
523
+ - "eager": Loads the the latest available checkpoint within the namespace.
524
+ With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
525
+ will be loaded at the start of the task.
526
+ - "none": Do not load any checkpoint
527
+ - "fresh": Loads the lastest checkpoint created within the running Task.
528
+ This mode helps loading checkpoints across various retry attempts of the same task.
529
+ With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
530
+ created within the task will be loaded when the task is retries execution on failure.
531
+
532
+ temp_dir_root : str, default: None
533
+ The root directory under which `current.checkpoint.directory` will be created.
655
534
  """
656
535
  ...
657
536
 
658
537
  @typing.overload
659
- def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
538
+ def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
660
539
  ...
661
540
 
662
541
  @typing.overload
663
- def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
542
+ def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
664
543
  ...
665
544
 
666
- def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
545
+ def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
667
546
  """
668
- Specifies the number of times the task corresponding
669
- to a step needs to be retried.
670
-
671
- This decorator is useful for handling transient errors, such as networking issues.
672
- If your task contains operations that can't be retried safely, e.g. database updates,
673
- it is advisable to annotate it with `@retry(times=0)`.
674
-
675
- This can be used in conjunction with the `@catch` decorator. The `@catch`
676
- decorator will execute a no-op task after all retries have been exhausted,
677
- ensuring that the flow execution can continue.
547
+ Enables checkpointing for a step.
678
548
 
549
+ > Examples
679
550
 
680
- Parameters
681
- ----------
682
- times : int, default 3
683
- Number of times to retry this task.
684
- minutes_between_retries : int, default 2
685
- Number of minutes between retries.
686
- """
687
- ...
688
-
689
- @typing.overload
690
- def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
691
- """
692
- Specifies the Conda environment for the step.
551
+ - Saving Checkpoints
693
552
 
694
- Information in this decorator will augment any
695
- attributes set in the `@conda_base` flow-level decorator. Hence,
696
- you can use `@conda_base` to set packages required by all
697
- steps and use `@conda` to specify step-specific overrides.
553
+ ```python
554
+ @checkpoint
555
+ @step
556
+ def train(self):
557
+ model = create_model(self.parameters, checkpoint_path = None)
558
+ for i in range(self.epochs):
559
+ # some training logic
560
+ loss = model.train(self.dataset)
561
+ if i % 10 == 0:
562
+ model.save(
563
+ current.checkpoint.directory,
564
+ )
565
+ # saves the contents of the `current.checkpoint.directory` as a checkpoint
566
+ # and returns a reference dictionary to the checkpoint saved in the datastore
567
+ self.latest_checkpoint = current.checkpoint.save(
568
+ name="epoch_checkpoint",
569
+ metadata={
570
+ "epoch": i,
571
+ "loss": loss,
572
+ }
573
+ )
574
+ ```
698
575
 
576
+ - Using Loaded Checkpoints
699
577
 
700
- Parameters
701
- ----------
702
- packages : Dict[str, str], default {}
703
- Packages to use for this step. The key is the name of the package
704
- and the value is the version to use.
705
- libraries : Dict[str, str], default {}
706
- Supported for backward compatibility. When used with packages, packages will take precedence.
707
- python : str, optional, default None
708
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
709
- that the version used will correspond to the version of the Python interpreter used to start the run.
710
- disabled : bool, default False
711
- If set to True, disables @conda.
712
- """
713
- ...
714
-
715
- @typing.overload
716
- def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
717
- ...
718
-
719
- @typing.overload
720
- def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
721
- ...
722
-
723
- def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
724
- """
725
- Specifies the Conda environment for the step.
578
+ ```python
579
+ @retry(times=3)
580
+ @checkpoint
581
+ @step
582
+ def train(self):
583
+ # Assume that the task has restarted and the previous attempt of the task
584
+ # saved a checkpoint
585
+ checkpoint_path = None
586
+ if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
587
+ print("Loaded checkpoint from the previous attempt")
588
+ checkpoint_path = current.checkpoint.directory
726
589
 
727
- Information in this decorator will augment any
728
- attributes set in the `@conda_base` flow-level decorator. Hence,
729
- you can use `@conda_base` to set packages required by all
730
- steps and use `@conda` to specify step-specific overrides.
590
+ model = create_model(self.parameters, checkpoint_path = checkpoint_path)
591
+ for i in range(self.epochs):
592
+ ...
593
+ ```
731
594
 
732
595
 
733
596
  Parameters
734
597
  ----------
735
- packages : Dict[str, str], default {}
736
- Packages to use for this step. The key is the name of the package
737
- and the value is the version to use.
738
- libraries : Dict[str, str], default {}
739
- Supported for backward compatibility. When used with packages, packages will take precedence.
740
- python : str, optional, default None
741
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
742
- that the version used will correspond to the version of the Python interpreter used to start the run.
743
- disabled : bool, default False
744
- If set to True, disables @conda.
598
+ load_policy : str, default: "fresh"
599
+ The policy for loading the checkpoint. The following policies are supported:
600
+ - "eager": Loads the the latest available checkpoint within the namespace.
601
+ With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
602
+ will be loaded at the start of the task.
603
+ - "none": Do not load any checkpoint
604
+ - "fresh": Loads the lastest checkpoint created within the running Task.
605
+ This mode helps loading checkpoints across various retry attempts of the same task.
606
+ With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
607
+ created within the task will be loaded when the task is retries execution on failure.
608
+
609
+ temp_dir_root : str, default: None
610
+ The root directory under which `current.checkpoint.directory` will be created.
745
611
  """
746
612
  ...
747
613
 
@@ -795,217 +661,491 @@ def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
795
661
  ...
796
662
 
797
663
  @typing.overload
798
- def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
664
+ def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
799
665
  """
800
- Specifies that the step will success under all circumstances.
801
-
802
- The decorator will create an optional artifact, specified by `var`, which
803
- contains the exception raised. You can use it to detect the presence
804
- of errors, indicating that all happy-path artifacts produced by the step
805
- are missing.
806
-
807
-
808
- Parameters
809
- ----------
810
- var : str, optional, default None
811
- Name of the artifact in which to store the caught exception.
812
- If not specified, the exception is not stored.
813
- print_exception : bool, default True
814
- Determines whether or not the exception is printed to
815
- stdout when caught.
666
+ Internal decorator to support Fast bakery
816
667
  """
817
668
  ...
818
669
 
819
670
  @typing.overload
820
- def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
821
- ...
822
-
823
- @typing.overload
824
- def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
671
+ def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
825
672
  ...
826
673
 
827
- def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
674
+ def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
828
675
  """
829
- Specifies that the step will success under all circumstances.
830
-
831
- The decorator will create an optional artifact, specified by `var`, which
832
- contains the exception raised. You can use it to detect the presence
833
- of errors, indicating that all happy-path artifacts produced by the step
834
- are missing.
835
-
836
-
837
- Parameters
838
- ----------
839
- var : str, optional, default None
840
- Name of the artifact in which to store the caught exception.
841
- If not specified, the exception is not stored.
842
- print_exception : bool, default True
843
- Determines whether or not the exception is printed to
844
- stdout when caught.
676
+ Internal decorator to support Fast bakery
845
677
  """
846
678
  ...
847
679
 
