ob-metaflow-stubs 6.0.3.184__py2.py3-none-any.whl → 6.0.3.186__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +1009 -792
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +5 -5
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +3 -3
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/info_file.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -2
- metaflow-stubs/metaflow_current.pyi +31 -179
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +50 -48
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +10 -14
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +86 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +79 -76
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +48 -13
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +12 -12
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +3 -3
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +3 -3
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +4 -3
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +4 -4
- metaflow-stubs/runner/deployer_impl.pyi +3 -3
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +4 -4
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +3 -3
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_decorators.pyi +6 -6
- metaflow-stubs/user_configs/config_options.pyi +3 -3
- metaflow-stubs/user_configs/config_parameters.pyi +7 -7
- {ob_metaflow_stubs-6.0.3.184.dist-info → ob_metaflow_stubs-6.0.3.186.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.3.186.dist-info/RECORD +216 -0
- ob_metaflow_stubs-6.0.3.184.dist-info/RECORD +0 -216
- {ob_metaflow_stubs-6.0.3.184.dist-info → ob_metaflow_stubs-6.0.3.186.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.3.184.dist-info → ob_metaflow_stubs-6.0.3.186.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,15 +1,15 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
|
-
# MF version: 2.15.18.1+obcheckpoint(0.2.
|
4
|
-
# Generated on 2025-
|
3
|
+
# MF version: 2.15.18.1+obcheckpoint(0.2.4);ob(v1) #
|
4
|
+
# Generated on 2025-07-01T08:40:33.108391 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
8
8
|
|
9
9
|
import typing
|
10
10
|
if typing.TYPE_CHECKING:
|
11
|
-
import datetime
|
12
11
|
import typing
|
12
|
+
import datetime
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
15
15
|
|
@@ -35,18 +35,18 @@ from .user_configs.config_parameters import ConfigValue as ConfigValue
|
|
35
35
|
from .user_configs.config_parameters import config_expr as config_expr
|
36
36
|
from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
|
37
37
|
from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
|
38
|
-
from . import tuple_util as tuple_util
|
39
38
|
from . import cards as cards
|
40
|
-
from . import events as events
|
41
39
|
from . import metaflow_git as metaflow_git
|
40
|
+
from . import tuple_util as tuple_util
|
41
|
+
from . import events as events
|
42
42
|
from . import runner as runner
|
43
43
|
from . import plugins as plugins
|
44
44
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
45
45
|
from . import includefile as includefile
|
46
46
|
from .includefile import IncludeFile as IncludeFile
|
47
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
48
47
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
49
48
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
49
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
50
50
|
from . import client as client
|
51
51
|
from .client.core import namespace as namespace
|
52
52
|
from .client.core import get_namespace as get_namespace
|
@@ -155,78 +155,71 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
155
155
|
"""
|
156
156
|
...
|
157
157
|
|
158
|
-
|
158
|
+
@typing.overload
|
159
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
159
160
|
"""
|
160
|
-
Specifies
|
161
|
+
Specifies the PyPI packages for the step.
|
162
|
+
|
163
|
+
Information in this decorator will augment any
|
164
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
165
|
+
you can use `@pypi_base` to set packages required by all
|
166
|
+
steps and use `@pypi` to specify step-specific overrides.
|
161
167
|
|
162
168
|
|
163
169
|
Parameters
|
164
170
|
----------
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
+
packages : Dict[str, str], default: {}
|
172
|
+
Packages to use for this step. The key is the name of the package
|
173
|
+
and the value is the version to use.
|
174
|
+
python : str, optional, default: None
|
175
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
176
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
171
177
|
"""
|
172
178
|
...
|
173
179
|
|
174
180
|
@typing.overload
|
175
|
-
def
|
181
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
182
|
+
...
|
183
|
+
|
184
|
+
@typing.overload
|
185
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
186
|
+
...
|
187
|
+
|
188
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
176
189
|
"""
|
177
|
-
Specifies
|
178
|
-
|
179
|
-
This decorator is useful if this step may hang indefinitely.
|
180
|
-
|
181
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
182
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
183
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
190
|
+
Specifies the PyPI packages for the step.
|
184
191
|
|
185
|
-
|
186
|
-
|
192
|
+
Information in this decorator will augment any
|
193
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
194
|
+
you can use `@pypi_base` to set packages required by all
|
195
|
+
steps and use `@pypi` to specify step-specific overrides.
|
187
196
|
|
188
197
|
|
189
198
|
Parameters
|
190
199
|
----------
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
200
|
+
packages : Dict[str, str], default: {}
|
201
|
+
Packages to use for this step. The key is the name of the package
|
202
|
+
and the value is the version to use.
|
203
|
+
python : str, optional, default: None
|
204
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
205
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
197
206
|
"""
|
198
207
|
...
|
199
208
|
|
200
209
|
@typing.overload
|
201
|
-
def
|
210
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
211
|
+
"""
|
212
|
+
Internal decorator to support Fast bakery
|
213
|
+
"""
|
202
214
|
...
|
203
215
|
|
204
216
|
@typing.overload
|
205
|
-
def
|
217
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
206
218
|
...
|
207
219
|
|
208
|
-
def
|
220
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
209
221
|
"""
|
210
|
-
|
211
|
-
|
212
|
-
This decorator is useful if this step may hang indefinitely.
|
213
|
-
|
214
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
215
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
216
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
217
|
-
|
218
|
-
Note that all the values specified in parameters are added together so if you specify
|
219
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
220
|
-
|
221
|
-
|
222
|
-
Parameters
|
223
|
-
----------
|
224
|
-
seconds : int, default 0
|
225
|
-
Number of seconds to wait prior to timing out.
|
226
|
-
minutes : int, default 0
|
227
|
-
Number of minutes to wait prior to timing out.
