ob-metaflow-stubs 6.0.3.188rc3__py2.py3-none-any.whl → 6.0.4.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (249) hide show
  1. metaflow-stubs/__init__.pyi +682 -678
  2. metaflow-stubs/cards.pyi +2 -2
  3. metaflow-stubs/cli.pyi +2 -2
  4. metaflow-stubs/cli_components/__init__.pyi +2 -2
  5. metaflow-stubs/cli_components/utils.pyi +2 -2
  6. metaflow-stubs/client/__init__.pyi +2 -2
  7. metaflow-stubs/client/core.pyi +5 -5
  8. metaflow-stubs/client/filecache.pyi +3 -3
  9. metaflow-stubs/events.pyi +3 -3
  10. metaflow-stubs/exception.pyi +2 -2
  11. metaflow-stubs/flowspec.pyi +6 -6
  12. metaflow-stubs/generated_for.txt +1 -1
  13. metaflow-stubs/includefile.pyi +3 -3
  14. metaflow-stubs/info_file.pyi +2 -2
  15. metaflow-stubs/metadata_provider/__init__.pyi +2 -2
  16. metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
  17. metaflow-stubs/metadata_provider/metadata.pyi +3 -3
  18. metaflow-stubs/metadata_provider/util.pyi +2 -2
  19. metaflow-stubs/metaflow_config.pyi +2 -2
  20. metaflow-stubs/metaflow_current.pyi +53 -53
  21. metaflow-stubs/metaflow_git.pyi +2 -2
  22. metaflow-stubs/mf_extensions/__init__.pyi +2 -2
  23. metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
  24. metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
  25. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
  26. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
  27. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
  28. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
  29. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +4 -4
  30. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
  31. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
  32. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +5 -5
  33. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
  34. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
  35. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
  36. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +4 -4
  37. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +3 -3
  38. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
  39. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
  40. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
  41. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
  42. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +3 -3
  43. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +3 -3
  44. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
  45. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
  46. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +4 -4
  47. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
  48. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
  49. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
  50. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
  51. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
  52. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
  53. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
  54. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
  55. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +4 -4
  56. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
  57. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
  58. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
  59. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +3 -3
  60. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
  61. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
  62. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +3 -3
  63. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +3 -3
  64. metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
  65. metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
  66. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
  67. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
  68. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +41 -32
  69. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
  70. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
  71. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
  72. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
  73. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
  74. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +5 -5
  75. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
  76. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
  77. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +3 -3
  78. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
  79. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
  80. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +12 -3
  81. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
  82. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +32 -28
  83. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +5 -4
  84. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
  85. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +4 -4
  86. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
  87. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
  88. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
  89. metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
  90. metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
  91. metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
  92. metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
  93. metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
  94. metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
  95. metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +2 -2
  96. metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +2 -2
  97. metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
  98. metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +4 -4
  99. metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
  100. metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
  101. metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
  102. metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
  103. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
  104. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
  105. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
  106. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
  107. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
  108. metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
  109. metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
  110. metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
  111. metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
  112. metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
  113. metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
  114. metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
  115. metaflow-stubs/multicore_utils.pyi +2 -2
  116. metaflow-stubs/ob_internal.pyi +2 -2
  117. metaflow-stubs/parameters.pyi +2 -2
  118. metaflow-stubs/plugins/__init__.pyi +13 -11
  119. metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
  120. metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
  121. metaflow-stubs/plugins/airflow/exception.pyi +2 -2
  122. metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
  123. metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
  124. metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
  125. metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
  126. metaflow-stubs/plugins/argo/__init__.pyi +2 -2
  127. metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
  128. metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
  129. metaflow-stubs/plugins/argo/argo_workflows.pyi +7 -34
  130. metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
  131. metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +4 -4
  132. metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
  133. metaflow-stubs/plugins/argo/exit_hooks.pyi +45 -0
  134. metaflow-stubs/plugins/aws/__init__.pyi +2 -2
  135. metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
  136. metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
  137. metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
  138. metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
  139. metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
  140. metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
  141. metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
  142. metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +4 -4
  143. metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
  144. metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
  145. metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
  146. metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
  147. metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
  148. metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +4 -4
  149. metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +4 -4
  150. metaflow-stubs/plugins/azure/__init__.pyi +2 -2
  151. metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
  152. metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
  153. metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +4 -4
  154. metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
  155. metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
  156. metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
  157. metaflow-stubs/plugins/cards/__init__.pyi +2 -2
  158. metaflow-stubs/plugins/cards/card_client.pyi +2 -2
  159. metaflow-stubs/plugins/cards/card_creator.pyi +4 -3
  160. metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
  161. metaflow-stubs/plugins/cards/card_decorator.pyi +14 -3
  162. metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
  163. metaflow-stubs/plugins/cards/card_modules/basic.pyi +3 -3
  164. metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
  165. metaflow-stubs/plugins/cards/card_modules/components.pyi +4 -4
  166. metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
  167. metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
  168. metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +10 -2
  169. metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
  170. metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
  171. metaflow-stubs/plugins/cards/exception.pyi +2 -2
  172. metaflow-stubs/plugins/catch_decorator.pyi +3 -3
  173. metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
  174. metaflow-stubs/plugins/datatools/local.pyi +2 -2
  175. metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
  176. metaflow-stubs/plugins/datatools/s3/s3.pyi +4 -4
  177. metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
  178. metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
  179. metaflow-stubs/plugins/debug_logger.pyi +2 -2
  180. metaflow-stubs/plugins/debug_monitor.pyi +2 -2
  181. metaflow-stubs/plugins/environment_decorator.pyi +2 -2
  182. metaflow-stubs/plugins/events_decorator.pyi +2 -2
  183. metaflow-stubs/plugins/exit_hook/__init__.pyi +11 -0
  184. metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +20 -0
  185. metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
  186. metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
  187. metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
  188. metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +4 -4
  189. metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
  190. metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
  191. metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
  192. metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
  193. metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
  194. metaflow-stubs/plugins/kubernetes/kube_utils.pyi +3 -3
  195. metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
  196. metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
  197. metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
  198. metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
  199. metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
  200. metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
  201. metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
  202. metaflow-stubs/plugins/perimeters.pyi +2 -2
  203. metaflow-stubs/plugins/project_decorator.pyi +2 -2
  204. metaflow-stubs/plugins/pypi/__init__.pyi +3 -3
  205. metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
  206. metaflow-stubs/plugins/pypi/conda_environment.pyi +5 -5
  207. metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
  208. metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
  209. metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
  210. metaflow-stubs/plugins/pypi/utils.pyi +2 -2
  211. metaflow-stubs/plugins/resources_decorator.pyi +2 -2
  212. metaflow-stubs/plugins/retry_decorator.pyi +2 -2
  213. metaflow-stubs/plugins/secrets/__init__.pyi +6 -2
  214. metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
  215. metaflow-stubs/plugins/secrets/secrets_decorator.pyi +9 -49
  216. metaflow-stubs/plugins/secrets/secrets_func.pyi +31 -0
  217. metaflow-stubs/plugins/secrets/secrets_spec.pyi +42 -0
  218. metaflow-stubs/plugins/secrets/utils.pyi +28 -0
  219. metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
  220. metaflow-stubs/plugins/storage_executor.pyi +2 -2
  221. metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +3 -3
  222. metaflow-stubs/plugins/timeout_decorator.pyi +3 -3
  223. metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
  224. metaflow-stubs/plugins/uv/__init__.pyi +2 -2
  225. metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
  226. metaflow-stubs/profilers/__init__.pyi +2 -2
  227. metaflow-stubs/pylint_wrapper.pyi +2 -2
  228. metaflow-stubs/runner/__init__.pyi +2 -2
  229. metaflow-stubs/runner/deployer.pyi +29 -29
  230. metaflow-stubs/runner/deployer_impl.pyi +2 -2
  231. metaflow-stubs/runner/metaflow_runner.pyi +4 -4
  232. metaflow-stubs/runner/nbdeploy.pyi +2 -2
  233. metaflow-stubs/runner/nbrun.pyi +2 -2
  234. metaflow-stubs/runner/subprocess_manager.pyi +2 -2
  235. metaflow-stubs/runner/utils.pyi +2 -2
  236. metaflow-stubs/system/__init__.pyi +2 -2
  237. metaflow-stubs/system/system_logger.pyi +3 -3
  238. metaflow-stubs/system/system_monitor.pyi +2 -2
  239. metaflow-stubs/tagging_util.pyi +2 -2
  240. metaflow-stubs/tuple_util.pyi +2 -2
  241. metaflow-stubs/user_configs/__init__.pyi +2 -2
  242. metaflow-stubs/user_configs/config_decorators.pyi +5 -5
  243. metaflow-stubs/user_configs/config_options.pyi +3 -3
  244. metaflow-stubs/user_configs/config_parameters.pyi +5 -5
  245. {ob_metaflow_stubs-6.0.3.188rc3.dist-info → ob_metaflow_stubs-6.0.4.0.dist-info}/METADATA +1 -1
  246. ob_metaflow_stubs-6.0.4.0.dist-info/RECORD +249 -0
  247. ob_metaflow_stubs-6.0.3.188rc3.dist-info/RECORD +0 -243
  248. {ob_metaflow_stubs-6.0.3.188rc3.dist-info → ob_metaflow_stubs-6.0.4.0.dist-info}/WHEEL +0 -0
  249. {ob_metaflow_stubs-6.0.3.188rc3.dist-info → ob_metaflow_stubs-6.0.4.0.dist-info}/top_level.txt +0 -0
@@ -1,15 +1,15 @@
1
1
  ######################################################################################################
2
2
  # Auto-generated Metaflow stub file #
3
- # MF version: 2.15.18.1+obcheckpoint(0.2.4);ob(v1) #
4
- # Generated on 2025-07-10T08:45:58.339588 #
3
+ # MF version: 2.15.21.1+obcheckpoint(0.2.4);ob(v1) #
4
+ # Generated on 2025-07-11T23:29:18.665907 #
5
5
  ######################################################################################################
6
6
 
