ob-metaflow-stubs 6.0.3.188rc4__py2.py3-none-any.whl → 6.0.4.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +938 -934
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +3 -3
- metaflow-stubs/client/filecache.pyi +3 -3
- metaflow-stubs/events.pyi +3 -3
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +5 -5
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +2 -2
- metaflow-stubs/info_file.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +3 -3
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -2
- metaflow-stubs/metaflow_current.pyi +45 -45
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +38 -31
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +12 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +29 -27
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +5 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +5 -5
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +13 -11
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +7 -34
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +4 -4
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/argo/exit_hooks.pyi +45 -0
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +4 -4
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +6 -6
- metaflow-stubs/plugins/cards/card_client.pyi +3 -3
- metaflow-stubs/plugins/cards/card_creator.pyi +4 -3
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +14 -3
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +4 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +10 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +3 -3
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +11 -0
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +20 -0
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +3 -3
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +3 -3
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +6 -6
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +6 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +9 -49
- metaflow-stubs/plugins/secrets/secrets_func.pyi +31 -0
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +42 -0
- metaflow-stubs/plugins/secrets/utils.pyi +28 -0
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +3 -3
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +3 -3
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +28 -28
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +4 -4
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_decorators.pyi +6 -6
- metaflow-stubs/user_configs/config_options.pyi +4 -4
- metaflow-stubs/user_configs/config_parameters.pyi +6 -6
- {ob_metaflow_stubs-6.0.3.188rc4.dist-info → ob_metaflow_stubs-6.0.4.0.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.4.0.dist-info/RECORD +249 -0
- ob_metaflow_stubs-6.0.3.188rc4.dist-info/RECORD +0 -243
- {ob_metaflow_stubs-6.0.3.188rc4.dist-info → ob_metaflow_stubs-6.0.4.0.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.3.188rc4.dist-info → ob_metaflow_stubs-6.0.4.0.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
|
-
# MF version: 2.15.
|
4
|
-
# Generated on 2025-07-
|
3
|
+
# MF version: 2.15.21.1+obcheckpoint(0.2.4);ob(v1) #
|
4
|
+
# Generated on 2025-07-11T23:29:18.665907 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
@@ -35,18 +35,18 @@ from .user_configs.config_parameters import ConfigValue as ConfigValue
|
|
35
35
|
from .user_configs.config_parameters import config_expr as config_expr
|
36
36
|
from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
|
37
37
|
from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
|
38
|
-
from . import metaflow_git as metaflow_git
|
39
38
|
from . import cards as cards
|
40
39
|
from . import tuple_util as tuple_util
|
41
40
|
from . import events as events
|
41
|
+
from . import metaflow_git as metaflow_git
|
42
42
|
from . import runner as runner
|
43
43
|
from . import plugins as plugins
|
44
44
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
45
45
|
from . import includefile as includefile
|
46
46
|
from .includefile import IncludeFile as IncludeFile
|
47
47
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
48
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
49
48
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
49
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
50
50
|
from . import client as client
|
51
51
|
from .client.core import namespace as namespace
|
52
52
|
from .client.core import get_namespace as get_namespace
|
@@ -156,192 +156,334 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
156
156
|
"""
|
157
157
|
...
|
158
158
|
|
159
|
-
|
159
|
+
@typing.overload
|
160
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
160
161
|
"""
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
Parameters
|
165
|
-
----------
|
166
|
-
cpu : int, default 1
|
167
|
-
Number of CPUs required for this step. If `@resources` is
|
168
|
-
also present, the maximum value from all decorators is used.
|
169
|
-
memory : int, default 4096
|
170
|
-
Memory size (in MB) required for this step. If
|
171
|
-
`@resources` is also present, the maximum value from all decorators is
|
172
|
-
used.
|
173
|
-
disk : int, default 10240
|
174
|
-
Disk size (in MB) required for this step. If
|
175
|
-
`@resources` is also present, the maximum value from all decorators is
|
176
|
-
used.
|
177
|
-
image : str, optional, default None
|
178
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
179
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
180
|
-
not, a default Docker image mapping to the current version of Python is used.
|
181
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
182
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
183
|
-
image_pull_secrets: List[str], default []
|
184
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
185
|
-
Kubernetes image pull secrets to use when pulling container images
|
186
|
-
in Kubernetes.
|
187
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
188
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
189
|
-
secrets : List[str], optional, default None
|
190
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
191
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
192
|
-
in Metaflow configuration.
|
193
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
194
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
195
|
-
Can be passed in as a comma separated string of values e.g.
|
196
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
197
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
198
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
199
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
200
|
-
gpu : int, optional, default None
|
201
|
-
Number of GPUs required for this step. A value of zero implies that
|
202
|
-
the scheduled node should not have GPUs.
|
203
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
204
|
-
The vendor of the GPUs to be used for this step.
|
205
|
-
tolerations : List[str], default []
|
206
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
207
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
208
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
209
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
210
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
211
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
212
|
-
use_tmpfs : bool, default False
|
213
|
-
This enables an explicit tmpfs mount for this step.
|
214
|
-
tmpfs_tempdir : bool, default True
|
215
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
216
|
-
tmpfs_size : int, optional, default: None
|
217
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
218
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
219
|
-
memory allocated for this step.
|
220
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
221
|
-
Path to tmpfs mount for this step.
|
222
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
223
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
224
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
225
|
-
shared_memory: int, optional
|
226
|
-
Shared memory size (in MiB) required for this step
|
227
|
-
port: int, optional
|
228
|
-
Port number to specify in the Kubernetes job object
|
229
|
-
compute_pool : str, optional, default None
|
230
|
-
Compute pool to be used for for this step.
|
231
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
232
|
-
hostname_resolution_timeout: int, default 10 * 60
|
233
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
234
|
-
Only applicable when @parallel is used.
|
235
|
-
qos: str, default: Burstable
|
236
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
237
|
-
|
238
|
-
security_context: Dict[str, Any], optional, default None
|
239
|
-
Container security context. Applies to the task container. Allows the following keys:
|
240
|
-
- privileged: bool, optional, default None
|
241
|
-
- allow_privilege_escalation: bool, optional, default None
|
242
|
-
- run_as_user: int, optional, default None
|
243
|
-
- run_as_group: int, optional, default None
|
244
|
-
- run_as_non_root: bool, optional, default None
|
162
|
+
Decorator prototype for all step decorators. This function gets specialized
|
163
|
+
and imported for all decorators types by _import_plugin_decorators().
|
245
164
|
"""
|
246
165
|
...
|
247
166
|
|
248
167
|
@typing.overload
|
249
|
-
def
|
168
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
169
|
+
...
|
170
|
+
|
171
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
250
172
|
"""
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
173
|
+
Decorator prototype for all step decorators. This function gets specialized
|
174
|
+
and imported for all decorators types by _import_plugin_decorators().
|
175
|
+
"""
|
176
|
+
...
|
177
|
+
|
178
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
179
|
+
"""
|
180
|
+
Specifies that this step should execute on DGX cloud.
|
257
181
|
|
258
182
|
|
259
183
|
Parameters
|
260
184
|
----------
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
266
|
-
python : str, optional, default None
|
267
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
268
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
269
|
-
disabled : bool, default False
|
270
|
-
If set to True, disables @conda.
|
185
|
+
gpu : int
|
186
|
+
Number of GPUs to use.
|
187
|
+
gpu_type : str
|
188
|
+
Type of Nvidia GPU to use.
|
271
189
|
"""
|
272
190
|
...
|
273
191
|
|
274
192
|
@typing.overload
|
275
|
-
def
|
193
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
194
|
+
"""
|
195
|
+
Internal decorator to support Fast bakery
|
196
|
+
"""
|
276
197
|
...
|
277
198
|
|
278
199
|
@typing.overload
|
279
|
-
def
|
200
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
280
201
|
...
|
281
202
|
|
282
|
-
def
|
203
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
283
204
|
"""
|
284
|
-
|
205
|
+
Internal decorator to support Fast bakery
|
206
|
+
"""
|
207
|
+
...
|
208
|
+
|
209
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
210
|
+
"""
|
211
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
285
212
|
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
213
|
+
User code call
|
214
|
+
--------------
|
215
|
+
@vllm(
|
216
|
+
model="...",
|
217
|
+
...
|
218
|
+
)
|
219
|
+
|
220
|
+
Valid backend options
|
221
|
+
---------------------
|
222
|
+
- 'local': Run as a separate process on the local task machine.
|
223
|
+
|
224
|
+
Valid model options
|
225
|
+
-------------------
|
226
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
227
|
+
|
228
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
229
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
290
230
|
|
291
231
|
|
292
232
|
Parameters
|
293
233
|
----------
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
234
|
+
model: str
|
235
|
+
HuggingFace model identifier to be served by vLLM.