|
228
|
-
hours : int, default 0
|
229
|
-
Number of hours to wait prior to timing out.
|
222
|
+
Internal decorator to support Fast bakery
|
230
223
|
"""
|
231
224
|
...
|
232
225
|
|
@@ -234,6 +227,61 @@ def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.
|
|
234
227
|
"""
|
235
228
|
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
236
229
|
|
230
|
+
> Examples
|
231
|
+
|
232
|
+
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
233
|
+
```python
|
234
|
+
@huggingface_hub
|
235
|
+
@step
|
236
|
+
def pull_model_from_huggingface(self):
|
237
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
238
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
239
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
240
|
+
# value of the function is a reference to the model in the backend storage.
|
241
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
242
|
+
|
243
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
244
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
245
|
+
repo_id=self.model_id,
|
246
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
247
|
+
)
|
248
|
+
self.next(self.train)
|
249
|
+
```
|
250
|
+
|
251
|
+
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
252
|
+
```python
|
253
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
254
|
+
@step
|
255
|
+
def pull_model_from_huggingface(self):
|
256
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
257
|
+
```
|
258
|
+
|
259
|
+
```python
|
260
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
261
|
+
@step
|
262
|
+
def finetune_model(self):
|
263
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
264
|
+
# path_to_model will be /my-directory
|
265
|
+
```
|
266
|
+
|
267
|
+
```python
|
268
|
+
# Takes all the arguments passed to `snapshot_download`
|
269
|
+
# except for `local_dir`
|
270
|
+
@huggingface_hub(load=[
|
271
|
+
{
|
272
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
273
|
+
},
|
274
|
+
{
|
275
|
+
"repo_id": "myorg/mistral-lora",
|
276
|
+
"repo_type": "model",
|
277
|
+
},
|
278
|
+
])
|
279
|
+
@step
|
280
|
+
def finetune_model(self):
|
281
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
282
|
+
# path_to_model will be /my-directory
|
283
|
+
```
|
284
|
+
|
237
285
|
|
238
286
|
Parameters
|
239
287
|
----------
|
@@ -256,35 +304,37 @@ def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.
|
|
256
304
|
...
|
257
305
|
|
258
306
|
@typing.overload
|
259
|
-
def
|
307
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
260
308
|
"""
|
261
|
-
Specifies
|
309
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
310
|
+
the execution of a step.
|
262
311
|
|
263
312
|
|
264
313
|
Parameters
|
265
314
|
----------
|
266
|
-
|
267
|
-
|
315
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
316
|
+
List of secret specs, defining how the secrets are to be retrieved
|
268
317
|
"""
|
269
318
|
...
|
270
319
|
|
271
320
|
@typing.overload
|
272
|
-
def
|
321
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
273
322
|
...
|
274
323
|
|
275
324
|
@typing.overload
|
276
|
-
def
|
325
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
277
326
|
...
|
278
327
|
|
279
|
-
def
|
328
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []):
|
280
329
|
"""
|
281
|
-
Specifies
|
330
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
331
|
+
the execution of a step.
|
282
332
|
|
283
333
|
|
284
334
|
Parameters
|
285
335
|
----------
|
286
|
-
|
287
|
-
|
336
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
337
|
+
List of secret specs, defining how the secrets are to be retrieved
|
288
338
|
"""
|
289
339
|
...
|
290
340
|
|
@@ -340,197 +390,202 @@ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
340
390
|
...
|
341
391
|
|
342
392
|
@typing.overload
|
343
|
-
def
|
393
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
344
394
|
"""
|
345
|
-
|
395
|
+
Specifies a timeout for your step.
|
346
396
|
|
397
|
+
This decorator is useful if this step may hang indefinitely.
|
347
398
|
|
399
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
400
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
401
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
348
402
|
|
349
|
-
|
350
|
-
|
351
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
352
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
353
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
354
|
-
- `current.checkpoint`
|
355
|
-
- `current.model`
|
356
|
-
- `current.huggingface_hub`
|
403
|
+
Note that all the values specified in parameters are added together so if you specify
|
404
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
357
405
|
|
358
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
359
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
360
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
361
406
|
|
362
|
-
|
363
|
-
|
407
|
+
Parameters
|
408
|
+
----------
|
409
|
+
seconds : int, default 0
|
410
|
+
Number of seconds to wait prior to timing out.
|
411
|
+
minutes : int, default 0
|
412
|
+
Number of minutes to wait prior to timing out.
|
413
|
+
hours : int, default 0
|
414
|
+
Number of hours to wait prior to timing out.
|
364
415
|
"""
|
365
416
|
...
|
366
417
|
|
367
418
|
@typing.overload
|
368
|
-
def
|
419
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
369
420
|
...
|
370
421
|
|
371
422
|
@typing.overload
|
372
|
-
def
|
423
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
373
424
|
...
|
374
425
|
|
375
|
-
def
|
426
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
376
427
|
"""
|
377
|
-
|
428
|
+
Specifies a timeout for your step.
|
378
429
|
|
430
|
+
This decorator is useful if this step may hang indefinitely.
|
379
431
|
|
432
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
433
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
434
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
380
435
|
|
381
|
-
|
382
|
-
|
383
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
384
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
385
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
386
|
-
- `current.checkpoint`
|
387
|
-
- `current.model`
|
388
|
-
- `current.huggingface_hub`
|
436
|
+
Note that all the values specified in parameters are added together so if you specify
|
437
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
389
438
|
|
390
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
391
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
392
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
393
439
|
|
394
|
-
|
395
|
-
|
440
|
+
Parameters
|
441
|
+
----------
|
442
|
+
seconds : int, default 0
|
443
|
+
Number of seconds to wait prior to timing out.