848
- @typing.overload
849
- def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
680
+ def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
850
681
  """
851
- Specifies a timeout for your step.
682
+ This decorator is used to run Ollama APIs as Metaflow task sidecars.
852
683
 
853
- This decorator is useful if this step may hang indefinitely.
684
+ User code call
685
+ --------------
686
+ @ollama(
687
+ models=[...],
688
+ ...
689
+ )
854
690
 
855
- This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
856
- A timeout is considered to be an exception thrown by the step. It will cause the step to be
857
- retried if needed and the exception will be caught by the `@catch` decorator, if present.
691
+ Valid backend options
692
+ ---------------------
693
+ - 'local': Run as a separate process on the local task machine.
694
+ - (TODO) 'managed': Outerbounds hosts and selects compute provider.
695
+ - (TODO) 'remote': Spin up separate instance to serve Ollama models.
858
696
 
859
- Note that all the values specified in parameters are added together so if you specify
860
- 60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
697
+ Valid model options
698
+ -------------------
699
+ Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
861
700
 
862
701
 
863
702
  Parameters
864
703
  ----------
865
- seconds : int, default 0
866
- Number of seconds to wait prior to timing out.
867
- minutes : int, default 0
868
- Number of minutes to wait prior to timing out.
869
- hours : int, default 0
870
- Number of hours to wait prior to timing out.
704
+ models: list[str]
705
+ List of Ollama containers running models in sidecars.
706
+ backend: str
707
+ Determines where and how to run the Ollama process.
708
+ force_pull: bool
709
+ Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
710
+ cache_update_policy: str
711
+ Cache update policy: "auto", "force", or "never".
712
+ force_cache_update: bool
713
+ Simple override for "force" cache update policy.
714
+ debug: bool
715
+ Whether to turn on verbose debugging logs.
716
+ circuit_breaker_config: dict
717
+ Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
718
+ timeout_config: dict
719
+ Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
871
720
  """
872
721
  ...
873
722
 
874
- @typing.overload
875
- def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
876
- ...
877
-
878
- @typing.overload
879
- def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
880
- ...
881
-
882
- def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
723
+ def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
883
724
  """
884
- Specifies a timeout for your step.
725
+ Decorator that helps cache, version and store models/datasets from huggingface hub.
885
726
 
886
- This decorator is useful if this step may hang indefinitely.
727
+ > Examples
887
728
 
888
- This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
889
- A timeout is considered to be an exception thrown by the step. It will cause the step to be
890
- retried if needed and the exception will be caught by the `@catch` decorator, if present.
729
+ **Usage: creating references of models from huggingface that may be loaded in downstream steps**
730
+ ```python
731
+ @huggingface_hub
732
+ @step
733
+ def pull_model_from_huggingface(self):
734
+ # `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
735
+ # and saves it in the backend storage based on the model's `repo_id`. If there exists a model
736
+ # with the same `repo_id` in the backend storage, it will not download the model again. The return
737
+ # value of the function is a reference to the model in the backend storage.
738
+ # This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
891
739
 
892
- Note that all the values specified in parameters are added together so if you specify
893
- 60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
740
+ self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
741
+ self.llama_model = current.huggingface_hub.snapshot_download(
742
+ repo_id=self.model_id,
743
+ allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
744
+ )
745
+ self.next(self.train)
746
+ ```
747
+
748
+ **Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
749
+ ```python
750
+ @huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
751
+ @step
752
+ def pull_model_from_huggingface(self):
753
+ path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
754
+ ```
755
+
756
+ ```python
757
+ @huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
758
+ @step
759
+ def finetune_model(self):
760
+ path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
761
+ # path_to_model will be /my-directory
762
+ ```
763
+
764
+ ```python
765
+ # Takes all the arguments passed to `snapshot_download`
766
+ # except for `local_dir`
767
+ @huggingface_hub(load=[
768
+ {
769
+ "repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
770
+ },
771
+ {
772
+ "repo_id": "myorg/mistral-lora",
773
+ "repo_type": "model",
774
+ },
775
+ ])
776
+ @step
777
+ def finetune_model(self):
778
+ path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
779
+ # path_to_model will be /my-directory
780
+ ```
894
781
 
895
782
 
896
783
  Parameters
897
784
  ----------
898
- seconds : int, default 0
899
- Number of seconds to wait prior to timing out.
900
- minutes : int, default 0
901
- Number of minutes to wait prior to timing out.
902
- hours : int, default 0
903
- Number of hours to wait prior to timing out.
785
+ temp_dir_root : str, optional
786
+ The root directory that will hold the temporary directory where objects will be downloaded.
787
+
788
+ load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
789
+ The list of repos (models/datasets) to load.
790
+
791
+ Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
792
+
793
+ - If repo (model/dataset) is not found in the datastore:
794
+ - Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
795
+ - Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
796
+ - All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
797
+
798
+ - If repo is found in the datastore:
799
+ - Loads it directly from datastore to local path (can be temporary directory or specified path)
904
800
  """
905
801
  ...
906
802
 
907
803
  @typing.overload
908
- def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
804
+ def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
909
805
  """
910
- Decorator prototype for all step decorators. This function gets specialized
911
- and imported for all decorators types by _import_plugin_decorators().
806
+ Specifies the number of times the task corresponding
807
+ to a step needs to be retried.
808
+
809
+ This decorator is useful for handling transient errors, such as networking issues.
810
+ If your task contains operations that can't be retried safely, e.g. database updates,
811
+ it is advisable to annotate it with `@retry(times=0)`.
812
+
813
+ This can be used in conjunction with the `@catch` decorator. The `@catch`
814
+ decorator will execute a no-op task after all retries have been exhausted,
815
+ ensuring that the flow execution can continue.
816
+
817
+
818
+ Parameters
819
+ ----------
820
+ times : int, default 3
821
+ Number of times to retry this task.
822
+ minutes_between_retries : int, default 2
823
+ Number of minutes between retries.
912
824
  """
913
825
  ...
914
826
 
915
827
  @typing.overload
916
- def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
828
+ def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
917
829
  ...
918
830
 
919
- def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
831
+ @typing.overload
832
+ def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
833
+ ...
834
+
835
+ def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
920
836
  """
921
- Decorator prototype for all step decorators. This function gets specialized
922
- and imported for all decorators types by _import_plugin_decorators().
837
+ Specifies the number of times the task corresponding
838
+ to a step needs to be retried.
839
+
840
+ This decorator is useful for handling transient errors, such as networking issues.
841
+ If your task contains operations that can't be retried safely, e.g. database updates,
842
+ it is advisable to annotate it with `@retry(times=0)`.
843
+
844
+ This can be used in conjunction with the `@catch` decorator. The `@catch`
845
+ decorator will execute a no-op task after all retries have been exhausted,
846
+ ensuring that the flow execution can continue.
847
+
848
+
849
+ Parameters
850
+ ----------
851
+ times : int, default 3
852
+ Number of times to retry this task.
853
+ minutes_between_retries : int, default 2
854
+ Number of minutes between retries.
923
855
  """
924
856
  ...
925
857
 
926
858
  @typing.overload
927
- def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
859
+ def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
928
860
  """
929
- Enables loading / saving of models within a step.
861
+ Specifies the resources needed when executing this step.
930
862
 