|
236
|
+
backend: str
|
237
|
+
Determines where and how to run the vLLM process.
|
238
|
+
openai_api_server: bool
|
239
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
240
|
+
Default is False (uses native engine).
|
241
|
+
Set to True for backward compatibility with existing code.
|
242
|
+
debug: bool
|
243
|
+
Whether to turn on verbose debugging logs.
|
244
|
+
card_refresh_interval: int
|
245
|
+
Interval in seconds for refreshing the vLLM status card.
|
246
|
+
Only used when openai_api_server=True.
|
247
|
+
max_retries: int
|
248
|
+
Maximum number of retries checking for vLLM server startup.
|
249
|
+
Only used when openai_api_server=True.
|
250
|
+
retry_alert_frequency: int
|
251
|
+
Frequency of alert logs for vLLM server startup retries.
|
252
|
+
Only used when openai_api_server=True.
|
253
|
+
engine_args : dict
|
254
|
+
Additional keyword arguments to pass to the vLLM engine.
|
255
|
+
For example, `tensor_parallel_size=2`.
|
304
256
|
"""
|
305
257
|
...
|
306
258
|
|
307
|
-
|
308
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
259
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
309
260
|
"""
|
310
|
-
|
261
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
311
262
|
|
312
|
-
|
313
|
-
|
263
|
+
User code call
|
264
|
+
--------------
|
265
|
+
@ollama(
|
266
|
+
models=[...],
|
267
|
+
...
|
268
|
+
)
|
314
269
|
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
requirements specified in `@resources`.
|
270
|
+
Valid backend options
|
271
|
+
---------------------
|
272
|
+
- 'local': Run as a separate process on the local task machine.
|
273
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
274
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
275
|
+
|
276
|
+
Valid model options
|
277
|
+
-------------------
|
278
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
325
279
|
|
326
280
|
|
327
281
|
Parameters
|
328
282
|
----------
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
338
|
-
|
339
|
-
|
283
|
+
models: list[str]
|
284
|
+
List of Ollama containers running models in sidecars.
|
285
|
+
backend: str
|
286
|
+
Determines where and how to run the Ollama process.
|
287
|
+
force_pull: bool
|
288
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
289
|
+
cache_update_policy: str
|
290
|
+
Cache update policy: "auto", "force", or "never".
|
291
|
+
force_cache_update: bool
|
292
|
+
Simple override for "force" cache update policy.
|
293
|
+
debug: bool
|
294
|
+
Whether to turn on verbose debugging logs.
|
295
|
+
circuit_breaker_config: dict
|
296
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
297
|
+
timeout_config: dict
|
298
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
340
299
|
"""
|
341
300
|
...
|
342
301
|
|
343
302
|
@typing.overload
|
344
|
-
def
|
303
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
304
|
+
"""
|
305
|
+
Enables checkpointing for a step.
|
306
|
+
|
307
|
+
> Examples
|
308
|
+
|
309
|
+
- Saving Checkpoints
|
310
|
+
|
311
|
+
```python
|
312
|
+
@checkpoint
|
313
|
+
@step
|
314
|
+
def train(self):
|
315
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
316
|
+
for i in range(self.epochs):
|
317
|
+
# some training logic
|
318
|
+
loss = model.train(self.dataset)
|
319
|
+
if i % 10 == 0:
|
320
|
+
model.save(
|
321
|
+
current.checkpoint.directory,
|
322
|
+
)
|
323
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
324
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
325
|
+
self.latest_checkpoint = current.checkpoint.save(
|
326
|
+
name="epoch_checkpoint",
|
327
|
+
metadata={
|
328
|
+
"epoch": i,
|
329
|
+
"loss": loss,
|
330
|
+
}
|
331
|
+
)
|
332
|
+
```
|
333
|
+
|
334
|
+
- Using Loaded Checkpoints
|
335
|
+
|
336
|
+
```python
|
337
|
+
@retry(times=3)
|
338
|
+
@checkpoint
|
339
|
+
@step
|
340
|
+
def train(self):
|
341
|
+
# Assume that the task has restarted and the previous attempt of the task
|
342
|
+
# saved a checkpoint
|
343
|
+
checkpoint_path = None
|
344
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
345
|
+
print("Loaded checkpoint from the previous attempt")
|
346
|
+
checkpoint_path = current.checkpoint.directory
|
347
|
+
|
348
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
349
|
+
for i in range(self.epochs):
|
350
|
+
...
|
351
|
+
```
|
352
|
+
|
353
|
+
|
354
|
+
Parameters
|
355
|
+
----------
|
356
|
+
load_policy : str, default: "fresh"
|
357
|
+
The policy for loading the checkpoint. The following policies are supported:
|
358
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
359
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
360
|
+
will be loaded at the start of the task.
|
361
|
+
- "none": Do not load any checkpoint
|
362
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
363
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
364
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
365
|
+
created within the task will be loaded when the task is retries execution on failure.
|
366
|
+
|
367
|
+
temp_dir_root : str, default: None
|
368
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
369
|
+
"""
|
370
|
+
...
|
371
|
+
|
372
|
+
@typing.overload
|
373
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
374
|
+
...
|
375
|
+
|
376
|
+
@typing.overload
|
377
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
378
|
+
...
|
379
|
+
|
380
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
381
|
+
"""
|
382
|
+
Enables checkpointing for a step.
|
383
|
+
|
384
|
+
> Examples
|
385
|
+
|
386
|
+
- Saving Checkpoints
|
387
|
+
|
388
|
+
```python
|
389
|
+
@checkpoint
|
390
|
+
@step
|
391
|
+
def train(self):
|
392
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
393
|
+
for i in range(self.epochs):
|
394
|
+
# some training logic
|
395
|
+
loss = model.train(self.dataset)
|
396
|
+
if i % 10 == 0:
|
397
|
+
model.save(
|
398
|
+
current.checkpoint.directory,
|
399
|
+
)
|
400
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
401
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
402
|
+
self.latest_checkpoint = current.checkpoint.save(
|
403
|
+
name="epoch_checkpoint",
|
404
|
+
metadata={
|
405
|
+
"epoch": i,
|
406
|
+
"loss": loss,
|
407
|
+
}
|
408
|
+
)
|
409
|
+
```
|
410
|
+
|
411
|
+
- Using Loaded Checkpoints
|
412
|
+
|
413
|
+
```python
|
414
|
+
@retry(times=3)
|
415
|
+
@checkpoint
|
416
|
+
@step
|
417
|
+
def train(self):
|
418
|
+
# Assume that the task has restarted and the previous attempt of the task
|
419
|
+
# saved a checkpoint
|
420
|
+
checkpoint_path = None
|
421
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
422
|
+
print("Loaded checkpoint from the previous attempt")
|
423
|
+
checkpoint_path = current.checkpoint.directory
|
424
|
+
|
425
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
426
|
+
for i in range(self.epochs):
|
427
|
+
...
|
428
|
+
```
|
429
|
+
|
430
|
+
|
431
|
+
Parameters
|
432
|
+
----------
|
433
|
+
load_policy : str, default: "fresh"
|
434
|
+
The policy for loading the checkpoint. The following policies are supported:
|
435
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
436
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
437
|
+
will be loaded at the start of the task.
|
438
|
+
- "none": Do not load any checkpoint
|
439
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
440
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
441
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
442
|
+
created within the task will be loaded when the task is retries execution on failure.
|
443
|
+
|
444
|
+
temp_dir_root : str, default: None
|
445
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
446
|
+
"""
|
447
|
+
...
|
448
|
+
|
449
|
+
@typing.overload
|
450
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
451
|
+
"""
|
452
|
+
Specifies the resources needed when executing this step.
|
453
|
+
|
454
|
+
Use `@resources` to specify the resource requirements
|
455
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
456
|
+
|
457
|
+
You can choose the compute layer on the command line by executing e.g.
|
458
|
+
```
|
459
|
+
python myflow.py run --with batch
|
460
|
+
```
|
461
|
+
or
|
462
|
+
```
|
463
|
+
python myflow.py run --with kubernetes
|
464
|
+
```
|
465
|
+
which executes the flow on the desired system using the
|
466
|
+
requirements specified in `@resources`.
|
467
|
+
|
468
|
+
|
469
|
+
Parameters
|
470
|
+
----------
|
471
|
+
cpu : int, default 1
|
472
|
+
Number of CPUs required for this step.
|
473
|
+
gpu : int, optional, default None
|
474
|
+
Number of GPUs required for this step.
|
475
|
+
disk : int, optional, default None
|
476
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
477
|
+
memory : int, default 4096
|
478
|
+
Memory size (in MB) required for this step.
|
479
|
+
shared_memory : int, optional, default None
|
480
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
481
|
+
This parameter maps to the `--shm-size` option in Docker.