|
444
|
+
minutes : int, default 0
|
445
|
+
Number of minutes to wait prior to timing out.
|
446
|
+
hours : int, default 0
|
447
|
+
Number of hours to wait prior to timing out.
|
396
448
|
"""
|
397
449
|
...
|
398
450
|
|
399
|
-
|
400
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
451
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
401
452
|
"""
|
402
|
-
Specifies
|
403
|
-
|
404
|
-
Use `@resources` to specify the resource requirements
|
405
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
406
|
-
|
407
|
-
You can choose the compute layer on the command line by executing e.g.
|
408
|
-
```
|
409
|
-
python myflow.py run --with batch
|
410
|
-
```
|
411
|
-
or
|
412
|
-
```
|
413
|
-
python myflow.py run --with kubernetes
|
414
|
-
```
|
415
|
-
which executes the flow on the desired system using the
|
416
|
-
requirements specified in `@resources`.
|
453
|
+
Specifies that this step should execute on DGX cloud.
|
417
454
|
|
418
455
|
|
419
456
|
Parameters
|
420
457
|
----------
|
421
|
-
|
422
|
-
Number of
|
423
|
-
|
424
|
-
|
425
|
-
disk : int, optional, default None
|
426
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
427
|
-
memory : int, default 4096
|
428
|
-
Memory size (in MB) required for this step.
|
429
|
-
shared_memory : int, optional, default None
|
430
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
431
|
-
This parameter maps to the `--shm-size` option in Docker.
|
458
|
+
gpu : int
|
459
|
+
Number of GPUs to use.
|
460
|
+
gpu_type : str
|
461
|
+
Type of Nvidia GPU to use.
|
432
462
|
"""
|
433
463
|
...
|
434
464
|
|
435
|
-
|
436
|
-
|
465
|
+
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
466
|
+
"""
|
467
|
+
Specifies that this step is used to deploy an instance of the app.
|
468
|
+
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
469
|
+
|
470
|
+
|
471
|
+
Parameters
|
472
|
+
----------
|
473
|
+
app_port : int
|
474
|
+
Number of GPUs to use.
|
475
|
+
app_name : str
|
476
|
+
Name of the app to deploy.
|
477
|
+
"""
|
437
478
|
...
|
438
479
|
|
439
|
-
|
440
|
-
|
480
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
481
|
+
"""
|
482
|
+
Specifies that this step should execute on DGX cloud.
|
483
|
+
|
484
|
+
|
485
|
+
Parameters
|
486
|
+
----------
|
487
|
+
gpu : int
|
488
|
+
Number of GPUs to use.
|
489
|
+
gpu_type : str
|
490
|
+
Type of Nvidia GPU to use.
|
491
|
+
queue_timeout : int
|
492
|
+
Time to keep the job in NVCF's queue.
|
493
|
+
"""
|
441
494
|
...
|
442
495
|
|
443
|
-
def
|
496
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
444
497
|
"""
|
445
|
-
|
446
|
-
|
447
|
-
Use `@resources` to specify the resource requirements
|
448
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
449
|
-
|
450
|
-
You can choose the compute layer on the command line by executing e.g.
|
451
|
-
```
|
452
|
-
python myflow.py run --with batch
|
453
|
-
```
|
454
|
-
or
|
455
|
-
```
|
456
|
-
python myflow.py run --with kubernetes
|
457
|
-
```
|
458
|
-
which executes the flow on the desired system using the
|
459
|
-
requirements specified in `@resources`.
|
498
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
460
499
|
|
500
|
+
User code call
|
501
|
+
--------------
|
502
|
+
@ollama(
|
503
|
+
models=[...],
|
504
|
+
...
|
505
|
+
)
|
461
506
|
|
462
|
-
|
463
|
-
|
464
|
-
|
465
|
-
|
466
|
-
|
467
|
-
Number of GPUs required for this step.
|
468
|
-
disk : int, optional, default None
|
469
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
470
|
-
memory : int, default 4096
|
471
|
-
Memory size (in MB) required for this step.
|
472
|
-
shared_memory : int, optional, default None
|
473
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
474
|
-
This parameter maps to the `--shm-size` option in Docker.
|
475
|
-
"""
|
476
|
-
...
|
477
|
-
|
478
|
-
@typing.overload
|
479
|
-
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
480
|
-
"""
|
481
|
-
Specifies the PyPI packages for the step.
|
507
|
+
Valid backend options
|
508
|
+
---------------------
|
509
|
+
- 'local': Run as a separate process on the local task machine.
|
510
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
511
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
482
512
|
|
483
|
-
|
484
|
-
|
485
|
-
|
486
|
-
steps and use `@pypi` to specify step-specific overrides.
|
513
|
+
Valid model options
|
514
|
+
-------------------
|
515
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
487
516
|
|
488
517
|
|
489
518
|
Parameters
|
490
519
|
----------
|
491
|
-
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
|
496
|
-
|
520
|
+
models: list[str]
|
521
|
+
List of Ollama containers running models in sidecars.
|
522
|
+
backend: str
|
523
|
+
Determines where and how to run the Ollama process.
|
524
|
+
force_pull: bool
|
525
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
526
|
+
cache_update_policy: str
|
527
|
+
Cache update policy: "auto", "force", or "never".
|
528
|
+
force_cache_update: bool
|
529
|
+
Simple override for "force" cache update policy.
|
530
|
+
debug: bool
|
531
|
+
Whether to turn on verbose debugging logs.
|
532
|
+
circuit_breaker_config: dict
|
533
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
534
|
+
timeout_config: dict
|
535
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
497
536
|
"""
|
498
537
|
...
|
499
538
|
|
500
539
|
@typing.overload
|
501
|
-
def
|
502
|
-
...
