ob-metaflow-stubs 6.0.3.186__py2.py3-none-any.whl → 6.0.3.188rc0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +1074 -1062
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +5 -5
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +3 -3
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +2 -2
- metaflow-stubs/info_file.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +1 -1
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +56 -56
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +6 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +22 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +119 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +6 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +6 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +19 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +126 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +98 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +233 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/cli_to_config.pyi +17 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +12 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +12 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +242 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +50 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +27 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +30 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/secrets.pyi +46 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +91 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/validations.pyi +24 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +6 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +51 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +65 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +74 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +3 -1
- metaflow-stubs/parameters.pyi +2 -2
- metaflow-stubs/plugins/__init__.pyi +11 -11
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +1 -1
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +3 -3
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +1 -1
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +28 -28
- metaflow-stubs/runner/deployer_impl.pyi +1 -1
- metaflow-stubs/runner/metaflow_runner.pyi +1 -1
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +1 -1
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_decorators.pyi +3 -3
- metaflow-stubs/user_configs/config_options.pyi +1 -1
- metaflow-stubs/user_configs/config_parameters.pyi +5 -5
- {ob_metaflow_stubs-6.0.3.186.dist-info → ob_metaflow_stubs-6.0.3.188rc0.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.3.188rc0.dist-info/RECORD +239 -0
- ob_metaflow_stubs-6.0.3.186.dist-info/RECORD +0 -216
- {ob_metaflow_stubs-6.0.3.186.dist-info → ob_metaflow_stubs-6.0.3.188rc0.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.3.186.dist-info → ob_metaflow_stubs-6.0.3.188rc0.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
3
|
# MF version: 2.15.18.1+obcheckpoint(0.2.4);ob(v1) #
|
4
|
-
# Generated on 2025-07-
|
4
|
+
# Generated on 2025-07-03T01:34:48.431701 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
@@ -35,8 +35,8 @@ from .user_configs.config_parameters import ConfigValue as ConfigValue
|
|
35
35
|
from .user_configs.config_parameters import config_expr as config_expr
|
36
36
|
from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
|
37
37
|
from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
|
38
|
-
from . import cards as cards
|
39
38
|
from . import metaflow_git as metaflow_git
|
39
|
+
from . import cards as cards
|
40
40
|
from . import tuple_util as tuple_util
|
41
41
|
from . import events as events
|
42
42
|
from . import runner as runner
|
@@ -44,9 +44,9 @@ from . import plugins as plugins
|
|
44
44
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
45
45
|
from . import includefile as includefile
|
46
46
|
from .includefile import IncludeFile as IncludeFile
|
47
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
47
48
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
48
49
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
49
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
50
50
|
from . import client as client
|
51
51
|
from .client.core import namespace as namespace
|
52
52
|
from .client.core import get_namespace as get_namespace
|
@@ -156,1095 +156,933 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
156
156
|
...
|
157
157
|
|
158
158
|
@typing.overload
|
159
|
-
def
|
159
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
160
160
|
"""
|
161
|
-
Specifies the
|
161
|
+
Specifies the Conda environment for the step.
|
162
162
|
|
163
163
|
Information in this decorator will augment any
|
164
|
-
attributes set in the `@
|
165
|
-
you can use `@
|
166
|
-
steps and use `@
|
164
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
165
|
+
you can use `@conda_base` to set packages required by all
|
166
|
+
steps and use `@conda` to specify step-specific overrides.
|
167
167
|
|
168
168
|
|
169
169
|
Parameters
|
170
170
|
----------
|
171
|
-
packages : Dict[str, str], default
|
171
|
+
packages : Dict[str, str], default {}
|
172
172
|
Packages to use for this step. The key is the name of the package
|
173
173
|
and the value is the version to use.
|
174
|
-
|
174
|
+
libraries : Dict[str, str], default {}
|
175
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
176
|
+
python : str, optional, default None
|
175
177
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
176
178
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
179
|
+
disabled : bool, default False
|
180
|
+
If set to True, disables @conda.
|
177
181
|
"""
|
178
182
|
...
|
179
183
|
|
180
184
|
@typing.overload
|
181
|
-
def
|
185
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
182
186
|
...
|
183
187
|
|
184
188
|
@typing.overload
|
185
|
-
def
|
189
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
186
190
|
...
|
187
191
|
|
188
|
-
def
|
192
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
189
193
|
"""
|
190
|
-
Specifies the
|
194
|
+
Specifies the Conda environment for the step.
|
191
195
|
|
192
196
|
Information in this decorator will augment any
|
193
|
-
attributes set in the `@
|
194
|
-
you can use `@
|
195
|
-
steps and use `@
|
197
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
198
|
+
you can use `@conda_base` to set packages required by all
|
199
|
+
steps and use `@conda` to specify step-specific overrides.
|
196
200
|
|
197
201
|
|
198
202
|
Parameters
|
199
203
|
----------
|
200
|
-
packages : Dict[str, str], default
|
204
|
+
packages : Dict[str, str], default {}
|
201
205
|
Packages to use for this step. The key is the name of the package
|
202
206
|
and the value is the version to use.
|
203
|
-
|
207
|
+
libraries : Dict[str, str], default {}
|
208
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
209
|
+
python : str, optional, default None
|
204
210
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
205
211
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
212
|
+
disabled : bool, default False
|
213
|
+
If set to True, disables @conda.
|
206
214
|
"""
|
207
215
|
...
|
208
216
|
|
209
217
|
@typing.overload
|
210
|
-
def
|
218
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
211
219
|
"""
|
212
|
-
|
220
|
+
Decorator prototype for all step decorators. This function gets specialized
|
221
|
+
and imported for all decorators types by _import_plugin_decorators().
|
213
222
|
"""
|
214
223
|
...
|
215
224
|
|
216
225
|
@typing.overload
|
217
|
-
def
|
226
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
218
227
|
...
|
219
228
|
|
220
|
-
def
|
229
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
221
230
|
"""
|
222
|
-
|
231
|
+
Decorator prototype for all step decorators. This function gets specialized
|
232
|
+
and imported for all decorators types by _import_plugin_decorators().
|
223
233
|
"""
|
224
234
|
...
|
225
235
|
|
226
|
-
|
236
|
+
@typing.overload
|
237
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
227
238
|
"""
|
228
|
-
|
229
|
-
|
230
|
-
> Examples
|
231
|
-
|
232
|
-
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
233
|
-
```python
|
234
|
-
@huggingface_hub
|
235
|
-
@step
|
236
|
-
def pull_model_from_huggingface(self):
|
237
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
238
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
239
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
240
|
-
# value of the function is a reference to the model in the backend storage.
|
241
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
242
|
-
|
243
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
244
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
245
|
-
repo_id=self.model_id,
|
246
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
247
|
-
)
|
248
|
-
self.next(self.train)
|
249
|
-
```
|
250
|
-
|
251
|
-
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
252
|
-
```python
|
253
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
254
|
-
@step
|
255
|
-
def pull_model_from_huggingface(self):
|
256
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
257
|
-
```
|
258
|
-
|
259
|
-
```python
|
260
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
261
|
-
@step
|
262
|
-
def finetune_model(self):
|
263
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
264
|
-
# path_to_model will be /my-directory
|
265
|
-
```
|
266
|
-
|
267
|
-
```python
|
268
|
-
# Takes all the arguments passed to `snapshot_download`
|
269
|
-
# except for `local_dir`
|
270
|
-
@huggingface_hub(load=[
|
271
|
-
{
|
272
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
273
|
-
},
|
274
|
-
{
|
275
|
-
"repo_id": "myorg/mistral-lora",
|
276
|
-
"repo_type": "model",
|
277
|
-
},
|
278
|
-
])
|
279
|
-
@step
|
280
|
-
def finetune_model(self):
|
281
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
282
|
-
# path_to_model will be /my-directory
|
283
|
-
```
|
284
|
-
|
285
|
-
|
286
|
-
Parameters
|
287
|
-
----------
|
288
|
-
temp_dir_root : str, optional
|
289
|
-
The root directory that will hold the temporary directory where objects will be downloaded.
|
290
|
-
|
291
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
292
|
-
The list of repos (models/datasets) to load.
|
293
|
-
|
294
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
239
|
+
Specifies the number of times the task corresponding
|
240
|
+
to a step needs to be retried.
|
295
241
|
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
242
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
243
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
244
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
300
245
|
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
...
|
305
|
-
|
306
|
-
@typing.overload
|
307
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
308
|
-
"""
|
309
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
310
|
-
the execution of a step.
|
246
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
247
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
248
|
+
ensuring that the flow execution can continue.
|
311
249
|
|
312
250
|
|
313
251
|
Parameters
|
314
252
|
----------
|
315
|
-
|
316
|
-
|
253
|
+
times : int, default 3
|
254
|
+
Number of times to retry this task.
|
255
|
+
minutes_between_retries : int, default 2
|
256
|
+
Number of minutes between retries.
|
317
257
|
"""
|
318
258
|
...
|
319
259
|
|
320
260
|
@typing.overload
|
321
|
-
def
|
261
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
322
262
|
...
|
323
263
|
|
324
264
|
@typing.overload
|
325
|
-
def
|
265
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
326
266
|
...
|
327
267
|
|
328
|
-
def
|
268
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
329
269
|
"""
|
330
|
-
Specifies
|
331
|
-
|
270
|
+
Specifies the number of times the task corresponding
|
271
|
+
to a step needs to be retried.
|
272
|
+
|
273
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
274
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
275
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
276
|
+
|
277
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
278
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
279
|
+
ensuring that the flow execution can continue.
|
332
280
|
|
333
281
|
|
334
282
|
Parameters
|
335
283
|
----------
|
336
|
-
|
337
|
-
|
284
|
+
times : int, default 3
|
285
|
+
Number of times to retry this task.
|
286
|
+
minutes_between_retries : int, default 2
|
287
|
+
Number of minutes between retries.
|
338
288
|
"""
|
339
289
|
...
|
340
290
|
|
341
|
-
|
342
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
291
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
343
292
|
"""
|
344
|
-
Specifies that
|
345
|
-
|
346
|
-
The decorator will create an optional artifact, specified by `var`, which
|
347
|
-
contains the exception raised. You can use it to detect the presence
|
348
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
349
|
-
are missing.
|
293
|
+
Specifies that this step should execute on DGX cloud.