7
7
  from __future__ import annotations
8
8
 
9
9
  import typing
10
10
  if typing.TYPE_CHECKING:
11
- import datetime
12
11
  import typing
12
+ import datetime
13
13
  FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
14
14
  StepFlag = typing.NewType("StepFlag", bool)
15
15
 
@@ -37,16 +37,16 @@ from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDec
37
37
  from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
38
38
  from . import cards as cards
39
39
  from . import tuple_util as tuple_util
40
- from . import metaflow_git as metaflow_git
41
40
  from . import events as events
41
+ from . import metaflow_git as metaflow_git
42
42
  from . import runner as runner
43
43
  from . import plugins as plugins
44
44
  from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
45
45
  from . import includefile as includefile
46
46
  from .includefile import IncludeFile as IncludeFile
47
- from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
48
- from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
49
47
  from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
48
+ from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
49
+ from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
50
50
  from . import client as client
51
51
  from .client.core import namespace as namespace
52
52
  from .client.core import get_namespace as get_namespace
@@ -157,92 +157,145 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
157
157
  ...
158
158
 
159
159
  @typing.overload
160
- def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
160
+ def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
161
161
  """
162
- Specifies the number of times the task corresponding
163
- to a step needs to be retried.
164
-
165
- This decorator is useful for handling transient errors, such as networking issues.
166
- If your task contains operations that can't be retried safely, e.g. database updates,
167
- it is advisable to annotate it with `@retry(times=0)`.
168
-
169
- This can be used in conjunction with the `@catch` decorator. The `@catch`
170
- decorator will execute a no-op task after all retries have been exhausted,
171
- ensuring that the flow execution can continue.
172
-
173
-
174
- Parameters
175
- ----------
176
- times : int, default 3
177
- Number of times to retry this task.
178
- minutes_between_retries : int, default 2
179
- Number of minutes between retries.
162
+ Decorator prototype for all step decorators. This function gets specialized
163
+ and imported for all decorators types by _import_plugin_decorators().
180
164
  """
181
165
  ...
182
166
 
183
167
  @typing.overload
184
- def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
168
+ def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
185
169
  ...
186
170
 
187
- @typing.overload
188
- def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
171
+ def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
172
+ """
173
+ Decorator prototype for all step decorators. This function gets specialized
174
+ and imported for all decorators types by _import_plugin_decorators().
175
+ """
189
176
  ...
190
177
 
191
- def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
178
+ def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
192
179
  """
193
- Specifies the number of times the task corresponding
194
- to a step needs to be retried.
195
-
196
- This decorator is useful for handling transient errors, such as networking issues.
197
- If your task contains operations that can't be retried safely, e.g. database updates,
198
- it is advisable to annotate it with `@retry(times=0)`.
199
-
200
- This can be used in conjunction with the `@catch` decorator. The `@catch`
201
- decorator will execute a no-op task after all retries have been exhausted,
202
- ensuring that the flow execution can continue.
180
+ Specifies that this step should execute on DGX cloud.
203
181
 
204
182
 
205
183
  Parameters
206
184
  ----------
207
- times : int, default 3
208
- Number of times to retry this task.
209
- minutes_between_retries : int, default 2
210
- Number of minutes between retries.
185
+ gpu : int
186
+ Number of GPUs to use.
187
+ gpu_type : str
188
+ Type of Nvidia GPU to use.
211
189
  """
212
190
  ...
213
191
 
214
192
  @typing.overload
215
- def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
193
+ def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
216
194
  """
217
- Specifies secrets to be retrieved and injected as environment variables prior to
218
- the execution of a step.
219
-
220
-
221
- Parameters
222
- ----------
223
- sources : List[Union[str, Dict[str, Any]]], default: []
224
- List of secret specs, defining how the secrets are to be retrieved
195
+ Internal decorator to support Fast bakery
225
196
  """
226
197
  ...
227
198
 
228
199
  @typing.overload
229
- def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
200
+ def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
230
201
  ...
231
202
 
232
- @typing.overload
233
- def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
203
+ def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
204
+ """
205
+ Internal decorator to support Fast bakery
206
+ """
234
207
  ...
235
208
 
236
- def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []):
209
+ def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
237
210
  """
238
- Specifies secrets to be retrieved and injected as environment variables prior to
239
- the execution of a step.
211
+ This decorator is used to run vllm APIs as Metaflow task sidecars.
212
+
213
+ User code call
214
+ --------------
215
+ @vllm(
216
+ model="...",
217
+ ...
218
+ )
219
+
220
+ Valid backend options
221
+ ---------------------
222
+ - 'local': Run as a separate process on the local task machine.
223
+
224
+ Valid model options
225
+ -------------------
226
+ Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
227
+
228
+ NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
229
+ If you need multiple models, you must create multiple @vllm decorators.
240
230
 