|
482
|
+
"""
|
483
|
+
...
|
484
|
+
|
485
|
+
@typing.overload
|
486
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
345
487
|
...
|
346
488
|
|
347
489
|
@typing.overload
|
@@ -384,119 +526,108 @@ def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None]
|
|
384
526
|
...
|
385
527
|
|
386
528
|
@typing.overload
|
387
|
-
def
|
529
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
388
530
|
"""
|
389
|
-
|
390
|
-
|
391
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
531
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
532
|
+
the execution of a step.
|
392
533
|
|
393
534
|
|
394
535
|
Parameters
|
395
536
|
----------
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
options : Dict[str, Any], default {}
|
401
|
-
Options passed to the card. The contents depend on the card type.
|
402
|
-
timeout : int, default 45
|
403
|
-
Interrupt reporting if it takes more than this many seconds.
|
537
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
538
|
+
List of secret specs, defining how the secrets are to be retrieved
|
539
|
+
role : str, optional, default: None
|
540
|
+
Role to use for fetching secrets
|
404
541
|
"""
|
405
542
|
...
|
406
543
|
|
407
544
|
@typing.overload
|
408
|
-
def
|
545
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
409
546
|
...
|
410
547
|
|
411
548
|
@typing.overload
|
412
|
-
def
|
549
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
413
550
|
...
|
414
551
|
|
415
|
-
def
|
552
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
416
553
|
"""
|
417
|
-
|
418
|
-
|
419
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
554
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
555
|
+
the execution of a step.
|
420
556
|
|
421
557
|
|
422
558
|
Parameters
|
423
559
|
----------
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
options : Dict[str, Any], default {}
|
429
|
-
Options passed to the card. The contents depend on the card type.
|
430
|
-
timeout : int, default 45
|
431
|
-
Interrupt reporting if it takes more than this many seconds.
|
560
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
561
|
+
List of secret specs, defining how the secrets are to be retrieved
|
562
|
+
role : str, optional, default: None
|
563
|
+
Role to use for fetching secrets
|
432
564
|
"""
|
433
565
|
...
|
434
566
|
|
435
567
|
@typing.overload
|
436
|
-
def
|
568
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
437
569
|
"""
|
438
|
-
Specifies
|
570
|
+
Specifies the PyPI packages for the step.
|
439
571
|
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
|
572
|
+
Information in this decorator will augment any
|
573
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
574
|
+
you can use `@pypi_base` to set packages required by all
|
575
|
+
steps and use `@pypi` to specify step-specific overrides.
|
444
576
|
|
445
577
|
|
446
578
|
Parameters
|
447
579
|
----------
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
|
580
|
+
packages : Dict[str, str], default: {}
|
581
|
+
Packages to use for this step. The key is the name of the package
|
582
|
+
and the value is the version to use.
|
583
|
+
python : str, optional, default: None
|
584
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
585
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
454
586
|
"""
|
455
587
|
...
|
456
588
|
|
457
589
|
@typing.overload
|
458
|
-
def
|
590
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
459
591
|
...
|
460
592
|
|
461
593
|
@typing.overload
|
462
|
-
def
|
594
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
463
595
|
...
|
464
596
|
|
465
|
-
def
|
597
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
466
598
|
"""
|
467
|
-
Specifies
|
599
|
+
Specifies the PyPI packages for the step.
|
468
600
|
|
469
|
-
|
470
|
-
|
471
|
-
|
472
|
-
|
601
|
+
Information in this decorator will augment any
|
602
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
603
|
+
you can use `@pypi_base` to set packages required by all
|
604
|
+
steps and use `@pypi` to specify step-specific overrides.
|
473
605
|
|
474
606
|
|
475
607
|
Parameters
|
476
608
|
----------
|
477
|
-
|
478
|
-
|
479
|
-
|
480
|
-
|
481
|
-
|
482
|
-
|
483
|
-
"""
|
484
|
-
...
|
485
|
-
|
486
|
-
@typing.overload
|
487
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
488
|
-
"""
|
489
|
-
Internal decorator to support Fast bakery
|
609
|
+
packages : Dict[str, str], default: {}
|
610
|
+
Packages to use for this step. The key is the name of the package
|
611
|
+
and the value is the version to use.
|
612
|
+
python : str, optional, default: None
|
613
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
614
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
490
615
|
"""
|
491
616
|
...
|
492
617
|
|
493
|
-
|
494
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
495
|
-
...
|
496
|
-
|
497
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
618
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
498
619
|
"""
|
499
|
-
|
620
|
+
Specifies that this step should execute on DGX cloud.
|
621
|
+
|
622
|
+
|
623
|
+
Parameters
|
624
|
+
----------
|
625
|
+
gpu : int
|
626
|
+
Number of GPUs to use.
|
627
|
+
gpu_type : str
|
628
|
+
Type of Nvidia GPU to use.
|
629
|
+
queue_timeout : int
|
630
|
+
Time to keep the job in NVCF's queue.
|
500
631
|
"""
|
501
632
|
...
|
502
633
|
|
@@ -555,374 +686,221 @@ def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
555
686
|
"""
|
556
687
|
...
|
557
688
|
|
558
|
-
|
689
|
+
@typing.overload
|
690
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
559
691
|
"""
|
560
|
-
|
561
|
-
|
562
|
-
User code call
|
563
|
-
--------------
|
564
|
-
@vllm(
|
565
|
-
model="...",
|
566
|
-
...
|
567
|
-
)
|
568
|
-
|
569
|
-
Valid backend options
|
570
|
-
---------------------
|
571
|
-
- 'local': Run as a separate process on the local task machine.
|
572
|
-
|
573
|
-
Valid model options
|
574
|
-
-------------------
|
575
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
692
|
+
Specifies the Conda environment for the step.
|
576
693
|
|
577
|
-
|
578
|
-
|
694
|
+
Information in this decorator will augment any
|
695
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
696
|
+
you can use `@conda_base` to set packages required by all
|
697
|
+
steps and use `@conda` to specify step-specific overrides.
|
579
698
|
|
580
699
|
|
581
700
|
Parameters
|
582
701
|
----------
|
583
|
-
|
584
|
-
|
585
|
-
|
586
|
-
|
587
|
-
|
588
|
-
|
589
|
-
|
590
|
-
|
591
|
-
|
592
|
-
|
593
|
-
card_refresh_interval: int
|
594
|
-
Interval in seconds for refreshing the vLLM status card.
|
595
|
-
Only used when openai_api_server=True.
|
596
|
-
max_retries: int
|
597
|
-
Maximum number of retries checking for vLLM server startup.
|
598
|
-
Only used when openai_api_server=True.
|
599
|
-
retry_alert_frequency: int
|
600
|
-
Frequency of alert logs for vLLM server startup retries.
|
601
|
-
Only used when openai_api_server=True.
|
602
|
-
engine_args : dict
|
603
|
-
Additional keyword arguments to pass to the vLLM engine.
|
604
|
-
For example, `tensor_parallel_size=2`.
|
702
|
+
packages : Dict[str, str], default {}
|
703
|
+
Packages to use for this step. The key is the name of the package
|
704
|
+
and the value is the version to use.
|
705
|
+
libraries : Dict[str, str], default {}
|
706
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
707
|
+
python : str, optional, default None
|
708
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
709
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
710
|
+
disabled : bool, default False
|
711
|
+
If set to True, disables @conda.
|
605
712
|
"""
|
606
713
|
...
|
607
714
|
|
608
|
-
|
715
|
+
@typing.overload
|
716
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
717
|
+
...
|
718
|
+
|
719
|
+
@typing.overload
|
720
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
721
|
+
...
|
722
|
+
|
723
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
609
724
|
"""
|
610
|
-
|
611
|
-
|
612
|
-
> Examples
|
613
|
-
|
614
|
-
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
615
|
-
```python
|
616
|
-
@huggingface_hub
|
617
|
-
@step
|
618
|
-
def pull_model_from_huggingface(self):
|
619
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
620
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
621
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
622
|
-
# value of the function is a reference to the model in the backend storage.
|
623
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
725
|
+
Specifies the Conda environment for the step.
|
624
726
|
|
625
|
-
|
626
|
-
|
627
|
-
|
628
|
-
|
629
|
-
)
|
630
|
-
self.next(self.train)
|
631
|
-
```
|
727
|
+
Information in this decorator will augment any
|
728
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
729
|
+
you can use `@conda_base` to set packages required by all
|
730
|
+
steps and use `@conda` to specify step-specific overrides.