|
350
294
|
|
351
295
|
|
352
296
|
Parameters
|
353
297
|
----------
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
|
358
|
-
Determines whether or not the exception is printed to
|
359
|
-
stdout when caught.
|
298
|
+
gpu : int
|
299
|
+
Number of GPUs to use.
|
300
|
+
gpu_type : str
|
301
|
+
Type of Nvidia GPU to use.
|
360
302
|
"""
|
361
303
|
...
|
362
304
|
|
363
|
-
|
364
|
-
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
365
|
-
...
|
366
|
-
|
367
|
-
@typing.overload
|
368
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
369
|
-
...
|
370
|
-
|
371
|
-
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
305
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
372
306
|
"""
|
373
|
-
|
307
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
374
308
|
|
375
|
-
|
376
|
-
|
377
|
-
|
378
|
-
|
309
|
+
User code call
|
310
|
+
--------------
|
311
|
+
@ollama(
|
312
|
+
models=[...],
|
313
|
+
...
|
314
|
+
)
|
315
|
+
|
316
|
+
Valid backend options
|
317
|
+
---------------------
|
318
|
+
- 'local': Run as a separate process on the local task machine.
|
319
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
320
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
321
|
+
|
322
|
+
Valid model options
|
323
|
+
-------------------
|
324
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
379
325
|
|
380
326
|
|
381
327
|
Parameters
|
382
328
|
----------
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
|
329
|
+
models: list[str]
|
330
|
+
List of Ollama containers running models in sidecars.
|
331
|
+
backend: str
|
332
|
+
Determines where and how to run the Ollama process.
|
333
|
+
force_pull: bool
|
334
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
335
|
+
cache_update_policy: str
|
336
|
+
Cache update policy: "auto", "force", or "never".
|
337
|
+
force_cache_update: bool
|
338
|
+
Simple override for "force" cache update policy.
|
339
|
+
debug: bool
|
340
|
+
Whether to turn on verbose debugging logs.
|
341
|
+
circuit_breaker_config: dict
|
342
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
343
|
+
timeout_config: dict
|
344
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
389
345
|
"""
|
390
346
|
...
|
391
347
|
|
392
348
|
@typing.overload
|
393
|
-
def
|
349
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
394
350
|
"""
|
395
|
-
|
351
|
+
Enables loading / saving of models within a step.
|
396
352
|
|
397
|
-
|
353
|
+
> Examples
|
354
|
+
- Saving Models
|
355
|
+
```python
|
356
|
+
@model
|
357
|
+
@step
|
358
|
+
def train(self):
|
359
|
+
# current.model.save returns a dictionary reference to the model saved
|
360
|
+
self.my_model = current.model.save(
|
361
|
+
path_to_my_model,
|
362
|
+
label="my_model",
|
363
|
+
metadata={
|
364
|
+
"epochs": 10,
|
365
|
+
"batch-size": 32,
|
366
|
+
"learning-rate": 0.001,
|
367
|
+
}
|
368
|
+
)
|
369
|
+
self.next(self.test)
|
398
370
|
|
399
|
-
|
400
|
-
|
401
|
-
|
371
|
+
@model(load="my_model")
|
372
|
+
@step
|
373
|
+
def test(self):
|
374
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
375
|
+
# where the key is the name of the artifact and the value is the path to the model
|
376
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
377
|
+
self.next(self.end)
|
378
|
+
```
|
402
379
|
|
403
|
-
|
404
|
-
|
380
|
+
- Loading models
|
381
|
+
```python
|
382
|
+
@step
|
383
|
+
def train(self):
|
384
|
+
# current.model.load returns the path to the model loaded
|
385
|
+
checkpoint_path = current.model.load(
|
386
|
+
self.checkpoint_key,
|
387
|
+
)
|
388
|
+
model_path = current.model.load(
|
389
|
+
self.model,
|
390
|
+
)
|
391
|
+
self.next(self.test)
|
392
|
+
```
|
405
393
|
|
406
394
|
|
407
395
|
Parameters
|
408
396
|
----------
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
397
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
398
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
399
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
400
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
401
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
402
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
403
|
+
|
404
|
+
temp_dir_root : str, default: None
|
405
|
+
The root directory under which `current.model.loaded` will store loaded models
|
415
406
|
"""
|
416
407
|
...
|
417
408
|
|
418
409
|
@typing.overload
|
419
|
-
def
|
410
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
420
411
|
...
|
421
412
|
|
422
413
|
@typing.overload
|
423
|
-
def
|
424
|
-
...
|
425
|
-
|
426
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
427
|
-
"""
|
428
|
-
Specifies a timeout for your step.
|
429
|
-
|
430
|
-
This decorator is useful if this step may hang indefinitely.
|
431
|
-
|
432
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
433
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
434
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
435
|
-
|
436
|
-
Note that all the values specified in parameters are added together so if you specify
|
437
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
438
|
-
|
439
|
-
|
440
|
-
Parameters
|
441
|
-
----------
|
442
|
-
seconds : int, default 0
|
443
|
-
Number of seconds to wait prior to timing out.
|
444
|
-
minutes : int, default 0
|
445
|
-
Number of minutes to wait prior to timing out.
|
446
|
-
hours : int, default 0
|
447
|
-
Number of hours to wait prior to timing out.
|
448
|
-
"""
|
414
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
449
415
|
...
|
450
416
|
|
451
|
-
def
|
417
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
452
418
|
"""
|
453
|
-
|
454
|
-
|
419
|
+
Enables loading / saving of models within a step.
|
455
420
|
|
456
|
-
|
457
|
-
|
458
|
-
|
459
|
-
|
460
|
-
|
461
|
-
|
462
|
-
|
463
|
-
|
464
|
-
|
465
|
-
|
466
|
-
|
467
|
-
|
468
|
-
|
421
|
+
> Examples
|
422
|
+
- Saving Models
|
423
|
+
```python
|
424
|
+
@model
|
425
|
+
@step
|
426
|
+
def train(self):
|
427
|
+
# current.model.save returns a dictionary reference to the model saved
|
428
|
+
self.my_model = current.model.save(
|
429
|
+
path_to_my_model,
|
430
|
+
label="my_model",
|
431
|
+
metadata={
|
432
|
+
"epochs": 10,
|
433
|
+
"batch-size": 32,
|
434
|
+
"learning-rate": 0.001,
|
435
|
+
}
|
436
|
+
)
|
437
|
+
self.next(self.test)
|
469
438
|
|
439
|
+
@model(load="my_model")
|
440
|
+
@step
|
441
|
+
def test(self):
|
442
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
443
|
+
# where the key is the name of the artifact and the value is the path to the model
|
444
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
445
|
+
self.next(self.end)
|
446
|
+
```
|
470
447
|
|
471
|
-
|
472
|
-
|
473
|
-
|
474
|
-
|
475
|
-
|
476
|
-
|
477
|
-
|
478
|
-
|
479
|
-
|
480
|
-
|
481
|
-
|
482
|
-
|
448
|
+
- Loading models
|
449
|
+
```python
|
450
|
+
@step
|
451
|
+
def train(self):
|
452
|
+
# current.model.load returns the path to the model loaded
|
453
|
+
checkpoint_path = current.model.load(
|
454
|
+
self.checkpoint_key,
|
455
|
+
)
|
456
|
+
model_path = current.model.load(
|
457
|
+
self.model,
|
458
|
+
)
|
459
|
+
self.next(self.test)
|
460
|
+
```
|
483
461
|
|
484
462
|
|
485
463
|
Parameters
|
486
464
|
----------
|
487
|
-
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
|
492
|
-
|
493
|
-
"""
|
494
|
-
...
|
495
|
-
|
496
|
-
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
497
|
-
"""
|
498
|
-
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
499
|
-
|
500
|
-
User code call
|
501
|
-
--------------
|
502
|
-
@ollama(
|
503
|
-
models=[...],
|
504
|
-
...
|
505
|
-
)
|
506
|
-
|
507
|
-
Valid backend options
|
508
|
-
---------------------
|
509
|
-
- 'local': Run as a separate process on the local task machine.
|
510
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
511
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
512
|
-
|
513
|
-
Valid model options
|
514
|
-
-------------------
|
515
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
516
|
-
|
465
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
466
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
467
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
468
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
469
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
470
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
517
471
|
|
518
|
-
|
519
|
-
|
520
|
-
models: list[str]
|
521
|
-
List of Ollama containers running models in sidecars.
|
522
|
-
backend: str
|
523
|
-
Determines where and how to run the Ollama process.
|
524
|
-
force_pull: bool
|
525
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
526
|
-
cache_update_policy: str
|
527
|
-
Cache update policy: "auto", "force", or "never".
|
528
|
-
force_cache_update: bool
|
529
|
-
Simple override for "force" cache update policy.
|
530
|
-
debug: bool
|
531
|
-
Whether to turn on verbose debugging logs.
|
532
|
-
circuit_breaker_config: dict
|
533
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
534
|
-
timeout_config: dict
|
535
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
472
|
+
temp_dir_root : str, default: None
|
473
|
+
The root directory under which `current.model.loaded` will store loaded models
|
536
474
|
"""
|
537
475
|
...
|
538
476
|
|
539
|
-
|
540
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
477
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
541
478
|
"""
|
542
|
-
|
479
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
543
480
|
|
544
481
|
> Examples
|
545
482
|
|
546
|
-
|
547
|
-
|
483
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
548
484
|
```python
|
549
|
-
|
550
|
-
|
551
|
-
|
552
|
-
|
553
|
-
|
554
|
-
#
|
555
|
-
|
556
|
-
|
557
|
-
|
558
|
-
|
559
|
-
|
560
|
-
|
561
|
-
|
562
|
-
|
563
|
-
|
564
|
-
metadata={
|
565
|
-
"epoch": i,
|
566
|
-
"loss": loss,
|
567
|
-
}
|
568
|
-
)
|
485
|
+
@huggingface_hub
|
486
|
+
@step
|
487
|
+
def pull_model_from_huggingface(self):
|
488
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
489
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
490
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
491
|
+
# value of the function is a reference to the model in the backend storage.
|
492
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
493
|
+
|
494
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
495
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
496
|
+
repo_id=self.model_id,
|
497
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
498
|
+
)
|
499
|
+
self.next(self.train)
|
569
500
|
```
|
570
501
|
|
571
|
-
|
572
|
-
|
573
|
-
```python
|
574
|
-
@retry(times=3)
|
575
|
-
@checkpoint
|
576
|
-
@step
|
577
|
-
def train(self):
|
578
|
-
# Assume that the task has restarted and the previous attempt of the task
|
579
|
-
# saved a checkpoint
|
580
|
-
checkpoint_path = None
|
581
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
582
|
-
print("Loaded checkpoint from the previous attempt")
|
583
|
-
checkpoint_path = current.checkpoint.directory
|
584
|
-
|
585
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
586
|
-
for i in range(self.epochs):
|
587
|
-
...