|
503
|
-
|
504
|
-
@typing.overload
|
505
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
506
|
-
...
|
507
|
-
|
508
|
-
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
540
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
509
541
|
"""
|
510
|
-
|
542
|
+
Enables checkpointing for a step.
|
511
543
|
|
512
|
-
|
513
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
514
|
-
you can use `@pypi_base` to set packages required by all
|
515
|
-
steps and use `@pypi` to specify step-specific overrides.
|
544
|
+
> Examples
|
516
545
|
|
546
|
+
- Saving Checkpoints
|
517
547
|
|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
|
522
|
-
|
523
|
-
|
524
|
-
|
525
|
-
|
526
|
-
|
527
|
-
|
528
|
-
|
529
|
-
|
530
|
-
|
531
|
-
|
532
|
-
|
548
|
+
```python
|
549
|
+
@checkpoint
|
550
|
+
@step
|
551
|
+
def train(self):
|
552
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
553
|
+
for i in range(self.epochs):
|
554
|
+
# some training logic
|
555
|
+
loss = model.train(self.dataset)
|
556
|
+
if i % 10 == 0:
|
557
|
+
model.save(
|
558
|
+
current.checkpoint.directory,
|
559
|
+
)
|
560
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
561
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
562
|
+
self.latest_checkpoint = current.checkpoint.save(
|
563
|
+
name="epoch_checkpoint",
|
564
|
+
metadata={
|
565
|
+
"epoch": i,
|
566
|
+
"loss": loss,
|
567
|
+
}
|
568
|
+
)
|
569
|
+
```
|
570
|
+
|
571
|
+
- Using Loaded Checkpoints
|
533
572
|
|
573
|
+
```python
|
574
|
+
@retry(times=3)
|
575
|
+
@checkpoint
|
576
|
+
@step
|
577
|
+
def train(self):
|
578
|
+
# Assume that the task has restarted and the previous attempt of the task
|
579
|
+
# saved a checkpoint
|
580
|
+
checkpoint_path = None
|
581
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
582
|
+
print("Loaded checkpoint from the previous attempt")
|
583
|
+
checkpoint_path = current.checkpoint.directory
|
584
|
+
|
585
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
586
|
+
for i in range(self.epochs):
|
587
|
+
...
|
588
|
+
```
|
534
589
|
|
535
590
|
|
536
591
|
Parameters
|
@@ -563,6 +618,51 @@ def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
563
618
|
"""
|
564
619
|
Enables checkpointing for a step.
|
565
620
|
|
621
|
+
> Examples
|
622
|
+
|
623
|
+
- Saving Checkpoints
|
624
|
+
|
625
|
+
```python
|
626
|
+
@checkpoint
|
627
|
+
@step
|
628
|
+
def train(self):
|
629
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
630
|
+
for i in range(self.epochs):
|
631
|
+
# some training logic
|
632
|
+
loss = model.train(self.dataset)
|
633
|
+
if i % 10 == 0:
|
634
|
+
model.save(
|
635
|
+
current.checkpoint.directory,
|
636
|
+
)
|
637
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
638
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
639
|
+
self.latest_checkpoint = current.checkpoint.save(
|
640
|
+
name="epoch_checkpoint",
|
641
|
+
metadata={
|
642
|
+
"epoch": i,
|
643
|
+
"loss": loss,
|
644
|
+
}
|
645
|
+
)
|
646
|
+
```
|
647
|
+
|
648
|
+
- Using Loaded Checkpoints
|
649
|
+
|
650
|
+
```python
|
651
|
+
@retry(times=3)
|
652
|
+
@checkpoint
|
653
|
+
@step
|
654
|
+
def train(self):
|
655
|
+
# Assume that the task has restarted and the previous attempt of the task
|
656
|
+
# saved a checkpoint
|
657
|
+
checkpoint_path = None
|
658
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
659
|
+
print("Loaded checkpoint from the previous attempt")
|
660
|
+
checkpoint_path = current.checkpoint.directory
|
661
|
+
|
662
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
663
|
+
for i in range(self.epochs):
|
664
|
+
...
|
665
|
+
```
|
566
666
|
|
567
667
|
|
568
668
|
Parameters
|
@@ -583,236 +683,120 @@ def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
583
683
|
"""
|
584
684
|
...
|
585
685
|
|
586
|
-
def
|
686
|
+
def vllm(*, model: str, backend: str, debug: bool, kwargs: typing.Any) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
587
687
|
"""
|
588
|
-
|
688
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
689
|
+
|
690
|
+
User code call
|
691
|
+
--------------
|
692
|
+
@vllm(
|
693
|
+
model="...",
|
694
|
+
...
|
695
|
+
)
|
696
|
+
|
697
|
+
Valid backend options
|
698
|
+
---------------------
|
699
|
+
- 'local': Run as a separate process on the local task machine.
|
700
|
+
|
701
|
+
Valid model options
|
702
|
+
-------------------
|
703
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
704
|
+
|
705
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
706
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
589
707
|
|
590
708
|
|
591
709
|
Parameters
|
592
710
|
----------
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
|
597
|
-
|
598
|
-
|
599
|
-
|
600
|
-
|
601
|
-
|
602
|
-
|
603
|
-
Internal decorator to support Fast bakery
|
604
|
-
"""
|
605
|
-
...
|
606
|
-
|
607
|
-
@typing.overload
|
608
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
609
|
-
...
|
610
|
-
|
611
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
612
|
-
"""
|
613
|
-
Internal decorator to support Fast bakery
|
711
|
+
model: str
|
712
|
+
HuggingFace model identifier to be served by vLLM.
|
713
|
+
backend: str
|
714
|
+
Determines where and how to run the vLLM process.