|
632
731
|
|
633
|
-
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
634
|
-
```python
|
635
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
636
|
-
@step
|
637
|
-
def pull_model_from_huggingface(self):
|
638
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
639
|
-
```
|
640
732
|
|
641
|
-
|
642
|
-
|
643
|
-
|
644
|
-
|
645
|
-
|
646
|
-
|
647
|
-
|
733
|
+
Parameters
|
734
|
+
----------
|
735
|
+
packages : Dict[str, str], default {}
|
736
|
+
Packages to use for this step. The key is the name of the package
|
737
|
+
and the value is the version to use.
|
738
|
+
libraries : Dict[str, str], default {}
|
739
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
740
|
+
python : str, optional, default None
|
741
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
742
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
743
|
+
disabled : bool, default False
|
744
|
+
If set to True, disables @conda.
|
745
|
+
"""
|
746
|
+
...
|
747
|
+
|
748
|
+
@typing.overload
|
749
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
750
|
+
"""
|
751
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
648
752
|
|
649
|
-
|
650
|
-
# Takes all the arguments passed to `snapshot_download`
|
651
|
-
# except for `local_dir`
|
652
|
-
@huggingface_hub(load=[
|
653
|
-
{
|
654
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
655
|
-
},
|
656
|
-
{
|
657
|
-
"repo_id": "myorg/mistral-lora",
|
658
|
-
"repo_type": "model",
|
659
|
-
},
|
660
|
-
])
|
661
|
-
@step
|
662
|
-
def finetune_model(self):
|
663
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
664
|
-
# path_to_model will be /my-directory
|
665
|
-
```
|
753
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
666
754
|
|
667
755
|
|
668
756
|
Parameters
|
669
757
|
----------
|
670
|
-
|
671
|
-
|
672
|
-
|
673
|
-
|
674
|
-
|
758
|
+
type : str, default 'default'
|
759
|
+
Card type.
|
760
|
+
id : str, optional, default None
|
761
|
+
If multiple cards are present, use this id to identify this card.
|
762
|
+
options : Dict[str, Any], default {}
|
763
|
+
Options passed to the card. The contents depend on the card type.
|
764
|
+
timeout : int, default 45
|
765
|
+
Interrupt reporting if it takes more than this many seconds.
|
766
|
+
"""
|
767
|
+
...
|
768
|
+
|
769
|
+
@typing.overload
|
770
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
771
|
+
...
|
772
|
+
|
773
|
+
@typing.overload
|
774
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
775
|
+
...
|
776
|
+
|
777
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
778
|
+
"""
|
779
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
675
780
|
|
676
|
-
|
781
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
677
782
|
|
678
|
-
- If repo (model/dataset) is not found in the datastore:
|
679
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
680
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
681
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
682
783
|
|
683
|
-
|
684
|
-
|
784
|
+
Parameters
|
785
|
+
----------
|
786
|
+
type : str, default 'default'
|
787
|
+
Card type.
|
788
|
+
id : str, optional, default None
|
789
|
+
If multiple cards are present, use this id to identify this card.
|
790
|
+
options : Dict[str, Any], default {}
|
791
|
+
Options passed to the card. The contents depend on the card type.
|
792
|
+
timeout : int, default 45
|
793
|
+
Interrupt reporting if it takes more than this many seconds.
|
685
794
|
"""
|
686
795
|
...
|
687
796
|
|
688
797
|
@typing.overload
|
689
|
-
def
|
798
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
690
799
|
"""
|
691
|
-
|
800
|
+
Specifies that the step will success under all circumstances.
|
692
801
|
|
693
|
-
|
694
|
-
|
695
|
-
-
|
696
|
-
|
697
|
-
```python
|
698
|
-
@checkpoint
|
699
|
-
@step
|
700
|
-
def train(self):
|
701
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
702
|
-
for i in range(self.epochs):
|
703
|
-
# some training logic
|
704
|
-
loss = model.train(self.dataset)
|
705
|
-
if i % 10 == 0:
|
706
|
-
model.save(
|
707
|
-
current.checkpoint.directory,
|
708
|
-
)
|
709
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
710
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
711
|
-
self.latest_checkpoint = current.checkpoint.save(
|
712
|
-
name="epoch_checkpoint",
|
713
|
-
metadata={
|
714
|
-
"epoch": i,
|
715
|
-
"loss": loss,
|
716
|
-
}
|
717
|
-
)
|
718
|
-
```
|
719
|
-
|
720
|
-
- Using Loaded Checkpoints
|
721
|
-
|
722
|
-
```python
|
723
|
-
@retry(times=3)
|
724
|
-
@checkpoint
|
725
|
-
@step
|
726
|
-
def train(self):
|
727
|
-
# Assume that the task has restarted and the previous attempt of the task
|
728
|
-
# saved a checkpoint
|
729
|
-
checkpoint_path = None
|
730
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
731
|
-
print("Loaded checkpoint from the previous attempt")
|
732
|
-
checkpoint_path = current.checkpoint.directory
|
733
|
-
|
734
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
735
|
-
for i in range(self.epochs):
|
736
|
-
...
|
737
|
-
```
|
802
|
+
The decorator will create an optional artifact, specified by `var`, which
|
803
|
+
contains the exception raised. You can use it to detect the presence
|
804
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
805
|
+
are missing.
|
738
806
|
|
739
807
|
|
740
808
|
Parameters
|
741
809
|
----------
|
742
|
-
|
743
|
-
|
744
|
-
|
745
|
-
|
746
|
-
|
747
|
-
|
748
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
749
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
750
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
751
|
-
created within the task will be loaded when the task is retries execution on failure.
|
752
|
-
|
753
|
-
temp_dir_root : str, default: None
|
754
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
810
|
+
var : str, optional, default None
|
811
|
+
Name of the artifact in which to store the caught exception.
|
812
|
+
If not specified, the exception is not stored.
|
813
|
+
print_exception : bool, default True
|
814
|
+
Determines whether or not the exception is printed to
|
815
|
+
stdout when caught.
|
755
816
|
"""
|
756
817
|
...
|
757
818
|
|
758
819
|
@typing.overload
|
759
|
-
def
|
820
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
760
821
|
...
|
761
822
|
|
762
823
|
@typing.overload
|
763
|
-
def
|
824
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
764
825
|
...
|
765
826
|
|
766
|
-
def
|
827
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
767
828
|
"""
|
768
|
-
|
769
|
-
|
770
|
-
> Examples
|
771
|
-
|
772
|
-
- Saving Checkpoints
|
773
|
-
|
774
|
-
```python
|
775
|
-
@checkpoint
|
776
|
-
@step
|
777
|
-
def train(self):
|
778
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
779
|
-
for i in range(self.epochs):
|
780
|
-
# some training logic
|
781
|
-
loss = model.train(self.dataset)
|
782
|
-
if i % 10 == 0:
|
783
|
-
model.save(
|
784
|
-
current.checkpoint.directory,
|
785
|
-
)
|
786
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
787
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
788
|
-
self.latest_checkpoint = current.checkpoint.save(
|
789
|
-
name="epoch_checkpoint",
|
790
|
-
metadata={
|
791
|
-
"epoch": i,
|
792
|
-
"loss": loss,
|
793
|
-
}
|
794
|
-
)
|
795
|
-
```
|
796
|
-
|
797
|
-
- Using Loaded Checkpoints
|
798
|
-
|
799
|
-
```python
|
800
|
-
@retry(times=3)
|
801
|
-
@checkpoint
|
802
|
-
@step
|
803
|
-
def train(self):
|
804
|
-
# Assume that the task has restarted and the previous attempt of the task
|
805
|
-
# saved a checkpoint
|
806
|
-
checkpoint_path = None
|
807
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
808
|
-
print("Loaded checkpoint from the previous attempt")
|
809
|
-
checkpoint_path = current.checkpoint.directory
|
829
|
+
Specifies that the step will success under all circumstances.
|
810
830
|
|
811
|
-
|
812
|
-
|
813
|
-
|
814
|
-
|
831
|
+
The decorator will create an optional artifact, specified by `var`, which
|
832
|
+
contains the exception raised. You can use it to detect the presence
|
833
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
834
|
+
are missing.
|
815
835
|
|
816
836
|
|
817
837
|
Parameters
|
818
838
|
----------
|
819
|
-
|
820
|
-
|
821
|
-
|
822
|
-
|
823
|
-
|
824
|
-
|
825
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
826
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
827
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
828
|
-
created within the task will be loaded when the task is retries execution on failure.
|
829
|
-
|
830
|
-
temp_dir_root : str, default: None
|
831
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
839
|
+
var : str, optional, default None
|
840
|
+
Name of the artifact in which to store the caught exception.
|
841
|
+
If not specified, the exception is not stored.
|
842
|
+
print_exception : bool, default True
|
843
|
+
Determines whether or not the exception is printed to
|
844
|
+
stdout when caught.
|
832
845
|
"""
|
833
846
|
...
