ob-metaflow-stubs 6.0.3.188rc1__py2.py3-none-any.whl → 6.0.3.188rc2__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +925 -925
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +5 -5
- metaflow-stubs/client/filecache.pyi +1 -1
- metaflow-stubs/events.pyi +1 -1
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +2 -2
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +4 -4
- metaflow-stubs/info_file.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +31 -31
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +4 -6
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +5 -45
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +15 -30
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +4 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +22 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +53 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +407 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +64 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +214 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +1 -11
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/parameters.pyi +4 -4
- metaflow-stubs/plugins/__init__.pyi +11 -11
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +4 -4
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +1 -1
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +1 -1
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +3 -3
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +1 -1
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +6 -6
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +1 -1
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_decorators.pyi +5 -5
- metaflow-stubs/user_configs/config_options.pyi +3 -3
- metaflow-stubs/user_configs/config_parameters.pyi +6 -6
- {ob_metaflow_stubs-6.0.3.188rc1.dist-info → ob_metaflow_stubs-6.0.3.188rc2.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.3.188rc2.dist-info/RECORD +241 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/cli_to_config.pyi +0 -17
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/secrets.pyi +0 -46
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/validations.pyi +0 -24
- ob_metaflow_stubs-6.0.3.188rc1.dist-info/RECORD +0 -239
- {ob_metaflow_stubs-6.0.3.188rc1.dist-info → ob_metaflow_stubs-6.0.3.188rc2.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.3.188rc1.dist-info → ob_metaflow_stubs-6.0.3.188rc2.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,15 +1,15 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
3
|
# MF version: 2.15.18.1+obcheckpoint(0.2.4);ob(v1) #
|
4
|
-
# Generated on 2025-07-
|
4
|
+
# Generated on 2025-07-09T05:17:09.660228 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
8
8
|
|
9
9
|
import typing
|
10
10
|
if typing.TYPE_CHECKING:
|
11
|
-
import datetime
|
12
11
|
import typing
|
12
|
+
import datetime
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
15
15
|
|
@@ -35,10 +35,10 @@ from .user_configs.config_parameters import ConfigValue as ConfigValue
|
|
35
35
|
from .user_configs.config_parameters import config_expr as config_expr
|
36
36
|
from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
|
37
37
|
from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
|
38
|
+
from . import metaflow_git as metaflow_git
|
39
|
+
from . import cards as cards
|
38
40
|
from . import events as events
|
39
41
|
from . import tuple_util as tuple_util
|
40
|
-
from . import cards as cards
|
41
|
-
from . import metaflow_git as metaflow_git
|
42
42
|
from . import runner as runner
|
43
43
|
from . import plugins as plugins
|
44
44
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
@@ -156,135 +156,85 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
156
156
|
...
|
157
157
|
|
158
158
|
@typing.overload
|
159
|
-
def
|
159
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
160
160
|
"""
|
161
|
-
|
161
|
+
Specifies the resources needed when executing this step.
|
162
162
|
|
163
|
-
|
164
|
-
|
165
|
-
```python
|
166
|
-
@model
|
167
|
-
@step
|
168
|
-
def train(self):
|
169
|
-
# current.model.save returns a dictionary reference to the model saved
|
170
|
-
self.my_model = current.model.save(
|
171
|
-
path_to_my_model,
|
172
|
-
label="my_model",
|
173
|
-
metadata={
|
174
|
-
"epochs": 10,
|
175
|
-
"batch-size": 32,
|
176
|
-
"learning-rate": 0.001,
|
177
|
-
}
|
178
|
-
)
|
179
|
-
self.next(self.test)
|
163
|
+
Use `@resources` to specify the resource requirements
|
164
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
180
165
|
|
181
|
-
|
182
|
-
@step
|
183
|
-
def test(self):
|
184
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
185
|
-
# where the key is the name of the artifact and the value is the path to the model
|
186
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
187
|
-
self.next(self.end)
|
166
|
+
You can choose the compute layer on the command line by executing e.g.
|
188
167
|
```
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
# current.model.load returns the path to the model loaded
|
195
|
-
checkpoint_path = current.model.load(
|
196
|
-
self.checkpoint_key,
|
197
|
-
)
|
198
|
-
model_path = current.model.load(
|
199
|
-
self.model,
|
200
|
-
)
|
201
|
-
self.next(self.test)
|
168
|
+
python myflow.py run --with batch
|
169
|
+
```
|
170
|
+
or
|
171
|
+
```
|
172
|
+
python myflow.py run --with kubernetes
|
202
173
|
```
|
174
|
+
which executes the flow on the desired system using the
|
175
|
+
requirements specified in `@resources`.
|
203
176
|
|
204
177
|
|
205
178
|
Parameters
|
206
179
|
----------
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
180
|
+
cpu : int, default 1
|
181
|
+
Number of CPUs required for this step.
|
182
|
+
gpu : int, optional, default None
|
183
|
+
Number of GPUs required for this step.
|
184
|
+
disk : int, optional, default None
|
185
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
186
|
+
memory : int, default 4096
|
187
|
+
Memory size (in MB) required for this step.
|
188
|
+
shared_memory : int, optional, default None
|
189
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
190
|
+
This parameter maps to the `--shm-size` option in Docker.
|
216
191
|
"""
|
217
192
|
...
|
218
193
|
|
219
194
|
@typing.overload
|
220
|
-
def
|
195
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
221
196
|
...
|
222
197
|
|
223
198
|
@typing.overload
|
224
|
-
def
|
199
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
225
200
|
...
|
226
201
|
|
227
|
-
def
|
202
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
228
203
|
"""
|
229
|
-
|
204
|
+
Specifies the resources needed when executing this step.
|
230
205
|
|
231
|
-
|
232
|
-
|
233
|
-
```python
|
234
|
-
@model
|
235
|
-
@step
|
236
|
-
def train(self):
|
237
|
-
# current.model.save returns a dictionary reference to the model saved
|
238
|
-
self.my_model = current.model.save(
|
239
|
-
path_to_my_model,
|
240
|
-
label="my_model",
|
241
|
-
metadata={
|
242
|
-
"epochs": 10,
|
243
|
-
"batch-size": 32,
|
244
|
-
"learning-rate": 0.001,
|
245
|
-
}
|
246
|
-
)
|
247
|
-
self.next(self.test)
|
206
|
+
Use `@resources` to specify the resource requirements
|
207
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
248
208
|
|
249
|
-
|
250
|
-
@step
|
251
|
-
def test(self):
|
252
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
253
|
-
# where the key is the name of the artifact and the value is the path to the model
|
254
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
255
|
-
self.next(self.end)
|
209
|
+
You can choose the compute layer on the command line by executing e.g.
|
256
210
|
```
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
@step
|
261
|
-
def train(self):
|
262
|
-
# current.model.load returns the path to the model loaded
|
263
|
-
checkpoint_path = current.model.load(
|
264
|
-
self.checkpoint_key,
|
265
|
-
)
|
266
|
-
model_path = current.model.load(
|
267
|
-
self.model,
|
268
|
-
)
|
269
|
-
self.next(self.test)
|
211
|
+
python myflow.py run --with batch
|
212
|
+
```
|
213
|
+
or
|
270
214
|
```
|
215
|
+
python myflow.py run --with kubernetes
|
216
|
+
```
|
217
|
+
which executes the flow on the desired system using the
|
218
|
+
requirements specified in `@resources`.
|
271
219
|
|
272
220
|
|
273
221
|
Parameters
|
274
222
|
----------
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
223
|
+
cpu : int, default 1
|
224
|
+
Number of CPUs required for this step.
|
225
|
+
gpu : int, optional, default None
|
226
|
+
Number of GPUs required for this step.
|
227
|
+
disk : int, optional, default None
|
228
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
229
|
+
memory : int, default 4096
|
230
|
+
Memory size (in MB) required for this step.
|
231
|
+
shared_memory : int, optional, default None
|
232
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
233
|
+
This parameter maps to the `--shm-size` option in Docker.
|
284
234
|
"""
|
285
235
|
...
|
286
236
|
|
287
|
-
def
|
237
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
288
238
|
"""
|
289
239
|
Specifies that this step should execute on DGX cloud.
|
290
240
|
|
@@ -295,22 +245,67 @@ def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Cal
|
|
295
245
|
Number of GPUs to use.
|
296
246
|
gpu_type : str
|
297
247
|
Type of Nvidia GPU to use.
|
248
|
+
queue_timeout : int
|
249
|
+
Time to keep the job in NVCF's queue.
|
298
250
|
"""
|
299
251
|
...
|
300
252
|
|
301
|
-
|
253
|
+
@typing.overload
|
254
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
302
255
|
"""
|
303
|
-
Specifies
|
256
|
+
Specifies a timeout for your step.
|
257
|
+
|
258
|
+
This decorator is useful if this step may hang indefinitely.