931
- > Examples
932
- - Saving Models
933
- ```python
934
- @model
935
- @step
936
- def train(self):
937
- # current.model.save returns a dictionary reference to the model saved
938
- self.my_model = current.model.save(
939
- path_to_my_model,
940
- label="my_model",
941
- metadata={
942
- "epochs": 10,
943
- "batch-size": 32,
944
- "learning-rate": 0.001,
945
- }
946
- )
947
- self.next(self.test)
863
+ Use `@resources` to specify the resource requirements
864
+ independently of the specific compute layer (`@batch`, `@kubernetes`).
948
865
 
949
- @model(load="my_model")
950
- @step
951
- def test(self):
952
- # `current.model.loaded` returns a dictionary of the loaded models
953
- # where the key is the name of the artifact and the value is the path to the model
954
- print(os.listdir(current.model.loaded["my_model"]))
955
- self.next(self.end)
866
+ You can choose the compute layer on the command line by executing e.g.
956
867
  ```
957
-
958
- - Loading models
959
- ```python
960
- @step
961
- def train(self):
962
- # current.model.load returns the path to the model loaded
963
- checkpoint_path = current.model.load(
964
- self.checkpoint_key,
965
- )
966
- model_path = current.model.load(
967
- self.model,
968
- )
969
- self.next(self.test)
868
+ python myflow.py run --with batch
869
+ ```
870
+ or
871
+ ```
872
+ python myflow.py run --with kubernetes
970
873
  ```
874
+ which executes the flow on the desired system using the
875
+ requirements specified in `@resources`.
971
876
 
972
877
 
973
878
  Parameters
974
879
  ----------
975
- load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
976
- Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
977
- These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
978
- If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
979
- the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
980
- If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
981
-
982
- temp_dir_root : str, default: None
983
- The root directory under which `current.model.loaded` will store loaded models
880
+ cpu : int, default 1
881
+ Number of CPUs required for this step.
882
+ gpu : int, optional, default None
883
+ Number of GPUs required for this step.
884
+ disk : int, optional, default None
885
+ Disk size (in MB) required for this step. Only applies on Kubernetes.
886
+ memory : int, default 4096
887
+ Memory size (in MB) required for this step.
888
+ shared_memory : int, optional, default None
889
+ The value for the size (in MiB) of the /dev/shm volume for this step.
890
+ This parameter maps to the `--shm-size` option in Docker.
984
891
  """
985
892
  ...
986
893
 
987
894
  @typing.overload
988
- def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
895
+ def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
989
896
  ...
990
897
 
991
898
  @typing.overload
992
- def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
899
+ def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
993
900
  ...
994
901
 
995
- def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
902
+ def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
996
903
  """
997
- Enables loading / saving of models within a step.
904
+ Specifies the resources needed when executing this step.
998
905
 
999
- > Examples
1000
- - Saving Models
1001
- ```python
1002
- @model
1003
- @step
1004
- def train(self):
1005
- # current.model.save returns a dictionary reference to the model saved
1006
- self.my_model = current.model.save(
1007
- path_to_my_model,
1008
- label="my_model",
906
+ Use `@resources` to specify the resource requirements
907
+ independently of the specific compute layer (`@batch`, `@kubernetes`).
908
+
909
+ You can choose the compute layer on the command line by executing e.g.
910
+ ```
911
+ python myflow.py run --with batch
912
+ ```
913
+ or
914
+ ```
915
+ python myflow.py run --with kubernetes
916
+ ```
917
+ which executes the flow on the desired system using the
918
+ requirements specified in `@resources`.
919
+
920
+
921
+ Parameters
922
+ ----------
923
+ cpu : int, default 1
924
+ Number of CPUs required for this step.
925
+ gpu : int, optional, default None
926
+ Number of GPUs required for this step.
927
+ disk : int, optional, default None
928
+ Disk size (in MB) required for this step. Only applies on Kubernetes.
929
+ memory : int, default 4096
930
+ Memory size (in MB) required for this step.
931
+ shared_memory : int, optional, default None
932
+ The value for the size (in MiB) of the /dev/shm volume for this step.
933
+ This parameter maps to the `--shm-size` option in Docker.
934
+ """
935
+ ...
936
+
937
+ @typing.overload
938
+ def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
939
+ """
940
+ Specifies a timeout for your step.
941
+
942
+ This decorator is useful if this step may hang indefinitely.
943
+
944
+ This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
945
+ A timeout is considered to be an exception thrown by the step. It will cause the step to be
946
+ retried if needed and the exception will be caught by the `@catch` decorator, if present.
947
+
948
+ Note that all the values specified in parameters are added together so if you specify
949
+ 60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
950
+
951
+
952
+ Parameters
953
+ ----------
954
+ seconds : int, default 0
955
+ Number of seconds to wait prior to timing out.
956
+ minutes : int, default 0
957
+ Number of minutes to wait prior to timing out.
958
+ hours : int, default 0
959
+ Number of hours to wait prior to timing out.
960
+ """
961
+ ...
962
+
963
+ @typing.overload
964
+ def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
965
+ ...
966
+
967
+ @typing.overload
968
+ def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
969
+ ...
970
+
971
+ def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
972
+ """
973
+ Specifies a timeout for your step.
974
+
975
+ This decorator is useful if this step may hang indefinitely.
976
+
977
+ This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
978
+ A timeout is considered to be an exception thrown by the step. It will cause the step to be
979
+ retried if needed and the exception will be caught by the `@catch` decorator, if present.
980
+
981
+ Note that all the values specified in parameters are added together so if you specify
982
+ 60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
983
+
984
+
985
+ Parameters
986
+ ----------
987
+ seconds : int, default 0
988
+ Number of seconds to wait prior to timing out.
989
+ minutes : int, default 0
990
+ Number of minutes to wait prior to timing out.
991
+ hours : int, default 0
992
+ Number of hours to wait prior to timing out.
993
+ """
994
+ ...
995
+
996
+ @typing.overload
997
+ def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
998
+ """
999
+ Specifies that the step will success under all circumstances.
1000
+
1001
+ The decorator will create an optional artifact, specified by `var`, which
1002
+ contains the exception raised. You can use it to detect the presence
1003
+ of errors, indicating that all happy-path artifacts produced by the step
1004
+ are missing.
1005
+
1006
+
1007
+ Parameters
1008
+ ----------
1009
+ var : str, optional, default None
1010
+ Name of the artifact in which to store the caught exception.
1011
+ If not specified, the exception is not stored.
1012
+ print_exception : bool, default True
1013
+ Determines whether or not the exception is printed to
1014
+ stdout when caught.
1015
+ """
1016
+ ...
1017
+
1018
+ @typing.overload
1019
+ def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1020
+ ...
1021
+
1022
+ @typing.overload
1023
+ def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1024
+ ...
1025
+
1026
+ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
1027
+ """
1028
+ Specifies that the step will success under all circumstances.
1029
+
1030
+ The decorator will create an optional artifact, specified by `var`, which
1031
+ contains the exception raised. You can use it to detect the presence
1032
+ of errors, indicating that all happy-path artifacts produced by the step
1033
+ are missing.
1034
+
1035
+
1036
+ Parameters
1037
+ ----------
1038
+ var : str, optional, default None
1039
+ Name of the artifact in which to store the caught exception.
1040
+ If not specified, the exception is not stored.
1041
+ print_exception : bool, default True
1042
+ Determines whether or not the exception is printed to
1043
+ stdout when caught.
1044
+ """
1045
+ ...
1046
+
1047
+ def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1048
+ """
1049
+ Specifies that this step should execute on DGX cloud.
1050
+
1051
+
1052
+ Parameters
1053
+ ----------
1054
+ gpu : int
1055
+ Number of GPUs to use.
1056
+ gpu_type : str
1057
+ Type of Nvidia GPU to use.
1058
+ queue_timeout : int
1059
+ Time to keep the job in NVCF's queue.
1060
+ """
1061
+ ...
1062
+
1063
+ @typing.overload
1064
+ def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1065
+ """
1066
+ Decorator prototype for all step decorators. This function gets specialized
1067
+ and imported for all decorators types by _import_plugin_decorators().
1068
+ """
1069
+ ...
1070
+
1071
+ @typing.overload
1072
+ def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1073
+ ...
1074
+
1075
+ def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
1076
+ """
1077
+ Decorator prototype for all step decorators. This function gets specialized
1078
+ and imported for all decorators types by _import_plugin_decorators().
1079
+ """
1080
+ ...
1081
+
1082
+ @typing.overload
1083
+ def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1084
+ """
1085
+ Decorator prototype for all step decorators. This function gets specialized
1086
+ and imported for all decorators types by _import_plugin_decorators().
1087
+ """
1088
+ ...
1089
+
1090
+ @typing.overload
1091
+ def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1092
+ ...
1093
+
1094
+ def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
1095
+ """
1096
+ Decorator prototype for all step decorators. This function gets specialized
1097
+ and imported for all decorators types by _import_plugin_decorators().
1098
+ """
1099
+ ...
1100
+
1101
+ @typing.overload
1102
+ def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1103
+ """
1104
+ Specifies environment variables to be set prior to the execution of a step.
1105
+
1106
+
1107
+ Parameters
1108
+ ----------
1109
+ vars : Dict[str, str], default {}
1110
+ Dictionary of environment variables to set.
1111
+ """
1112
+ ...
1113
+
1114
+ @typing.overload
1115
+ def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1116
+ ...
1117
+
1118
+ @typing.overload
1119
+ def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1120
+ ...
1121
+
1122
+ def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
1123
+ """
1124
+ Specifies environment variables to be set prior to the execution of a step.
1125
+
1126
+
1127
+ Parameters
1128
+ ----------
1129
+ vars : Dict[str, str], default {}
1130
+ Dictionary of environment variables to set.
1131
+ """
1132
+ ...
1133
+
1134
+ @typing.overload
1135
+ def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1136
+ """
1137
+ Enables loading / saving of models within a step.
1138
+
1139
+ > Examples
1140
+ - Saving Models
1141
+ ```python
1142
+ @model
1143
+ @step
1144
+ def train(self):
1145
+ # current.model.save returns a dictionary reference to the model saved
1146
+ self.my_model = current.model.save(
1147
+ path_to_my_model,
1148
+ label="my_model",
1009
1149
  metadata={
1010
1150
  "epochs": 10,
1011
1151
  "batch-size": 32,
@@ -1052,234 +1192,306 @@ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
1052
1192
  """
1053
1193
  ...
1054
1194
 