|
834
847
|
|
835
|
-
|
848
|
+
@typing.overload
|
849
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
836
850
|
"""
|
837
|
-
|
838
|
-
|
839
|
-
User code call
|
840
|
-
--------------
|
841
|
-
@ollama(
|
842
|
-
models=[...],
|
843
|
-
...
|
844
|
-
)
|
845
|
-
|
846
|
-
Valid backend options
|
847
|
-
---------------------
|
848
|
-
- 'local': Run as a separate process on the local task machine.
|
849
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
850
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
851
|
-
|
852
|
-
Valid model options
|
853
|
-
-------------------
|
854
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
851
|
+
Specifies a timeout for your step.
|
855
852
|
|
853
|
+
This decorator is useful if this step may hang indefinitely.
|
856
854
|
|
857
|
-
|
858
|
-
|
859
|
-
|
860
|
-
List of Ollama containers running models in sidecars.
|
861
|
-
backend: str
|
862
|
-
Determines where and how to run the Ollama process.
|
863
|
-
force_pull: bool
|
864
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
865
|
-
cache_update_policy: str
|
866
|
-
Cache update policy: "auto", "force", or "never".
|
867
|
-
force_cache_update: bool
|
868
|
-
Simple override for "force" cache update policy.
|
869
|
-
debug: bool
|
870
|
-
Whether to turn on verbose debugging logs.
|
871
|
-
circuit_breaker_config: dict
|
872
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
873
|
-
timeout_config: dict
|
874
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
875
|
-
"""
|
876
|
-
...
|
877
|
-
|
878
|
-
@typing.overload
|
879
|
-
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
880
|
-
"""
|
881
|
-
Specifies the PyPI packages for the step.
|
855
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
856
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
857
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
882
858
|
|
883
|
-
|
884
|
-
|
885
|
-
you can use `@pypi_base` to set packages required by all
|
886
|
-
steps and use `@pypi` to specify step-specific overrides.
|
859
|
+
Note that all the values specified in parameters are added together so if you specify
|
860
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
887
861
|
|
888
862
|
|
889
863
|
Parameters
|
890
864
|
----------
|
891
|
-
|
892
|
-
|
893
|
-
|
894
|
-
|
895
|
-
|
896
|
-
|
865
|
+
seconds : int, default 0
|
866
|
+
Number of seconds to wait prior to timing out.
|
867
|
+
minutes : int, default 0
|
868
|
+
Number of minutes to wait prior to timing out.
|
869
|
+
hours : int, default 0
|
870
|
+
Number of hours to wait prior to timing out.
|
897
871
|
"""
|
898
872
|
...
|
899
873
|
|
900
874
|
@typing.overload
|
901
|
-
def
|
875
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
902
876
|
...
|
903
877
|
|
904
878
|
@typing.overload
|
905
|
-
def
|
879
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
906
880
|
...
|
907
881
|
|
908
|
-
def
|
882
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
909
883
|
"""
|
910
|
-
Specifies
|
884
|
+
Specifies a timeout for your step.
|
911
885
|
|
912
|
-
|
913
|
-
|
914
|
-
|
915
|
-
|
886
|
+
This decorator is useful if this step may hang indefinitely.
|
887
|
+
|
888
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
889
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
890
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
891
|
+
|
892
|
+
Note that all the values specified in parameters are added together so if you specify
|
893
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
916
894
|
|
917
895
|
|
918
896
|
Parameters
|
919
897
|
----------
|
920
|
-
|
921
|
-
|
922
|
-
|
923
|
-
|
924
|
-
|
925
|
-
|
898
|
+
seconds : int, default 0
|
899
|
+
Number of seconds to wait prior to timing out.
|
900
|
+
minutes : int, default 0
|
901
|
+
Number of minutes to wait prior to timing out.
|
902
|
+
hours : int, default 0
|
903
|
+
Number of hours to wait prior to timing out.
|
926
904
|
"""
|
927
905
|
...
|
928
906
|
|
@@ -1074,377 +1052,205 @@ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
1074
1052
|
"""
|
1075
1053
|
...
|
1076
1054
|
|
1077
|
-
def
|
1078
|
-
"""
|
1079
|
-
Specifies that this step should execute on DGX cloud.
|
1080
|
-
|
1081
|
-
|
1082
|
-
Parameters
|
1083
|
-
----------
|
1084
|
-
gpu : int
|
1085
|
-
Number of GPUs to use.
|
1086
|
-
gpu_type : str
|
1087
|
-
Type of Nvidia GPU to use.
|
1088
|
-
"""
|
1089
|
-
...
|
1090
|
-
|
1091
|
-
@typing.overload
|
1092
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1055
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1093
1056
|
"""
|
1094
|
-
Specifies
|
1095
|
-
the execution of a step.
|
1057
|
+
Specifies that this step should execute on Kubernetes.
|
1096
1058
|
|
1097
1059
|
|
1098
1060
|
Parameters
|
1099
1061
|
----------
|
1100
|
-
|
1101
|
-
|
1102
|
-
|
1103
|
-
|
1104
|
-
|
1105
|
-
|
1106
|
-
|
1107
|
-
|
1108
|
-
|
1109
|
-
|
1110
|
-
|
1111
|
-
|
1112
|
-
|
1113
|
-
|
1114
|
-
|
1115
|
-
|
1116
|
-
|
1117
|
-
|
1118
|
-
|
1119
|
-
|
1120
|
-
|
1121
|
-
|
1122
|
-
|
1123
|
-
|
1124
|
-
|
1125
|
-
|
1126
|
-
|
1127
|
-
|
1128
|
-
|
1129
|
-
|
1130
|
-
|
1131
|
-
|
1132
|
-
|
1133
|
-
|
1134
|
-
|
1135
|
-
|
1136
|
-
|
1137
|
-
|
1138
|
-
|
1139
|
-
|
1140
|
-
|
1141
|
-
|
1142
|
-
|
1143
|
-
|
1144
|
-
|
1145
|
-
|
1146
|
-
|
1147
|
-
|
1148
|
-
|
1149
|
-
|
1150
|
-
|
1151
|
-
|
1152
|
-
|
1153
|
-
|
1154
|
-
|
1155
|
-
|
1156
|
-
|
1157
|
-
|
1158
|
-
|
1159
|
-
|
1160
|
-
|
1161
|
-
|
1162
|
-
|
1163
|
-
|
1164
|
-
|
1165
|
-
|
1166
|
-
|
1167
|
-
|
1168
|
-
|
1169
|
-
|
1170
|
-
|
1171
|
-
Dictionary of environment variables to set.
|
1172
|
-
"""
|
1173
|
-
...
|
1174
|
-
|
1175
|
-
@typing.overload
|
1176
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1177
|
-
"""
|
1178
|
-
Decorator prototype for all step decorators. This function gets specialized
|
1179
|
-
and imported for all decorators types by _import_plugin_decorators().
|
1180
|
-
"""
|
1181
|
-
...
|
1182
|
-
|
1183
|
-
@typing.overload
|
1184
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1185
|
-
...
|
1186
|
-
|
1187
|
-
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1188
|
-
"""
|
1189
|
-
Decorator prototype for all step decorators. This function gets specialized
|
1190
|
-
and imported for all decorators types by _import_plugin_decorators().
|
1191
|
-
"""
|
1192
|
-
...
|
1193
|
-
|
1194
|
-
@typing.overload
|
1195
|
-
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1196
|
-
"""
|
1197
|
-
Specifies a timeout for your step.
|
1198
|
-
|
1199
|
-
This decorator is useful if this step may hang indefinitely.
|
1200
|
-
|
1201
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
1202
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
1203
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
1204
|
-
|
1205
|
-
Note that all the values specified in parameters are added together so if you specify
|
1206
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
1207
|
-
|
1208
|
-
|
1209
|
-
Parameters
|
1210
|
-
----------
|
1211
|
-
seconds : int, default 0
|
1212
|
-
Number of seconds to wait prior to timing out.
|
1213
|
-
minutes : int, default 0
|
1214
|
-
Number of minutes to wait prior to timing out.
|
1215
|
-
hours : int, default 0
|
1216
|
-
Number of hours to wait prior to timing out.
|
1217
|
-
"""
|
1218
|
-
...
|
1219
|
-
|
1220
|
-
@typing.overload
|
1221
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1222
|
-
...
|
1223
|
-
|
1224
|
-
@typing.overload
|
1225
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1226
|
-
...
|
1227
|
-
|
1228
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
1229
|
-
"""
|
1230
|
-
Specifies a timeout for your step.
|
1231
|
-
|
1232
|
-
This decorator is useful if this step may hang indefinitely.
|
1233
|
-
|
1234
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
1235
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
1236
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
1237
|
-
|
1238
|
-
Note that all the values specified in parameters are added together so if you specify
|
1239
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
1240
|
-
|
1062
|
+
cpu : int, default 1
|
1063
|
+
Number of CPUs required for this step. If `@resources` is
|
1064
|
+
also present, the maximum value from all decorators is used.