|
259
|
+
|
260
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
261
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
262
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
263
|
+
|
264
|
+
Note that all the values specified in parameters are added together so if you specify
|
265
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
304
266
|
|
305
267
|
|
306
268
|
Parameters
|
307
269
|
----------
|
308
|
-
|
309
|
-
Number of
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
270
|
+
seconds : int, default 0
|
271
|
+
Number of seconds to wait prior to timing out.
|
272
|
+
minutes : int, default 0
|
273
|
+
Number of minutes to wait prior to timing out.
|
274
|
+
hours : int, default 0
|
275
|
+
Number of hours to wait prior to timing out.
|
276
|
+
"""
|
277
|
+
...
|
278
|
+
|
279
|
+
@typing.overload
|
280
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
281
|
+
...
|
282
|
+
|
283
|
+
@typing.overload
|
284
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
285
|
+
...
|
286
|
+
|
287
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
288
|
+
"""
|
289
|
+
Specifies a timeout for your step.
|
290
|
+
|
291
|
+
This decorator is useful if this step may hang indefinitely.
|
292
|
+
|
293
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
294
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
295
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
296
|
+
|
297
|
+
Note that all the values specified in parameters are added together so if you specify
|
298
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
299
|
+
|
300
|
+
|
301
|
+
Parameters
|
302
|
+
----------
|
303
|
+
seconds : int, default 0
|
304
|
+
Number of seconds to wait prior to timing out.
|
305
|
+
minutes : int, default 0
|
306
|
+
Number of minutes to wait prior to timing out.
|
307
|
+
hours : int, default 0
|
308
|
+
Number of hours to wait prior to timing out.
|
314
309
|
"""
|
315
310
|
...
|
316
311
|
|
@@ -365,54 +360,110 @@ def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
365
360
|
"""
|
366
361
|
...
|
367
362
|
|
368
|
-
|
369
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
363
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
370
364
|
"""
|
371
|
-
Specifies that
|
372
|
-
|
373
|
-
The decorator will create an optional artifact, specified by `var`, which
|
374
|
-
contains the exception raised. You can use it to detect the presence
|
375
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
376
|
-
are missing.
|
365
|
+
Specifies that this step should execute on DGX cloud.
|
377
366
|
|
378
367
|
|
379
368
|
Parameters
|
380
369
|
----------
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
Determines whether or not the exception is printed to
|
386
|
-
stdout when caught.
|
370
|
+
gpu : int
|
371
|
+
Number of GPUs to use.
|
372
|
+
gpu_type : str
|
373
|
+
Type of Nvidia GPU to use.
|
387
374
|
"""
|
388
375
|
...
|
389
376
|
|
390
|
-
|
391
|
-
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
392
|
-
...
|
393
|
-
|
394
|
-
@typing.overload
|
395
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
396
|
-
...
|
397
|
-
|
398
|
-
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
377
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
399
378
|
"""
|
400
|
-
|
401
|
-
|
402
|
-
The decorator will create an optional artifact, specified by `var`, which
|
403
|
-
contains the exception raised. You can use it to detect the presence
|
404
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
405
|
-
are missing.
|
406
|
-
|
379
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
407
380
|
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
381
|
+
User code call
|
382
|
+
--------------
|
383
|
+
@ollama(
|
384
|
+
models=[...],
|
385
|
+
...
|
386
|
+
)
|
387
|
+
|
388
|
+
Valid backend options
|
389
|
+
---------------------
|
390
|
+
- 'local': Run as a separate process on the local task machine.
|
391
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
392
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
393
|
+
|
394
|
+
Valid model options
|
395
|
+
-------------------
|
396
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
397
|
+
|
398
|
+
|
399
|
+
Parameters
|
400
|
+
----------
|
401
|
+
models: list[str]
|
402
|
+
List of Ollama containers running models in sidecars.
|
403
|
+
backend: str
|
404
|
+
Determines where and how to run the Ollama process.
|
405
|
+
force_pull: bool
|
406
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
407
|
+
cache_update_policy: str
|
408
|
+
Cache update policy: "auto", "force", or "never".
|
409
|
+
force_cache_update: bool
|
410
|
+
Simple override for "force" cache update policy.
|
411
|
+
debug: bool
|
412
|
+
Whether to turn on verbose debugging logs.
|
413
|
+
circuit_breaker_config: dict
|
414
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
415
|
+
timeout_config: dict
|
416
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
417
|
+
"""
|
418
|
+
...
|
419
|
+
|
420
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
421
|
+
"""
|
422
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
423
|
+
|
424
|
+
User code call
|
425
|
+
--------------
|
426
|
+
@vllm(
|
427
|
+
model="...",
|
428
|
+
...
|
429
|
+
)
|
430
|
+
|
431
|
+
Valid backend options
|
432
|
+
---------------------
|
433
|
+
- 'local': Run as a separate process on the local task machine.
|
434
|
+
|
435
|
+
Valid model options
|
436
|
+
-------------------
|
437
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
438
|
+
|
439
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
440
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
441
|
+
|
442
|
+
|
443
|
+
Parameters
|
444
|
+
----------
|
445
|
+
model: str
|
446
|
+
HuggingFace model identifier to be served by vLLM.
|
447
|
+
backend: str
|
448
|
+
Determines where and how to run the vLLM process.
|
449
|
+
openai_api_server: bool
|
450
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
451
|
+
Default is False (uses native engine).
|
452
|
+
Set to True for backward compatibility with existing code.
|
453
|
+
debug: bool
|
454
|
+
Whether to turn on verbose debugging logs.
|
455
|
+
card_refresh_interval: int
|
456
|
+
Interval in seconds for refreshing the vLLM status card.
|
457
|
+
Only used when openai_api_server=True.
|
458
|
+
max_retries: int
|
459
|
+
Maximum number of retries checking for vLLM server startup.
|
460
|
+
Only used when openai_api_server=True.
|
461
|
+
retry_alert_frequency: int
|
462
|
+
Frequency of alert logs for vLLM server startup retries.
|
463
|
+
Only used when openai_api_server=True.
|
464
|
+
engine_args : dict
|
465
|
+
Additional keyword arguments to pass to the vLLM engine.
|
466
|
+
For example, `tensor_parallel_size=2`.
|
416
467
|
"""
|
417
468
|
...
|
418
469
|
|
@@ -476,192 +527,384 @@ def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
476
527
|
...
|
477
528
|
|
478
529
|
@typing.overload
|
479
|
-
def
|
530
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
480
531
|
"""
|
481
|
-
Specifies the
|
482
|
-
to a step needs to be retried.
|
483
|
-
|
484
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
485
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
486
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
532
|
+
Specifies that the step will success under all circumstances.
|
487
533
|
|
488
|
-
|
489
|
-
|
490
|
-
|
534
|
+
The decorator will create an optional artifact, specified by `var`, which
|
535
|
+
contains the exception raised. You can use it to detect the presence
|
536
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
537
|
+
are missing.
|
491
538
|
|
492
539
|
|
493
540
|
Parameters
|
494
541
|
----------
|
495
|
-
|
496
|
-
|
497
|
-
|
498
|
-
|
542
|
+
var : str, optional, default None
|
543
|
+
Name of the artifact in which to store the caught exception.
|
544
|
+
If not specified, the exception is not stored.
|
545
|
+
print_exception : bool, default True
|
546
|
+
Determines whether or not the exception is printed to
|
547
|
+
stdout when caught.
|
499
548
|
"""
|
500
549
|
...
|
501
550
|
|
502
551
|
@typing.overload
|
503
|
-
def
|
552
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
504
553
|
...
|
505
554
|
|
506
555
|
@typing.overload
|
507
|
-
def
|
556
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
508
557
|
...
|
509
558
|
|
510
|
-
def
|
559
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
511
560
|
"""
|
512
|
-
Specifies the
|
513
|
-
to a step needs to be retried.
|
514
|
-
|
515
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
516
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
517
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
561
|
+
Specifies that the step will success under all circumstances.
|
518
562
|
|
519
|
-
|
520
|
-
|
521
|
-
|
563
|
+
The decorator will create an optional artifact, specified by `var`, which
|
564
|
+
contains the exception raised. You can use it to detect the presence
|
565
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
566
|
+
are missing.
|
522
567
|
|
523
568
|
|
524
569
|
Parameters
|
525
570
|
----------
|
526
|
-
|
527
|
-
|
528
|
-
|
529
|
-
|
571
|
+
var : str, optional, default None
|
572
|
+
Name of the artifact in which to store the caught exception.
|
573
|
+
If not specified, the exception is not stored.
|
574
|
+
print_exception : bool, default True
|
575
|
+
Determines whether or not the exception is printed to
|
576
|
+
stdout when caught.
|
530
577
|
"""
|
531
578
|
...
|
532
579
|
|
533
|
-
def
|
580
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
534
581
|
"""
|
535
|
-
|
582
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
536
583
|
|
537
|
-
|
538
|
-
--------------
|
539
|
-
@vllm(
|
540
|
-
model="...",
|
541
|
-
...