|
588
|
-
```
|
589
|
-
|
590
|
-
|
591
|
-
Parameters
|
592
|
-
----------
|
593
|
-
load_policy : str, default: "fresh"
|
594
|
-
The policy for loading the checkpoint. The following policies are supported:
|
595
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
596
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
597
|
-
will be loaded at the start of the task.
|
598
|
-
- "none": Do not load any checkpoint
|
599
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
600
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
601
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
602
|
-
created within the task will be loaded when the task is retries execution on failure.
|
603
|
-
|
604
|
-
temp_dir_root : str, default: None
|
605
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
606
|
-
"""
|
607
|
-
...
|
608
|
-
|
609
|
-
@typing.overload
|
610
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
611
|
-
...
|
612
|
-
|
613
|
-
@typing.overload
|
614
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
615
|
-
...
|
616
|
-
|
617
|
-
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
618
|
-
"""
|
619
|
-
Enables checkpointing for a step.
|
620
|
-
|
621
|
-
> Examples
|
622
|
-
|
623
|
-
- Saving Checkpoints
|
624
|
-
|
625
|
-
```python
|
626
|
-
@checkpoint
|
627
|
-
@step
|
628
|
-
def train(self):
|
629
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
630
|
-
for i in range(self.epochs):
|
631
|
-
# some training logic
|
632
|
-
loss = model.train(self.dataset)
|
633
|
-
if i % 10 == 0:
|
634
|
-
model.save(
|
635
|
-
current.checkpoint.directory,
|
636
|
-
)
|
637
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
638
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
639
|
-
self.latest_checkpoint = current.checkpoint.save(
|
640
|
-
name="epoch_checkpoint",
|
641
|
-
metadata={
|
642
|
-
"epoch": i,
|
643
|
-
"loss": loss,
|
644
|
-
}
|
645
|
-
)
|
646
|
-
```
|
647
|
-
|
648
|
-
- Using Loaded Checkpoints
|
649
|
-
|
502
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
650
503
|
```python
|
651
|
-
|
652
|
-
|
653
|
-
|
654
|
-
|
655
|
-
# Assume that the task has restarted and the previous attempt of the task
|
656
|
-
# saved a checkpoint
|
657
|
-
checkpoint_path = None
|
658
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
659
|
-
print("Loaded checkpoint from the previous attempt")
|
660
|
-
checkpoint_path = current.checkpoint.directory
|
661
|
-
|
662
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
663
|
-
for i in range(self.epochs):
|
664
|
-
...
|
665
|
-
```
|
666
|
-
|
667
|
-
|
668
|
-
Parameters
|
669
|
-
----------
|
670
|
-
load_policy : str, default: "fresh"
|
671
|
-
The policy for loading the checkpoint. The following policies are supported:
|
672
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
673
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
674
|
-
will be loaded at the start of the task.
|
675
|
-
- "none": Do not load any checkpoint
|
676
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
677
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
678
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
679
|
-
created within the task will be loaded when the task is retries execution on failure.
|
680
|
-
|
681
|
-
temp_dir_root : str, default: None
|
682
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
683
|
-
"""
|
684
|
-
...
|
685
|
-
|
686
|
-
def vllm(*, model: str, backend: str, debug: bool, kwargs: typing.Any) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
687
|
-
"""
|
688
|
-
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
689
|
-
|
690
|
-
User code call
|
691
|
-
--------------
|
692
|
-
@vllm(
|
693
|
-
model="...",
|
694
|
-
...
|
695
|
-
)
|
696
|
-
|
697
|
-
Valid backend options
|
698
|
-
---------------------
|
699
|
-
- 'local': Run as a separate process on the local task machine.
|
700
|
-
|
701
|
-
Valid model options
|
702
|
-
-------------------
|
703
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
704
|
-
|
705
|
-
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
706
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
707
|
-
|
708
|
-
|
709
|
-
Parameters
|
710
|
-
----------
|
711
|
-
model: str
|
712
|
-
HuggingFace model identifier to be served by vLLM.
|
713
|
-
backend: str
|
714
|
-
Determines where and how to run the vLLM process.
|
715
|
-
debug: bool
|
716
|
-
Whether to turn on verbose debugging logs.
|
717
|
-
kwargs : Any
|
718
|
-
Any other keyword arguments are passed directly to the vLLM engine.
|
719
|
-
This allows for flexible configuration of vLLM server settings.
|
720
|
-
For example, `tensor_parallel_size=2`.
|
721
|
-
"""
|
722
|
-
...
|
723
|
-
|
724
|
-
@typing.overload
|
725
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
726
|
-
"""
|
727
|
-
Specifies the resources needed when executing this step.
|
728
|
-
|
729
|
-
Use `@resources` to specify the resource requirements
|
730
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
731
|
-
|
732
|
-
You can choose the compute layer on the command line by executing e.g.
|
733
|
-
```
|
734
|
-
python myflow.py run --with batch
|
735
|
-
```
|
736
|
-
or
|
737
|
-
```
|
738
|
-
python myflow.py run --with kubernetes
|
739
|
-
```
|
740
|
-
which executes the flow on the desired system using the
|
741
|
-
requirements specified in `@resources`.
|
742
|
-
|
743
|
-
|
744
|
-
Parameters
|
745
|
-
----------
|
746
|
-
cpu : int, default 1
|
747
|
-
Number of CPUs required for this step.
|
748
|
-
gpu : int, optional, default None
|
749
|
-
Number of GPUs required for this step.
|
750
|
-
disk : int, optional, default None
|
751
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
752
|
-
memory : int, default 4096
|
753
|
-
Memory size (in MB) required for this step.
|
754
|
-
shared_memory : int, optional, default None
|
755
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
756
|
-
This parameter maps to the `--shm-size` option in Docker.
|
757
|
-
"""
|
758
|
-
...
|
759
|
-
|
760
|
-
@typing.overload
|
761
|
-
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
762
|
-
...
|
763
|
-
|
764
|
-
@typing.overload
|
765
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
766
|
-
...
|
767
|
-
|
768
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
769
|
-
"""
|
770
|
-
Specifies the resources needed when executing this step.
|
771
|
-
|
772
|
-
Use `@resources` to specify the resource requirements
|
773
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
774
|
-
|
775
|
-
You can choose the compute layer on the command line by executing e.g.
|
776
|
-
```
|
777
|
-
python myflow.py run --with batch
|
778
|
-
```
|
779
|
-
or
|
780
|
-
```
|
781
|
-
python myflow.py run --with kubernetes
|
504
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
505
|
+
@step
|
506
|
+
def pull_model_from_huggingface(self):
|
507
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
782
508
|
```
|
783
|
-
which executes the flow on the desired system using the
|
784
|
-
requirements specified in `@resources`.
|
785
|
-
|
786
|
-
|
787
|
-
Parameters
|
788
|
-
----------
|
789
|
-
cpu : int, default 1
|
790
|
-
Number of CPUs required for this step.
|
791
|
-
gpu : int, optional, default None
|
792
|
-
Number of GPUs required for this step.
|
793
|
-
disk : int, optional, default None
|
794
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
795
|
-
memory : int, default 4096
|
796
|
-
Memory size (in MB) required for this step.
|
797
|
-
shared_memory : int, optional, default None
|
798
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
799
|
-
This parameter maps to the `--shm-size` option in Docker.
|
800
|
-
"""
|
801
|
-
...
|
802
|
-
|
803
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
804
|
-
"""
|
805
|
-
Specifies that this step should execute on Kubernetes.
|
806
|
-
|
807
509
|
|
808
|
-
|
809
|
-
|
810
|
-
|
811
|
-
|
812
|
-
|
813
|
-
|
814
|
-
|
815
|
-
`@resources` is also present, the maximum value from all decorators is
|
816
|
-
used.
|
817
|
-
disk : int, default 10240
|
818
|
-
Disk size (in MB) required for this step. If
|
819
|
-
`@resources` is also present, the maximum value from all decorators is
|
820
|
-
used.
|
821
|
-
image : str, optional, default None
|
822
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
823
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
824
|
-
not, a default Docker image mapping to the current version of Python is used.
|
825
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
826
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
827
|
-
image_pull_secrets: List[str], default []
|
828
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
829
|
-
Kubernetes image pull secrets to use when pulling container images
|
830
|
-
in Kubernetes.
|
831
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
832
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
833
|
-
secrets : List[str], optional, default None
|
834
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
835
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
836
|
-
in Metaflow configuration.
|
837
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
838
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
839
|
-
Can be passed in as a comma separated string of values e.g.
|
840
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
841
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
842
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
843
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
844
|
-
gpu : int, optional, default None
|
845
|
-
Number of GPUs required for this step. A value of zero implies that
|
846
|
-
the scheduled node should not have GPUs.
|
847
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
848
|
-
The vendor of the GPUs to be used for this step.
|
849
|
-
tolerations : List[str], default []
|
850
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
851
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
852
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
853
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
854
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
855
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
856
|
-
use_tmpfs : bool, default False
|
857
|
-
This enables an explicit tmpfs mount for this step.
|
858
|
-
tmpfs_tempdir : bool, default True
|
859
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
860
|
-
tmpfs_size : int, optional, default: None
|
861
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
862
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
863
|
-
memory allocated for this step.
|
864
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
865
|
-
Path to tmpfs mount for this step.
|
866
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
867
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
868
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
869
|
-
shared_memory: int, optional
|
870
|
-
Shared memory size (in MiB) required for this step
|
871
|
-
port: int, optional
|
872
|
-
Port number to specify in the Kubernetes job object
|
873
|
-
compute_pool : str, optional, default None
|
874
|
-
Compute pool to be used for for this step.
|
875
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
876
|
-
hostname_resolution_timeout: int, default 10 * 60
|
877
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
878
|
-
Only applicable when @parallel is used.