241
231
 
242
232
  Parameters
243
233
  ----------
244
- sources : List[Union[str, Dict[str, Any]]], default: []
245
- List of secret specs, defining how the secrets are to be retrieved
234
+ model: str
235
+ HuggingFace model identifier to be served by vLLM.
236
+ backend: str
237
+ Determines where and how to run the vLLM process.
238
+ openai_api_server: bool
239
+ Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
240
+ Default is False (uses native engine).
241
+ Set to True for backward compatibility with existing code.
242
+ debug: bool
243
+ Whether to turn on verbose debugging logs.
244
+ card_refresh_interval: int
245
+ Interval in seconds for refreshing the vLLM status card.
246
+ Only used when openai_api_server=True.
247
+ max_retries: int
248
+ Maximum number of retries checking for vLLM server startup.
249
+ Only used when openai_api_server=True.
250
+ retry_alert_frequency: int
251
+ Frequency of alert logs for vLLM server startup retries.
252
+ Only used when openai_api_server=True.
253
+ engine_args : dict
254
+ Additional keyword arguments to pass to the vLLM engine.
255
+ For example, `tensor_parallel_size=2`.
256
+ """
257
+ ...
258
+
259
+ def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
260
+ """
261
+ This decorator is used to run Ollama APIs as Metaflow task sidecars.
262
+
263
+ User code call
264
+ --------------
265
+ @ollama(
266
+ models=[...],
267
+ ...
268
+ )
269
+
270
+ Valid backend options
271
+ ---------------------
272
+ - 'local': Run as a separate process on the local task machine.
273
+ - (TODO) 'managed': Outerbounds hosts and selects compute provider.
274
+ - (TODO) 'remote': Spin up separate instance to serve Ollama models.
275
+
276
+ Valid model options
277
+ -------------------
278
+ Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
279
+
280
+
281
+ Parameters
282
+ ----------
283
+ models: list[str]
284
+ List of Ollama containers running models in sidecars.
285
+ backend: str
286
+ Determines where and how to run the Ollama process.
287
+ force_pull: bool
288
+ Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
289
+ cache_update_policy: str
290
+ Cache update policy: "auto", "force", or "never".
291
+ force_cache_update: bool
292
+ Simple override for "force" cache update policy.
293
+ debug: bool
294
+ Whether to turn on verbose debugging logs.
295
+ circuit_breaker_config: dict
296
+ Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
297
+ timeout_config: dict
298
+ Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
246
299
  """
247
300
  ...
248
301
 
@@ -394,131 +447,171 @@ def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
394
447
  ...
395
448
 
396
449
  @typing.overload
397
- def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
450
+ def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
398
451
  """
399
- Enables loading / saving of models within a step.
452
+ Specifies the resources needed when executing this step.
400
453
 
401
- > Examples
402
- - Saving Models
403
- ```python
404
- @model
405
- @step
406
- def train(self):
407
- # current.model.save returns a dictionary reference to the model saved
408
- self.my_model = current.model.save(
409
- path_to_my_model,
410
- label="my_model",
411
- metadata={
412
- "epochs": 10,
413
- "batch-size": 32,
414
- "learning-rate": 0.001,
415
- }
416
- )
417
- self.next(self.test)
454
+ Use `@resources` to specify the resource requirements
455
+ independently of the specific compute layer (`@batch`, `@kubernetes`).
418
456
 
419
- @model(load="my_model")
420
- @step
421
- def test(self):
422
- # `current.model.loaded` returns a dictionary of the loaded models
423
- # where the key is the name of the artifact and the value is the path to the model
424
- print(os.listdir(current.model.loaded["my_model"]))
425
- self.next(self.end)
457
+ You can choose the compute layer on the command line by executing e.g.
426
458
  ```
427
-
428
- - Loading models
429
- ```python
430
- @step
431
- def train(self):
432
- # current.model.load returns the path to the model loaded
433
- checkpoint_path = current.model.load(
434
- self.checkpoint_key,
435
- )
436
- model_path = current.model.load(
437
- self.model,
438
- )
439
- self.next(self.test)
459
+ python myflow.py run --with batch
460
+ ```
461
+ or
462
+ ```
463
+ python myflow.py run --with kubernetes
440
464
  ```
465
+ which executes the flow on the desired system using the
466
+ requirements specified in `@resources`.
441
467
 
442
468
 
443
469
  Parameters
444
470
  ----------
445
- load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
446
- Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
447
- These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
448
- If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
449
- the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
450
- If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
451
-
452
- temp_dir_root : str, default: None
453
- The root directory under which `current.model.loaded` will store loaded models
471
+ cpu : int, default 1
472
+ Number of CPUs required for this step.
473
+ gpu : int, optional, default None
474
+ Number of GPUs required for this step.
475
+ disk : int, optional, default None
476
+ Disk size (in MB) required for this step. Only applies on Kubernetes.
477
+ memory : int, default 4096
478
+ Memory size (in MB) required for this step.
479
+ shared_memory : int, optional, default None
480
+ The value for the size (in MiB) of the /dev/shm volume for this step.
481
+ This parameter maps to the `--shm-size` option in Docker.
454
482
  """
455
483
  ...
456
484
 
457
485
  @typing.overload
458
- def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
486
+ def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
459
487
  ...
460
488
 
461
489
  @typing.overload
462
- def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
490
+ def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
463
491
  ...
464
492
 
465
- def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
493
+ def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
466
494
  """
467
- Enables loading / saving of models within a step.
495
+ Specifies the resources needed when executing this step.
468
496
 
469
- > Examples
470
- - Saving Models
471
- ```python
472
- @model
473
- @step
474
- def train(self):
475
- # current.model.save returns a dictionary reference to the model saved
476
- self.my_model = current.model.save(
477
- path_to_my_model,
478
- label="my_model",
479
- metadata={
480
- "epochs": 10,
481
- "batch-size": 32,
482
- "learning-rate": 0.001,
483
- }
484
- )
485
- self.next(self.test)
497
+ Use `@resources` to specify the resource requirements
498
+ independently of the specific compute layer (`@batch`, `@kubernetes`).
486
499
 
487
- @model(load="my_model")
488
- @step
489
- def test(self):
490
- # `current.model.loaded` returns a dictionary of the loaded models
491
- # where the key is the name of the artifact and the value is the path to the model
492
- print(os.listdir(current.model.loaded["my_model"]))
493
- self.next(self.end)
500
+ You can choose the compute layer on the command line by executing e.g.
494
501
  ```
495
-
496
- - Loading models
497
- ```python
498
- @step
499
- def train(self):
500
- # current.model.load returns the path to the model loaded
501
- checkpoint_path = current.model.load(
502
- self.checkpoint_key,
503
- )
504
- model_path = current.model.load(
505
- self.model,
506
- )
507
- self.next(self.test)
502
+ python myflow.py run --with batch
503
+ ```
504
+ or
505
+ ```
506
+ python myflow.py run --with kubernetes
508
507
  ```
508
+ which executes the flow on the desired system using the
509
+ requirements specified in `@resources`.
509
510
 
510
511
 
511
512
  Parameters
512
513
  ----------
513
- load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
514
- Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
515
- These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
516
- If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
517
- the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
518
- If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
514
+ cpu : int, default 1
515
+ Number of CPUs required for this step.
516
+ gpu : int, optional, default None
517
+ Number of GPUs required for this step.
518
+ disk : int, optional, default None
519
+ Disk size (in MB) required for this step. Only applies on Kubernetes.
520
+ memory : int, default 4096
521
+ Memory size (in MB) required for this step.
522
+ shared_memory : int, optional, default None
523
+ The value for the size (in MiB) of the /dev/shm volume for this step.
524
+ This parameter maps to the `--shm-size` option in Docker.
525
+ """
526
+ ...
527
+
528
+ @typing.overload
529
+ def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
530
+ """
531
+ Specifies secrets to be retrieved and injected as environment variables prior to
532
+ the execution of a step.
519
533
 