|
542
|
-
)
|
584
|
+
> Examples
|
543
585
|
|
544
|
-
|
545
|
-
|
546
|
-
|
586
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
587
|
+
```python
|
588
|
+
@huggingface_hub
|
589
|
+
@step
|
590
|
+
def pull_model_from_huggingface(self):
|
591
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
592
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
593
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
594
|
+
# value of the function is a reference to the model in the backend storage.
|
595
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
547
596
|
|
548
|
-
|
549
|
-
|
550
|
-
|
597
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
598
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
599
|
+
repo_id=self.model_id,
|
600
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
601
|
+
)
|
602
|
+
self.next(self.train)
|
603
|
+
```
|
551
604
|
|
552
|
-
|
553
|
-
|
605
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
606
|
+
```python
|
607
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
608
|
+
@step
|
609
|
+
def pull_model_from_huggingface(self):
|
610
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
611
|
+
```
|
612
|
+
|
613
|
+
```python
|
614
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
615
|
+
@step
|
616
|
+
def finetune_model(self):
|
617
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
618
|
+
# path_to_model will be /my-directory
|
619
|
+
```
|
620
|
+
|
621
|
+
```python
|
622
|
+
# Takes all the arguments passed to `snapshot_download`
|
623
|
+
# except for `local_dir`
|
624
|
+
@huggingface_hub(load=[
|
625
|
+
{
|
626
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
627
|
+
},
|
628
|
+
{
|
629
|
+
"repo_id": "myorg/mistral-lora",
|
630
|
+
"repo_type": "model",
|
631
|
+
},
|
632
|
+
])
|
633
|
+
@step
|
634
|
+
def finetune_model(self):
|
635
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
636
|
+
# path_to_model will be /my-directory
|
637
|
+
```
|
554
638
|
|
555
639
|
|
556
640
|
Parameters
|
557
641
|
----------
|
558
|
-
|
559
|
-
|
560
|
-
|
561
|
-
|
562
|
-
|
563
|
-
|
564
|
-
|
565
|
-
|
566
|
-
|
567
|
-
|
568
|
-
|
569
|
-
|
570
|
-
|
571
|
-
|
572
|
-
|
573
|
-
Only used when openai_api_server=True.
|
574
|
-
retry_alert_frequency: int
|
575
|
-
Frequency of alert logs for vLLM server startup retries.
|
576
|
-
Only used when openai_api_server=True.
|
577
|
-
engine_args : dict
|
578
|
-
Additional keyword arguments to pass to the vLLM engine.
|
579
|
-
For example, `tensor_parallel_size=2`.
|
642
|
+
temp_dir_root : str, optional
|
643
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
644
|
+
|
645
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
646
|
+
The list of repos (models/datasets) to load.
|
647
|
+
|
648
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
649
|
+
|
650
|
+
- If repo (model/dataset) is not found in the datastore:
|
651
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
652
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
653
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
654
|
+
|
655
|
+
- If repo is found in the datastore:
|
656
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
580
657
|
"""
|
581
658
|
...
|
582
659
|
|
583
660
|
@typing.overload
|
584
|
-
def
|
661
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
585
662
|
"""
|
586
|
-
|
587
|
-
|
663
|
+
Enables loading / saving of models within a step.
|
664
|
+
|
665
|
+
> Examples
|
666
|
+
- Saving Models
|
667
|
+
```python
|
668
|
+
@model
|
669
|
+
@step
|
670
|
+
def train(self):
|
671
|
+
# current.model.save returns a dictionary reference to the model saved
|
672
|
+
self.my_model = current.model.save(
|
673
|
+
path_to_my_model,
|
674
|
+
label="my_model",
|
675
|
+
metadata={
|
676
|
+
"epochs": 10,
|
677
|
+
"batch-size": 32,
|
678
|
+
"learning-rate": 0.001,
|
679
|
+
}
|
680
|
+
)
|
681
|
+
self.next(self.test)
|
682
|
+
|
683
|
+
@model(load="my_model")
|
684
|
+
@step
|
685
|
+
def test(self):
|
686
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
687
|
+
# where the key is the name of the artifact and the value is the path to the model
|
688
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
689
|
+
self.next(self.end)
|
690
|
+
```
|
691
|
+
|
692
|
+
- Loading models
|
693
|
+
```python
|
694
|
+
@step
|
695
|
+
def train(self):
|
696
|
+
# current.model.load returns the path to the model loaded
|
697
|
+
checkpoint_path = current.model.load(
|
698
|
+
self.checkpoint_key,
|
699
|
+
)
|
700
|
+
model_path = current.model.load(
|
701
|
+
self.model,
|
702
|
+
)
|
703
|
+
self.next(self.test)
|
704
|
+
```
|
705
|
+
|
706
|
+
|
707
|
+
Parameters
|
708
|
+
----------
|
709
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
710
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
711
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
712
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
713
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
714
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
715
|
+
|
716
|
+
temp_dir_root : str, default: None
|
717
|
+
The root directory under which `current.model.loaded` will store loaded models
|
588
718
|
"""
|
589
719
|
...
|
590
720
|
|
591
721
|
@typing.overload
|
592
|
-
def
|
722
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
593
723
|
...
|
594
724
|
|
595
|
-
|
725
|
+
@typing.overload
|
726
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
727
|
+
...
|
728
|
+
|
729
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
596
730
|
"""
|
597
|
-
|
598
|
-
|
731
|
+
Enables loading / saving of models within a step.
|
732
|
+
|
733
|
+
> Examples
|
734
|
+
- Saving Models
|
735
|
+
```python
|
736
|
+
@model
|
737
|
+
@step
|
738
|
+
def train(self):
|
739
|
+
# current.model.save returns a dictionary reference to the model saved
|
740
|
+
self.my_model = current.model.save(
|
741
|
+
path_to_my_model,
|
742
|
+
label="my_model",
|
743
|
+
metadata={
|
744
|
+
"epochs": 10,
|
745
|
+
"batch-size": 32,
|
746
|
+
"learning-rate": 0.001,
|
747
|
+
}
|
748
|
+
)
|
749
|
+
self.next(self.test)
|
750
|
+
|
751
|
+
@model(load="my_model")
|
752
|
+
@step
|
753
|
+
def test(self):
|
754
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
755
|
+
# where the key is the name of the artifact and the value is the path to the model
|
756
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
757
|
+
self.next(self.end)
|
758
|
+
```
|
759
|
+
|
760
|
+
- Loading models
|
761
|
+
```python
|
762
|
+
@step
|
763
|
+
def train(self):
|
764
|
+
# current.model.load returns the path to the model loaded
|
765
|
+
checkpoint_path = current.model.load(
|
766
|
+
self.checkpoint_key,
|
767
|
+
)
|
768
|
+
model_path = current.model.load(
|
769
|
+
self.model,
|
770
|
+
)
|
771
|
+
self.next(self.test)
|
772
|
+
```
|
773
|
+
|
774
|
+
|
775
|
+
Parameters
|
776
|
+
----------
|
777
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
778
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
779
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
780
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
781
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
782
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
783
|
+
|
784
|
+
temp_dir_root : str, default: None
|
785
|
+
The root directory under which `current.model.loaded` will store loaded models
|
599
786
|
"""
|
600
787
|
...
|
601
788
|
|
602
789
|
@typing.overload
|
603
|
-
def
|
790
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
604
791
|
"""
|
605
|
-
|
606
|
-
|
607
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
792
|
+
Specifies environment variables to be set prior to the execution of a step.
|
608
793
|
|
609
794
|
|
610
795
|
Parameters
|
611
796
|
----------
|
612
|
-
|
613
|
-
|
614
|
-
id : str, optional, default None
|
615
|
-
If multiple cards are present, use this id to identify this card.
|
616
|
-
options : Dict[str, Any], default {}
|
617
|
-
Options passed to the card. The contents depend on the card type.
|
618
|
-
timeout : int, default 45
|
619
|
-
Interrupt reporting if it takes more than this many seconds.
|
797
|
+
vars : Dict[str, str], default {}
|
798
|
+
Dictionary of environment variables to set.
|
620
799
|
"""
|
621
800
|
...
|
622
801
|
|
623
802
|
@typing.overload
|
624
|
-
def
|
803
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
625
804
|
...
|
626
805
|
|
627
806
|
@typing.overload
|
628
|
-
def
|
807
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
629
808
|
...
|
630
809
|
|
631
|
-
def
|
810
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
632
811
|
"""
|
633
|
-
|
634
|
-
|
635
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
812
|
+
Specifies environment variables to be set prior to the execution of a step.
|
636
813
|
|
637
814
|
|
638
815
|
Parameters
|
639
816
|
----------
|
640
|
-
|
641
|
-
|
642
|
-
id : str, optional, default None
|
643
|
-
If multiple cards are present, use this id to identify this card.
|
644
|
-
options : Dict[str, Any], default {}
|
645
|
-
Options passed to the card. The contents depend on the card type.