|
879
|
-
qos: str, default: Burstable
|
880
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
881
|
-
|
882
|
-
security_context: Dict[str, Any], optional, default None
|
883
|
-
Container security context. Applies to the task container. Allows the following keys:
|
884
|
-
- privileged: bool, optional, default None
|
885
|
-
- allow_privilege_escalation: bool, optional, default None
|
886
|
-
- run_as_user: int, optional, default None
|
887
|
-
- run_as_group: int, optional, default None
|
888
|
-
- run_as_non_root: bool, optional, default None
|
889
|
-
"""
|
890
|
-
...
|
891
|
-
|
892
|
-
@typing.overload
|
893
|
-
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
894
|
-
"""
|
895
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
510
|
+
```python
|
511
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
512
|
+
@step
|
513
|
+
def finetune_model(self):
|
514
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
515
|
+
# path_to_model will be /my-directory
|
516
|
+
```
|
896
517
|
|
897
|
-
|
518
|
+
```python
|
519
|
+
# Takes all the arguments passed to `snapshot_download`
|
520
|
+
# except for `local_dir`
|
521
|
+
@huggingface_hub(load=[
|
522
|
+
{
|
523
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
524
|
+
},
|
525
|
+
{
|
526
|
+
"repo_id": "myorg/mistral-lora",
|
527
|
+
"repo_type": "model",
|
528
|
+
},
|
529
|
+
])
|
530
|
+
@step
|
531
|
+
def finetune_model(self):
|
532
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
533
|
+
# path_to_model will be /my-directory
|
534
|
+
```
|
898
535
|
|
899
536
|
|
900
537
|
Parameters
|
901
538
|
----------
|
902
|
-
|
903
|
-
|
904
|
-
|
905
|
-
|
906
|
-
|
907
|
-
|
908
|
-
|
909
|
-
|
539
|
+
temp_dir_root : str, optional
|
540
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
541
|
+
|
542
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
543
|
+
The list of repos (models/datasets) to load.
|
544
|
+
|
545
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
546
|
+
|
547
|
+
- If repo (model/dataset) is not found in the datastore:
|
548
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
549
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
550
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
551
|
+
|
552
|
+
- If repo is found in the datastore:
|
553
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
910
554
|
"""
|
911
555
|
...
|
912
556
|
|
913
557
|
@typing.overload
|
914
|
-
def
|
915
|
-
...
|
916
|
-
|
917
|
-
@typing.overload
|
918
|
-
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
919
|
-
...
|
920
|
-
|
921
|
-
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
558
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
922
559
|
"""
|
923
|
-
|
560
|
+
Enables checkpointing for a step.
|
924
561
|
|
925
|
-
|
562
|
+
> Examples
|
563
|
+
|
564
|
+
- Saving Checkpoints
|
565
|
+
|
566
|
+
```python
|
567
|
+
@checkpoint
|
568
|
+
@step
|
569
|
+
def train(self):
|
570
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
571
|
+
for i in range(self.epochs):
|
572
|
+
# some training logic
|
573
|
+
loss = model.train(self.dataset)
|
574
|
+
if i % 10 == 0:
|
575
|
+
model.save(
|
576
|
+
current.checkpoint.directory,
|
577
|
+
)
|
578
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
579
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
580
|
+
self.latest_checkpoint = current.checkpoint.save(
|
581
|
+
name="epoch_checkpoint",
|
582
|
+
metadata={
|
583
|
+
"epoch": i,
|
584
|
+
"loss": loss,
|
585
|
+
}
|
586
|
+
)
|
587
|
+
```
|
588
|
+
|
589
|
+
- Using Loaded Checkpoints
|
590
|
+
|
591
|
+
```python
|
592
|
+
@retry(times=3)
|
593
|
+
@checkpoint
|
594
|
+
@step
|
595
|
+
def train(self):
|
596
|
+
# Assume that the task has restarted and the previous attempt of the task
|
597
|
+
# saved a checkpoint
|
598
|
+
checkpoint_path = None
|
599
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
600
|
+
print("Loaded checkpoint from the previous attempt")
|
601
|
+
checkpoint_path = current.checkpoint.directory
|
602
|
+
|
603
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
604
|
+
for i in range(self.epochs):
|
605
|
+
...
|
606
|
+
```
|
926
607
|
|
927
608
|
|
928
609
|
Parameters
|
929
610
|
----------
|
930
|
-
|
931
|
-
|
932
|
-
|
933
|
-
|
934
|
-
|
935
|
-
|
936
|
-
|
937
|
-
|
611
|
+
load_policy : str, default: "fresh"
|
612
|
+
The policy for loading the checkpoint. The following policies are supported:
|
613
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
614
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
615
|
+
will be loaded at the start of the task.
|
616
|
+
- "none": Do not load any checkpoint
|
617
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
618
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
619
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
620
|
+
created within the task will be loaded when the task is retries execution on failure.
|
621
|
+
|
622
|
+
temp_dir_root : str, default: None
|
623
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
938
624
|
"""
|
939
625
|
...
|
940
626
|
|
941
627
|
@typing.overload
|
942
|
-
def
|
943
|
-
"""
|
944
|
-
Decorator prototype for all step decorators. This function gets specialized
|
945
|
-
and imported for all decorators types by _import_plugin_decorators().
|
946
|
-
"""
|
628
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
947
629
|
...
|
948
630
|
|
949
631
|
@typing.overload
|
950
|
-
def
|
951
|
-
...
|
952
|
-
|
953
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
954
|
-
"""
|
955
|
-
Decorator prototype for all step decorators. This function gets specialized
|
956
|
-
and imported for all decorators types by _import_plugin_decorators().
|
957
|
-
"""
|
632
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
958
633
|
...
|
959
634
|
|
960
|
-
|
961
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
635
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
962
636
|
"""
|
963
|
-
|
964
|
-
to a step needs to be retried.
|
637
|
+
Enables checkpointing for a step.
|
965
638
|
|
966
|
-
|
967
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
968
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
639
|
+
> Examples
|
969
640
|
|
970
|
-
|
971
|
-
|
972
|
-
|
641
|
+
- Saving Checkpoints
|
642
|
+
|
643
|
+
```python
|
644
|
+
@checkpoint
|
645
|
+
@step
|
646
|
+
def train(self):
|
647
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
648
|
+
for i in range(self.epochs):
|
649
|
+
# some training logic
|
650
|
+
loss = model.train(self.dataset)
|
651
|
+
if i % 10 == 0:
|
652
|
+
model.save(
|
653
|
+
current.checkpoint.directory,
|
654
|
+
)
|
655
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
656
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
657
|
+
self.latest_checkpoint = current.checkpoint.save(
|
658
|
+
name="epoch_checkpoint",
|
659
|
+
metadata={
|
660
|
+
"epoch": i,
|
661
|
+
"loss": loss,
|
662
|
+
}
|
663
|
+
)
|
664
|
+
```
|
665
|
+
|
666
|
+
- Using Loaded Checkpoints
|
667
|
+
|
668
|
+
```python
|
669
|
+
@retry(times=3)
|
670
|
+
@checkpoint
|
671
|
+
@step
|
672
|
+
def train(self):
|
673
|
+
# Assume that the task has restarted and the previous attempt of the task
|
674
|
+
# saved a checkpoint
|
675
|
+
checkpoint_path = None
|
676
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
677
|
+
print("Loaded checkpoint from the previous attempt")
|
678
|
+
checkpoint_path = current.checkpoint.directory
|
679
|
+
|
680
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
681
|
+
for i in range(self.epochs):
|
682
|
+
...
|
683
|
+
```
|
973
684
|
|
974
685
|
|
975
686
|
Parameters
|
976
687
|
----------
|
977
|
-
|
978
|
-
|
979
|
-
|
980
|
-
|
688
|
+
load_policy : str, default: "fresh"
|
689
|
+
The policy for loading the checkpoint. The following policies are supported:
|
690
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
691
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
692
|
+
will be loaded at the start of the task.
|
693
|
+
- "none": Do not load any checkpoint
|
694
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
695
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
696
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
697
|
+
created within the task will be loaded when the task is retries execution on failure.
|
698
|
+
|
699
|
+
temp_dir_root : str, default: None
|
700
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
981
701
|
"""
|
982
702
|
...
|
983
703
|
|
984
704
|
@typing.overload
|
985
|
-
def
|
986
|
-
...
|
987
|
-
|
988
|
-
@typing.overload
|
989
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
990
|
-
...
|
991
|
-
|
992
|
-
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
705
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
993
706
|
"""
|
994
|
-
|
995
|
-
to a step needs to be retried.
|
996
|
-
|
997
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
998
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
999
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
707
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
1000
708
|
|
1001
|
-
|
1002
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
1003
|
-
ensuring that the flow execution can continue.
|
709
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
1004
710
|
|
1005
711
|
|
1006
712
|
Parameters
|
1007
713
|
----------
|
1008
|
-
|
1009
|
-
|
1010
|
-
|
1011
|
-
|
714
|
+
type : str, default 'default'
|
715
|
+
Card type.
|
716
|
+
id : str, optional, default None
|
717
|
+
If multiple cards are present, use this id to identify this card.
|
718
|
+
options : Dict[str, Any], default {}
|
719
|
+
Options passed to the card. The contents depend on the card type.
|
720
|
+
timeout : int, default 45
|
721
|
+
Interrupt reporting if it takes more than this many seconds.
|
1012
722
|
"""
|
1013
723
|
...
|
1014
724
|
|
1015
725
|
@typing.overload
|
1016
|
-
def
|
726
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
727
|
+
...
|
728
|
+
|
729
|
+
@typing.overload
|
730
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
731
|
+
...
|
732
|
+
|
733
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
1017
734
|
"""
|
1018
|
-
|
735
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
1019
736
|
|
1020
|
-
|
1021
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
1022
|
-
you can use `@conda_base` to set packages required by all
|
1023
|
-
steps and use `@conda` to specify step-specific overrides.
|
737
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
1024
738
|
|
1025
739
|
|
1026
740
|
Parameters
|
1027
741
|
----------
|
1028
|
-
|
1029
|
-
|
1030
|
-
|
1031
|
-
|
1032
|
-
|
1033
|
-
|
1034
|
-
|
1035
|
-
|
1036
|
-
disabled : bool, default False
|
1037
|
-
If set to True, disables @conda.
|
742
|
+
type : str, default 'default'
|
743
|
+
Card type.
|
744
|
+
id : str, optional, default None
|
745
|
+
If multiple cards are present, use this id to identify this card.