520
- temp_dir_root : str, default: None
521
- The root directory under which `current.model.loaded` will store loaded models
534
+
535
+ Parameters
536
+ ----------
537
+ sources : List[Union[str, Dict[str, Any]]], default: []
538
+ List of secret specs, defining how the secrets are to be retrieved
539
+ role : str, optional, default: None
540
+ Role to use for fetching secrets
541
+ """
542
+ ...
543
+
544
+ @typing.overload
545
+ def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
546
+ ...
547
+
548
+ @typing.overload
549
+ def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
550
+ ...
551
+
552
+ def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
553
+ """
554
+ Specifies secrets to be retrieved and injected as environment variables prior to
555
+ the execution of a step.
556
+
557
+
558
+ Parameters
559
+ ----------
560
+ sources : List[Union[str, Dict[str, Any]]], default: []
561
+ List of secret specs, defining how the secrets are to be retrieved
562
+ role : str, optional, default: None
563
+ Role to use for fetching secrets
564
+ """
565
+ ...
566
+
567
+ @typing.overload
568
+ def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
569
+ """
570
+ Specifies the PyPI packages for the step.
571
+
572
+ Information in this decorator will augment any
573
+ attributes set in the `@pyi_base` flow-level decorator. Hence,
574
+ you can use `@pypi_base` to set packages required by all
575
+ steps and use `@pypi` to specify step-specific overrides.
576
+
577
+
578
+ Parameters
579
+ ----------
580
+ packages : Dict[str, str], default: {}
581
+ Packages to use for this step. The key is the name of the package
582
+ and the value is the version to use.
583
+ python : str, optional, default: None
584
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
585
+ that the version used will correspond to the version of the Python interpreter used to start the run.
586
+ """
587
+ ...
588
+
589
+ @typing.overload
590
+ def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
591
+ ...
592
+
593
+ @typing.overload
594
+ def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
595
+ ...
596
+
597
+ def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
598
+ """
599
+ Specifies the PyPI packages for the step.
600
+
601
+ Information in this decorator will augment any
602
+ attributes set in the `@pyi_base` flow-level decorator. Hence,
603
+ you can use `@pypi_base` to set packages required by all
604
+ steps and use `@pypi` to specify step-specific overrides.
605
+
606
+
607
+ Parameters
608
+ ----------
609
+ packages : Dict[str, str], default: {}
610
+ Packages to use for this step. The key is the name of the package
611
+ and the value is the version to use.
612
+ python : str, optional, default: None
613
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
614
+ that the version used will correspond to the version of the Python interpreter used to start the run.
522
615
  """
523
616
  ...
524
617
 
@@ -538,6 +631,61 @@ def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[t
538
631
  """
539
632
  ...
540
633
 
634
+ @typing.overload
635
+ def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
636
+ """
637
+ Specifies the number of times the task corresponding
638
+ to a step needs to be retried.
639
+
640
+ This decorator is useful for handling transient errors, such as networking issues.
641
+ If your task contains operations that can't be retried safely, e.g. database updates,
642
+ it is advisable to annotate it with `@retry(times=0)`.
643
+
644
+ This can be used in conjunction with the `@catch` decorator. The `@catch`
645
+ decorator will execute a no-op task after all retries have been exhausted,
646
+ ensuring that the flow execution can continue.
647
+
648
+
649
+ Parameters
650
+ ----------
651
+ times : int, default 3
652
+ Number of times to retry this task.
653
+ minutes_between_retries : int, default 2
654
+ Number of minutes between retries.
655
+ """
656
+ ...
657
+
658
+ @typing.overload
659
+ def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
660
+ ...
661
+
662
+ @typing.overload
663
+ def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
664
+ ...
665
+
666
+ def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
667
+ """
668
+ Specifies the number of times the task corresponding
669
+ to a step needs to be retried.
670
+
671
+ This decorator is useful for handling transient errors, such as networking issues.
672
+ If your task contains operations that can't be retried safely, e.g. database updates,
673
+ it is advisable to annotate it with `@retry(times=0)`.
674
+
675
+ This can be used in conjunction with the `@catch` decorator. The `@catch`
676
+ decorator will execute a no-op task after all retries have been exhausted,
677
+ ensuring that the flow execution can continue.
678
+
679
+
680
+ Parameters
681
+ ----------
682
+ times : int, default 3
683
+ Number of times to retry this task.
684
+ minutes_between_retries : int, default 2
685
+ Number of minutes between retries.
686
+ """
687
+ ...
688
+
541
689
  @typing.overload
542
690
  def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
543
691
  """
@@ -598,53 +746,51 @@ def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
598
746
  ...
599
747
 
600
748
  @typing.overload
601
- def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
749
+ def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
602
750
  """
603
- Specifies the PyPI packages for the step.
751
+ Creates a human-readable report, a Metaflow Card, after this step completes.
604
752
 
605
- Information in this decorator will augment any
606
- attributes set in the `@pyi_base` flow-level decorator. Hence,
607
- you can use `@pypi_base` to set packages required by all
608
- steps and use `@pypi` to specify step-specific overrides.
753
+ Note that you may add multiple `@card` decorators in a step with different parameters.
609
754
 
610
755
 
611
756
  Parameters
612
757
  ----------
613
- packages : Dict[str, str], default: {}
614
- Packages to use for this step. The key is the name of the package
615
- and the value is the version to use.
616
- python : str, optional, default: None
617
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
618
- that the version used will correspond to the version of the Python interpreter used to start the run.
758
+ type : str, default 'default'
759
+ Card type.
760
+ id : str, optional, default None
761
+ If multiple cards are present, use this id to identify this card.
762
+ options : Dict[str, Any], default {}
763
+ Options passed to the card. The contents depend on the card type.
764
+ timeout : int, default 45
765
+ Interrupt reporting if it takes more than this many seconds.
619
766
  """
620
767
  ...
621
768
 
622
769
  @typing.overload
623
- def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
770
+ def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
624
771
  ...
625
772
 
626
773
  @typing.overload
627
- def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
774
+ def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
628
775
  ...
629
776
 
630
- def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
777
+ def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
631
778
  """
632
- Specifies the PyPI packages for the step.
779
+ Creates a human-readable report, a Metaflow Card, after this step completes.
633
780
 
634
- Information in this decorator will augment any
635
- attributes set in the `@pyi_base` flow-level decorator. Hence,
636
- you can use `@pypi_base` to set packages required by all
637
- steps and use `@pypi` to specify step-specific overrides.
781
+ Note that you may add multiple `@card` decorators in a step with different parameters.
638
782
 
639
783
 
640
784
  Parameters
641
785
  ----------
642
- packages : Dict[str, str], default: {}
643
- Packages to use for this step. The key is the name of the package
644
- and the value is the version to use.
645
- python : str, optional, default: None
646
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
647
- that the version used will correspond to the version of the Python interpreter used to start the run.
786
+ type : str, default 'default'
787
+ Card type.
788
+ id : str, optional, default None
789
+ If multiple cards are present, use this id to identify this card.
790
+ options : Dict[str, Any], default {}
791
+ Options passed to the card. The contents depend on the card type.
792
+ timeout : int, default 45
793
+ Interrupt reporting if it takes more than this many seconds.
648
794
  """
649
795
  ...
650
796
 
@@ -699,149 +845,12 @@ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
699
845
  """
700
846
  ...
701
847
 