|
646
|
-
timeout : int, default 45
|
647
|
-
Interrupt reporting if it takes more than this many seconds.
|
648
|
-
"""
|
649
|
-
...
|
650
|
-
|
651
|
-
@typing.overload
|
652
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
653
|
-
"""
|
654
|
-
Internal decorator to support Fast bakery
|
817
|
+
vars : Dict[str, str], default {}
|
818
|
+
Dictionary of environment variables to set.
|
655
819
|
"""
|
656
820
|
...
|
657
821
|
|
658
|
-
|
659
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
660
|
-
...
|
661
|
-
|
662
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
822
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
663
823
|
"""
|
664
|
-
|
824
|
+
Specifies that this step should execute on Kubernetes.
|
825
|
+
|
826
|
+
|
827
|
+
Parameters
|
828
|
+
----------
|
829
|
+
cpu : int, default 1
|
830
|
+
Number of CPUs required for this step. If `@resources` is
|
831
|
+
also present, the maximum value from all decorators is used.
|
832
|
+
memory : int, default 4096
|
833
|
+
Memory size (in MB) required for this step. If
|
834
|
+
`@resources` is also present, the maximum value from all decorators is
|
835
|
+
used.
|
836
|
+
disk : int, default 10240
|
837
|
+
Disk size (in MB) required for this step. If
|
838
|
+
`@resources` is also present, the maximum value from all decorators is
|
839
|
+
used.
|
840
|
+
image : str, optional, default None
|
841
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
842
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
843
|
+
not, a default Docker image mapping to the current version of Python is used.
|
844
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
845
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
846
|
+
image_pull_secrets: List[str], default []
|
847
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
848
|
+
Kubernetes image pull secrets to use when pulling container images
|
849
|
+
in Kubernetes.
|
850
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
851
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
852
|
+
secrets : List[str], optional, default None
|
853
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
854
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
855
|
+
in Metaflow configuration.
|
856
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
857
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
858
|
+
Can be passed in as a comma separated string of values e.g.
|
859
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
860
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
861
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
862
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
863
|
+
gpu : int, optional, default None
|
864
|
+
Number of GPUs required for this step. A value of zero implies that
|
865
|
+
the scheduled node should not have GPUs.
|
866
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
867
|
+
The vendor of the GPUs to be used for this step.
|
868
|
+
tolerations : List[str], default []
|
869
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
870
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
871
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
872
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
873
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
874
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
875
|
+
use_tmpfs : bool, default False
|
876
|
+
This enables an explicit tmpfs mount for this step.
|
877
|
+
tmpfs_tempdir : bool, default True
|
878
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
879
|
+
tmpfs_size : int, optional, default: None
|
880
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
881
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
882
|
+
memory allocated for this step.
|
883
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
884
|
+
Path to tmpfs mount for this step.
|
885
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
886
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
887
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
888
|
+
shared_memory: int, optional
|
889
|
+
Shared memory size (in MiB) required for this step
|
890
|
+
port: int, optional
|
891
|
+
Port number to specify in the Kubernetes job object
|
892
|
+
compute_pool : str, optional, default None
|
893
|
+
Compute pool to be used for for this step.
|
894
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
895
|
+
hostname_resolution_timeout: int, default 10 * 60
|
896
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
897
|
+
Only applicable when @parallel is used.
|
898
|
+
qos: str, default: Burstable
|
899
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
900
|
+
|
901
|
+
security_context: Dict[str, Any], optional, default None
|
902
|
+
Container security context. Applies to the task container. Allows the following keys:
|
903
|
+
- privileged: bool, optional, default None
|
904
|
+
- allow_privilege_escalation: bool, optional, default None
|
905
|
+
- run_as_user: int, optional, default None
|
906
|
+
- run_as_group: int, optional, default None
|
907
|
+
- run_as_non_root: bool, optional, default None
|
665
908
|
"""
|
666
909
|
...
|
667
910
|
|
@@ -812,92 +1055,58 @@ def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
812
1055
|
"""
|
813
1056
|
...
|
814
1057
|
|
815
|
-
|
1058
|
+
@typing.overload
|
1059
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
816
1060
|
"""
|
817
|
-
Specifies
|
1061
|
+
Specifies the number of times the task corresponding
|
1062
|
+
to a step needs to be retried.
|
1063
|
+
|
1064
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
1065
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
1066
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
1067
|
+
|
1068
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
1069
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
1070
|
+
ensuring that the flow execution can continue.
|
818
1071
|
|
819
1072
|
|
820
1073
|
Parameters
|
821
1074
|
----------
|
822
|
-
|
823
|
-
Number of
|
824
|
-
|
825
|
-
|
826
|
-
|
827
|
-
|
828
|
-
|
829
|
-
|
830
|
-
|
831
|
-
|
832
|
-
|
833
|
-
|
834
|
-
|
835
|
-
|
836
|
-
|
837
|
-
|
838
|
-
|
839
|
-
|
840
|
-
|
841
|
-
Kubernetes image pull secrets to use when pulling container images
|
842
|
-
in Kubernetes.
|
843
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
844
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
845
|
-
secrets : List[str], optional, default None
|
846
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
847
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
848
|
-
in Metaflow configuration.
|
849
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
850
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
851
|
-
Can be passed in as a comma separated string of values e.g.
|
852
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
853
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
854
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
855
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
856
|
-
gpu : int, optional, default None
|
857
|
-
Number of GPUs required for this step. A value of zero implies that
|
858
|
-
the scheduled node should not have GPUs.
|
859
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
860
|
-
The vendor of the GPUs to be used for this step.
|
861
|
-
tolerations : List[str], default []
|
862
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
863
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
864
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
865
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
866
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
867
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
868
|
-
use_tmpfs : bool, default False
|
869
|
-
This enables an explicit tmpfs mount for this step.
|
870
|
-
tmpfs_tempdir : bool, default True
|
871
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
872
|
-
tmpfs_size : int, optional, default: None
|
873
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
874
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
875
|
-
memory allocated for this step.
|
876
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
877
|
-
Path to tmpfs mount for this step.
|
878
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
879
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
880
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
881
|
-
shared_memory: int, optional
|
882
|
-
Shared memory size (in MiB) required for this step
|
883
|
-
port: int, optional
|
884
|
-
Port number to specify in the Kubernetes job object
|
885
|
-
compute_pool : str, optional, default None
|
886
|
-
Compute pool to be used for for this step.
|
887
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
888
|
-
hostname_resolution_timeout: int, default 10 * 60
|
889
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
890
|
-
Only applicable when @parallel is used.
|
891
|
-
qos: str, default: Burstable
|
892
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
1075
|
+
times : int, default 3
|
1076
|
+
Number of times to retry this task.
|
1077
|
+
minutes_between_retries : int, default 2
|
1078
|
+
Number of minutes between retries.
|
1079
|
+
"""
|
1080
|
+
...
|
1081
|
+
|
1082
|
+
@typing.overload
|
1083
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1084
|
+
...
|
1085
|
+
|
1086
|
+
@typing.overload
|
1087
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1088
|
+
...
|
1089
|
+
|
1090
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
1091
|
+
"""
|
1092
|
+
Specifies the number of times the task corresponding
|
1093
|
+
to a step needs to be retried.
|
893
1094
|
|
894
|
-
|
895
|
-
|
896
|
-
|
897
|
-
|
898
|
-
|
899
|
-
|
900
|
-
|
1095
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
1096
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
1097
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
1098
|
+
|
1099
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
1100
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
1101
|
+
ensuring that the flow execution can continue.
|
1102
|
+
|
1103
|
+
|
1104
|
+
Parameters
|
1105
|
+
----------
|
1106
|
+
times : int, default 3
|
1107
|
+
Number of times to retry this task.
|
1108
|
+
minutes_between_retries : int, default 2
|
1109
|
+
Number of minutes between retries.
|
901
1110
|
"""
|
902
1111
|
...
|
903
1112
|
|
@@ -936,6 +1145,23 @@ def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
936
1145
|
"""
|
937
1146
|
...
|
938
1147
|
|
1148
|
+
@typing.overload
|
1149
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1150
|
+
"""
|
1151
|
+
Internal decorator to support Fast bakery
|
1152
|
+
"""
|
1153
|
+
...
|
1154
|
+
|
1155
|
+
@typing.overload
|
1156
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1157
|
+
...
|
1158
|
+
|
1159
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1160
|
+
"""
|
1161
|
+
Internal decorator to support Fast bakery
|
1162
|
+
"""
|
1163
|
+
...
|
1164
|
+
|
939
1165
|
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
940
1166
|
"""
|
941
1167
|
Specifies that this step is used to deploy an instance of the app.
|
@@ -952,347 +1178,225 @@ def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union
|
|
952
1178
|
...
|
953
1179
|
|
954
1180
|
@typing.overload
|
955
|
-
def
|
1181
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
956
1182
|
"""
|
957
|
-
|
958
|
-
|
959
|
-
|
960
|
-
|
1183
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1184
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1185
|
+
"""
|
1186
|
+
...