|
746
|
+
options : Dict[str, Any], default {}
|
747
|
+
Options passed to the card. The contents depend on the card type.
|
748
|
+
timeout : int, default 45
|
749
|
+
Interrupt reporting if it takes more than this many seconds.
|
1038
750
|
"""
|
1039
751
|
...
|
1040
752
|
|
1041
753
|
@typing.overload
|
1042
|
-
def
|
754
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
755
|
+
"""
|
756
|
+
Internal decorator to support Fast bakery
|
757
|
+
"""
|
1043
758
|
...
|
1044
759
|
|
1045
760
|
@typing.overload
|
1046
|
-
def
|
761
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1047
762
|
...
|
1048
763
|
|
1049
|
-
def
|
764
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1050
765
|
"""
|
1051
|
-
|
1052
|
-
|
1053
|
-
|
1054
|
-
|
1055
|
-
|
1056
|
-
|
766
|
+
Internal decorator to support Fast bakery
|
767
|
+
"""
|
768
|
+
...
|
769
|
+
|
770
|
+
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
771
|
+
"""
|
772
|
+
Specifies that this step is used to deploy an instance of the app.
|
773
|
+
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
1057
774
|
|
1058
775
|
|
1059
776
|
Parameters
|
1060
777
|
----------
|
1061
|
-
|
1062
|
-
|
1063
|
-
|
1064
|
-
|
1065
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1066
|
-
python : str, optional, default None
|
1067
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1068
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1069
|
-
disabled : bool, default False
|
1070
|
-
If set to True, disables @conda.
|
778
|
+
app_port : int
|
779
|
+
Number of GPUs to use.
|
780
|
+
app_name : str
|
781
|
+
Name of the app to deploy.
|
1071
782
|
"""
|
1072
783
|
...
|
1073
784
|
|
1074
|
-
|
1075
|
-
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
785
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1076
786
|
"""
|
1077
|
-
|
787
|
+
Specifies that this step should execute on Kubernetes.
|
1078
788
|
|
1079
|
-
> Examples
|
1080
|
-
- Saving Models
|
1081
|
-
```python
|
1082
|
-
@model
|
1083
|
-
@step
|
1084
|
-
def train(self):
|
1085
|
-
# current.model.save returns a dictionary reference to the model saved
|
1086
|
-
self.my_model = current.model.save(
|
1087
|
-
path_to_my_model,
|
1088
|
-
label="my_model",
|
1089
|
-
metadata={
|
1090
|
-
"epochs": 10,
|
1091
|
-
"batch-size": 32,
|
1092
|
-
"learning-rate": 0.001,
|
1093
|
-
}
|
1094
|
-
)
|
1095
|
-
self.next(self.test)
|
1096
789
|
|
1097
|
-
|
1098
|
-
|
1099
|
-
|
1100
|
-
|
1101
|
-
|
1102
|
-
|
1103
|
-
|
1104
|
-
|
790
|
+
Parameters
|
791
|
+
----------
|
792
|
+
cpu : int, default 1
|
793
|
+
Number of CPUs required for this step. If `@resources` is
|
794
|
+
also present, the maximum value from all decorators is used.
|
795
|
+
memory : int, default 4096
|
796
|
+
Memory size (in MB) required for this step. If
|
797
|
+
`@resources` is also present, the maximum value from all decorators is
|
798
|
+
used.
|
799
|
+
disk : int, default 10240
|
800
|
+
Disk size (in MB) required for this step. If
|
801
|
+
`@resources` is also present, the maximum value from all decorators is
|
802
|
+
used.
|
803
|
+
image : str, optional, default None
|
804
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
805
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
806
|
+
not, a default Docker image mapping to the current version of Python is used.
|
807
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
808
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
809
|
+
image_pull_secrets: List[str], default []
|
810
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
811
|
+
Kubernetes image pull secrets to use when pulling container images
|
812
|
+
in Kubernetes.
|
813
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
814
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
815
|
+
secrets : List[str], optional, default None
|
816
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
817
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
818
|
+
in Metaflow configuration.
|
819
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
820
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
821
|
+
Can be passed in as a comma separated string of values e.g.
|
822
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
823
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
824
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
825
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
826
|
+
gpu : int, optional, default None
|
827
|
+
Number of GPUs required for this step. A value of zero implies that
|
828
|
+
the scheduled node should not have GPUs.
|
829
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
830
|
+
The vendor of the GPUs to be used for this step.
|
831
|
+
tolerations : List[str], default []
|
832
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
833
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
834
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
835
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
836
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
837
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
838
|
+
use_tmpfs : bool, default False
|
839
|
+
This enables an explicit tmpfs mount for this step.
|
840
|
+
tmpfs_tempdir : bool, default True
|
841
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
842
|
+
tmpfs_size : int, optional, default: None
|
843
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
844
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
845
|
+
memory allocated for this step.
|
846
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
847
|
+
Path to tmpfs mount for this step.
|
848
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
849
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
850
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
851
|
+
shared_memory: int, optional
|
852
|
+
Shared memory size (in MiB) required for this step
|
853
|
+
port: int, optional
|
854
|
+
Port number to specify in the Kubernetes job object
|
855
|
+
compute_pool : str, optional, default None
|
856
|
+
Compute pool to be used for for this step.
|
857
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
858
|
+
hostname_resolution_timeout: int, default 10 * 60
|
859
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
860
|
+
Only applicable when @parallel is used.
|
861
|
+
qos: str, default: Burstable
|
862
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
1105
863
|
|
1106
|
-
|
1107
|
-
|
1108
|
-
|
1109
|
-
|
1110
|
-
|
1111
|
-
|
1112
|
-
|
1113
|
-
|
1114
|
-
|
1115
|
-
|
1116
|
-
|
1117
|
-
|
1118
|
-
|
864
|
+
security_context: Dict[str, Any], optional, default None
|
865
|
+
Container security context. Applies to the task container. Allows the following keys:
|
866
|
+
- privileged: bool, optional, default None
|
867
|
+
- allow_privilege_escalation: bool, optional, default None
|
868
|
+
- run_as_user: int, optional, default None
|
869
|
+
- run_as_group: int, optional, default None
|
870
|
+
- run_as_non_root: bool, optional, default None
|
871
|
+
"""
|
872
|
+
...
|
873
|
+
|
874
|
+
@typing.overload
|
875
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
876
|
+
"""
|
877
|
+
Specifies environment variables to be set prior to the execution of a step.
|
1119
878
|
|
1120
879
|
|
1121
880
|
Parameters
|
1122
881
|
----------
|
1123
|
-
|
1124
|
-
|
1125
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
1126
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
1127
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
1128
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
1129
|
-
|
1130
|
-
temp_dir_root : str, default: None
|
1131
|
-
The root directory under which `current.model.loaded` will store loaded models
|
882
|
+
vars : Dict[str, str], default {}
|
883
|
+
Dictionary of environment variables to set.
|
1132
884
|
"""
|
1133
885
|
...
|
1134
886
|
|
1135
887
|
@typing.overload
|
1136
|
-
def
|
888
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1137
889
|
...
|
1138
890
|
|
1139
891
|
@typing.overload
|
1140
|
-
def
|
892
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1141
893
|
...
|
1142
894
|
|
1143
|
-
def
|
895
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
1144
896
|
"""
|
1145
|
-
|
1146
|
-
|
1147
|
-
> Examples
|
1148
|
-
- Saving Models
|
1149
|
-
```python
|
1150
|
-
@model
|
1151
|
-
@step
|
1152
|
-
def train(self):
|
1153
|
-
# current.model.save returns a dictionary reference to the model saved
|
1154
|
-
self.my_model = current.model.save(
|
1155
|
-
path_to_my_model,
|
1156
|
-
label="my_model",
|
1157
|
-
metadata={
|
1158
|
-
"epochs": 10,
|
1159
|
-
"batch-size": 32,
|
1160
|
-
"learning-rate": 0.001,
|
1161
|
-
}
|
1162
|
-
)
|
1163
|
-
self.next(self.test)
|
897
|
+
Specifies environment variables to be set prior to the execution of a step.
|
1164
898
|
|
1165
|
-
@model(load="my_model")
|
1166
|
-
@step
|
1167
|
-
def test(self):
|
1168
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
1169
|
-
# where the key is the name of the artifact and the value is the path to the model
|
1170
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
1171
|
-
self.next(self.end)
|
1172
|
-
```
|
1173
899
|
|
1174
|
-
|
1175
|
-
|
1176
|
-
|
1177
|
-
|
1178
|
-
|
1179
|
-
|
1180
|
-
|
1181
|
-
|
1182
|
-
|
1183
|
-
|
1184
|
-
|
1185
|
-
|
1186
|
-
```
|
900
|
+
Parameters
|
901
|
+
----------
|
902
|
+
vars : Dict[str, str], default {}
|
903
|
+
Dictionary of environment variables to set.
|
904
|
+
"""
|
905
|
+
...
|
906
|
+
|
907
|
+
@typing.overload
|
908
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
909
|
+
"""
|
910
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
911
|
+
the execution of a step.
|
1187
912
|
|
1188
913
|
|
1189
914
|
Parameters
|
1190
915
|
----------
|
1191
|
-
|
1192
|
-
|
1193
|
-
|
1194
|
-
|
1195
|
-
|
1196
|
-
|
916
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
917
|
+
List of secret specs, defining how the secrets are to be retrieved
|
918
|
+
"""
|
919
|
+
...
|
920
|
+
|
921
|
+
@typing.overload
|
922
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
923
|
+
...
|
924
|
+
|
925
|
+
@typing.overload
|
926
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
927
|
+
...
|
928
|
+
|
929
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []):
|
930
|
+
"""
|
931
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
932
|
+
the execution of a step.
|
1197
933
|
|
1198
|
-
|
1199
|
-
|
934
|
+
|
935
|
+
Parameters
|
936
|
+
----------
|
937
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
938
|
+
List of secret specs, defining how the secrets are to be retrieved
|
1200
939
|
"""
|
1201
940
|
...
|
1202
941
|
|
1203
942
|
@typing.overload
|
1204
|
-
def
|
943
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1205
944
|
"""
|
1206
|
-
Specifies
|
945
|
+
Specifies the resources needed when executing this step.
|
946
|
+
|
947
|
+
Use `@resources` to specify the resource requirements
|
948
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
949
|
+
|
950
|
+
You can choose the compute layer on the command line by executing e.g.