702
- def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
848
+ @typing.overload
849
+ def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
703
850
  """
704
- Decorator that helps cache, version and store models/datasets from huggingface hub.
851
+ Specifies a timeout for your step.
705
852
 
706
- > Examples
707
-
708
- **Usage: creating references of models from huggingface that may be loaded in downstream steps**
709
- ```python
710
- @huggingface_hub
711
- @step
712
- def pull_model_from_huggingface(self):
713
- # `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
714
- # and saves it in the backend storage based on the model's `repo_id`. If there exists a model
715
- # with the same `repo_id` in the backend storage, it will not download the model again. The return
716
- # value of the function is a reference to the model in the backend storage.
717
- # This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
718
-
719
- self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
720
- self.llama_model = current.huggingface_hub.snapshot_download(
721
- repo_id=self.model_id,
722
- allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
723
- )
724
- self.next(self.train)
725
- ```
726
-
727
- **Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
728
- ```python
729
- @huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
730
- @step
731
- def pull_model_from_huggingface(self):
732
- path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
733
- ```
734
-
735
- ```python
736
- @huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
737
- @step
738
- def finetune_model(self):
739
- path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
740
- # path_to_model will be /my-directory
741
- ```
742
-
743
- ```python
744
- # Takes all the arguments passed to `snapshot_download`
745
- # except for `local_dir`
746
- @huggingface_hub(load=[
747
- {
748
- "repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
749
- },
750
- {
751
- "repo_id": "myorg/mistral-lora",
752
- "repo_type": "model",
753
- },
754
- ])
755
- @step
756
- def finetune_model(self):
757
- path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
758
- # path_to_model will be /my-directory
759
- ```
760
-
761
-
762
- Parameters
763
- ----------
764
- temp_dir_root : str, optional
765
- The root directory that will hold the temporary directory where objects will be downloaded.
766
-
767
- load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
768
- The list of repos (models/datasets) to load.
769
-
770
- Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
771
-
772
- - If repo (model/dataset) is not found in the datastore:
773
- - Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
774
- - Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
775
- - All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
776
-
777
- - If repo is found in the datastore:
778
- - Loads it directly from datastore to local path (can be temporary directory or specified path)
779
- """
780
- ...
781
-
782
- def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
783
- """
784
- This decorator is used to run Ollama APIs as Metaflow task sidecars.
785
-
786
- User code call
787
- --------------
788
- @ollama(
789
- models=[...],
790
- ...
791
- )
792
-
793
- Valid backend options
794
- ---------------------
795
- - 'local': Run as a separate process on the local task machine.
796
- - (TODO) 'managed': Outerbounds hosts and selects compute provider.
797
- - (TODO) 'remote': Spin up separate instance to serve Ollama models.
798
-
799
- Valid model options
800
- -------------------
801
- Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
802
-
803
-
804
- Parameters
805
- ----------
806
- models: list[str]
807
- List of Ollama containers running models in sidecars.
808
- backend: str
809
- Determines where and how to run the Ollama process.
810
- force_pull: bool
811
- Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
812
- cache_update_policy: str
813
- Cache update policy: "auto", "force", or "never".
814
- force_cache_update: bool
815
- Simple override for "force" cache update policy.
816
- debug: bool
817
- Whether to turn on verbose debugging logs.
818
- circuit_breaker_config: dict
819
- Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
820
- timeout_config: dict
821
- Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
822
- """
823
- ...
824
-
825
- def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
826
- """
827
- Specifies that this step should execute on DGX cloud.
828
-
829
-
830
- Parameters
831
- ----------
832
- gpu : int
833
- Number of GPUs to use.
834
- gpu_type : str
835
- Type of Nvidia GPU to use.
836
- """
837
- ...
838
-
839
- @typing.overload
840
- def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
841
- """
842
- Specifies a timeout for your step.
843
-
844
- This decorator is useful if this step may hang indefinitely.
853
+ This decorator is useful if this step may hang indefinitely.
845
854
 
846
855
  This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
847
856
  A timeout is considered to be an exception thrown by the step. It will cause the step to be
@@ -895,56 +904,6 @@ def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
895
904
  """
896
905
  ...
897
906
 
898
- def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
899
- """
900
- This decorator is used to run vllm APIs as Metaflow task sidecars.
901
-
902
- User code call
903
- --------------
904
- @vllm(
905
- model="...",
906
- ...
907
- )
908
-
909
- Valid backend options
910
- ---------------------
911
- - 'local': Run as a separate process on the local task machine.
912
-
913
- Valid model options
914
- -------------------
915
- Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
916
-
917
- NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
918
- If you need multiple models, you must create multiple @vllm decorators.
919
-
920
-
921
- Parameters
922
- ----------
923
- model: str
924
- HuggingFace model identifier to be served by vLLM.
925
- backend: str
926
- Determines where and how to run the vLLM process.
927
- openai_api_server: bool
928
- Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
929
- Default is False (uses native engine).
930
- Set to True for backward compatibility with existing code.
931
- debug: bool
932
- Whether to turn on verbose debugging logs.
933
- card_refresh_interval: int
934
- Interval in seconds for refreshing the vLLM status card.
935
- Only used when openai_api_server=True.
936
- max_retries: int
937
- Maximum number of retries checking for vLLM server startup.
938
- Only used when openai_api_server=True.
939
- retry_alert_frequency: int
940
- Frequency of alert logs for vLLM server startup retries.
941
- Only used when openai_api_server=True.
942
- engine_args : dict
943
- Additional keyword arguments to pass to the vLLM engine.
944
- For example, `tensor_parallel_size=2`.
945
- """
946
- ...
947
-
948
907
  @typing.overload
949
908
  def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
950
909
  """
@@ -965,147 +924,131 @@ def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
965
924
  ...
966
925
 
967
926
  @typing.overload
968
- def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
969
- """
970
- Creates a human-readable report, a Metaflow Card, after this step completes.
971
-
972
- Note that you may add multiple `@card` decorators in a step with different parameters.
973
-
974
-
975
- Parameters
976
- ----------
977
- type : str, default 'default'
978
- Card type.
979
- id : str, optional, default None
980
- If multiple cards are present, use this id to identify this card.
981
- options : Dict[str, Any], default {}
982
- Options passed to the card. The contents depend on the card type.
983
- timeout : int, default 45
984
- Interrupt reporting if it takes more than this many seconds.
985
- """
986
- ...
987
-
988
- @typing.overload
989
- def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
990
- ...
991
-
992
- @typing.overload
993
- def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
994
- ...
995
-
996
- def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
997
- """
998
- Creates a human-readable report, a Metaflow Card, after this step completes.
999
-
1000
- Note that you may add multiple `@card` decorators in a step with different parameters.
1001
-
1002
-
1003
- Parameters
1004
- ----------
1005
- type : str, default 'default'
1006
- Card type.
1007
- id : str, optional, default None
1008
- If multiple cards are present, use this id to identify this card.
1009
- options : Dict[str, Any], default {}
1010
- Options passed to the card. The contents depend on the card type.
1011
- timeout : int, default 45
1012
- Interrupt reporting if it takes more than this many seconds.
1013
- """
1014
- ...
1015
-
1016
- @typing.overload
1017
- def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
927
+ def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1018
928
  """
1019
- Specifies the resources needed when executing this step.
929
+ Enables loading / saving of models within a step.
1020
930
 