1055
- def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1195
+ @typing.overload
1196
+ def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1197
+ ...
1198
+
1199
+ @typing.overload
1200
+ def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1201
+ ...
1202
+
1203
+ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
1056
1204
  """
1057
- Specifies that this step should execute on Kubernetes.
1058
-
1059
-
1060
- Parameters
1061
- ----------
1062
- cpu : int, default 1
1063
- Number of CPUs required for this step. If `@resources` is
1064
- also present, the maximum value from all decorators is used.
1065
- memory : int, default 4096
1066
- Memory size (in MB) required for this step. If
1067
- `@resources` is also present, the maximum value from all decorators is
1068
- used.
1069
- disk : int, default 10240
1070
- Disk size (in MB) required for this step. If
1071
- `@resources` is also present, the maximum value from all decorators is
1072
- used.
1073
- image : str, optional, default None
1074
- Docker image to use when launching on Kubernetes. If not specified, and
1075
- METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
1076
- not, a default Docker image mapping to the current version of Python is used.
1077
- image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
1078
- If given, the imagePullPolicy to be applied to the Docker image of the step.
1079
- image_pull_secrets: List[str], default []
1080
- The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
1081
- Kubernetes image pull secrets to use when pulling container images
1082
- in Kubernetes.
1083
- service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
1084
- Kubernetes service account to use when launching pod in Kubernetes.
1085
- secrets : List[str], optional, default None
1086
- Kubernetes secrets to use when launching pod in Kubernetes. These
1087
- secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
1088
- in Metaflow configuration.
1089
- node_selector: Union[Dict[str,str], str], optional, default None
1090
- Kubernetes node selector(s) to apply to the pod running the task.
1091
- Can be passed in as a comma separated string of values e.g.
1092
- 'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
1093
- {'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
1094
- namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
1095
- Kubernetes namespace to use when launching pod in Kubernetes.
1096
- gpu : int, optional, default None
1097
- Number of GPUs required for this step. A value of zero implies that
1098
- the scheduled node should not have GPUs.
1099
- gpu_vendor : str, default KUBERNETES_GPU_VENDOR
1100
- The vendor of the GPUs to be used for this step.
1101
- tolerations : List[str], default []
1102
- The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
1103
- Kubernetes tolerations to use when launching pod in Kubernetes.
1104
- labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
1105
- Kubernetes labels to use when launching pod in Kubernetes.
1106
- annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
1107
- Kubernetes annotations to use when launching pod in Kubernetes.
1108
- use_tmpfs : bool, default False
1109
- This enables an explicit tmpfs mount for this step.
1110
- tmpfs_tempdir : bool, default True
1111
- sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
1112
- tmpfs_size : int, optional, default: None
1113
- The value for the size (in MiB) of the tmpfs mount for this step.
1114
- This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
1115
- memory allocated for this step.
1116
- tmpfs_path : str, optional, default /metaflow_temp
1117
- Path to tmpfs mount for this step.
1118
- persistent_volume_claims : Dict[str, str], optional, default None
1119
- A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
1120
- volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
1121
- shared_memory: int, optional
1122
- Shared memory size (in MiB) required for this step
1123
- port: int, optional
1124
- Port number to specify in the Kubernetes job object
1125
- compute_pool : str, optional, default None
1126
- Compute pool to be used for for this step.
1127
- If not specified, any accessible compute pool within the perimeter is used.
1128
- hostname_resolution_timeout: int, default 10 * 60
1129
- Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
1130
- Only applicable when @parallel is used.
1131
- qos: str, default: Burstable
1132
- Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
1133
-
1134
- security_context: Dict[str, Any], optional, default None
1135
- Container security context. Applies to the task container. Allows the following keys:
1136
- - privileged: bool, optional, default None
1137
- - allow_privilege_escalation: bool, optional, default None
1138
- - run_as_user: int, optional, default None
1139
- - run_as_group: int, optional, default None
1140
- - run_as_non_root: bool, optional, default None
1141
- """
1142
- ...
1143
-
1144
- def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1145
- """
1146
- Decorator that helps cache, version and store models/datasets from huggingface hub.
1205
+ Enables loading / saving of models within a step.
1147
1206
 