|
951
|
+
```
|
952
|
+
python myflow.py run --with batch
|
953
|
+
```
|
954
|
+
or
|
955
|
+
```
|
956
|
+
python myflow.py run --with kubernetes
|
957
|
+
```
|
958
|
+
which executes the flow on the desired system using the
|
959
|
+
requirements specified in `@resources`.
|
1207
960
|
|
1208
961
|
|
1209
962
|
Parameters
|
1210
963
|
----------
|
1211
|
-
|
1212
|
-
|
964
|
+
cpu : int, default 1
|
965
|
+
Number of CPUs required for this step.
|
966
|
+
gpu : int, optional, default None
|
967
|
+
Number of GPUs required for this step.
|
968
|
+
disk : int, optional, default None
|
969
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
970
|
+
memory : int, default 4096
|
971
|
+
Memory size (in MB) required for this step.
|
972
|
+
shared_memory : int, optional, default None
|
973
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
974
|
+
This parameter maps to the `--shm-size` option in Docker.
|
1213
975
|
"""
|
1214
976
|
...
|
1215
977
|
|
1216
978
|
@typing.overload
|
1217
|
-
def
|
979
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1218
980
|
...
|
1219
981
|
|
1220
982
|
@typing.overload
|
1221
|
-
def
|
983
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1222
984
|
...
|
1223
985
|
|
1224
|
-
def
|
986
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
1225
987
|
"""
|
1226
|
-
Specifies
|
988
|
+
Specifies the resources needed when executing this step.
|
989
|
+
|
990
|
+
Use `@resources` to specify the resource requirements
|
991
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
992
|
+
|
993
|
+
You can choose the compute layer on the command line by executing e.g.
|
994
|
+
```
|
995
|
+
python myflow.py run --with batch
|
996
|
+
```
|
997
|
+
or
|
998
|
+
```
|
999
|
+
python myflow.py run --with kubernetes
|
1000
|
+
```
|
1001
|
+
which executes the flow on the desired system using the
|
1002
|
+
requirements specified in `@resources`.
|
1227
1003
|
|
1228
1004
|
|
1229
1005
|
Parameters
|
1230
1006
|
----------
|
1231
|
-
|
1232
|
-
|
1007
|
+
cpu : int, default 1
|
1008
|
+
Number of CPUs required for this step.
|
1009
|
+
gpu : int, optional, default None
|
1010
|
+
Number of GPUs required for this step.
|
1011
|
+
disk : int, optional, default None
|
1012
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
1013
|
+
memory : int, default 4096
|
1014
|
+
Memory size (in MB) required for this step.
|
1015
|
+
shared_memory : int, optional, default None
|
1016
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
1017
|
+
This parameter maps to the `--shm-size` option in Docker.
|
1018
|
+
"""
|
1019
|
+
...
|
1020
|
+
|
1021
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1022
|
+
"""
|
1023
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
1024
|
+
|
1025
|
+
User code call
|
1026
|
+
--------------
|
1027
|
+
@vllm(
|
1028
|
+
model="...",
|
1029
|
+
...
|
1030
|
+
)
|
1031
|
+
|
1032
|
+
Valid backend options
|
1033
|
+
---------------------
|
1034
|
+
- 'local': Run as a separate process on the local task machine.
|
1035
|
+
|
1036
|
+
Valid model options
|
1037
|
+
-------------------
|
1038
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
1039
|
+
|
1040
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
1041
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
1042
|
+
|
1043
|
+
|
1044
|
+
Parameters
|
1045
|
+
----------
|
1046
|
+
model: str
|
1047
|
+
HuggingFace model identifier to be served by vLLM.
|
1048
|
+
backend: str
|
1049
|
+
Determines where and how to run the vLLM process.
|
1050
|
+
openai_api_server: bool
|
1051
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
1052
|
+
Default is False (uses native engine).
|
1053
|
+
Set to True for backward compatibility with existing code.
|
1054
|
+
debug: bool
|
1055
|
+
Whether to turn on verbose debugging logs.
|
1056
|
+
card_refresh_interval: int
|
1057
|
+
Interval in seconds for refreshing the vLLM status card.
|
1058
|
+
Only used when openai_api_server=True.
|
1059
|
+
max_retries: int
|
1060
|
+
Maximum number of retries checking for vLLM server startup.
|
1061
|
+
Only used when openai_api_server=True.
|
1062
|
+
retry_alert_frequency: int
|
1063
|
+
Frequency of alert logs for vLLM server startup retries.
|
1064
|
+
Only used when openai_api_server=True.
|
1065
|
+
engine_args : dict
|
1066
|
+
Additional keyword arguments to pass to the vLLM engine.
|
1067
|
+
For example, `tensor_parallel_size=2`.
|
1233
1068
|
"""
|
1234
1069
|
...
|
1235
1070
|
|
1236
1071
|
@typing.overload
|
1237
|
-
def
|
1072
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1238
1073
|
"""
|
1239
|
-
Specifies the PyPI packages for
|
1074
|
+
Specifies the PyPI packages for the step.
|
1240
1075
|
|
1241
|
-
|
1076
|
+
Information in this decorator will augment any
|
1077
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
1078
|
+
you can use `@pypi_base` to set packages required by all
|
1242
1079
|
steps and use `@pypi` to specify step-specific overrides.
|
1243
1080
|
|
1081
|
+
|
1244
1082
|
Parameters
|
1245
1083
|
----------
|
1246
1084
|
packages : Dict[str, str], default: {}
|
1247
|
-
Packages to use for this
|
1085
|
+
Packages to use for this step. The key is the name of the package
|
1248
1086
|
and the value is the version to use.
|
1249
1087
|
python : str, optional, default: None
|
1250
1088
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
@@ -1253,20 +1091,27 @@ def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[s
|
|
1253
1091
|
...
|
1254
1092
|
|
1255
1093
|
@typing.overload
|
1256
|
-
def
|
1094
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1257
1095
|
...
|
1258
1096
|
|
1259
|
-
|
1097
|
+
@typing.overload
|
1098
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1099
|
+
...
|
1100
|
+
|
1101
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1260
1102
|
"""
|
1261
|
-
Specifies the PyPI packages for
|
1103
|
+
Specifies the PyPI packages for the step.
|
1262
1104
|
|
1263
|
-
|
1105
|
+
Information in this decorator will augment any
|
1106
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
1107
|
+
you can use `@pypi_base` to set packages required by all
|
1264
1108
|
steps and use `@pypi` to specify step-specific overrides.
|
1265
1109
|
|
1110
|
+
|
1266
1111
|
Parameters
|
1267
1112
|
----------
|
1268
1113
|
packages : Dict[str, str], default: {}
|
1269
|
-
Packages to use for this
|
1114
|
+
Packages to use for this step. The key is the name of the package
|
1270
1115
|
and the value is the version to use.
|
1271
1116
|
python : str, optional, default: None
|
1272
1117
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
@@ -1274,217 +1119,129 @@ def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packag
|
|
1274
1119
|
"""
|
1275
1120
|
...
|
1276
1121
|
|
1277
|
-
|
1122
|
+
@typing.overload
|
1123
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1278
1124
|
"""
|
1279
|
-
Specifies
|
1125
|
+
Specifies that the step will success under all circumstances.
|
1280
1126
|
|
1281
|
-
|
1282
|
-
use the
|
1127
|
+
The decorator will create an optional artifact, specified by `var`, which
|
1128
|
+
contains the exception raised. You can use it to detect the presence
|
1129
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
1130
|
+
are missing.
|
1283
1131
|
|
1284
1132
|
|
1285
1133
|
Parameters
|
1286
1134
|
----------
|
1287
|
-
|
1288
|
-
|
1289
|
-
|
1290
|
-
|
1291
|
-
|
1292
|
-
|
1293
|
-
The branch to use. If not specified, the branch is set to
|
1294
|
-
`user.<username>` unless `production` is set to `True`. This can
|
1295
|
-
also be set on the command line using `--branch` as a top-level option.
|
1296
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
1297
|
-
|
1298
|
-
production : bool, default False
|
1299
|
-
Whether or not the branch is the production branch. This can also be set on the
|
1300
|
-
command line using `--production` as a top-level option. It is an error to specify
|
1301
|
-
`production` in the decorator and on the command line.
|
1302
|
-
The project branch name will be:
|
1303
|
-
- if `branch` is specified:
|
1304
|
-
- if `production` is True: `prod.<branch>`
|
1305
|
-
- if `production` is False: `test.<branch>`
|
1306
|
-
- if `branch` is not specified:
|
1307
|
-
- if `production` is True: `prod`
|
1308
|
-
- if `production` is False: `user.<username>`
|
1135
|
+
var : str, optional, default None
|
1136
|
+
Name of the artifact in which to store the caught exception.
|
1137
|
+
If not specified, the exception is not stored.
|
1138
|
+
print_exception : bool, default True
|
1139
|
+
Determines whether or not the exception is printed to
|
1140
|
+
stdout when caught.
|
1309
1141
|
"""
|
1310
1142
|
...
|
1311
1143
|
|
1312
|
-
|
1144
|
+
@typing.overload
|
1145
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1146
|
+
...
|
1147
|
+
|
1148
|
+
@typing.overload
|
1149
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1150
|
+
...
|
1151
|
+
|
1152
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
1313
1153
|
"""
|
1314
|
-
|
1315
|
-
|
1316
|
-
|
1317
|
-
|
1318
|
-
|
1154
|
+
Specifies that the step will success under all circumstances.
|
1155
|
+
|
1156
|
+
The decorator will create an optional artifact, specified by `var`, which
|
1157
|
+
contains the exception raised. You can use it to detect the presence
|
1158
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
1159
|
+
are missing.
|
1319
1160
|
|
1320
1161
|
|
1321
1162
|
Parameters
|
1322
1163
|
----------
|
1323
|
-
|
1324
|
-
|
1325
|
-
|
1326
|
-
|
1327
|
-
|
1328
|
-
|
1329
|
-
exponential_backoff : bool
|
1330
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1331
|
-
pool : str
|
1332
|
-
the slot pool this task should run in,
|
1333
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1334
|
-
soft_fail : bool
|
1335
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1336
|
-
name : str
|
1337
|
-
Name of the sensor on Airflow
|
1338
|
-
description : str
|
1339
|
-
Description of sensor in the Airflow UI
|
1340
|
-
bucket_key : Union[str, List[str]]
|
1341
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1342
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1343
|
-
bucket_name : str
|
1344
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1345
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1346
|
-
wildcard_match : bool
|
1347
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1348
|
-
aws_conn_id : str
|
1349
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
1350
|
-
verify : bool
|
1351
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1164
|
+
var : str, optional, default None
|
1165
|
+
Name of the artifact in which to store the caught exception.