1021
- Use `@resources` to specify the resource requirements
1022
- independently of the specific compute layer (`@batch`, `@kubernetes`).
931
+ > Examples
932
+ - Saving Models
933
+ ```python
934
+ @model
935
+ @step
936
+ def train(self):
937
+ # current.model.save returns a dictionary reference to the model saved
938
+ self.my_model = current.model.save(
939
+ path_to_my_model,
940
+ label="my_model",
941
+ metadata={
942
+ "epochs": 10,
943
+ "batch-size": 32,
944
+ "learning-rate": 0.001,
945
+ }
946
+ )
947
+ self.next(self.test)
1023
948
 
1024
- You can choose the compute layer on the command line by executing e.g.
1025
- ```
1026
- python myflow.py run --with batch
1027
- ```
1028
- or
1029
- ```
1030
- python myflow.py run --with kubernetes
949
+ @model(load="my_model")
950
+ @step
951
+ def test(self):
952
+ # `current.model.loaded` returns a dictionary of the loaded models
953
+ # where the key is the name of the artifact and the value is the path to the model
954
+ print(os.listdir(current.model.loaded["my_model"]))
955
+ self.next(self.end)
1031
956
  ```
1032
- which executes the flow on the desired system using the
1033
- requirements specified in `@resources`.
1034
-
1035
957
 
1036
- Parameters
1037
- ----------
1038
- cpu : int, default 1
1039
- Number of CPUs required for this step.
1040
- gpu : int, optional, default None
1041
- Number of GPUs required for this step.
1042
- disk : int, optional, default None
1043
- Disk size (in MB) required for this step. Only applies on Kubernetes.
1044
- memory : int, default 4096
1045
- Memory size (in MB) required for this step.
1046
- shared_memory : int, optional, default None
1047
- The value for the size (in MiB) of the /dev/shm volume for this step.
1048
- This parameter maps to the `--shm-size` option in Docker.
1049
- """
1050
- ...
1051
-
1052
- @typing.overload
1053
- def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1054
- ...
1055
-
1056
- @typing.overload
1057
- def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1058
- ...
1059
-
1060
- def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
1061
- """
1062
- Specifies the resources needed when executing this step.
1063
-
1064
- Use `@resources` to specify the resource requirements
1065
- independently of the specific compute layer (`@batch`, `@kubernetes`).
1066
-
1067
- You can choose the compute layer on the command line by executing e.g.
1068
- ```
1069
- python myflow.py run --with batch
1070
- ```
1071
- or
1072
- ```
1073
- python myflow.py run --with kubernetes
958
+ - Loading models
959
+ ```python
960
+ @step
961
+ def train(self):
962
+ # current.model.load returns the path to the model loaded
963
+ checkpoint_path = current.model.load(
964
+ self.checkpoint_key,
965
+ )
966
+ model_path = current.model.load(
967
+ self.model,
968
+ )
969
+ self.next(self.test)
1074
970
  ```
1075
- which executes the flow on the desired system using the
1076
- requirements specified in `@resources`.
1077
971
 
1078
972
 
1079
973
  Parameters
1080
974
  ----------
1081
- cpu : int, default 1
1082
- Number of CPUs required for this step.
1083
- gpu : int, optional, default None
1084
- Number of GPUs required for this step.
1085
- disk : int, optional, default None
1086
- Disk size (in MB) required for this step. Only applies on Kubernetes.
1087
- memory : int, default 4096
1088
- Memory size (in MB) required for this step.
1089
- shared_memory : int, optional, default None
1090
- The value for the size (in MiB) of the /dev/shm volume for this step.
1091
- This parameter maps to the `--shm-size` option in Docker.
975
+ load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
976
+ Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
977
+ These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
978
+ If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
979
+ the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
980
+ If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
981
+
982
+ temp_dir_root : str, default: None
983
+ The root directory under which `current.model.loaded` will store loaded models
1092
984
  """
1093
985
  ...
1094
986
 
1095
987
  @typing.overload
1096
- def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1097
- """
1098
- Internal decorator to support Fast bakery
1099
- """
988
+ def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1100
989
  ...
1101
990
 
1102
991
  @typing.overload
1103
- def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
992
+ def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1104
993
  ...
1105
994
 
1106
- def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
995
+ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
1107
996
  """
1108
- Internal decorator to support Fast bakery
997
+ Enables loading / saving of models within a step.
998
+
999
+ > Examples
1000
+ - Saving Models
1001
+ ```python
1002
+ @model
1003
+ @step
1004
+ def train(self):
1005
+ # current.model.save returns a dictionary reference to the model saved
1006
+ self.my_model = current.model.save(
1007
+ path_to_my_model,
1008
+ label="my_model",
1009
+ metadata={
1010
+ "epochs": 10,
1011
+ "batch-size": 32,
1012
+ "learning-rate": 0.001,
1013
+ }
1014
+ )
1015
+ self.next(self.test)
1016
+
1017
+ @model(load="my_model")
1018
+ @step
1019
+ def test(self):
1020
+ # `current.model.loaded` returns a dictionary of the loaded models
1021
+ # where the key is the name of the artifact and the value is the path to the model
1022
+ print(os.listdir(current.model.loaded["my_model"]))
1023
+ self.next(self.end)
1024
+ ```
1025
+
1026
+ - Loading models
1027
+ ```python
1028
+ @step
1029
+ def train(self):
1030
+ # current.model.load returns the path to the model loaded
1031
+ checkpoint_path = current.model.load(
1032
+ self.checkpoint_key,
1033
+ )
1034
+ model_path = current.model.load(
1035
+ self.model,
1036
+ )
1037
+ self.next(self.test)
1038
+ ```
1039
+
1040
+
1041
+ Parameters
1042
+ ----------
1043
+ load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
1044
+ Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
1045
+ These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
1046
+ If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
1047
+ the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
1048
+ If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
1049
+
1050
+ temp_dir_root : str, default: None
1051
+ The root directory under which `current.model.loaded` will store loaded models
1109
1052
  """
1110
1053
  ...
1111
1054
 
@@ -1198,22 +1141,83 @@ def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: ty
1198
1141
  """
1199
1142
  ...
1200
1143
 
1201
- @typing.overload
1202
- def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1203
- """
1204
- Decorator prototype for all step decorators. This function gets specialized
1205
- and imported for all decorators types by _import_plugin_decorators().
1206
- """
1207
- ...
1208
-
1209
- @typing.overload
1210
- def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1211
- ...
1212
-
1213
- def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
1144
+ def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1214
1145
  """
1215
- Decorator prototype for all step decorators. This function gets specialized
1216
- and imported for all decorators types by _import_plugin_decorators().
1146
+ Decorator that helps cache, version and store models/datasets from huggingface hub.
1147
+
1148
+ > Examples
1149
+
1150
+ **Usage: creating references of models from huggingface that may be loaded in downstream steps**
1151
+ ```python
1152
+ @huggingface_hub
1153
+ @step
1154
+ def pull_model_from_huggingface(self):
1155
+ # `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
1156
+ # and saves it in the backend storage based on the model's `repo_id`. If there exists a model
1157
+ # with the same `repo_id` in the backend storage, it will not download the model again. The return
1158
+ # value of the function is a reference to the model in the backend storage.
1159
+ # This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
1160
+
1161
+ self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
1162
+ self.llama_model = current.huggingface_hub.snapshot_download(
1163
+ repo_id=self.model_id,
1164
+ allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
1165
+ )
1166
+ self.next(self.train)
1167
+ ```
1168
+
1169
+ **Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
1170
+ ```python
1171
+ @huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
1172
+ @step
1173
+ def pull_model_from_huggingface(self):
1174
+ path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
1175
+ ```
1176
+
1177
+ ```python
1178
+ @huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
1179
+ @step
1180
+ def finetune_model(self):
1181
+ path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
1182
+ # path_to_model will be /my-directory
1183
+ ```
1184
+
1185
+ ```python
1186
+ # Takes all the arguments passed to `snapshot_download`
1187
+ # except for `local_dir`
1188
+ @huggingface_hub(load=[
1189
+ {
1190
+ "repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
1191
+ },
1192
+ {
1193
+ "repo_id": "myorg/mistral-lora",
1194
+ "repo_type": "model",
1195
+ },
1196
+ ])
1197
+ @step
1198
+ def finetune_model(self):
1199
+ path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
1200
+ # path_to_model will be /my-directory
1201
+ ```
1202
+
1203
+
1204
+ Parameters
1205
+ ----------
1206
+ temp_dir_root : str, optional
1207
+ The root directory that will hold the temporary directory where objects will be downloaded.
1208
+
1209
+ load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
1210
+ The list of repos (models/datasets) to load.
1211
+
1212
+ Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
1213
+
1214
+ - If repo (model/dataset) is not found in the datastore:
1215
+ - Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
1216
+ - Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
1217
+ - All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
1218
+
1219
+ - If repo is found in the datastore:
1220
+ - Loads it directly from datastore to local path (can be temporary directory or specified path)
1217
1221
  """
1218
1222
  ...
1219
1223
 