1148
1207
  > Examples
1149
-
1150
- **Usage: creating references of models from huggingface that may be loaded in downstream steps**
1151
- ```python
1152
- @huggingface_hub
1153
- @step
1154
- def pull_model_from_huggingface(self):
1155
- # `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
1156
- # and saves it in the backend storage based on the model's `repo_id`. If there exists a model
1157
- # with the same `repo_id` in the backend storage, it will not download the model again. The return
1158
- # value of the function is a reference to the model in the backend storage.
1159
- # This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
1160
-
1161
- self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
1162
- self.llama_model = current.huggingface_hub.snapshot_download(
1163
- repo_id=self.model_id,
1164
- allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
1165
- )
1166
- self.next(self.train)
1167
- ```
1168
-
1169
- **Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
1208
+ - Saving Models
1170
1209
  ```python
1171
- @huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
1172
- @step
1173
- def pull_model_from_huggingface(self):
1174
- path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
1175
- ```
1210
+ @model
1211
+ @step
1212
+ def train(self):
1213
+ # current.model.save returns a dictionary reference to the model saved
1214
+ self.my_model = current.model.save(
1215
+ path_to_my_model,
1216
+ label="my_model",
1217
+ metadata={
1218
+ "epochs": 10,
1219
+ "batch-size": 32,
1220
+ "learning-rate": 0.001,
1221
+ }
1222
+ )
1223
+ self.next(self.test)
1176
1224
 
1177
- ```python
1178
- @huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
1179
- @step
1180
- def finetune_model(self):
1181
- path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
1182
- # path_to_model will be /my-directory
1225
+ @model(load="my_model")
1226
+ @step
1227
+ def test(self):
1228
+ # `current.model.loaded` returns a dictionary of the loaded models
1229
+ # where the key is the name of the artifact and the value is the path to the model
1230
+ print(os.listdir(current.model.loaded["my_model"]))
1231
+ self.next(self.end)
1183
1232
  ```
1184
1233
 
1234
+ - Loading models
1185
1235
  ```python
1186
- # Takes all the arguments passed to `snapshot_download`
1187
- # except for `local_dir`
1188
- @huggingface_hub(load=[
1189
- {
1190
- "repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
1191
- },
1192
- {
1193
- "repo_id": "myorg/mistral-lora",
1194
- "repo_type": "model",
1195
- },
1196
- ])
1197
- @step
1198
- def finetune_model(self):
1199
- path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
1200
- # path_to_model will be /my-directory
1236
+ @step
1237
+ def train(self):
1238
+ # current.model.load returns the path to the model loaded
1239
+ checkpoint_path = current.model.load(
1240
+ self.checkpoint_key,
1241
+ )
1242
+ model_path = current.model.load(
1243
+ self.model,
1244
+ )
1245
+ self.next(self.test)
1201
1246
  ```
1202
1247
 
1203
1248
 
1204
1249
  Parameters
1205
1250
  ----------
1206
- temp_dir_root : str, optional
1207
- The root directory that will hold the temporary directory where objects will be downloaded.
1208
-
1209
- load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
1210
- The list of repos (models/datasets) to load.
1211
-
1212
- Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
1213
-
1214
- - If repo (model/dataset) is not found in the datastore:
1215
- - Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
1216
- - Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
1217
- - All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
1251
+ load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
1252
+ Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
1253
+ These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
1254
+ If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
1255
+ the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
1256
+ If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
1218
1257
 
1219
- - If repo is found in the datastore:
1220
- - Loads it directly from datastore to local path (can be temporary directory or specified path)
1258
+ temp_dir_root : str, default: None
1259
+ The root directory under which `current.model.loaded` will store loaded models
1221
1260
  """
1222
1261
  ...
1223
1262
 
1224
1263
  @typing.overload
1225
- def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1264
+ def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1226
1265
  """
1227
- Specifies environment variables to be set prior to the execution of a step.
1266
+ Specifies the PyPI packages for all steps of the flow.
1228
1267
 
1268
+ Use `@pypi_base` to set common packages required by all
1269
+ steps and use `@pypi` to specify step-specific overrides.
1229
1270
 
1230
1271
  Parameters
1231
1272
  ----------
1232
- vars : Dict[str, str], default {}
1233
- Dictionary of environment variables to set.
1273
+ packages : Dict[str, str], default: {}
1274
+ Packages to use for this flow. The key is the name of the package
1275
+ and the value is the version to use.
1276
+ python : str, optional, default: None
1277
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
1278
+ that the version used will correspond to the version of the Python interpreter used to start the run.
1234
1279
  """
1235
1280
  ...
1236
1281
 
1237
1282
  @typing.overload
1238
- def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1239
- ...
1240
-
1241
- @typing.overload
1242
- def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1283
+ def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1243
1284
  ...
1244
1285
 
1245
- def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
1286
+ def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
1246
1287
  """
1247
- Specifies environment variables to be set prior to the execution of a step.
1288
+ Specifies the PyPI packages for all steps of the flow.
1248
1289
 
1290
+ Use `@pypi_base` to set common packages required by all
1291
+ steps and use `@pypi` to specify step-specific overrides.
1249
1292
 
1250
1293
  Parameters
1251
1294
  ----------
1252
- vars : Dict[str, str], default {}
1253
- Dictionary of environment variables to set.
1295
+ packages : Dict[str, str], default: {}
1296
+ Packages to use for this flow. The key is the name of the package
1297
+ and the value is the version to use.
1298
+ python : str, optional, default: None
1299
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
1300
+ that the version used will correspond to the version of the Python interpreter used to start the run.
1254
1301
  """
1255
1302
  ...
1256
1303
 
1257
1304
  @typing.overload
1258
- def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1305
+ def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1259
1306
  """
1260
- Specifies the times when the flow should be run when running on a
1261
- production scheduler.
1307
+ Specifies the Conda environment for all steps of the flow.
1308
+
1309
+ Use `@conda_base` to set common libraries required by all
1310
+ steps and use `@conda` to specify step-specific additions.
1262
1311
 
1263
1312
 
1264
1313
  Parameters
1265
1314
  ----------
1266
- hourly : bool, default False
1267
- Run the workflow hourly.
1268
- daily : bool, default True
1269
- Run the workflow daily.
1270
- weekly : bool, default False
1271
- Run the workflow weekly.
1272
- cron : str, optional, default None
1273
- Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
1274
- specified by this expression.
1275
- timezone : str, optional, default None
1276
- Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
1277
- which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
1315
+ packages : Dict[str, str], default {}
1316
+ Packages to use for this flow. The key is the name of the package
1317
+ and the value is the version to use.
1318
+ libraries : Dict[str, str], default {}
1319
+ Supported for backward compatibility. When used with packages, packages will take precedence.
1320
+ python : str, optional, default None
1321
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
1322
+ that the version used will correspond to the version of the Python interpreter used to start the run.
1323
+ disabled : bool, default False
1324
+ If set to True, disables Conda.
1278
1325
  """
1279
1326
  ...
1280
1327
 