|
1166
|
+
If not specified, the exception is not stored.
|
1167
|
+
print_exception : bool, default True
|
1168
|
+
Determines whether or not the exception is printed to
|
1169
|
+
stdout when caught.
|
1352
1170
|
"""
|
1353
1171
|
...
|
1354
1172
|
|
1355
1173
|
@typing.overload
|
1356
|
-
def
|
1174
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1357
1175
|
"""
|
1358
|
-
Specifies
|
1176
|
+
Specifies a timeout for your step.
|
1359
1177
|
|
1360
|
-
|
1361
|
-
@trigger(event='foo')
|
1362
|
-
```
|
1363
|
-
or
|
1364
|
-
```
|
1365
|
-
@trigger(events=['foo', 'bar'])
|
1366
|
-
```
|
1178
|
+
This decorator is useful if this step may hang indefinitely.
|
1367
1179
|
|
1368
|
-
|
1369
|
-
|
1370
|
-
|
1371
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1372
|
-
```
|
1373
|
-
or
|
1374
|
-
```
|
1375
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1376
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1377
|
-
```
|
1180
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
1181
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
1182
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
1378
1183
|
|
1379
|
-
|
1380
|
-
|
1381
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1382
|
-
```
|
1383
|
-
This is equivalent to:
|
1384
|
-
```
|
1385
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1386
|
-
```
|
1184
|
+
Note that all the values specified in parameters are added together so if you specify
|
1185
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
1387
1186
|
|
1388
1187
|
|
1389
1188
|
Parameters
|
1390
1189
|
----------
|
1391
|
-
|
1392
|
-
|
1393
|
-
|
1394
|
-
|
1395
|
-
|
1396
|
-
|
1190
|
+
seconds : int, default 0
|
1191
|
+
Number of seconds to wait prior to timing out.
|
1192
|
+
minutes : int, default 0
|
1193
|
+
Number of minutes to wait prior to timing out.
|
1194
|
+
hours : int, default 0
|
1195
|
+
Number of hours to wait prior to timing out.
|
1397
1196
|
"""
|
1398
1197
|
...
|
1399
1198
|
|
1400
1199
|
@typing.overload
|
1401
|
-
def
|
1200
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1402
1201
|
...
|
1403
1202
|
|
1404
|
-
|
1203
|
+
@typing.overload
|
1204
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1205
|
+
...
|
1206
|
+
|
1207
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
1405
1208
|
"""
|
1406
|
-
Specifies
|
1209
|
+
Specifies a timeout for your step.
|
1407
1210
|
|
1408
|
-
|
1409
|
-
@trigger(event='foo')
|
1410
|
-
```
|
1411
|
-
or
|
1412
|
-
```
|
1413
|
-
@trigger(events=['foo', 'bar'])
|
1414
|
-
```
|
1211
|
+
This decorator is useful if this step may hang indefinitely.
|
1415
1212
|
|
1416
|
-
|
1417
|
-
|
1418
|
-
|
1419
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1420
|
-
```
|
1421
|
-
or
|
1422
|
-
```
|
1423
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1424
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1425
|
-
```
|
1213
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
1214
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
1215
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
1426
1216
|
|
1427
|
-
|
1428
|
-
|
1429
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1430
|
-
```
|
1431
|
-
This is equivalent to:
|
1432
|
-
```
|
1433
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1434
|
-
```
|
1217
|
+
Note that all the values specified in parameters are added together so if you specify
|
1218
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
1435
1219
|
|
1436
1220
|
|
1437
1221
|
Parameters
|
1438
1222
|
----------
|
1439
|
-
|
1440
|
-
|
1441
|
-
|
1442
|
-
|
1443
|
-
|
1444
|
-
|
1223
|
+
seconds : int, default 0
|
1224
|
+
Number of seconds to wait prior to timing out.
|
1225
|
+
minutes : int, default 0
|
1226
|
+
Number of minutes to wait prior to timing out.
|
1227
|
+
hours : int, default 0
|
1228
|
+
Number of hours to wait prior to timing out.
|
1445
1229
|
"""
|
1446
1230
|
...
|
1447
1231
|
|
1448
|
-
def
|
1232
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1449
1233
|
"""
|
1450
|
-
|
1451
|
-
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1234
|
+
Specifies that this step should execute on DGX cloud.
|
1452
1235
|
|
1453
1236
|
|
1454
1237
|
Parameters
|
1455
1238
|
----------
|
1456
|
-
|
1457
|
-
|
1458
|
-
|
1459
|
-
|
1460
|
-
|
1461
|
-
|
1462
|
-
exponential_backoff : bool
|
1463
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1464
|
-
pool : str
|
1465
|
-
the slot pool this task should run in,
|
1466
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1467
|
-
soft_fail : bool
|
1468
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1469
|
-
name : str
|
1470
|
-
Name of the sensor on Airflow
|
1471
|
-
description : str
|
1472
|
-
Description of sensor in the Airflow UI
|
1473
|
-
external_dag_id : str
|
1474
|
-
The dag_id that contains the task you want to wait for.
|
1475
|
-
external_task_ids : List[str]
|
1476
|
-
The list of task_ids that you want to wait for.
|
1477
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
1478
|
-
allowed_states : List[str]
|
1479
|
-
Iterable of allowed states, (Default: ['success'])
|
1480
|
-
failed_states : List[str]
|
1481
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1482
|
-
execution_delta : datetime.timedelta
|
1483
|
-
time difference with the previous execution to look at,
|
1484
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1485
|
-
check_existence: bool
|
1486
|
-
Set to True to check if the external task exists or check if
|
1487
|
-
the DAG to wait for exists. (Default: True)
|
1239
|
+
gpu : int
|
1240
|
+
Number of GPUs to use.
|
1241
|
+
gpu_type : str
|
1242
|
+
Type of Nvidia GPU to use.
|
1243
|
+
queue_timeout : int
|
1244
|
+
Time to keep the job in NVCF's queue.
|
1488
1245
|
"""
|
1489
1246
|
...
|
1490
1247
|
|
@@ -1590,104 +1347,136 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
1590
1347
|
...
|
1591
1348
|
|
1592
1349
|
@typing.overload
|
1593
|
-
def
|
1350
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1594
1351
|
"""
|
1595
|
-
Specifies the
|
1596
|
-
|
1352
|
+
Specifies the event(s) that this flow depends on.
|
1353
|
+
|
1354
|
+
```
|
1355
|
+
@trigger(event='foo')
|
1356
|
+
```
|
1357
|
+
or
|
1358
|
+
```
|
1359
|
+
@trigger(events=['foo', 'bar'])
|
1360
|
+
```
|
1361
|
+
|
1362
|
+
Additionally, you can specify the parameter mappings
|
1363
|
+
to map event payload to Metaflow parameters for the flow.
|
1364
|
+
```
|
1365
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1366
|
+
```
|
1367
|
+
or
|
1368
|
+
```
|
1369
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1370
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1371
|
+
```
|
1372
|
+
|
1373
|
+
'parameters' can also be a list of strings and tuples like so:
|
1374
|
+
```
|
1375
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1376
|
+
```
|
1377
|
+
This is equivalent to:
|
1378
|
+
```
|
1379
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1380
|
+
```
|
1597
1381
|
|
1598
1382
|
|
1599
1383
|
Parameters
|
1600
1384
|
----------
|
1601
|
-
|
1602
|
-
|
1603
|
-
|
1604
|
-
|
1605
|
-
|
1606
|
-
|
1607
|
-
cron : str, optional, default None
|
1608
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1609
|
-
specified by this expression.
|
1610
|
-
timezone : str, optional, default None
|
1611
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1612
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1385
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1386
|
+
Event dependency for this flow.
|
1387
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1388
|
+
Events dependency for this flow.
|
1389
|
+
options : Dict[str, Any], default {}
|
1390
|
+
Backend-specific configuration for tuning eventing behavior.
|
1613
1391
|
"""
|
1614
1392
|
...
|
1615
1393
|
|
1616
1394
|
@typing.overload
|
1617
|
-
def
|
1395
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1618
1396
|
...
|
1619
1397
|
|
1620
|
-
def
|
1398
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1621
1399
|
"""
|
1622
|
-
Specifies the
|
1623
|
-
|
1400
|
+
Specifies the event(s) that this flow depends on.
|
1401
|
+
|
1402
|
+
```
|
1403
|
+
@trigger(event='foo')
|
1404
|
+
```
|
1405
|
+
or
|
1406
|
+
```
|
1407
|
+
@trigger(events=['foo', 'bar'])
|
1408
|
+
```
|
1409
|
+
|
1410
|
+
Additionally, you can specify the parameter mappings
|
1411
|
+
to map event payload to Metaflow parameters for the flow.
|
1412
|
+
```
|
1413
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1414
|
+
```
|
1415
|
+
or
|
1416
|
+
```
|
1417
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1418
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1419
|
+
```
|
1420
|
+
|
1421
|
+
'parameters' can also be a list of strings and tuples like so:
|
1422
|
+
```
|
1423
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1424
|
+
```
|
1425
|
+
This is equivalent to:
|
1426
|
+
```
|
1427
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1428
|
+
```
|
1624
1429
|
|
1625
1430
|
|
1626
1431
|
Parameters
|
1627
1432
|
----------
|
1628
|
-
|
1629
|
-
|
1630
|
-
|
1631
|
-
|
1632
|
-
|
1633
|
-
|
1634
|
-
cron : str, optional, default None
|
1635
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1636
|
-
specified by this expression.
|
1637
|
-
timezone : str, optional, default None
|
1638
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1639
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1433
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1434
|
+
Event dependency for this flow.
|
1435
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1436
|
+
Events dependency for this flow.
|
1437
|
+
options : Dict[str, Any], default {}
|
1438
|
+
Backend-specific configuration for tuning eventing behavior.
|
1640
1439
|
"""
|
1641
1440
|
...
|
1642
1441
|
|
1643
|
-
@typing.overload
|
1644
|
-
def
|
1645
|
-
"""
|
1646
|
-
Specifies the
|
1647
|
-
|
1648
|
-
Use `@conda_base` to set common libraries required by all
|
1649
|
-
steps and use `@conda` to specify step-specific additions.