@@ -1250,6 +1254,92 @@ def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], Non
1250
1254
  """
1251
1255
  ...
1252
1256
 
1257
+ @typing.overload
1258
+ def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1259
+ """
1260
+ Specifies the times when the flow should be run when running on a
1261
+ production scheduler.
1262
+
1263
+
1264
+ Parameters
1265
+ ----------
1266
+ hourly : bool, default False
1267
+ Run the workflow hourly.
1268
+ daily : bool, default True
1269
+ Run the workflow daily.
1270
+ weekly : bool, default False
1271
+ Run the workflow weekly.
1272
+ cron : str, optional, default None
1273
+ Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
1274
+ specified by this expression.
1275
+ timezone : str, optional, default None
1276
+ Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
1277
+ which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
1278
+ """
1279
+ ...
1280
+
1281
+ @typing.overload
1282
+ def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1283
+ ...
1284
+
1285
+ def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
1286
+ """
1287
+ Specifies the times when the flow should be run when running on a
1288
+ production scheduler.
1289
+
1290
+
1291
+ Parameters
1292
+ ----------
1293
+ hourly : bool, default False
1294
+ Run the workflow hourly.
1295
+ daily : bool, default True
1296
+ Run the workflow daily.
1297
+ weekly : bool, default False
1298
+ Run the workflow weekly.
1299
+ cron : str, optional, default None
1300
+ Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
1301
+ specified by this expression.
1302
+ timezone : str, optional, default None
1303
+ Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
1304
+ which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
1305
+ """
1306
+ ...
1307
+
1308
+ def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1309
+ """
1310
+ Specifies what flows belong to the same project.
1311
+
1312
+ A project-specific namespace is created for all flows that
1313
+ use the same `@project(name)`.
1314
+
1315
+
1316
+ Parameters
1317
+ ----------
1318
+ name : str
1319
+ Project name. Make sure that the name is unique amongst all
1320
+ projects that use the same production scheduler. The name may
1321
+ contain only lowercase alphanumeric characters and underscores.
1322
+
1323
+ branch : Optional[str], default None
1324
+ The branch to use. If not specified, the branch is set to
1325
+ `user.<username>` unless `production` is set to `True`. This can
1326
+ also be set on the command line using `--branch` as a top-level option.
1327
+ It is an error to specify `branch` in the decorator and on the command line.
1328
+
1329
+ production : bool, default False
1330
+ Whether or not the branch is the production branch. This can also be set on the
1331
+ command line using `--production` as a top-level option. It is an error to specify
1332
+ `production` in the decorator and on the command line.
1333
+ The project branch name will be:
1334
+ - if `branch` is specified:
1335
+ - if `production` is True: `prod.<branch>`
1336
+ - if `production` is False: `test.<branch>`
1337
+ - if `branch` is not specified:
1338
+ - if `production` is True: `prod`
1339
+ - if `production` is False: `user.<username>`
1340
+ """
1341
+ ...
1342
+
1253
1343
  @typing.overload
1254
1344
  def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1255
1345
  """
@@ -1343,54 +1433,10 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
1343
1433
  """
1344
1434
  ...
1345
1435
 
1346
- @typing.overload
1347
- def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1348
- """
1349
- Specifies the PyPI packages for all steps of the flow.
1350
-
1351
- Use `@pypi_base` to set common packages required by all
1352
- steps and use `@pypi` to specify step-specific overrides.
1353
-
1354
- Parameters
1355
- ----------
1356
- packages : Dict[str, str], default: {}
1357
- Packages to use for this flow. The key is the name of the package
1358
- and the value is the version to use.
1359
- python : str, optional, default: None
1360
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
1361
- that the version used will correspond to the version of the Python interpreter used to start the run.
1362
- """
1363
- ...
1364
-
1365
- @typing.overload
1366
- def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1367
- ...
1368
-
1369
- def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
1370
- """
1371
- Specifies the PyPI packages for all steps of the flow.
1372
-
1373
- Use `@pypi_base` to set common packages required by all
1374
- steps and use `@pypi` to specify step-specific overrides.
1375
-
1376
- Parameters
1377
- ----------
1378
- packages : Dict[str, str], default: {}
1379
- Packages to use for this flow. The key is the name of the package
1380
- and the value is the version to use.
1381
- python : str, optional, default: None
1382
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
1383
- that the version used will correspond to the version of the Python interpreter used to start the run.
1384
- """
1385
- ...
1386
-
1387
- def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1436
+ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1388
1437
  """
1389
- The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
1390
- before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
1391
- and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
1392
- added as a flow decorators. Adding more than one decorator will ensure that `start` step
1393
- starts only after all sensors finish.
1438
+ The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
1439
+ This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
1394
1440
 
1395
1441
 
1396
1442
  Parameters
@@ -1412,53 +1458,21 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
1412
1458
  Name of the sensor on Airflow
1413
1459
  description : str
1414
1460
  Description of sensor in the Airflow UI
1415
- bucket_key : Union[str, List[str]]
1416
- The key(s) being waited on. Supports full s3:// style url or relative path from root level.
1417
- When it's specified as a full s3:// url, please leave `bucket_name` as None
1418
- bucket_name : str
1419
- Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
1420
- When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
1421
- wildcard_match : bool
1422
- whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
1423
- aws_conn_id : str
1424
- a reference to the s3 connection on Airflow. (Default: None)
1425
- verify : bool
1426
- Whether or not to verify SSL certificates for S3 connection. (Default: None)
1427
- """
1428
- ...
1429
-
1430
- def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1431
- """
1432
- Specifies what flows belong to the same project.
1433
-
1434
- A project-specific namespace is created for all flows that
1435
- use the same `@project(name)`.
1436
-
1437
-
1438
- Parameters
1439
- ----------
1440
- name : str
1441
- Project name. Make sure that the name is unique amongst all
1442
- projects that use the same production scheduler. The name may
1443
- contain only lowercase alphanumeric characters and underscores.
1444
-
1445
- branch : Optional[str], default None
1446
- The branch to use. If not specified, the branch is set to
1447
- `user.<username>` unless `production` is set to `True`. This can
1448
- also be set on the command line using `--branch` as a top-level option.
1449
- It is an error to specify `branch` in the decorator and on the command line.
1450
-
1451
- production : bool, default False
1452
- Whether or not the branch is the production branch. This can also be set on the
1453
- command line using `--production` as a top-level option. It is an error to specify
1454
- `production` in the decorator and on the command line.
1455
- The project branch name will be:
1456
- - if `branch` is specified:
1457
- - if `production` is True: `prod.<branch>`
1458
- - if `production` is False: `test.<branch>`
1459
- - if `branch` is not specified:
1460
- - if `production` is True: `prod`
1461
- - if `production` is False: `user.<username>`
1461
+ external_dag_id : str
1462
+ The dag_id that contains the task you want to wait for.
1463
+ external_task_ids : List[str]
1464
+ The list of task_ids that you want to wait for.
1465
+ If None (default value) the sensor waits for the DAG. (Default: None)
1466
+ allowed_states : List[str]
1467
+ Iterable of allowed states, (Default: ['success'])
1468
+ failed_states : List[str]
1469
+ Iterable of failed or dis-allowed states. (Default: None)
1470
+ execution_delta : datetime.timedelta
1471
+ time difference with the previous execution to look at,
1472
+ the default is the same logical date as the current task or DAG. (Default: None)
1473
+ check_existence: bool
1474
+ Set to True to check if the external task exists or check if
1475
+ the DAG to wait for exists. (Default: True)
1462
1476
  """
1463
1477
  ...
1464
1478
 