|
1187
|
+
|
1188
|
+
@typing.overload
|
1189
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1190
|
+
...
|
1191
|
+
|
1192
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1193
|
+
"""
|
1194
|
+
Decorator prototype for all step decorators. This function gets specialized
|
1195
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1196
|
+
"""
|
1197
|
+
...
|
1198
|
+
|
1199
|
+
@typing.overload
|
1200
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1201
|
+
"""
|
1202
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
961
1203
|
|
962
|
-
|
963
|
-
```
|
964
|
-
python myflow.py run --with batch
|
965
|
-
```
|
966
|
-
or
|
967
|
-
```
|
968
|
-
python myflow.py run --with kubernetes
|
969
|
-
```
|
970
|
-
which executes the flow on the desired system using the
|
971
|
-
requirements specified in `@resources`.
|
1204
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
972
1205
|
|
973
1206
|
|
974
1207
|
Parameters
|
975
1208
|
----------
|
976
|
-
|
977
|
-
|
978
|
-
|
979
|
-
|
980
|
-
|
981
|
-
|
982
|
-
|
983
|
-
|
984
|
-
shared_memory : int, optional, default None
|
985
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
986
|
-
This parameter maps to the `--shm-size` option in Docker.
|
1209
|
+
type : str, default 'default'
|
1210
|
+
Card type.
|
1211
|
+
id : str, optional, default None
|
1212
|
+
If multiple cards are present, use this id to identify this card.
|
1213
|
+
options : Dict[str, Any], default {}
|
1214
|
+
Options passed to the card. The contents depend on the card type.
|
1215
|
+
timeout : int, default 45
|
1216
|
+
Interrupt reporting if it takes more than this many seconds.
|
987
1217
|
"""
|
988
1218
|
...
|
989
1219
|
|
990
1220
|
@typing.overload
|
991
|
-
def
|
1221
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
992
1222
|
...
|
993
1223
|
|
994
1224
|
@typing.overload
|
995
|
-
def
|
1225
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
996
1226
|
...
|
997
1227
|
|
998
|
-
def
|
1228
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
999
1229
|
"""
|
1000
|
-
|
1001
|
-
|
1002
|
-
Use `@resources` to specify the resource requirements
|
1003
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
1230
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
1004
1231
|
|
1005
|
-
|
1006
|
-
```
|
1007
|
-
python myflow.py run --with batch
|
1008
|
-
```
|
1009
|
-
or
|
1010
|
-
```
|
1011
|
-
python myflow.py run --with kubernetes
|
1012
|
-
```
|
1013
|
-
which executes the flow on the desired system using the
|
1014
|
-
requirements specified in `@resources`.
|
1232
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
1015
1233
|
|
1016
1234
|
|
1017
1235
|
Parameters
|
1018
1236
|
----------
|
1019
|
-
|
1020
|
-
|
1021
|
-
|
1022
|
-
|
1023
|
-
|
1024
|
-
|
1025
|
-
|
1026
|
-
|
1027
|
-
shared_memory : int, optional, default None
|
1028
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
1029
|
-
This parameter maps to the `--shm-size` option in Docker.
|
1237
|
+
type : str, default 'default'
|
1238
|
+
Card type.
|
1239
|
+
id : str, optional, default None
|
1240
|
+
If multiple cards are present, use this id to identify this card.
|
1241
|
+
options : Dict[str, Any], default {}
|
1242
|
+
Options passed to the card. The contents depend on the card type.
|
1243
|
+
timeout : int, default 45
|
1244
|
+
Interrupt reporting if it takes more than this many seconds.
|
1030
1245
|
"""
|
1031
1246
|
...
|
1032
1247
|
|
1033
|
-
|
1248
|
+
@typing.overload
|
1249
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1034
1250
|
"""
|
1035
|
-
|
1036
|
-
|
1037
|
-
User code call
|
1038
|
-
--------------
|
1039
|
-
@ollama(
|
1040
|
-
models=[...],
|
1041
|
-
...
|
1042
|
-
)
|
1043
|
-
|
1044
|
-
Valid backend options
|
1045
|
-
---------------------
|
1046
|
-
- 'local': Run as a separate process on the local task machine.
|
1047
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
1048
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
1049
|
-
|
1050
|
-
Valid model options
|
1051
|
-
-------------------
|
1052
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
1053
|
-
|
1054
|
-
|
1055
|
-
Parameters
|
1056
|
-
----------
|
1057
|
-
models: list[str]
|
1058
|
-
List of Ollama containers running models in sidecars.
|
1059
|
-
backend: str
|
1060
|
-
Determines where and how to run the Ollama process.
|
1061
|
-
force_pull: bool
|
1062
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
1063
|
-
cache_update_policy: str
|
1064
|
-
Cache update policy: "auto", "force", or "never".
|
1065
|
-
force_cache_update: bool
|
1066
|
-
Simple override for "force" cache update policy.
|
1067
|
-
debug: bool
|
1068
|
-
Whether to turn on verbose debugging logs.
|
1069
|
-
circuit_breaker_config: dict
|
1070
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
1071
|
-
timeout_config: dict
|
1072
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
1073
|
-
"""
|
1074
|
-
...
|
1075
|
-
|
1076
|
-
@typing.overload
|
1077
|
-
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1078
|
-
"""
|
1079
|
-
Specifies a timeout for your step.
|
1080
|
-
|
1081
|
-
This decorator is useful if this step may hang indefinitely.
|
1082
|
-
|
1083
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
1084
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
1085
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
1086
|
-
|
1087
|
-
Note that all the values specified in parameters are added together so if you specify
|
1088
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
1251
|
+
Specifies the PyPI packages for all steps of the flow.
|
1089
1252
|
|
1253
|
+
Use `@pypi_base` to set common packages required by all
|
1254
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1090
1255
|
|
1091
1256
|
Parameters
|
1092
1257
|
----------
|
1093
|
-
|
1094
|
-
|
1095
|
-
|
1096
|
-
|
1097
|
-
|
1098
|
-
|
1258
|
+
packages : Dict[str, str], default: {}
|
1259
|
+
Packages to use for this flow. The key is the name of the package
|
1260
|
+
and the value is the version to use.
|
1261
|
+
python : str, optional, default: None
|
1262
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1263
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1099
1264
|
"""
|
1100
1265
|
...
|
1101
1266
|
|
1102
1267
|
@typing.overload
|
1103
|
-
def
|
1104
|
-
...
|
1105
|
-
|
1106
|
-
@typing.overload
|
1107
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1268
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1108
1269
|
...
|
1109
1270
|
|
1110
|
-
def
|
1271
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1111
1272
|
"""
|
1112
|
-
Specifies
|
1113
|
-
|
1114
|
-
This decorator is useful if this step may hang indefinitely.
|
1115
|
-
|
1116
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
1117
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
1118
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
1119
|
-
|
1120
|
-
Note that all the values specified in parameters are added together so if you specify
|
1121
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
1273
|
+
Specifies the PyPI packages for all steps of the flow.
|
1122
1274
|
|
1275
|
+
Use `@pypi_base` to set common packages required by all
|
1276
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1123
1277
|
|
1124
1278
|
Parameters
|
1125
1279
|
----------
|
1126
|
-
|
1127
|
-
|
1128
|
-
|
1129
|
-
|
1130
|
-
|
1131
|
-
|
1280
|
+
packages : Dict[str, str], default: {}
|
1281
|
+
Packages to use for this flow. The key is the name of the package
|
1282
|
+
and the value is the version to use.
|
1283
|
+
python : str, optional, default: None
|
1284
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1285
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1132
1286
|
"""
|
1133
1287
|
...
|
1134
1288
|
|
1135
|
-
def
|
1289
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1136
1290
|
"""
|
1137
|
-
|
1138
|
-
|
1139
|
-
> Examples
|
1291
|
+
Allows setting external datastores to save data for the
|
1292
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1140
1293
|
|
1141
|
-
|
1142
|
-
|
1143
|
-
@huggingface_hub
|
1144
|
-
@step
|
1145
|
-
def pull_model_from_huggingface(self):
|
1146
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
1147
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
1148
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
1149
|
-
# value of the function is a reference to the model in the backend storage.
|
1150
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
1294
|
+
This decorator is useful when users wish to save data to a different datastore
|
1295
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1151
1296
|
|
1152
|
-
|
1153
|
-
|
1154
|
-
|
1155
|
-
|
1156
|
-
|
1157
|
-
self.next(self.train)
|
1158
|
-
```
|
1297
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1298
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1299
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1300
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1301
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1159
1302
|
|
1160
|
-
|
1161
|
-
|
1162
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
1163
|
-
@step
|
1164
|
-
def pull_model_from_huggingface(self):
|
1165
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1166
|
-
```
|
1303
|
+
Usage:
|
1304
|
+
----------
|
1167
1305
|
|
1168
|
-
|
1169
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
1170
|
-
@step
|
1171
|
-
def finetune_model(self):
|
1172
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1173
|
-
# path_to_model will be /my-directory
|
1174
|
-
```
|
1306
|
+
- Using a custom IAM role to access the datastore.