1281
1328
  @typing.overload
1282
- def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1329
+ def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1330
+ ...
1331
+
1332
+ def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
1333
+ """
1334
+ Specifies the Conda environment for all steps of the flow.
1335
+
1336
+ Use `@conda_base` to set common libraries required by all
1337
+ steps and use `@conda` to specify step-specific additions.
1338
+
1339
+
1340
+ Parameters
1341
+ ----------
1342
+ packages : Dict[str, str], default {}
1343
+ Packages to use for this flow. The key is the name of the package
1344
+ and the value is the version to use.
1345
+ libraries : Dict[str, str], default {}
1346
+ Supported for backward compatibility. When used with packages, packages will take precedence.
1347
+ python : str, optional, default None
1348
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
1349
+ that the version used will correspond to the version of the Python interpreter used to start the run.
1350
+ disabled : bool, default False
1351
+ If set to True, disables Conda.
1352
+ """
1353
+ ...
1354
+
1355
+ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
1356
+ """
1357
+ Allows setting external datastores to save data for the
1358
+ `@checkpoint`/`@model`/`@huggingface_hub` decorators.
1359
+
1360
+ This decorator is useful when users wish to save data to a different datastore
1361
+ than what is configured in Metaflow. This can be for variety of reasons:
1362
+
1363
+ 1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
1364
+ 2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
1365
+ - Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
1366
+ 3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
1367
+ - Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
1368
+
1369
+ Usage:
1370
+ ----------
1371
+
1372
+ - Using a custom IAM role to access the datastore.
1373
+
1374
+ ```python
1375
+ @with_artifact_store(
1376
+ type="s3",
1377
+ config=lambda: {
1378
+ "root": "s3://my-bucket-foo/path/to/root",
1379
+ "role_arn": ROLE,
1380
+ },
1381
+ )
1382
+ class MyFlow(FlowSpec):
1383
+
1384
+ @checkpoint
1385
+ @step
1386
+ def start(self):
1387
+ with open("my_file.txt", "w") as f:
1388
+ f.write("Hello, World!")
1389
+ self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
1390
+ self.next(self.end)
1391
+
1392
+ ```
1393
+
1394
+ - Using credentials to access the s3-compatible datastore.
1395
+
1396
+ ```python
1397
+ @with_artifact_store(
1398
+ type="s3",
1399
+ config=lambda: {
1400
+ "root": "s3://my-bucket-foo/path/to/root",
1401
+ "client_params": {
1402
+ "aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
1403
+ "aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
1404
+ },
1405
+ },
1406
+ )
1407
+ class MyFlow(FlowSpec):
1408
+
1409
+ @checkpoint
1410
+ @step
1411
+ def start(self):
1412
+ with open("my_file.txt", "w") as f:
1413
+ f.write("Hello, World!")
1414
+ self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
1415
+ self.next(self.end)
1416
+
1417
+ ```
1418
+
1419
+ - Accessing objects stored in external datastores after task execution.
1420
+
1421
+ ```python
1422
+ run = Run("CheckpointsTestsFlow/8992")
1423
+ with artifact_store_from(run=run, config={
1424
+ "client_params": {
1425
+ "aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
1426
+ "aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
1427
+ },
1428
+ }):
1429
+ with Checkpoint() as cp:
1430
+ latest = cp.list(
1431
+ task=run["start"].task
1432
+ )[0]
1433
+ print(latest)
1434
+ cp.load(
1435
+ latest,
1436
+ "test-checkpoints"
1437
+ )
1438
+
1439
+ task = Task("TorchTuneFlow/8484/train/53673")
1440
+ with artifact_store_from(run=run, config={
1441
+ "client_params": {
1442
+ "aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
1443
+ "aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
1444
+ },
1445
+ }):
1446
+ load_model(
1447
+ task.data.model_ref,
1448
+ "test-models"
1449
+ )
1450
+ ```
1451
+ Parameters:
1452
+ ----------
1453
+
1454
+ type: str
1455
+ The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
1456
+
1457
+ config: dict or Callable
1458
+ Dictionary of configuration options for the datastore. The following keys are required:
1459
+ - root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
1460
+ - example: 's3://bucket-name/path/to/root'
1461
+ - example: 'gs://bucket-name/path/to/root'
1462
+ - example: 'https://myblockacc.blob.core.windows.net/metaflow/'
1463
+ - role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
1464
+ - session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
1465
+ - client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
1466
+ """
1467
+ ...
1468
+
1469
+ @typing.overload
1470
+ def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1471
+ """
1472
+ Specifies the times when the flow should be run when running on a
1473
+ production scheduler.
1474
+
1475
+
1476
+ Parameters
1477
+ ----------
1478
+ hourly : bool, default False
1479
+ Run the workflow hourly.
1480
+ daily : bool, default True
1481
+ Run the workflow daily.
1482
+ weekly : bool, default False
1483
+ Run the workflow weekly.
1484
+ cron : str, optional, default None
1485
+ Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
1486
+ specified by this expression.
1487
+ timezone : str, optional, default None
1488
+ Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
1489
+ which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
1490
+ """
1491
+ ...
1492
+
1493
+ @typing.overload
1494
+ def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1283
1495
  ...
1284
1496
 
1285
1497
  def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
@@ -1340,103 +1552,56 @@ def project(*, name: str, branch: typing.Optional[str] = None, production: bool
1340
1552
  """
1341
1553
  ...
1342
1554
 
1343
- @typing.overload
1344
- def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1555
+ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1345
1556
  """
1346
- Specifies the event(s) that this flow depends on.
1347
-
1348
- ```
1349
- @trigger(event='foo')
1350
- ```
1351
- or
1352
- ```
1353
- @trigger(events=['foo', 'bar'])
1354
- ```
1355
-
1356
- Additionally, you can specify the parameter mappings
1357
- to map event payload to Metaflow parameters for the flow.
1358
- ```
1359
- @trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
1360
- ```
1361
- or
1362
- ```
1363
- @trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
1364
- {'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
1365
- ```
1366
-
1367
- 'parameters' can also be a list of strings and tuples like so:
1368
- ```
1369
- @trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
1370
- ```
1371
- This is equivalent to:
1372
- ```
1373
- @trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
1374
- ```
1557
+ The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
1558
+ This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
1375
1559
 