|
1065
|
+
memory : int, default 4096
|
1066
|
+
Memory size (in MB) required for this step. If
|
1067
|
+
`@resources` is also present, the maximum value from all decorators is
|
1068
|
+
used.
|
1069
|
+
disk : int, default 10240
|
1070
|
+
Disk size (in MB) required for this step. If
|
1071
|
+
`@resources` is also present, the maximum value from all decorators is
|
1072
|
+
used.
|
1073
|
+
image : str, optional, default None
|
1074
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
1075
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
1076
|
+
not, a default Docker image mapping to the current version of Python is used.
|
1077
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
1078
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
1079
|
+
image_pull_secrets: List[str], default []
|
1080
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
1081
|
+
Kubernetes image pull secrets to use when pulling container images
|
1082
|
+
in Kubernetes.
|
1083
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
1084
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
1085
|
+
secrets : List[str], optional, default None
|
1086
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
1087
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
1088
|
+
in Metaflow configuration.
|
1089
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
1090
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
1091
|
+
Can be passed in as a comma separated string of values e.g.
|
1092
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
1093
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
1094
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
1095
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
1096
|
+
gpu : int, optional, default None
|
1097
|
+
Number of GPUs required for this step. A value of zero implies that
|
1098
|
+
the scheduled node should not have GPUs.
|
1099
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
1100
|
+
The vendor of the GPUs to be used for this step.
|
1101
|
+
tolerations : List[str], default []
|
1102
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
1103
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
1104
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
1105
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
1106
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
1107
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
1108
|
+
use_tmpfs : bool, default False
|
1109
|
+
This enables an explicit tmpfs mount for this step.
|
1110
|
+
tmpfs_tempdir : bool, default True
|
1111
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
1112
|
+
tmpfs_size : int, optional, default: None
|
1113
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
1114
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
1115
|
+
memory allocated for this step.
|
1116
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
1117
|
+
Path to tmpfs mount for this step.
|
1118
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
1119
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
1120
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
1121
|
+
shared_memory: int, optional
|
1122
|
+
Shared memory size (in MiB) required for this step
|
1123
|
+
port: int, optional
|
1124
|
+
Port number to specify in the Kubernetes job object
|
1125
|
+
compute_pool : str, optional, default None
|
1126
|
+
Compute pool to be used for for this step.
|
1127
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
1128
|
+
hostname_resolution_timeout: int, default 10 * 60
|
1129
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
1130
|
+
Only applicable when @parallel is used.
|
1131
|
+
qos: str, default: Burstable
|
1132
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
1241
1133
|
|
1242
|
-
|
1243
|
-
|
1244
|
-
|
1245
|
-
|
1246
|
-
|
1247
|
-
|
1248
|
-
|
1249
|
-
Number of hours to wait prior to timing out.
|
1134
|
+
security_context: Dict[str, Any], optional, default None
|
1135
|
+
Container security context. Applies to the task container. Allows the following keys:
|
1136
|
+
- privileged: bool, optional, default None
|
1137
|
+
- allow_privilege_escalation: bool, optional, default None
|
1138
|
+
- run_as_user: int, optional, default None
|
1139
|
+
- run_as_group: int, optional, default None
|
1140
|
+
- run_as_non_root: bool, optional, default None
|
1250
1141
|
"""
|
1251
1142
|
...
|
1252
1143
|
|
1253
|
-
def
|
1144
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1254
1145
|
"""
|
1255
|
-
|
1256
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1257
|
-
|
1258
|
-
This decorator is useful when users wish to save data to a different datastore
|
1259
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
1260
|
-
|
1261
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1262
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1263
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1264
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1265
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1266
|
-
|
1267
|
-
Usage:
|
1268
|
-
----------
|
1269
|
-
|
1270
|
-
- Using a custom IAM role to access the datastore.
|
1271
|
-
|
1272
|
-
```python
|
1273
|
-
@with_artifact_store(
|
1274
|
-
type="s3",
|
1275
|
-
config=lambda: {
|
1276
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1277
|
-
"role_arn": ROLE,
|
1278
|
-
},
|
1279
|
-
)
|
1280
|
-
class MyFlow(FlowSpec):
|
1281
|
-
|
1282
|
-
@checkpoint
|
1283
|
-
@step
|
1284
|
-
def start(self):
|
1285
|
-
with open("my_file.txt", "w") as f:
|
1286
|
-
f.write("Hello, World!")
|
1287
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1288
|
-
self.next(self.end)
|
1289
|
-
|
1290
|
-
```
|
1291
|
-
|
1292
|
-
- Using credentials to access the s3-compatible datastore.
|
1146
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
1293
1147
|
|
1294
|
-
|
1295
|
-
@with_artifact_store(
|
1296
|
-
type="s3",
|
1297
|
-
config=lambda: {
|
1298
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1299
|
-
"client_params": {
|
1300
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1301
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1302
|
-
},
|
1303
|
-
},
|
1304
|
-
)
|
1305
|
-
class MyFlow(FlowSpec):
|
1148
|
+
> Examples
|
1306
1149
|
|
1307
|
-
|
1308
|
-
|
1309
|
-
|
1310
|
-
|
1311
|
-
|
1312
|
-
|
1313
|
-
|
1150
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
1151
|
+
```python
|
1152
|
+
@huggingface_hub
|
1153
|
+
@step
|
1154
|
+
def pull_model_from_huggingface(self):
|
1155
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
1156
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
1157
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
1158
|
+
# value of the function is a reference to the model in the backend storage.
|
1159
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
1314
1160
|
|
1315
|
-
|
1161
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
1162
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
1163
|
+
repo_id=self.model_id,
|
1164
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
1165
|
+
)
|
1166
|
+
self.next(self.train)
|
1167
|
+
```
|
1316
1168
|
|
1317
|
-
|
1169
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
1170
|
+
```python
|
1171
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
1172
|
+
@step
|
1173
|
+
def pull_model_from_huggingface(self):
|
1174
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1175
|
+
```
|
1318
1176
|
|
1319
|
-
|
1320
|
-
|
1321
|
-
|
1322
|
-
|
1323
|
-
|
1324
|
-
|
1325
|
-
|
1326
|
-
}):
|
1327
|
-
with Checkpoint() as cp:
|
1328
|
-
latest = cp.list(
|
1329
|
-
task=run["start"].task
|
1330
|
-
)[0]
|
1331
|
-
print(latest)
|
1332
|
-
cp.load(
|
1333
|
-
latest,
|
1334
|
-
"test-checkpoints"
|
1335
|
-
)
|
1177
|
+
```python
|
1178
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
1179
|
+
@step
|
1180
|
+
def finetune_model(self):
|
1181
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1182
|
+
# path_to_model will be /my-directory
|
1183
|
+
```
|
1336
1184
|
|
1337
|
-
|
1338
|
-
|
1339
|
-
|
1340
|
-
|
1341
|
-
|
1185
|
+
```python
|
1186
|
+
# Takes all the arguments passed to `snapshot_download`
|
1187
|
+
# except for `local_dir`
|
1188
|
+
@huggingface_hub(load=[
|
1189
|
+
{
|
1190
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
1342
1191
|
},
|
1343
|
-
|
1344
|
-
|
1345
|
-
|
1346
|
-
|
1347
|
-
|
1348
|
-
|
1349
|
-
|
1192
|
+
{
|
1193
|
+
"repo_id": "myorg/mistral-lora",
|
1194
|
+
"repo_type": "model",
|
1195
|
+
},
|
1196
|
+
])
|
1197
|
+
@step
|
1198
|
+
def finetune_model(self):
|
1199
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1200
|
+
# path_to_model will be /my-directory
|
1201
|
+
```
|
1202
|
+
|
1203
|
+
|
1204
|
+
Parameters
|
1350
1205
|
----------
|
1206
|
+
temp_dir_root : str, optional
|
1207
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
1351
1208
|
|
1352
|
-
|
1353
|
-
The
|
1209
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
1210
|
+
The list of repos (models/datasets) to load.
|
1354
1211
|
|
1355
|
-
|
1356
|
-
|
1357
|
-
-
|
1358
|
-
-
|
1359
|
-
-
|
1360
|
-
|
1361
|
-
|
1362
|
-
-
|
1363
|
-
|
1212
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
1213
|
+
|
1214
|
+
- If repo (model/dataset) is not found in the datastore:
|
1215
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
1216
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
1217
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
1218
|
+
|
1219
|
+
- If repo is found in the datastore:
|
1220
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
1364
1221
|
"""
|
1365
1222
|
...
|
1366
1223
|
|
1367
1224
|
@typing.overload
|
1368
|
-
def
|
1225
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1369
1226
|
"""
|
1370
|
-
Specifies
|
1227
|
+
Specifies environment variables to be set prior to the execution of a step.