|
715
|
+
debug: bool
|
716
|
+
Whether to turn on verbose debugging logs.
|
717
|
+
kwargs : Any
|
718
|
+
Any other keyword arguments are passed directly to the vLLM engine.
|
719
|
+
This allows for flexible configuration of vLLM server settings.
|
720
|
+
For example, `tensor_parallel_size=2`.
|
614
721
|
"""
|
615
722
|
...
|
616
723
|
|
617
724
|
@typing.overload
|
618
|
-
def
|
725
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
619
726
|
"""
|
620
|
-
Specifies the
|
727
|
+
Specifies the resources needed when executing this step.
|
621
728
|
|
622
|
-
|
623
|
-
|
624
|
-
|
625
|
-
|
729
|
+
Use `@resources` to specify the resource requirements
|
730
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
731
|
+
|
732
|
+
You can choose the compute layer on the command line by executing e.g.
|
733
|
+
```
|
734
|
+
python myflow.py run --with batch
|
735
|
+
```
|
736
|
+
or
|
737
|
+
```
|
738
|
+
python myflow.py run --with kubernetes
|
739
|
+
```
|
740
|
+
which executes the flow on the desired system using the
|
741
|
+
requirements specified in `@resources`.
|
626
742
|
|
627
743
|
|
628
744
|
Parameters
|
629
745
|
----------
|
630
|
-
|
631
|
-
|
632
|
-
|
633
|
-
|
634
|
-
|
635
|
-
|
636
|
-
|
637
|
-
|
638
|
-
|
639
|
-
|
746
|
+
cpu : int, default 1
|
747
|
+
Number of CPUs required for this step.
|
748
|
+
gpu : int, optional, default None
|
749
|
+
Number of GPUs required for this step.
|
750
|
+
disk : int, optional, default None
|
751
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
752
|
+
memory : int, default 4096
|
753
|
+
Memory size (in MB) required for this step.
|
754
|
+
shared_memory : int, optional, default None
|
755
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
756
|
+
This parameter maps to the `--shm-size` option in Docker.
|
640
757
|
"""
|
641
758
|
...
|
642
759
|
|
643
760
|
@typing.overload
|
644
|
-
def
|
761
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
645
762
|
...
|
646
763
|
|
647
764
|
@typing.overload
|
648
|
-
def
|
765
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
649
766
|
...
|
650
767
|
|
651
|
-
def
|
768
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
652
769
|
"""
|
653
|
-
Specifies the
|
770
|
+
Specifies the resources needed when executing this step.
|
654
771
|
|
655
|
-
|
656
|
-
|
657
|
-
|
658
|
-
|
772
|
+
Use `@resources` to specify the resource requirements
|
773
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
774
|
+
|
775
|
+
You can choose the compute layer on the command line by executing e.g.
|
776
|
+
```
|
777
|
+
python myflow.py run --with batch
|
778
|
+
```
|
779
|
+
or
|
780
|
+
```
|
781
|
+
python myflow.py run --with kubernetes
|
782
|
+
```
|
783
|
+
which executes the flow on the desired system using the
|
784
|
+
requirements specified in `@resources`.
|
659
785
|
|
660
786
|
|
661
787
|
Parameters
|
662
788
|
----------
|
663
|
-
|
664
|
-
|
665
|
-
|
666
|
-
|
667
|
-
|
668
|
-
|
669
|
-
|
670
|
-
|
671
|
-
|
672
|
-
|
673
|
-
|
674
|
-
...
|
675
|
-
|
676
|
-
@typing.overload
|
677
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
678
|
-
"""
|
679
|
-
Specifies the number of times the task corresponding
|
680
|
-
to a step needs to be retried.
|
681
|
-
|
682
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
683
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
684
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
685
|
-
|
686
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
687
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
688
|
-
ensuring that the flow execution can continue.
|
689
|
-
|
690
|
-
|
691
|
-
Parameters
|
692
|
-
----------
|
693
|
-
times : int, default 3
|
694
|
-
Number of times to retry this task.
|
695
|
-
minutes_between_retries : int, default 2
|
696
|
-
Number of minutes between retries.
|
697
|
-
"""
|
698
|
-
...
|
699
|
-
|
700
|
-
@typing.overload
|
701
|
-
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
702
|
-
...
|
703
|
-
|
704
|
-
@typing.overload
|
705
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
706
|
-
...
|
707
|
-
|
708
|
-
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
709
|
-
"""
|
710
|
-
Specifies the number of times the task corresponding
|
711
|
-
to a step needs to be retried.
|
712
|
-
|
713
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
714
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
715
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
716
|
-
|
717
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
718
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
719
|
-
ensuring that the flow execution can continue.
|
720
|
-
|
721
|
-
|
722
|
-
Parameters
|
723
|
-
----------
|
724
|
-
times : int, default 3
|
725
|
-
Number of times to retry this task.
|
726
|
-
minutes_between_retries : int, default 2
|
727
|
-
Number of minutes between retries.
|
728
|
-
"""
|
729
|
-
...
|
730
|
-
|
731
|
-
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
732
|
-
"""
|
733
|
-
Specifies that this step is used to deploy an instance of the app.
|
734
|
-
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
735
|
-
|
736
|
-
|
737
|
-
Parameters
|
738
|
-
----------
|
739
|
-
app_port : int
|
740
|
-
Number of GPUs to use.
|
741
|
-
app_name : str
|
742
|
-
Name of the app to deploy.
|
743
|
-
"""
|
744
|
-
...
|
745
|
-
|
746
|
-
@typing.overload
|
747
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
748
|
-
"""
|
749
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
750
|
-
the execution of a step.
|
751
|
-
|
752
|
-
|
753
|
-
Parameters
|
754
|
-
----------
|
755
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
756
|
-
List of secret specs, defining how the secrets are to be retrieved
|
757
|
-
"""
|
758
|
-
...