1376
1560
 
1377
1561
  Parameters
1378
1562
  ----------
1379
- event : Union[str, Dict[str, Any]], optional, default None
1380
- Event dependency for this flow.
1381
- events : List[Union[str, Dict[str, Any]]], default []
1382
- Events dependency for this flow.
1383
- options : Dict[str, Any], default {}
1384
- Backend-specific configuration for tuning eventing behavior.
1563
+ timeout : int
1564
+ Time, in seconds before the task times out and fails. (Default: 3600)
1565
+ poke_interval : int
1566
+ Time in seconds that the job should wait in between each try. (Default: 60)
1567
+ mode : str
1568
+ How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
1569
+ exponential_backoff : bool
1570
+ allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
1571
+ pool : str
1572
+ the slot pool this task should run in,
1573
+ slot pools are a way to limit concurrency for certain tasks. (Default:None)
1574
+ soft_fail : bool
1575
+ Set to true to mark the task as SKIPPED on failure. (Default: False)
1576
+ name : str
1577
+ Name of the sensor on Airflow
1578
+ description : str
1579
+ Description of sensor in the Airflow UI
1580
+ external_dag_id : str
1581
+ The dag_id that contains the task you want to wait for.
1582
+ external_task_ids : List[str]
1583
+ The list of task_ids that you want to wait for.
1584
+ If None (default value) the sensor waits for the DAG. (Default: None)
1585
+ allowed_states : List[str]
1586
+ Iterable of allowed states, (Default: ['success'])
1587
+ failed_states : List[str]
1588
+ Iterable of failed or dis-allowed states. (Default: None)
1589
+ execution_delta : datetime.timedelta
1590
+ time difference with the previous execution to look at,
1591
+ the default is the same logical date as the current task or DAG. (Default: None)
1592
+ check_existence: bool
1593
+ Set to True to check if the external task exists or check if
1594
+ the DAG to wait for exists. (Default: True)
1385
1595
  """
1386
1596
  ...
1387
1597
 
1388
- @typing.overload
1389
- def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1390
- ...
1391
-
1392
- def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
1598
+ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1393
1599
  """
1394
- Specifies the event(s) that this flow depends on.
1395
-
1396
- ```
1397
- @trigger(event='foo')
1398
- ```
1399
- or
1400
- ```
1401
- @trigger(events=['foo', 'bar'])
1402
- ```
1403
-
1404
- Additionally, you can specify the parameter mappings
1405
- to map event payload to Metaflow parameters for the flow.
1406
- ```
1407
- @trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
1408
- ```
1409
- or
1410
- ```
1411
- @trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
1412
- {'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
1413
- ```
1414
-
1415
- 'parameters' can also be a list of strings and tuples like so:
1416
- ```
1417
- @trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
1418
- ```
1419
- This is equivalent to:
1420
- ```
1421
- @trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
1422
- ```
1423
-
1424
-
1425
- Parameters
1426
- ----------
1427
- event : Union[str, Dict[str, Any]], optional, default None
1428
- Event dependency for this flow.
1429
- events : List[Union[str, Dict[str, Any]]], default []
1430
- Events dependency for this flow.
1431
- options : Dict[str, Any], default {}
1432
- Backend-specific configuration for tuning eventing behavior.
1433
- """
1434
- ...
1435
-
1436
- def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1437
- """
1438
- The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
1439
- This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
1600
+ The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
1601
+ before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
1602
+ and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
1603
+ added as a flow decorators. Adding more than one decorator will ensure that `start` step
1604
+ starts only after all sensors finish.
1440
1605
 
1441
1606
 
1442
1607
  Parameters
@@ -1458,21 +1623,18 @@ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str,
1458
1623
  Name of the sensor on Airflow
1459
1624
  description : str
1460
1625
  Description of sensor in the Airflow UI
1461
- external_dag_id : str
1462
- The dag_id that contains the task you want to wait for.
1463
- external_task_ids : List[str]
1464
- The list of task_ids that you want to wait for.
1465
- If None (default value) the sensor waits for the DAG. (Default: None)
1466
- allowed_states : List[str]
1467
- Iterable of allowed states, (Default: ['success'])
1468
- failed_states : List[str]
1469
- Iterable of failed or dis-allowed states. (Default: None)
1470
- execution_delta : datetime.timedelta
1471
- time difference with the previous execution to look at,
1472
- the default is the same logical date as the current task or DAG. (Default: None)
1473
- check_existence: bool
1474
- Set to True to check if the external task exists or check if
1475
- the DAG to wait for exists. (Default: True)
1626
+ bucket_key : Union[str, List[str]]
1627
+ The key(s) being waited on. Supports full s3:// style url or relative path from root level.
1628
+ When it's specified as a full s3:// url, please leave `bucket_name` as None
1629
+ bucket_name : str
1630
+ Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
1631
+ When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
1632
+ wildcard_match : bool
1633
+ whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
1634
+ aws_conn_id : str
1635
+ a reference to the s3 connection on Airflow. (Default: None)
1636
+ verify : bool
1637
+ Whether or not to verify SSL certificates for S3 connection. (Default: None)
1476
1638
  """
1477
1639
  ...
1478
1640
 
@@ -1577,252 +1739,96 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
1577
1739
  """
1578
1740
  ...
1579
1741
 
1580
- def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1742
+ @typing.overload
1743
+ def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1581
1744
  """
1582
- The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
1583
- before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
1584
- and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
1585
- added as a flow decorators. Adding more than one decorator will ensure that `start` step
1586
- starts only after all sensors finish.
1745
+ Specifies the event(s) that this flow depends on.
1587
1746
 
1747
+ ```
1748
+ @trigger(event='foo')
1749
+ ```
1750
+ or
1751
+ ```
1752
+ @trigger(events=['foo', 'bar'])
1753
+ ```
1588
1754
 
1589
- Parameters
1590
- ----------
1591
- timeout : int
1592
- Time, in seconds before the task times out and fails. (Default: 3600)
1593
- poke_interval : int
1594
- Time in seconds that the job should wait in between each try. (Default: 60)
1595
- mode : str
1596
- How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
1597
- exponential_backoff : bool
1598
- allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
1599
- pool : str
1600
- the slot pool this task should run in,
1601
- slot pools are a way to limit concurrency for certain tasks. (Default:None)
1602
- soft_fail : bool
1603
- Set to true to mark the task as SKIPPED on failure. (Default: False)
1604
- name : str
1605
- Name of the sensor on Airflow
1606
- description : str
1607
- Description of sensor in the Airflow UI
1608
- bucket_key : Union[str, List[str]]
1609
- The key(s) being waited on. Supports full s3:// style url or relative path from root level.
1610
- When it's specified as a full s3:// url, please leave `bucket_name` as None
1611
- bucket_name : str
1612
- Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
1613
- When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
1614
- wildcard_match : bool
1615
- whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
1616
- aws_conn_id : str
1617
- a reference to the s3 connection on Airflow. (Default: None)
1618
- verify : bool
1619
- Whether or not to verify SSL certificates for S3 connection. (Default: None)
1620
- """
1621
- ...
1622
-
1623
- @typing.overload
1624
- def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1625
- """
1626
- Specifies the Conda environment for all steps of the flow.
1755
+ Additionally, you can specify the parameter mappings
1756
+ to map event payload to Metaflow parameters for the flow.
1757
+ ```
1758
+ @trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
1759
+ ```
1760
+ or
1761
+ ```
1762
+ @trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
1763
+ {'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
1764
+ ```
1627
1765
 
1628
- Use `@conda_base` to set common libraries required by all
1629
- steps and use `@conda` to specify step-specific additions.
1766
+ 'parameters' can also be a list of strings and tuples like so:
1767
+ ```
1768
+ @trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
1769
+ ```
1770
+ This is equivalent to:
1771
+ ```
1772
+ @trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
1773
+ ```
1630
1774
 