|
1175
1307
|
|
1176
|
-
|
1177
|
-
|
1178
|
-
|
1179
|
-
|
1180
|
-
|
1181
|
-
"
|
1182
|
-
},
|
1183
|
-
{
|
1184
|
-
"repo_id": "myorg/mistral-lora",
|
1185
|
-
"repo_type": "model",
|
1308
|
+
```python
|
1309
|
+
@with_artifact_store(
|
1310
|
+
type="s3",
|
1311
|
+
config=lambda: {
|
1312
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1313
|
+
"role_arn": ROLE,
|
1186
1314
|
},
|
1187
|
-
|
1188
|
-
|
1189
|
-
def finetune_model(self):
|
1190
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
1191
|
-
# path_to_model will be /my-directory
|
1192
|
-
```
|
1193
|
-
|
1194
|
-
|
1195
|
-
Parameters
|
1196
|
-
----------
|
1197
|
-
temp_dir_root : str, optional
|
1198
|
-
The root directory that will hold the temporary directory where objects will be downloaded.
|
1199
|
-
|
1200
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
1201
|
-
The list of repos (models/datasets) to load.
|
1315
|
+
)
|
1316
|
+
class MyFlow(FlowSpec):
|
1202
1317
|
|
1203
|
-
|
1318
|
+
@checkpoint
|
1319
|
+
@step
|
1320
|
+
def start(self):
|
1321
|
+
with open("my_file.txt", "w") as f:
|
1322
|
+
f.write("Hello, World!")
|
1323
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1324
|
+
self.next(self.end)
|
1204
1325
|
|
1205
|
-
|
1206
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
1207
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
1208
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
1326
|
+
```
|
1209
1327
|
|
1210
|
-
|
1211
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
1212
|
-
"""
|
1213
|
-
...
|
1214
|
-
|
1215
|
-
@typing.overload
|
1216
|
-
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1217
|
-
"""
|
1218
|
-
Specifies environment variables to be set prior to the execution of a step.
|
1328
|
+
- Using credentials to access the s3-compatible datastore.
|
1219
1329
|
|
1330
|
+
```python
|
1331
|
+
@with_artifact_store(
|
1332
|
+
type="s3",
|
1333
|
+
config=lambda: {
|
1334
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1335
|
+
"client_params": {
|
1336
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1337
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1338
|
+
},
|
1339
|
+
},
|
1340
|
+
)
|
1341
|
+
class MyFlow(FlowSpec):
|
1220
1342
|
|
1221
|
-
|
1222
|
-
|
1223
|
-
|
1224
|
-
|
1225
|
-
|
1226
|
-
|
1227
|
-
|
1228
|
-
@typing.overload
|
1229
|
-
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1230
|
-
...
|
1231
|
-
|
1232
|
-
@typing.overload
|
1233
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1234
|
-
...
|
1235
|
-
|
1236
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
1237
|
-
"""
|
1238
|
-
Specifies environment variables to be set prior to the execution of a step.
|
1343
|
+
@checkpoint
|
1344
|
+
@step
|
1345
|
+
def start(self):
|
1346
|
+
with open("my_file.txt", "w") as f:
|
1347
|
+
f.write("Hello, World!")
|
1348
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1349
|
+
self.next(self.end)
|
1239
1350
|
|
1351
|
+
```
|
1240
1352
|
|
1241
|
-
|
1242
|
-
----------
|
1243
|
-
vars : Dict[str, str], default {}
|
1244
|
-
Dictionary of environment variables to set.
|
1245
|
-
"""
|
1246
|
-
...
|
1247
|
-
|
1248
|
-
@typing.overload
|
1249
|
-
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1250
|
-
"""
|
1251
|
-
Specifies the times when the flow should be run when running on a
|
1252
|
-
production scheduler.
|
1353
|
+
- Accessing objects stored in external datastores after task execution.
|
1253
1354
|
|
1355
|
+
```python
|
1356
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1357
|
+
with artifact_store_from(run=run, config={
|
1358
|
+
"client_params": {
|
1359
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1360
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1361
|
+
},
|
1362
|
+
}):
|
1363
|
+
with Checkpoint() as cp:
|
1364
|
+
latest = cp.list(
|
1365
|
+
task=run["start"].task
|
1366
|
+
)[0]
|
1367
|
+
print(latest)
|
1368
|
+
cp.load(
|
1369
|
+
latest,
|
1370
|
+
"test-checkpoints"
|
1371
|
+
)
|
1254
1372
|
|
1255
|
-
|
1373
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1374
|
+
with artifact_store_from(run=run, config={
|
1375
|
+
"client_params": {
|
1376
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1377
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1378
|
+
},
|
1379
|
+
}):
|
1380
|
+
load_model(
|
1381
|
+
task.data.model_ref,
|
1382
|
+
"test-models"
|
1383
|
+
)
|
1384
|
+
```
|
1385
|
+
Parameters:
|
1256
1386
|
----------
|
1257
|
-
hourly : bool, default False
|
1258
|
-
Run the workflow hourly.
|
1259
|
-
daily : bool, default True
|
1260
|
-
Run the workflow daily.
|
1261
|
-
weekly : bool, default False
|
1262
|
-
Run the workflow weekly.
|
1263
|
-
cron : str, optional, default None
|
1264
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1265
|
-
specified by this expression.
|
1266
|
-
timezone : str, optional, default None
|
1267
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1268
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1269
|
-
"""
|
1270
|
-
...
|
1271
|
-
|
1272
|
-
@typing.overload
|
1273
|
-
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1274
|
-
...
|
1275
|
-
|
1276
|
-
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1277
|
-
"""
|
1278
|
-
Specifies the times when the flow should be run when running on a
|
1279
|
-
production scheduler.
|
1280
|
-
|
1281
1387
|
|
1282
|
-
|
1283
|
-
|
1284
|
-
|
1285
|
-
|
1286
|
-
|
1287
|
-
|
1288
|
-
|
1289
|
-
|
1290
|
-
|
1291
|
-
|
1292
|
-
|
1293
|
-
|
1294
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1295
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1388
|
+
type: str
|
1389
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1390
|
+
|
1391
|
+
config: dict or Callable
|
1392
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1393
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1394
|
+
- example: 's3://bucket-name/path/to/root'
|
1395
|
+
- example: 'gs://bucket-name/path/to/root'
|
1396
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1397
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1398
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1399
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1296
1400
|
"""
|
1297
1401
|
...
|
1298
1402
|
|
@@ -1339,111 +1443,144 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
1339
1443
|
"""
|
1340
1444
|
...
|
1341
1445
|
|
1342
|
-
|
1343
|
-
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1446
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1344
1447
|
"""
|
1345
|
-
|
1346
|
-
|
1347
|
-
Use `@conda_base` to set common libraries required by all
|
1348
|
-
steps and use `@conda` to specify step-specific additions.
|
1448
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1449
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1349
1450
|
|
1350
1451
|
|
1351
1452
|
Parameters
|
1352
1453
|
----------
|
1353
|
-
|
1354
|
-
|
1355
|
-
|
1356
|
-
|
1357
|
-
|
1358
|
-
|
1359
|
-
|
1360
|
-
|
1361
|
-
|
1362
|
-
|
1454
|
+
timeout : int
|
1455
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1456
|
+
poke_interval : int
|
1457
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1458
|
+
mode : str
|
1459
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1460
|
+
exponential_backoff : bool
|
1461
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1462
|
+
pool : str
|
1463
|
+
the slot pool this task should run in,
|
1464
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1465
|
+
soft_fail : bool
|
1466
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1467
|
+
name : str
|
1468
|
+
Name of the sensor on Airflow
|
1469
|
+
description : str
|
1470
|
+
Description of sensor in the Airflow UI
|
1471
|
+
external_dag_id : str
|
1472
|
+
The dag_id that contains the task you want to wait for.
|
1473
|
+
external_task_ids : List[str]
|
1474
|
+
The list of task_ids that you want to wait for.
|
1475
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1476
|
+
allowed_states : List[str]
|
1477
|
+
Iterable of allowed states, (Default: ['success'])
|
1478
|
+
failed_states : List[str]
|
1479
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1480
|
+
execution_delta : datetime.timedelta
|
1481
|
+
time difference with the previous execution to look at,
|
1482
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1483
|
+
check_existence: bool
|
1484
|
+
Set to True to check if the external task exists or check if
|
1485
|
+
the DAG to wait for exists. (Default: True)
|
1363
1486
|
"""
|
1364
1487
|
...
|
1365
1488
|
|
1366
1489
|
@typing.overload
|
1367
|
-
def
|
1368
|
-
...
|
1369
|
-
|
1370
|
-
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1490
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1371
1491
|
"""
|
1372
|
-
Specifies the
|
1492
|
+
Specifies the event(s) that this flow depends on.