@@ -1563,6 +1577,49 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
1563
1577
  """
1564
1578
  ...
1565
1579
 
1580
+ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1581
+ """
1582
+ The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
1583
+ before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
1584
+ and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
1585
+ added as a flow decorators. Adding more than one decorator will ensure that `start` step
1586
+ starts only after all sensors finish.
1587
+
1588
+
1589
+ Parameters
1590
+ ----------
1591
+ timeout : int
1592
+ Time, in seconds before the task times out and fails. (Default: 3600)
1593
+ poke_interval : int
1594
+ Time in seconds that the job should wait in between each try. (Default: 60)
1595
+ mode : str
1596
+ How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
1597
+ exponential_backoff : bool
1598
+ allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
1599
+ pool : str
1600
+ the slot pool this task should run in,
1601
+ slot pools are a way to limit concurrency for certain tasks. (Default:None)
1602
+ soft_fail : bool
1603
+ Set to true to mark the task as SKIPPED on failure. (Default: False)
1604
+ name : str
1605
+ Name of the sensor on Airflow
1606
+ description : str
1607
+ Description of sensor in the Airflow UI
1608
+ bucket_key : Union[str, List[str]]
1609
+ The key(s) being waited on. Supports full s3:// style url or relative path from root level.
1610
+ When it's specified as a full s3:// url, please leave `bucket_name` as None
1611
+ bucket_name : str
1612
+ Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
1613
+ When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
1614
+ wildcard_match : bool
1615
+ whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
1616
+ aws_conn_id : str
1617
+ a reference to the s3 connection on Airflow. (Default: None)
1618
+ verify : bool
1619
+ Whether or not to verify SSL certificates for S3 connection. (Default: None)
1620
+ """
1621
+ ...
1622
+
1566
1623
  @typing.overload
1567
1624
  def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1568
1625
  """
@@ -1614,49 +1671,6 @@ def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packa
1614
1671
  """
1615
1672
  ...
1616
1673
 
1617
- def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1618
- """
1619
- The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
1620
- This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
1621
-
1622
-
1623
- Parameters
1624
- ----------
1625
- timeout : int
1626
- Time, in seconds before the task times out and fails. (Default: 3600)
1627
- poke_interval : int
1628
- Time in seconds that the job should wait in between each try. (Default: 60)
1629
- mode : str
1630
- How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
1631
- exponential_backoff : bool
1632
- allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
1633
- pool : str
1634
- the slot pool this task should run in,
1635
- slot pools are a way to limit concurrency for certain tasks. (Default:None)
1636
- soft_fail : bool
1637
- Set to true to mark the task as SKIPPED on failure. (Default: False)
1638
- name : str
1639
- Name of the sensor on Airflow
1640
- description : str
1641
- Description of sensor in the Airflow UI
1642
- external_dag_id : str
1643
- The dag_id that contains the task you want to wait for.
1644
- external_task_ids : List[str]
1645
- The list of task_ids that you want to wait for.
1646
- If None (default value) the sensor waits for the DAG. (Default: None)
1647
- allowed_states : List[str]
1648
- Iterable of allowed states, (Default: ['success'])
1649
- failed_states : List[str]
1650
- Iterable of failed or dis-allowed states. (Default: None)
1651
- execution_delta : datetime.timedelta
1652
- time difference with the previous execution to look at,
1653
- the default is the same logical date as the current task or DAG. (Default: None)
1654
- check_existence: bool
1655
- Set to True to check if the external task exists or check if
1656
- the DAG to wait for exists. (Default: True)
1657
- """
1658
- ...
1659
-
1660
1674
  def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
1661
1675
  """
1662
1676
  Allows setting external datastores to save data for the
@@ -1772,53 +1786,43 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
1772
1786
  ...
1773
1787
 
1774
1788
  @typing.overload
1775
- def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1789
+ def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1776
1790
  """
1777
- Specifies the times when the flow should be run when running on a
1778
- production scheduler.
1791
+ Specifies the PyPI packages for all steps of the flow.
1779
1792
 
1793
+ Use `@pypi_base` to set common packages required by all
1794
+ steps and use `@pypi` to specify step-specific overrides.
1780
1795
 
1781
1796
  Parameters
1782
1797
  ----------
1783
- hourly : bool, default False
1784
- Run the workflow hourly.
1785
- daily : bool, default True
1786
- Run the workflow daily.
1787
- weekly : bool, default False
1788
- Run the workflow weekly.
1789
- cron : str, optional, default None
1790
- Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
1791
- specified by this expression.
1792
- timezone : str, optional, default None
1793
- Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
1794
- which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
1798
+ packages : Dict[str, str], default: {}
1799
+ Packages to use for this flow. The key is the name of the package
1800
+ and the value is the version to use.
1801
+ python : str, optional, default: None
1802
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
1803
+ that the version used will correspond to the version of the Python interpreter used to start the run.
1795
1804
  """
1796
1805
  ...
1797
1806
 
1798
1807
  @typing.overload
1799
- def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1808
+ def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1800
1809
  ...
1801
1810
 
1802
- def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
1811
+ def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
1803
1812
  """
1804
- Specifies the times when the flow should be run when running on a
1805
- production scheduler.
1813
+ Specifies the PyPI packages for all steps of the flow.
1806
1814
 
1815
+ Use `@pypi_base` to set common packages required by all
1816
+ steps and use `@pypi` to specify step-specific overrides.
1807
1817
 
1808
1818
  Parameters
1809
1819
  ----------
1810
- hourly : bool, default False
1811
- Run the workflow hourly.
1812
- daily : bool, default True
1813
- Run the workflow daily.
1814
- weekly : bool, default False
1815
- Run the workflow weekly.
1816
- cron : str, optional, default None
1817
- Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
1818
- specified by this expression.
1819
- timezone : str, optional, default None
1820
- Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
1821
- which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
1820
+ packages : Dict[str, str], default: {}
1821
+ Packages to use for this flow. The key is the name of the package
1822
+ and the value is the version to use.
1823
+ python : str, optional, default: None
1824
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
1825
+ that the version used will correspond to the version of the Python interpreter used to start the run.
1822
1826
  """
1823
1827
  ...
1824
1828