|
1442
|
+
@typing.overload
|
1443
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1444
|
+
"""
|
1445
|
+
Specifies the PyPI packages for all steps of the flow.
|
1650
1446
|
|
1447
|
+
Use `@pypi_base` to set common packages required by all
|
1448
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1651
1449
|
|
1652
1450
|
Parameters
|
1653
1451
|
----------
|
1654
|
-
packages : Dict[str, str], default {}
|
1452
|
+
packages : Dict[str, str], default: {}
|
1655
1453
|
Packages to use for this flow. The key is the name of the package
|
1656
1454
|
and the value is the version to use.
|
1657
|
-
|
1658
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1659
|
-
python : str, optional, default None
|
1455
|
+
python : str, optional, default: None
|
1660
1456
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1661
1457
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1662
|
-
disabled : bool, default False
|
1663
|
-
If set to True, disables Conda.
|
1664
1458
|
"""
|
1665
1459
|
...
|
1666
1460
|
|
1667
1461
|
@typing.overload
|
1668
|
-
def
|
1462
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1669
1463
|
...
|
1670
1464
|
|
1671
|
-
def
|
1465
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1672
1466
|
"""
|
1673
|
-
Specifies the
|
1674
|
-
|
1675
|
-
Use `@conda_base` to set common libraries required by all
|
1676
|
-
steps and use `@conda` to specify step-specific additions.
|
1467
|
+
Specifies the PyPI packages for all steps of the flow.
|
1677
1468
|
|
1469
|
+
Use `@pypi_base` to set common packages required by all
|
1470
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1678
1471
|
|
1679
1472
|
Parameters
|
1680
1473
|
----------
|
1681
|
-
packages : Dict[str, str], default {}
|
1474
|
+
packages : Dict[str, str], default: {}
|
1682
1475
|
Packages to use for this flow. The key is the name of the package
|
1683
1476
|
and the value is the version to use.
|
1684
|
-
|
1685
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1686
|
-
python : str, optional, default None
|
1477
|
+
python : str, optional, default: None
|
1687
1478
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1688
1479
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1689
|
-
disabled : bool, default False
|
1690
|
-
If set to True, disables Conda.
|
1691
1480
|
"""
|
1692
1481
|
...
|
1693
1482
|
|
@@ -1805,5 +1594,228 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
1805
1594
|
"""
|
1806
1595
|
...
|
1807
1596
|
|
1597
|
+
@typing.overload
|
1598
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1599
|
+
"""
|
1600
|
+
Specifies the times when the flow should be run when running on a
|
1601
|
+
production scheduler.
|
1602
|
+
|
1603
|
+
|
1604
|
+
Parameters
|
1605
|
+
----------
|
1606
|
+
hourly : bool, default False
|
1607
|
+
Run the workflow hourly.
|
1608
|
+
daily : bool, default True
|
1609
|
+
Run the workflow daily.
|
1610
|
+
weekly : bool, default False
|
1611
|
+
Run the workflow weekly.
|
1612
|
+
cron : str, optional, default None
|
1613
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1614
|
+
specified by this expression.
|
1615
|
+
timezone : str, optional, default None
|
1616
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1617
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1618
|
+
"""
|
1619
|
+
...
|
1620
|
+
|
1621
|
+
@typing.overload
|
1622
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1623
|
+
...
|
1624
|
+
|
1625
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1626
|
+
"""
|
1627
|
+
Specifies the times when the flow should be run when running on a
|
1628
|
+
production scheduler.
|
1629
|
+
|
1630
|
+
|
1631
|
+
Parameters
|
1632
|
+
----------
|
1633
|
+
hourly : bool, default False
|
1634
|
+
Run the workflow hourly.
|
1635
|
+
daily : bool, default True
|
1636
|
+
Run the workflow daily.
|
1637
|
+
weekly : bool, default False
|
1638
|
+
Run the workflow weekly.
|
1639
|
+
cron : str, optional, default None
|
1640
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1641
|
+
specified by this expression.
|
1642
|
+
timezone : str, optional, default None
|
1643
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1644
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1645
|
+
"""
|
1646
|
+
...
|
1647
|
+
|
1648
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1649
|
+
"""
|
1650
|
+
Specifies what flows belong to the same project.
|
1651
|
+
|
1652
|
+
A project-specific namespace is created for all flows that
|
1653
|
+
use the same `@project(name)`.
|
1654
|
+
|
1655
|
+
|
1656
|
+
Parameters
|
1657
|
+
----------
|
1658
|
+
name : str
|
1659
|
+
Project name. Make sure that the name is unique amongst all
|
1660
|
+
projects that use the same production scheduler. The name may
|
1661
|
+
contain only lowercase alphanumeric characters and underscores.
|
1662
|
+
|
1663
|
+
branch : Optional[str], default None
|
1664
|
+
The branch to use. If not specified, the branch is set to
|
1665
|
+
`user.<username>` unless `production` is set to `True`. This can
|
1666
|
+
also be set on the command line using `--branch` as a top-level option.
|
1667
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
1668
|
+
|
1669
|
+
production : bool, default False
|
1670
|
+
Whether or not the branch is the production branch. This can also be set on the
|
1671
|
+
command line using `--production` as a top-level option. It is an error to specify
|
1672
|
+
`production` in the decorator and on the command line.
|
1673
|
+
The project branch name will be:
|
1674
|
+
- if `branch` is specified:
|
1675
|
+
- if `production` is True: `prod.<branch>`
|
1676
|
+
- if `production` is False: `test.<branch>`
|
1677
|
+
- if `branch` is not specified:
|
1678
|
+
- if `production` is True: `prod`
|
1679
|
+
- if `production` is False: `user.<username>`
|
1680
|
+
"""
|
1681
|
+
...
|
1682
|
+
|
1683
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1684
|
+
"""
|
1685
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1686
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1687
|
+
|
1688
|
+
|
1689
|
+
Parameters
|
1690
|
+
----------
|
1691
|
+
timeout : int
|
1692
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1693
|
+
poke_interval : int
|
1694
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1695
|
+
mode : str
|
1696
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1697
|
+
exponential_backoff : bool
|
1698
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1699
|
+
pool : str
|
1700
|
+
the slot pool this task should run in,
|
1701
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1702
|
+
soft_fail : bool
|
1703
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1704
|
+
name : str
|
1705
|
+
Name of the sensor on Airflow
|
1706
|
+
description : str
|
1707
|
+
Description of sensor in the Airflow UI
|
1708
|
+
external_dag_id : str
|
1709
|
+
The dag_id that contains the task you want to wait for.
|
1710
|
+
external_task_ids : List[str]
|
1711
|
+
The list of task_ids that you want to wait for.
|
1712
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1713
|
+
allowed_states : List[str]
|
1714
|
+
Iterable of allowed states, (Default: ['success'])
|
1715
|
+
failed_states : List[str]
|
1716
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1717
|
+
execution_delta : datetime.timedelta
|
1718
|
+
time difference with the previous execution to look at,
|
1719
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1720
|
+
check_existence: bool
|
1721
|
+
Set to True to check if the external task exists or check if
|
1722
|
+
the DAG to wait for exists. (Default: True)
|
1723
|
+
"""
|
1724
|
+
...
|
1725
|
+
|
1726
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1727
|
+
"""
|
1728
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1729
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1730
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1731
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1732
|
+
starts only after all sensors finish.
|
1733
|
+
|
1734
|
+
|
1735
|
+
Parameters
|
1736
|
+
----------
|
1737
|
+
timeout : int
|
1738
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1739
|
+
poke_interval : int
|
1740
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1741
|
+
mode : str
|
1742
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1743
|
+
exponential_backoff : bool
|
1744
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1745
|
+
pool : str
|
1746
|
+
the slot pool this task should run in,
|
1747
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1748
|
+
soft_fail : bool
|
1749
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1750
|
+
name : str
|
1751
|
+
Name of the sensor on Airflow
|
1752
|
+
description : str
|
1753
|
+
Description of sensor in the Airflow UI
|
1754
|
+
bucket_key : Union[str, List[str]]
|
1755
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1756
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1757
|
+
bucket_name : str
|
1758
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1759
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1760
|
+
wildcard_match : bool
|
1761
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1762
|
+
aws_conn_id : str
|
1763
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1764
|
+
verify : bool
|
1765
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1766
|
+
"""
|
1767
|
+
...
|
1768
|
+
|
1769
|
+
@typing.overload
|
1770
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1771
|
+
"""
|
1772
|
+
Specifies the Conda environment for all steps of the flow.
|
1773
|
+
|
1774
|
+
Use `@conda_base` to set common libraries required by all
|
1775
|
+
steps and use `@conda` to specify step-specific additions.
|
1776
|
+
|
1777
|
+
|
1778
|
+
Parameters
|
1779
|
+
----------
|
1780
|
+
packages : Dict[str, str], default {}
|
1781
|
+
Packages to use for this flow. The key is the name of the package
|
1782
|
+
and the value is the version to use.
|
1783
|
+
libraries : Dict[str, str], default {}
|
1784
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1785
|
+
python : str, optional, default None
|
1786
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1787
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1788
|
+
disabled : bool, default False
|
1789
|
+
If set to True, disables Conda.
|
1790
|
+
"""
|
1791
|
+
...
|
1792
|
+
|
1793
|
+
@typing.overload
|
1794
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1795
|
+
...
|
1796
|
+
|
1797
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1798
|
+
"""
|
1799
|
+
Specifies the Conda environment for all steps of the flow.
|
1800
|
+
|
1801
|
+
Use `@conda_base` to set common libraries required by all
|
1802
|
+
steps and use `@conda` to specify step-specific additions.
|
1803
|
+
|
1804
|
+
|
1805
|
+
Parameters
|
1806
|
+
----------
|
1807
|
+
packages : Dict[str, str], default {}
|
1808
|
+
Packages to use for this flow. The key is the name of the package
|
1809
|
+
and the value is the version to use.
|
1810
|
+
libraries : Dict[str, str], default {}
|
1811
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1812
|
+
python : str, optional, default None
|
1813
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1814
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1815
|
+
disabled : bool, default False
|
1816
|
+
If set to True, disables Conda.
|
1817
|
+
"""
|
1818
|
+
...
|
1819
|
+
|
1808
1820
|
pkg_name: str
|
1809
1821
|
|