|
1373
1493
|
|
1374
|
-
|
1375
|
-
|
1494
|
+
```
|
1495
|
+
@trigger(event='foo')
|
1496
|
+
```
|
1497
|
+
or
|
1498
|
+
```
|
1499
|
+
@trigger(events=['foo', 'bar'])
|
1500
|
+
```
|
1501
|
+
|
1502
|
+
Additionally, you can specify the parameter mappings
|
1503
|
+
to map event payload to Metaflow parameters for the flow.
|
1504
|
+
```
|
1505
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1506
|
+
```
|
1507
|
+
or
|
1508
|
+
```
|
1509
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1510
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1511
|
+
```
|
1512
|
+
|
1513
|
+
'parameters' can also be a list of strings and tuples like so:
|
1514
|
+
```
|
1515
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1516
|
+
```
|
1517
|
+
This is equivalent to:
|
1518
|
+
```
|
1519
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1520
|
+
```
|
1376
1521
|
|
1377
1522
|
|
1378
1523
|
Parameters
|
1379
1524
|
----------
|
1380
|
-
|
1381
|
-
|
1382
|
-
|
1383
|
-
|
1384
|
-
|
1385
|
-
|
1386
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1387
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1388
|
-
disabled : bool, default False
|
1389
|
-
If set to True, disables Conda.
|
1525
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1526
|
+
Event dependency for this flow.
|
1527
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1528
|
+
Events dependency for this flow.
|
1529
|
+
options : Dict[str, Any], default {}
|
1530
|
+
Backend-specific configuration for tuning eventing behavior.
|
1390
1531
|
"""
|
1391
1532
|
...
|
1392
1533
|
|
1393
1534
|
@typing.overload
|
1394
|
-
def
|
1535
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1536
|
+
...
|
1537
|
+
|
1538
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1395
1539
|
"""
|
1396
|
-
Specifies the
|
1540
|
+
Specifies the event(s) that this flow depends on.
|
1397
1541
|
|
1398
1542
|
```
|
1399
|
-
@
|
1543
|
+
@trigger(event='foo')
|
1400
1544
|
```
|
1401
1545
|
or
|
1402
1546
|
```
|
1403
|
-
@
|
1547
|
+
@trigger(events=['foo', 'bar'])
|
1404
1548
|
```
|
1405
|
-
This decorator respects the @project decorator and triggers the flow
|
1406
|
-
when upstream runs within the same namespace complete successfully
|
1407
1549
|
|
1408
|
-
Additionally, you can specify
|
1409
|
-
|
1550
|
+
Additionally, you can specify the parameter mappings
|
1551
|
+
to map event payload to Metaflow parameters for the flow.
|
1410
1552
|
```
|
1411
|
-
@
|
1553
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1412
1554
|
```
|
1413
1555
|
or
|
1414
1556
|
```
|
1415
|
-
@
|
1557
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1558
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1416
1559
|
```
|
1417
1560
|
|
1418
|
-
|
1419
|
-
inferred from the current project or project branch):
|
1561
|
+
'parameters' can also be a list of strings and tuples like so:
|
1420
1562
|
```
|
1421
|
-
@
|
1563
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1564
|
+
```
|
1565
|
+
This is equivalent to:
|
1566
|
+
```
|
1567
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1422
1568
|
```
|
1423
|
-
|
1424
|
-
Note that `branch` is typically one of:
|
1425
|
-
- `prod`
|
1426
|
-
- `user.bob`
|
1427
|
-
- `test.my_experiment`
|
1428
|
-
- `prod.staging`
|
1429
1569
|
|
1430
1570
|
|
1431
1571
|
Parameters
|
1432
1572
|
----------
|
1433
|
-
|
1434
|
-
|
1435
|
-
|
1436
|
-
|
1573
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1574
|
+
Event dependency for this flow.
|
1575
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1576
|
+
Events dependency for this flow.
|
1437
1577
|
options : Dict[str, Any], default {}
|
1438
1578
|
Backend-specific configuration for tuning eventing behavior.
|
1439
1579
|
"""
|
1440
1580
|
...
|
1441
1581
|
|
1442
1582
|
@typing.overload
|
1443
|
-
def trigger_on_finish(
|
1444
|
-
...
|
1445
|
-
|
1446
|
-
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1583
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1447
1584
|
"""
|
1448
1585
|
Specifies the flow(s) that this flow depends on.
|
1449
1586
|
|
@@ -1492,293 +1629,156 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
1492
1629
|
...
|
1493
1630
|
|
1494
1631
|
@typing.overload
|
1495
|
-
def
|
1496
|
-
"""
|
1497
|
-
Specifies the PyPI packages for all steps of the flow.
|
1498
|
-
|
1499
|
-
Use `@pypi_base` to set common packages required by all
|
1500
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1501
|
-
|
1502
|
-
Parameters
|
1503
|
-
----------
|
1504
|
-
packages : Dict[str, str], default: {}
|
1505
|
-
Packages to use for this flow. The key is the name of the package
|
1506
|
-
and the value is the version to use.
|
1507
|
-
python : str, optional, default: None
|
1508
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1509
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1510
|
-
"""
|
1511
|
-
...
|
1512
|
-
|
1513
|
-
@typing.overload
|
1514
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1515
|
-
...
|
1516
|
-
|
1517
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1518
|
-
"""
|
1519
|
-
Specifies the PyPI packages for all steps of the flow.
|
1520
|
-
|
1521
|
-
Use `@pypi_base` to set common packages required by all
|
1522
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1523
|
-
|
1524
|
-
Parameters
|
1525
|
-
----------
|
1526
|
-
packages : Dict[str, str], default: {}
|
1527
|
-
Packages to use for this flow. The key is the name of the package
|
1528
|
-
and the value is the version to use.
|
1529
|
-
python : str, optional, default: None
|
1530
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1531
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1532
|
-
"""
|
1533
|
-
...
|
1534
|
-
|
1535
|
-
@typing.overload
|
1536
|
-
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1537
|
-
"""
|
1538
|
-
Specifies the event(s) that this flow depends on.
|
1539
|
-
|
1540
|
-
```
|
1541
|
-
@trigger(event='foo')
|
1542
|
-
```
|
1543
|
-
or
|
1544
|
-
```
|
1545
|
-
@trigger(events=['foo', 'bar'])
|
1546
|
-
```
|
1547
|
-
|
1548
|
-
Additionally, you can specify the parameter mappings
|
1549
|
-
to map event payload to Metaflow parameters for the flow.
|
1550
|
-
```
|
1551
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1552
|
-
```
|
1553
|
-
or
|
1554
|
-
```
|
1555
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1556
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1557
|
-
```
|
1558
|
-
|
1559
|
-
'parameters' can also be a list of strings and tuples like so:
|
1560
|
-
```
|
1561
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1562
|
-
```
|
1563
|
-
This is equivalent to:
|
1564
|
-
```
|
1565
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1566
|
-
```
|
1567
|
-
|
1568
|
-
|
1569
|
-
Parameters
|
1570
|
-
----------
|
1571
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
1572
|
-
Event dependency for this flow.
|
1573
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
1574
|
-
Events dependency for this flow.
|
1575
|
-
options : Dict[str, Any], default {}
|
1576
|
-
Backend-specific configuration for tuning eventing behavior.
|
1577
|
-
"""
|
1578
|
-
...
|
1579
|
-
|
1580
|
-
@typing.overload
|
1581
|
-
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1632
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1582
1633
|
...
|
1583
1634
|
|
1584
|
-
def
|
1635
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1585
1636
|
"""
|
1586
|
-
Specifies the
|
1637
|
+
Specifies the flow(s) that this flow depends on.
|
1587
1638
|
|
1588
1639
|
```
|
1589
|
-
@
|
1640
|
+
@trigger_on_finish(flow='FooFlow')
|
1590
1641
|
```
|
1591
1642
|
or
|
1592
1643
|
```
|
1593
|
-
@
|
1644
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1594
1645
|
```
|
1646
|
+
This decorator respects the @project decorator and triggers the flow
|
1647
|
+
when upstream runs within the same namespace complete successfully
|
1595
1648
|
|
1596
|
-
Additionally, you can specify
|
1597
|
-
|
1649
|
+
Additionally, you can specify project aware upstream flow dependencies
|
1650
|
+
by specifying the fully qualified project_flow_name.
|
1598
1651
|
```
|
1599
|
-
@
|
1652
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1600
1653
|
```
|
1601
1654
|
or
|
1602
1655
|
```
|
1603
|
-
@
|
1604
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1656
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1605
1657
|
```
|
1606
1658
|
|
1607
|
-
|
1608
|
-
|
1609
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1610
|
-
```
|
1611
|
-
This is equivalent to:
|
1659
|
+
You can also specify just the project or project branch (other values will be
|
1660
|
+
inferred from the current project or project branch):
|
1612
1661
|
```
|
1613
|
-
@
|
1662
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1614
1663
|
```
|
1615
1664
|
|
1665
|
+
Note that `branch` is typically one of:
|
1666
|
+
- `prod`
|
1667
|
+
- `user.bob`
|
1668
|
+
- `test.my_experiment`
|
1669
|
+
- `prod.staging`
|
1670
|
+
|
1616
1671
|
|
1617
1672
|
Parameters
|
1618
1673
|
----------
|
1619
|
-
|
1620
|
-
|
1621
|
-
|
1622
|
-
|
1674
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
1675
|
+
Upstream flow dependency for this flow.