|
1371
1228
|
|
1372
|
-
Use `@pypi_base` to set common packages required by all
|
1373
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1374
1229
|
|
1375
1230
|
Parameters
|
1376
1231
|
----------
|
1377
|
-
|
1378
|
-
|
1379
|
-
and the value is the version to use.
|
1380
|
-
python : str, optional, default: None
|
1381
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1382
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1232
|
+
vars : Dict[str, str], default {}
|
1233
|
+
Dictionary of environment variables to set.
|
1383
1234
|
"""
|
1384
1235
|
...
|
1385
1236
|
|
1386
1237
|
@typing.overload
|
1387
|
-
def
|
1238
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1388
1239
|
...
|
1389
1240
|
|
1390
|
-
|
1391
|
-
|
1392
|
-
Specifies the PyPI packages for all steps of the flow.
|
1393
|
-
|
1394
|
-
Use `@pypi_base` to set common packages required by all
|
1395
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1396
|
-
|
1397
|
-
Parameters
|
1398
|
-
----------
|
1399
|
-
packages : Dict[str, str], default: {}
|
1400
|
-
Packages to use for this flow. The key is the name of the package
|
1401
|
-
and the value is the version to use.
|
1402
|
-
python : str, optional, default: None
|
1403
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1404
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1405
|
-
"""
|
1241
|
+
@typing.overload
|
1242
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1406
1243
|
...
|
1407
1244
|
|
1408
|
-
def
|
1245
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
1409
1246
|
"""
|
1410
|
-
|
1411
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1412
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1413
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1414
|
-
starts only after all sensors finish.
|
1247
|
+
Specifies environment variables to be set prior to the execution of a step.
|
1415
1248
|
|
1416
1249
|
|
1417
1250
|
Parameters
|
1418
1251
|
----------
|
1419
|
-
|
1420
|
-
|
1421
|
-
poke_interval : int
|
1422
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
1423
|
-
mode : str
|
1424
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1425
|
-
exponential_backoff : bool
|
1426
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1427
|
-
pool : str
|
1428
|
-
the slot pool this task should run in,
|
1429
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1430
|
-
soft_fail : bool
|
1431
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1432
|
-
name : str
|
1433
|
-
Name of the sensor on Airflow
|
1434
|
-
description : str
|
1435
|
-
Description of sensor in the Airflow UI
|
1436
|
-
bucket_key : Union[str, List[str]]
|
1437
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1438
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1439
|
-
bucket_name : str
|
1440
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1441
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1442
|
-
wildcard_match : bool
|
1443
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1444
|
-
aws_conn_id : str
|
1445
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
1446
|
-
verify : bool
|
1447
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1252
|
+
vars : Dict[str, str], default {}
|
1253
|
+
Dictionary of environment variables to set.
|
1448
1254
|
"""
|
1449
1255
|
...
|
1450
1256
|
|
@@ -1499,6 +1305,41 @@ def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly:
|
|
1499
1305
|
"""
|
1500
1306
|
...
|
1501
1307
|
|
1308
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1309
|
+
"""
|
1310
|
+
Specifies what flows belong to the same project.
|
1311
|
+
|
1312
|
+
A project-specific namespace is created for all flows that
|
1313
|
+
use the same `@project(name)`.
|
1314
|
+
|
1315
|
+
|
1316
|
+
Parameters
|
1317
|
+
----------
|
1318
|
+
name : str
|
1319
|
+
Project name. Make sure that the name is unique amongst all
|
1320
|
+
projects that use the same production scheduler. The name may
|
1321
|
+
contain only lowercase alphanumeric characters and underscores.
|
1322
|
+
|
1323
|
+
branch : Optional[str], default None
|
1324
|
+
The branch to use. If not specified, the branch is set to
|
1325
|
+
`user.<username>` unless `production` is set to `True`. This can
|
1326
|
+
also be set on the command line using `--branch` as a top-level option.
|
1327
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
1328
|
+
|
1329
|
+
production : bool, default False
|
1330
|
+
Whether or not the branch is the production branch. This can also be set on the
|
1331
|
+
command line using `--production` as a top-level option. It is an error to specify
|
1332
|
+
`production` in the decorator and on the command line.
|
1333
|
+
The project branch name will be:
|
1334
|
+
- if `branch` is specified:
|
1335
|
+
- if `production` is True: `prod.<branch>`
|
1336
|
+
- if `production` is False: `test.<branch>`
|
1337
|
+
- if `branch` is not specified:
|
1338
|
+
- if `production` is True: `prod`
|
1339
|
+
- if `production` is False: `user.<username>`
|
1340
|
+
"""
|
1341
|
+
...
|
1342
|
+
|
1502
1343
|
@typing.overload
|
1503
1344
|
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1504
1345
|
"""
|
@@ -1625,99 +1466,13 @@ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str,
|
|
1625
1466
|
allowed_states : List[str]
|
1626
1467
|
Iterable of allowed states, (Default: ['success'])
|
1627
1468
|
failed_states : List[str]
|
1628
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1629
|
-
execution_delta : datetime.timedelta
|
1630
|
-
time difference with the previous execution to look at,
|
1631
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1632
|
-
check_existence: bool
|
1633
|
-
Set to True to check if the external task exists or check if
|
1634
|
-
the DAG to wait for exists. (Default: True)
|
1635
|
-
"""
|
1636
|
-
...
|
1637
|
-
|
1638
|
-
@typing.overload
|
1639
|
-
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1640
|
-
"""
|
1641
|
-
Specifies the Conda environment for all steps of the flow.
|
1642
|
-
|
1643
|
-
Use `@conda_base` to set common libraries required by all
|
1644
|
-
steps and use `@conda` to specify step-specific additions.
|
1645
|
-
|
1646
|
-
|
1647
|
-
Parameters
|
1648
|
-
----------
|
1649
|
-
packages : Dict[str, str], default {}
|
1650
|
-
Packages to use for this flow. The key is the name of the package
|
1651
|
-
and the value is the version to use.
|
1652
|
-
libraries : Dict[str, str], default {}
|
1653
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1654
|
-
python : str, optional, default None
|
1655
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1656
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1657
|
-
disabled : bool, default False
|
1658
|
-
If set to True, disables Conda.
|
1659
|
-
"""
|
1660
|
-
...
|
1661
|
-
|
1662
|
-
@typing.overload
|
1663
|
-
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1664
|
-
...
|
1665
|
-
|
1666
|
-
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1667
|
-
"""
|
1668
|
-
Specifies the Conda environment for all steps of the flow.
|
1669
|
-
|
1670
|
-
Use `@conda_base` to set common libraries required by all
|
1671
|
-
steps and use `@conda` to specify step-specific additions.
|
1672
|
-
|
1673
|
-
|
1674
|
-
Parameters
|
1675
|
-
----------
|
1676
|
-
packages : Dict[str, str], default {}
|
1677
|
-
Packages to use for this flow. The key is the name of the package
|
1678
|
-
and the value is the version to use.
|
1679
|
-
libraries : Dict[str, str], default {}
|
1680
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1681
|
-
python : str, optional, default None
|
1682
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1683
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1684
|
-
disabled : bool, default False
|
1685
|
-
If set to True, disables Conda.
|
1686
|
-
"""
|
1687
|
-
...
|
1688
|
-
|
1689
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1690
|
-
"""
|
1691
|
-
Specifies what flows belong to the same project.
|
1692
|
-
|
1693
|
-
A project-specific namespace is created for all flows that
|
1694
|
-
use the same `@project(name)`.
|
1695
|
-
|
1696
|
-
|
1697
|
-
Parameters
|
1698
|
-
----------
|
1699
|
-
name : str
|
1700
|
-
Project name. Make sure that the name is unique amongst all
|
1701
|
-
projects that use the same production scheduler. The name may
|
1702
|
-
contain only lowercase alphanumeric characters and underscores.
|
1703
|
-
|
1704
|
-
branch : Optional[str], default None
|
1705
|
-
The branch to use. If not specified, the branch is set to
|
1706
|
-
`user.<username>` unless `production` is set to `True`. This can
|
1707
|
-
also be set on the command line using `--branch` as a top-level option.
|
1708
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
1709
|
-
|
1710
|
-
production : bool, default False
|
1711
|
-
Whether or not the branch is the production branch. This can also be set on the
|
1712
|
-
command line using `--production` as a top-level option. It is an error to specify
|
1713
|
-
`production` in the decorator and on the command line.