|
759
|
-
|
760
|
-
@typing.overload
|
761
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
762
|
-
...
|
763
|
-
|
764
|
-
@typing.overload
|
765
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
766
|
-
...
|
767
|
-
|
768
|
-
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []):
|
769
|
-
"""
|
770
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
771
|
-
the execution of a step.
|
772
|
-
|
773
|
-
|
774
|
-
Parameters
|
775
|
-
----------
|
776
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
777
|
-
List of secret specs, defining how the secrets are to be retrieved
|
778
|
-
"""
|
779
|
-
...
|
780
|
-
|
781
|
-
def vllm(*, model: str, backend: str, debug: bool, kwargs: typing.Any) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
782
|
-
"""
|
783
|
-
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
784
|
-
|
785
|
-
User code call
|
786
|
-
--------------
|
787
|
-
@vllm(
|
788
|
-
model="...",
|
789
|
-
...
|
790
|
-
)
|
791
|
-
|
792
|
-
Valid backend options
|
793
|
-
---------------------
|
794
|
-
- 'local': Run as a separate process on the local task machine.
|
795
|
-
|
796
|
-
Valid model options
|
797
|
-
-------------------
|
798
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
799
|
-
|
800
|
-
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
801
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
802
|
-
|
803
|
-
|
804
|
-
Parameters
|
805
|
-
----------
|
806
|
-
model: str
|
807
|
-
HuggingFace model identifier to be served by vLLM.
|
808
|
-
backend: str
|
809
|
-
Determines where and how to run the vLLM process.
|
810
|
-
debug: bool
|
811
|
-
Whether to turn on verbose debugging logs.
|
812
|
-
kwargs : Any
|
813
|
-
Any other keyword arguments are passed directly to the vLLM engine.
|
814
|
-
This allows for flexible configuration of vLLM server settings.
|
815
|
-
For example, `tensor_parallel_size=2`.
|
789
|
+
cpu : int, default 1
|
790
|
+
Number of CPUs required for this step.
|
791
|
+
gpu : int, optional, default None
|
792
|
+
Number of GPUs required for this step.
|
793
|
+
disk : int, optional, default None
|
794
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
795
|
+
memory : int, default 4096
|
796
|
+
Memory size (in MB) required for this step.
|
797
|
+
shared_memory : int, optional, default None
|
798
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
799
|
+
This parameter maps to the `--shm-size` option in Docker.
|
816
800
|
"""
|
817
801
|
...
|
818
802
|
|
@@ -905,49 +889,6 @@ def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: ty
|
|
905
889
|
"""
|
906
890
|
...
|
907
891
|
|
908
|
-
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
909
|
-
"""
|
910
|
-
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
911
|
-
|
912
|
-
User code call
|
913
|
-
--------------
|
914
|
-
@ollama(
|
915
|
-
models=[...],
|
916
|
-
...
|
917
|
-
)
|
918
|
-
|
919
|
-
Valid backend options
|
920
|
-
---------------------
|
921
|
-
- 'local': Run as a separate process on the local task machine.
|
922
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
923
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
924
|
-
|
925
|
-
Valid model options
|
926
|
-
-------------------
|
927
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
928
|
-
|
929
|
-
|
930
|
-
Parameters
|
931
|
-
----------
|
932
|
-
models: list[str]
|
933
|
-
List of Ollama containers running models in sidecars.
|
934
|
-
backend: str
|
935
|
-
Determines where and how to run the Ollama process.
|
936
|
-
force_pull: bool
|
937
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
938
|
-
cache_update_policy: str
|
939
|
-
Cache update policy: "auto", "force", or "never".
|
940
|
-
force_cache_update: bool
|
941
|
-
Simple override for "force" cache update policy.
|
942
|
-
debug: bool
|
943
|
-
Whether to turn on verbose debugging logs.
|
944
|
-
circuit_breaker_config: dict
|
945
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
946
|
-
timeout_config: dict
|
947
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
948
|
-
"""
|
949
|
-
...
|
950
|
-
|
951
892
|
@typing.overload
|
952
893
|
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
953
894
|
"""
|
@@ -1017,57 +958,494 @@ def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
1017
958
|
...
|
1018
959
|
|
1019
960
|
@typing.overload
|
1020
|
-
def
|
961
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1021
962
|
"""
|
1022
|
-
Specifies the
|
963
|
+
Specifies the number of times the task corresponding
|
964
|
+
to a step needs to be retried.
|
1023
965
|
|
1024
|
-
|
1025
|
-
|
966
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
967
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
968
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
969
|
+
|
970
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
971
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
972
|
+
ensuring that the flow execution can continue.
|
1026
973
|
|
1027
974
|
|
1028
975
|
Parameters
|
1029
976
|
----------
|
1030
|
-
|
1031
|
-
|
1032
|
-
|
1033
|
-
|
1034
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1035
|
-
python : str, optional, default None
|
1036
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1037
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1038
|
-
disabled : bool, default False
|
1039
|
-
If set to True, disables Conda.
|
977
|
+
times : int, default 3
|
978
|
+
Number of times to retry this task.
|
979
|
+
minutes_between_retries : int, default 2
|
980
|
+
Number of minutes between retries.
|
1040
981
|
"""
|
1041
982
|
...
|
1042
983
|
|
1043
984
|
@typing.overload
|
1044
|
-
def
|
985
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1045
986
|
...
|
1046
987
|
|
1047
|
-
|
988
|
+
@typing.overload
|
989
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
990
|
+
...
|
991
|
+
|
992
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
1048
993
|
"""
|
1049
|
-
Specifies the
|
994
|
+
Specifies the number of times the task corresponding
|
995
|
+
to a step needs to be retried.