|
1676
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
1677
|
+
Upstream flow dependencies for this flow.
|
1623
1678
|
options : Dict[str, Any], default {}
|
1624
1679
|
Backend-specific configuration for tuning eventing behavior.
|
1625
1680
|
"""
|
1626
1681
|
...
|
1627
1682
|
|
1628
|
-
|
1683
|
+
@typing.overload
|
1684
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1629
1685
|
"""
|
1630
|
-
|
1631
|
-
|
1632
|
-
|
1633
|
-
This decorator is useful when users wish to save data to a different datastore
|
1634
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
1686
|
+
Specifies the times when the flow should be run when running on a
|
1687
|
+
production scheduler.
|
1635
1688
|
|
1636
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1637
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1638
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1639
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1640
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1641
1689
|
|
1642
|
-
|
1690
|
+
Parameters
|
1643
1691
|
----------
|
1692
|
+
hourly : bool, default False
|
1693
|
+
Run the workflow hourly.
|
1694
|
+
daily : bool, default True
|
1695
|
+
Run the workflow daily.
|
1696
|
+
weekly : bool, default False
|
1697
|
+
Run the workflow weekly.
|
1698
|
+
cron : str, optional, default None
|
1699
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1700
|
+
specified by this expression.
|
1701
|
+
timezone : str, optional, default None
|
1702
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1703
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1704
|
+
"""
|
1705
|
+
...
|
1706
|
+
|
1707
|
+
@typing.overload
|
1708
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1709
|
+
...
|
1710
|
+
|
1711
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1712
|
+
"""
|
1713
|
+
Specifies the times when the flow should be run when running on a
|
1714
|
+
production scheduler.
|
1644
1715
|
|
1645
|
-
- Using a custom IAM role to access the datastore.
|
1646
|
-
|
1647
|
-
```python
|
1648
|
-
@with_artifact_store(
|
1649
|
-
type="s3",
|
1650
|
-
config=lambda: {
|
1651
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1652
|
-
"role_arn": ROLE,
|
1653
|
-
},
|
1654
|
-
)
|
1655
|
-
class MyFlow(FlowSpec):
|
1656
|
-
|
1657
|
-
@checkpoint
|
1658
|
-
@step
|
1659
|
-
def start(self):
|
1660
|
-
with open("my_file.txt", "w") as f:
|
1661
|
-
f.write("Hello, World!")
|
1662
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1663
|
-
self.next(self.end)
|
1664
|
-
|
1665
|
-
```
|
1666
|
-
|
1667
|
-
- Using credentials to access the s3-compatible datastore.
|
1668
|
-
|
1669
|
-
```python
|
1670
|
-
@with_artifact_store(
|
1671
|
-
type="s3",
|
1672
|
-
config=lambda: {
|
1673
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1674
|
-
"client_params": {
|
1675
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1676
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1677
|
-
},
|
1678
|
-
},
|
1679
|
-
)
|
1680
|
-
class MyFlow(FlowSpec):
|
1681
|
-
|
1682
|
-
@checkpoint
|
1683
|
-
@step
|
1684
|
-
def start(self):
|
1685
|
-
with open("my_file.txt", "w") as f:
|
1686
|
-
f.write("Hello, World!")
|
1687
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1688
|
-
self.next(self.end)
|
1689
1716
|
|
1690
|
-
|
1717
|
+
Parameters
|
1718
|
+
----------
|
1719
|
+
hourly : bool, default False
|
1720
|
+
Run the workflow hourly.
|
1721
|
+
daily : bool, default True
|
1722
|
+
Run the workflow daily.
|
1723
|
+
weekly : bool, default False
|
1724
|
+
Run the workflow weekly.
|
1725
|
+
cron : str, optional, default None
|
1726
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1727
|
+
specified by this expression.
|
1728
|
+
timezone : str, optional, default None
|
1729
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1730
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1731
|
+
"""
|
1732
|
+
...
|
1733
|
+
|
1734
|
+
@typing.overload
|
1735
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1736
|
+
"""
|
1737
|
+
Specifies the Conda environment for all steps of the flow.
|
1691
1738
|
|
1692
|
-
|
1739
|
+
Use `@conda_base` to set common libraries required by all
|
1740
|
+
steps and use `@conda` to specify step-specific additions.
|
1693
1741
|
|
1694
|
-
```python
|
1695
|
-
run = Run("CheckpointsTestsFlow/8992")
|
1696
|
-
with artifact_store_from(run=run, config={
|
1697
|
-
"client_params": {
|
1698
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1699
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1700
|
-
},
|
1701
|
-
}):
|
1702
|
-
with Checkpoint() as cp:
|
1703
|
-
latest = cp.list(
|
1704
|
-
task=run["start"].task
|
1705
|
-
)[0]
|
1706
|
-
print(latest)
|
1707
|
-
cp.load(
|
1708
|
-
latest,
|
1709
|
-
"test-checkpoints"
|
1710
|
-
)
|
1711
1742
|
|
1712
|
-
|
1713
|
-
with artifact_store_from(run=run, config={
|
1714
|
-
"client_params": {
|
1715
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1716
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1717
|
-
},
|
1718
|
-
}):
|
1719
|
-
load_model(
|
1720
|
-
task.data.model_ref,
|
1721
|
-
"test-models"
|
1722
|
-
)
|
1723
|
-
```
|
1724
|
-
Parameters:
|
1743
|
+
Parameters
|
1725
1744
|
----------
|
1726
|
-
|
1727
|
-
|
1728
|
-
|
1729
|
-
|
1730
|
-
|
1731
|
-
|
1732
|
-
|
1733
|
-
|
1734
|
-
|
1735
|
-
|
1736
|
-
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1737
|
-
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1738
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1745
|
+
packages : Dict[str, str], default {}
|
1746
|
+
Packages to use for this flow. The key is the name of the package
|
1747
|
+
and the value is the version to use.
|
1748
|
+
libraries : Dict[str, str], default {}
|
1749
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1750
|
+
python : str, optional, default None
|
1751
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1752
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1753
|
+
disabled : bool, default False
|
1754
|
+
If set to True, disables Conda.
|
1739
1755
|
"""
|
1740
1756
|
...
|
1741
1757
|
|
1742
|
-
|
1758
|
+
@typing.overload
|
1759
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1760
|
+
...
|
1761
|
+
|
1762
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1743
1763
|
"""
|
1744
|
-
|
1745
|
-
|
1764
|
+
Specifies the Conda environment for all steps of the flow.
|
1765
|
+
|
1766
|
+
Use `@conda_base` to set common libraries required by all
|
1767
|
+
steps and use `@conda` to specify step-specific additions.
|
1746
1768
|
|
1747
1769
|
|
1748
1770
|
Parameters
|
1749
1771
|
----------
|
1750
|
-
|
1751
|
-
|
1752
|
-
|
1753
|
-
|
1754
|
-
|
1755
|
-
|
1756
|
-
|
1757
|
-
|
1758
|
-
|
1759
|
-
|
1760
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1761
|
-
soft_fail : bool
|
1762
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1763
|
-
name : str
|
1764
|
-
Name of the sensor on Airflow
|
1765
|
-
description : str
|
1766
|
-
Description of sensor in the Airflow UI
|
1767
|
-
external_dag_id : str
|
1768
|
-
The dag_id that contains the task you want to wait for.
|
1769
|
-
external_task_ids : List[str]
|
1770
|
-
The list of task_ids that you want to wait for.
|
1771
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
1772
|
-
allowed_states : List[str]
|
1773
|
-
Iterable of allowed states, (Default: ['success'])
|
1774
|
-
failed_states : List[str]
|
1775
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1776
|
-
execution_delta : datetime.timedelta
|
1777
|
-
time difference with the previous execution to look at,
|
1778
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1779
|
-
check_existence: bool
|
1780
|
-
Set to True to check if the external task exists or check if
|
1781
|
-
the DAG to wait for exists. (Default: True)
|
1772
|
+
packages : Dict[str, str], default {}
|
1773
|
+
Packages to use for this flow. The key is the name of the package
|
1774
|
+
and the value is the version to use.
|
1775
|
+
libraries : Dict[str, str], default {}
|
1776
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1777
|
+
python : str, optional, default None
|
1778
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1779
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1780
|
+
disabled : bool, default False
|
1781
|
+
If set to True, disables Conda.
|
1782
1782
|
"""
|
1783
1783
|
...
|
1784
1784
|
|