|
1714
|
-
The project branch name will be:
|
1715
|
-
- if `branch` is specified:
|
1716
|
-
- if `production` is True: `prod.<branch>`
|
1717
|
-
- if `production` is False: `test.<branch>`
|
1718
|
-
- if `branch` is not specified:
|
1719
|
-
- if `production` is True: `prod`
|
1720
|
-
- if `production` is False: `user.<username>`
|
1469
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1470
|
+
execution_delta : datetime.timedelta
|
1471
|
+
time difference with the previous execution to look at,
|
1472
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1473
|
+
check_existence: bool
|
1474
|
+
Set to True to check if the external task exists or check if
|
1475
|
+
the DAG to wait for exists. (Default: True)
|
1721
1476
|
"""
|
1722
1477
|
...
|
1723
1478
|
|
@@ -1822,5 +1577,254 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
1822
1577
|
"""
|
1823
1578
|
...
|
1824
1579
|
|
1580
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1581
|
+
"""
|
1582
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1583
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1584
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1585
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1586
|
+
starts only after all sensors finish.
|
1587
|
+
|
1588
|
+
|
1589
|
+
Parameters
|
1590
|
+
----------
|
1591
|
+
timeout : int
|
1592
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1593
|
+
poke_interval : int
|
1594
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1595
|
+
mode : str
|
1596
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1597
|
+
exponential_backoff : bool
|
1598
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1599
|
+
pool : str
|
1600
|
+
the slot pool this task should run in,
|
1601
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1602
|
+
soft_fail : bool
|
1603
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1604
|
+
name : str
|
1605
|
+
Name of the sensor on Airflow
|
1606
|
+
description : str
|
1607
|
+
Description of sensor in the Airflow UI
|
1608
|
+
bucket_key : Union[str, List[str]]
|
1609
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1610
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1611
|
+
bucket_name : str
|
1612
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1613
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1614
|
+
wildcard_match : bool
|
1615
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1616
|
+
aws_conn_id : str
|
1617
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1618
|
+
verify : bool
|
1619
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1620
|
+
"""
|
1621
|
+
...
|
1622
|
+
|
1623
|
+
@typing.overload
|
1624
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1625
|
+
"""
|
1626
|
+
Specifies the Conda environment for all steps of the flow.
|
1627
|
+
|
1628
|
+
Use `@conda_base` to set common libraries required by all
|
1629
|
+
steps and use `@conda` to specify step-specific additions.
|
1630
|
+
|
1631
|
+
|
1632
|
+
Parameters
|
1633
|
+
----------
|
1634
|
+
packages : Dict[str, str], default {}
|
1635
|
+
Packages to use for this flow. The key is the name of the package
|
1636
|
+
and the value is the version to use.
|
1637
|
+
libraries : Dict[str, str], default {}
|
1638
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1639
|
+
python : str, optional, default None
|
1640
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1641
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1642
|
+
disabled : bool, default False
|
1643
|
+
If set to True, disables Conda.
|
1644
|
+
"""
|
1645
|
+
...
|
1646
|
+
|
1647
|
+
@typing.overload
|
1648
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1649
|
+
...
|
1650
|
+
|
1651
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1652
|
+
"""
|
1653
|
+
Specifies the Conda environment for all steps of the flow.
|
1654
|
+
|
1655
|
+
Use `@conda_base` to set common libraries required by all
|
1656
|
+
steps and use `@conda` to specify step-specific additions.
|
1657
|
+
|
1658
|
+
|
1659
|
+
Parameters
|
1660
|
+
----------
|
1661
|
+
packages : Dict[str, str], default {}
|
1662
|
+
Packages to use for this flow. The key is the name of the package
|
1663
|
+
and the value is the version to use.
|
1664
|
+
libraries : Dict[str, str], default {}
|
1665
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1666
|
+
python : str, optional, default None
|
1667
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1668
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1669
|
+
disabled : bool, default False
|
1670
|
+
If set to True, disables Conda.
|
1671
|
+
"""
|
1672
|
+
...
|
1673
|
+
|
1674
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1675
|
+
"""
|
1676
|
+
Allows setting external datastores to save data for the
|
1677
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1678
|
+
|
1679
|
+
This decorator is useful when users wish to save data to a different datastore
|
1680
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1681
|
+
|
1682
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1683
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1684
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1685
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1686
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1687
|
+
|
1688
|
+
Usage:
|
1689
|
+
----------
|
1690
|
+
|
1691
|
+
- Using a custom IAM role to access the datastore.
|
1692
|
+
|
1693
|
+
```python
|
1694
|
+
@with_artifact_store(
|
1695
|
+
type="s3",
|
1696
|
+
config=lambda: {
|
1697
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1698
|
+
"role_arn": ROLE,
|
1699
|
+
},
|
1700
|
+
)
|
1701
|
+
class MyFlow(FlowSpec):
|
1702
|
+
|
1703
|
+
@checkpoint
|
1704
|
+
@step
|
1705
|
+
def start(self):
|
1706
|
+
with open("my_file.txt", "w") as f:
|
1707
|
+
f.write("Hello, World!")
|
1708
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1709
|
+
self.next(self.end)
|
1710
|
+
|
1711
|
+
```
|
1712
|
+
|
1713
|
+
- Using credentials to access the s3-compatible datastore.
|
1714
|
+
|
1715
|
+
```python
|
1716
|
+
@with_artifact_store(
|
1717
|
+
type="s3",
|
1718
|
+
config=lambda: {
|
1719
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1720
|
+
"client_params": {
|
1721
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1722
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1723
|
+
},
|
1724
|
+
},
|
1725
|
+
)
|
1726
|
+
class MyFlow(FlowSpec):
|
1727
|
+
|
1728
|
+
@checkpoint
|
1729
|
+
@step
|
1730
|
+
def start(self):
|
1731
|
+
with open("my_file.txt", "w") as f:
|
1732
|
+
f.write("Hello, World!")
|
1733
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1734
|
+
self.next(self.end)
|
1735
|
+
|
1736
|
+
```
|
1737
|
+
|
1738
|
+
- Accessing objects stored in external datastores after task execution.
|
1739
|
+
|
1740
|
+
```python
|
1741
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1742
|
+
with artifact_store_from(run=run, config={
|
1743
|
+
"client_params": {
|
1744
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1745
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1746
|
+
},
|
1747
|
+
}):
|
1748
|
+
with Checkpoint() as cp:
|
1749
|
+
latest = cp.list(
|
1750
|
+
task=run["start"].task
|
1751
|
+
)[0]
|
1752
|
+
print(latest)
|
1753
|
+
cp.load(
|
1754
|
+
latest,
|
1755
|
+
"test-checkpoints"
|
1756
|
+
)
|
1757
|
+
|
1758
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1759
|
+
with artifact_store_from(run=run, config={
|
1760
|
+
"client_params": {
|
1761
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1762
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1763
|
+
},
|
1764
|
+
}):
|
1765
|
+
load_model(
|
1766
|
+
task.data.model_ref,
|
1767
|
+
"test-models"
|
1768
|
+
)
|
1769
|
+
```
|
1770
|
+
Parameters:
|
1771
|
+
----------
|
1772
|
+
|
1773
|
+
type: str
|
1774
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1775
|
+
|
1776
|
+
config: dict or Callable
|
1777
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1778
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1779
|
+
- example: 's3://bucket-name/path/to/root'
|
1780
|
+
- example: 'gs://bucket-name/path/to/root'
|
1781
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1782
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1783
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1784
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1785
|
+
"""
|
1786
|
+
...
|
1787
|
+
|
1788
|
+
@typing.overload
|
1789
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1790
|
+
"""
|
1791
|
+
Specifies the PyPI packages for all steps of the flow.
|
1792
|
+
|
1793
|
+
Use `@pypi_base` to set common packages required by all
|
1794
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1795
|
+
|
1796
|
+
Parameters
|
1797
|
+
----------
|
1798
|
+
packages : Dict[str, str], default: {}
|
1799
|
+
Packages to use for this flow. The key is the name of the package
|
1800
|
+
and the value is the version to use.
|
1801
|
+
python : str, optional, default: None
|
1802
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1803
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1804
|
+
"""
|
1805
|
+
...
|
1806
|
+
|
1807
|
+
@typing.overload
|
1808
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1809
|
+
...
|
1810
|
+
|
1811
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1812
|
+
"""
|
1813
|
+
Specifies the PyPI packages for all steps of the flow.
|
1814
|
+
|
1815
|
+
Use `@pypi_base` to set common packages required by all
|
1816
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1817
|
+
|
1818
|
+
Parameters
|
1819
|
+
----------
|
1820
|
+
packages : Dict[str, str], default: {}
|
1821
|
+
Packages to use for this flow. The key is the name of the package
|
1822
|
+
and the value is the version to use.
|
1823
|
+
python : str, optional, default: None
|
1824
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1825
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1826
|
+
"""
|
1827
|
+
...
|
1828
|
+
|
1825
1829
|
pkg_name: str
|
1826
1830
|
|