|
1050
996
|
|
1051
|
-
|
1052
|
-
|
997
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
998
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
999
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
1000
|
+
|
1001
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
1002
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
1003
|
+
ensuring that the flow execution can continue.
|
1053
1004
|
|
1054
1005
|
|
1055
1006
|
Parameters
|
1056
1007
|
----------
|
1057
|
-
|
1058
|
-
|
1059
|
-
|
1060
|
-
|
1061
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1062
|
-
python : str, optional, default None
|
1063
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1064
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1065
|
-
disabled : bool, default False
|
1066
|
-
If set to True, disables Conda.
|
1008
|
+
times : int, default 3
|
1009
|
+
Number of times to retry this task.
|
1010
|
+
minutes_between_retries : int, default 2
|
1011
|
+
Number of minutes between retries.
|
1067
1012
|
"""
|
1068
1013
|
...
|
1069
1014
|
|
1070
|
-
|
1015
|
+
@typing.overload
|
1016
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1017
|
+
"""
|
1018
|
+
Specifies the Conda environment for the step.
|
1019
|
+
|
1020
|
+
Information in this decorator will augment any
|
1021
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
1022
|
+
you can use `@conda_base` to set packages required by all
|
1023
|
+
steps and use `@conda` to specify step-specific overrides.
|
1024
|
+
|
1025
|
+
|
1026
|
+
Parameters
|
1027
|
+
----------
|
1028
|
+
packages : Dict[str, str], default {}
|
1029
|
+
Packages to use for this step. The key is the name of the package
|
1030
|
+
and the value is the version to use.
|
1031
|
+
libraries : Dict[str, str], default {}
|
1032
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1033
|
+
python : str, optional, default None
|
1034
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1035
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1036
|
+
disabled : bool, default False
|
1037
|
+
If set to True, disables @conda.
|
1038
|
+
"""
|
1039
|
+
...
|
1040
|
+
|
1041
|
+
@typing.overload
|
1042
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1043
|
+
...
|
1044
|
+
|
1045
|
+
@typing.overload
|
1046
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1047
|
+
...
|
1048
|
+
|
1049
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1050
|
+
"""
|
1051
|
+
Specifies the Conda environment for the step.
|
1052
|
+
|
1053
|
+
Information in this decorator will augment any
|
1054
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
1055
|
+
you can use `@conda_base` to set packages required by all
|
1056
|
+
steps and use `@conda` to specify step-specific overrides.
|
1057
|
+
|
1058
|
+
|
1059
|
+
Parameters
|
1060
|
+
----------
|
1061
|
+
packages : Dict[str, str], default {}
|
1062
|
+
Packages to use for this step. The key is the name of the package
|
1063
|
+
and the value is the version to use.
|
1064
|
+
libraries : Dict[str, str], default {}
|
1065
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1066
|
+
python : str, optional, default None
|
1067
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1068
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1069
|
+
disabled : bool, default False
|
1070
|
+
If set to True, disables @conda.
|
1071
|
+
"""
|
1072
|
+
...
|
1073
|
+
|
1074
|
+
@typing.overload
|
1075
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1076
|
+
"""
|
1077
|
+
Enables loading / saving of models within a step.
|
1078
|
+
|
1079
|
+
> Examples
|
1080
|
+
- Saving Models
|
1081
|
+
```python
|
1082
|
+
@model
|
1083
|
+
@step
|
1084
|
+
def train(self):
|
1085
|
+
# current.model.save returns a dictionary reference to the model saved
|
1086
|
+
self.my_model = current.model.save(
|
1087
|
+
path_to_my_model,
|
1088
|
+
label="my_model",
|
1089
|
+
metadata={
|
1090
|
+
"epochs": 10,
|
1091
|
+
"batch-size": 32,
|
1092
|
+
"learning-rate": 0.001,
|
1093
|
+
}
|
1094
|
+
)
|
1095
|
+
self.next(self.test)
|
1096
|
+
|
1097
|
+
@model(load="my_model")
|
1098
|
+
@step
|
1099
|
+
def test(self):
|
1100
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
1101
|
+
# where the key is the name of the artifact and the value is the path to the model
|
1102
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
1103
|
+
self.next(self.end)
|
1104
|
+
```
|
1105
|
+
|
1106
|
+
- Loading models
|
1107
|
+
```python
|
1108
|
+
@step
|
1109
|
+
def train(self):
|
1110
|
+
# current.model.load returns the path to the model loaded
|
1111
|
+
checkpoint_path = current.model.load(
|
1112
|
+
self.checkpoint_key,
|
1113
|
+
)
|
1114
|
+
model_path = current.model.load(
|
1115
|
+
self.model,
|
1116
|
+
)
|
1117
|
+
self.next(self.test)
|
1118
|
+
```
|
1119
|
+
|
1120
|
+
|
1121
|
+
Parameters
|
1122
|
+
----------
|
1123
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
1124
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
1125
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
1126
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
1127
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
1128
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
1129
|
+
|
1130
|
+
temp_dir_root : str, default: None
|
1131
|
+
The root directory under which `current.model.loaded` will store loaded models
|
1132
|
+
"""
|
1133
|
+
...
|
1134
|
+
|
1135
|
+
@typing.overload
|
1136
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1137
|
+
...
|
1138
|
+
|
1139
|
+
@typing.overload
|
1140
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1141
|
+
...
|
1142
|
+
|
1143
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
1144
|
+
"""
|
1145
|
+
Enables loading / saving of models within a step.