1631
1775
 
1632
1776
  Parameters
1633
1777
  ----------
1634
- packages : Dict[str, str], default {}
1635
- Packages to use for this flow. The key is the name of the package
1636
- and the value is the version to use.
1637
- libraries : Dict[str, str], default {}
1638
- Supported for backward compatibility. When used with packages, packages will take precedence.
1639
- python : str, optional, default None
1640
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
1641
- that the version used will correspond to the version of the Python interpreter used to start the run.
1642
- disabled : bool, default False
1643
- If set to True, disables Conda.
1778
+ event : Union[str, Dict[str, Any]], optional, default None
1779
+ Event dependency for this flow.
1780
+ events : List[Union[str, Dict[str, Any]]], default []
1781
+ Events dependency for this flow.
1782
+ options : Dict[str, Any], default {}
1783
+ Backend-specific configuration for tuning eventing behavior.
1644
1784
  """
1645
1785
  ...
1646
1786
 
1647
1787
  @typing.overload
1648
- def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1649
- ...
1650
-
1651
- def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
1652
- """
1653
- Specifies the Conda environment for all steps of the flow.
1654
-
1655
- Use `@conda_base` to set common libraries required by all
1656
- steps and use `@conda` to specify step-specific additions.
1657
-
1658
-
1659
- Parameters
1660
- ----------
1661
- packages : Dict[str, str], default {}
1662
- Packages to use for this flow. The key is the name of the package
1663
- and the value is the version to use.
1664
- libraries : Dict[str, str], default {}
1665
- Supported for backward compatibility. When used with packages, packages will take precedence.
1666
- python : str, optional, default None
1667
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
1668
- that the version used will correspond to the version of the Python interpreter used to start the run.
1669
- disabled : bool, default False
1670
- If set to True, disables Conda.
1671
- """
1788
+ def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1672
1789
  ...
1673
1790
 
1674
- def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
1791
+ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
1675
1792
  """
1676
- Allows setting external datastores to save data for the
1677
- `@checkpoint`/`@model`/`@huggingface_hub` decorators.
1678
-
1679
- This decorator is useful when users wish to save data to a different datastore
1680
- than what is configured in Metaflow. This can be for variety of reasons:
1681
-
1682
- 1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
1683
- 2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
1684
- - Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
1685
- 3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
1686
- - Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
1687
-
1688
- Usage:
1689
- ----------
1690
-
1691
- - Using a custom IAM role to access the datastore.
1692
-
1693
- ```python
1694
- @with_artifact_store(
1695
- type="s3",
1696
- config=lambda: {
1697
- "root": "s3://my-bucket-foo/path/to/root",
1698
- "role_arn": ROLE,
1699
- },
1700
- )
1701
- class MyFlow(FlowSpec):
1702
-
1703
- @checkpoint
1704
- @step
1705
- def start(self):
1706
- with open("my_file.txt", "w") as f:
1707
- f.write("Hello, World!")
1708
- self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
1709
- self.next(self.end)
1710
-
1711
- ```
1712
-
1713
- - Using credentials to access the s3-compatible datastore.
1714
-
1715
- ```python
1716
- @with_artifact_store(
1717
- type="s3",
1718
- config=lambda: {
1719
- "root": "s3://my-bucket-foo/path/to/root",
1720
- "client_params": {
1721
- "aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
1722
- "aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
1723
- },
1724
- },
1725
- )
1726
- class MyFlow(FlowSpec):
1727
-
1728
- @checkpoint
1729
- @step
1730
- def start(self):
1731
- with open("my_file.txt", "w") as f:
1732
- f.write("Hello, World!")
1733
- self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
1734
- self.next(self.end)
1735
-
1736
- ```
1737
-
1738
- - Accessing objects stored in external datastores after task execution.
1739
-
1740
- ```python
1741
- run = Run("CheckpointsTestsFlow/8992")
1742
- with artifact_store_from(run=run, config={
1743
- "client_params": {
1744
- "aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
1745
- "aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
1746
- },
1747
- }):
1748
- with Checkpoint() as cp:
1749
- latest = cp.list(
1750
- task=run["start"].task
1751
- )[0]
1752
- print(latest)
1753
- cp.load(
1754
- latest,
1755
- "test-checkpoints"
1756
- )
1757
-
1758
- task = Task("TorchTuneFlow/8484/train/53673")
1759
- with artifact_store_from(run=run, config={
1760
- "client_params": {
1761
- "aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
1762
- "aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
1763
- },
1764
- }):
1765
- load_model(
1766
- task.data.model_ref,
1767
- "test-models"
1768
- )
1769
- ```
1770
- Parameters:
1771
- ----------
1772
-
1773
- type: str
1774
- The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
1793
+ Specifies the event(s) that this flow depends on.
1775
1794
 
1776
- config: dict or Callable
1777
- Dictionary of configuration options for the datastore. The following keys are required:
1778
- - root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
1779
- - example: 's3://bucket-name/path/to/root'
1780
- - example: 'gs://bucket-name/path/to/root'
1781
- - example: 'https://myblockacc.blob.core.windows.net/metaflow/'
1782
- - role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
1783
- - session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
1784
- - client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
1785
- """
1786
- ...
1787
-
1788
- @typing.overload
1789
- def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1790
- """
1791
- Specifies the PyPI packages for all steps of the flow.
1795
+ ```
1796
+ @trigger(event='foo')
1797
+ ```
1798
+ or
1799
+ ```
1800
+ @trigger(events=['foo', 'bar'])
1801
+ ```
1792
1802
 
1793
- Use `@pypi_base` to set common packages required by all
1794
- steps and use `@pypi` to specify step-specific overrides.
1803
+ Additionally, you can specify the parameter mappings
1804
+ to map event payload to Metaflow parameters for the flow.
1805
+ ```
1806
+ @trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
1807
+ ```
1808
+ or
1809
+ ```
1810
+ @trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
1811
+ {'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
1812
+ ```
1795
1813
 
1796
- Parameters
1797
- ----------
1798
- packages : Dict[str, str], default: {}
1799
- Packages to use for this flow. The key is the name of the package
1800
- and the value is the version to use.
1801
- python : str, optional, default: None
1802
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
1803
- that the version used will correspond to the version of the Python interpreter used to start the run.
1804
- """
1805
- ...
1806
-
1807
- @typing.overload
1808
- def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1809
- ...
1810
-
1811
- def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
1812
- """
1813
- Specifies the PyPI packages for all steps of the flow.
1814
+ 'parameters' can also be a list of strings and tuples like so:
1815
+ ```
1816
+ @trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
1817
+ ```
1818
+ This is equivalent to:
1819
+ ```
1820
+ @trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
1821
+ ```
1814
1822
 
1815
- Use `@pypi_base` to set common packages required by all
1816
- steps and use `@pypi` to specify step-specific overrides.
1817
1823
 
1818
1824
  Parameters
1819
1825
  ----------
1820
- packages : Dict[str, str], default: {}
1821
- Packages to use for this flow. The key is the name of the package
1822
- and the value is the version to use.
1823
- python : str, optional, default: None
1824
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
1825
- that the version used will correspond to the version of the Python interpreter used to start the run.
1826
+ event : Union[str, Dict[str, Any]], optional, default None
1827
+ Event dependency for this flow.
1828
+ events : List[Union[str, Dict[str, Any]]], default []
1829
+ Events dependency for this flow.
1830
+ options : Dict[str, Any], default {}
1831
+ Backend-specific configuration for tuning eventing behavior.
1826
1832
  """
1827
1833
  ...
1828
1834