|
1146
|
+
|
1147
|
+
> Examples
|
1148
|
+
- Saving Models
|
1149
|
+
```python
|
1150
|
+
@model
|
1151
|
+
@step
|
1152
|
+
def train(self):
|
1153
|
+
# current.model.save returns a dictionary reference to the model saved
|
1154
|
+
self.my_model = current.model.save(
|
1155
|
+
path_to_my_model,
|
1156
|
+
label="my_model",
|
1157
|
+
metadata={
|
1158
|
+
"epochs": 10,
|
1159
|
+
"batch-size": 32,
|
1160
|
+
"learning-rate": 0.001,
|
1161
|
+
}
|
1162
|
+
)
|
1163
|
+
self.next(self.test)
|
1164
|
+
|
1165
|
+
@model(load="my_model")
|
1166
|
+
@step
|
1167
|
+
def test(self):
|
1168
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
1169
|
+
# where the key is the name of the artifact and the value is the path to the model
|
1170
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
1171
|
+
self.next(self.end)
|
1172
|
+
```
|
1173
|
+
|
1174
|
+
- Loading models
|
1175
|
+
```python
|
1176
|
+
@step
|
1177
|
+
def train(self):
|
1178
|
+
# current.model.load returns the path to the model loaded
|
1179
|
+
checkpoint_path = current.model.load(
|
1180
|
+
self.checkpoint_key,
|
1181
|
+
)
|
1182
|
+
model_path = current.model.load(
|
1183
|
+
self.model,
|
1184
|
+
)
|
1185
|
+
self.next(self.test)
|
1186
|
+
```
|
1187
|
+
|
1188
|
+
|
1189
|
+
Parameters
|
1190
|
+
----------
|
1191
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
1192
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
1193
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
1194
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
1195
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
1196
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
1197
|
+
|
1198
|
+
temp_dir_root : str, default: None
|
1199
|
+
The root directory under which `current.model.loaded` will store loaded models
|
1200
|
+
"""
|
1201
|
+
...
|
1202
|
+
|
1203
|
+
@typing.overload
|
1204
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1205
|
+
"""
|
1206
|
+
Specifies environment variables to be set prior to the execution of a step.
|
1207
|
+
|
1208
|
+
|
1209
|
+
Parameters
|
1210
|
+
----------
|
1211
|
+
vars : Dict[str, str], default {}
|
1212
|
+
Dictionary of environment variables to set.
|
1213
|
+
"""
|
1214
|
+
...
|
1215
|
+
|
1216
|
+
@typing.overload
|
1217
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1218
|
+
...
|
1219
|
+
|
1220
|
+
@typing.overload
|
1221
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1222
|
+
...
|
1223
|
+
|
1224
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
1225
|
+
"""
|
1226
|
+
Specifies environment variables to be set prior to the execution of a step.
|
1227
|
+
|
1228
|
+
|
1229
|
+
Parameters
|
1230
|
+
----------
|
1231
|
+
vars : Dict[str, str], default {}
|
1232
|
+
Dictionary of environment variables to set.
|
1233
|
+
"""
|
1234
|
+
...
|
1235
|
+
|
1236
|
+
@typing.overload
|
1237
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1238
|
+
"""
|
1239
|
+
Specifies the PyPI packages for all steps of the flow.
|
1240
|
+
|
1241
|
+
Use `@pypi_base` to set common packages required by all
|
1242
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1243
|
+
|
1244
|
+
Parameters
|
1245
|
+
----------
|
1246
|
+
packages : Dict[str, str], default: {}
|
1247
|
+
Packages to use for this flow. The key is the name of the package
|
1248
|
+
and the value is the version to use.
|
1249
|
+
python : str, optional, default: None
|
1250
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1251
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1252
|
+
"""
|
1253
|
+
...
|
1254
|
+
|
1255
|
+
@typing.overload
|
1256
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1257
|
+
...
|
1258
|
+
|
1259
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1260
|
+
"""
|
1261
|
+
Specifies the PyPI packages for all steps of the flow.
|
1262
|
+
|
1263
|
+
Use `@pypi_base` to set common packages required by all
|
1264
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1265
|
+
|
1266
|
+
Parameters
|
1267
|
+
----------
|
1268
|
+
packages : Dict[str, str], default: {}
|
1269
|
+
Packages to use for this flow. The key is the name of the package
|
1270
|
+
and the value is the version to use.
|
1271
|
+
python : str, optional, default: None
|
1272
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1273
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1274
|
+
"""
|
1275
|
+
...
|
1276
|
+
|
1277
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1278
|
+
"""
|
1279
|
+
Specifies what flows belong to the same project.
|
1280
|
+
|
1281
|
+
A project-specific namespace is created for all flows that
|
1282
|
+
use the same `@project(name)`.
|
1283
|
+
|
1284
|
+
|
1285
|
+
Parameters
|
1286
|
+
----------
|
1287
|
+
name : str
|
1288
|
+
Project name. Make sure that the name is unique amongst all
|
1289
|
+
projects that use the same production scheduler. The name may
|
1290
|
+
contain only lowercase alphanumeric characters and underscores.
|
1291
|
+
|
1292
|
+
branch : Optional[str], default None
|
1293
|
+
The branch to use. If not specified, the branch is set to
|
1294
|
+
`user.<username>` unless `production` is set to `True`. This can
|
1295
|
+
also be set on the command line using `--branch` as a top-level option.
|
1296
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
1297
|
+
|
1298
|
+
production : bool, default False
|
1299
|
+
Whether or not the branch is the production branch. This can also be set on the
|
1300
|
+
command line using `--production` as a top-level option. It is an error to specify
|
1301
|
+
`production` in the decorator and on the command line.
|
1302
|
+
The project branch name will be:
|
1303
|
+
- if `branch` is specified:
|
1304
|
+
- if `production` is True: `prod.<branch>`
|
1305
|
+
- if `production` is False: `test.<branch>`
|
1306
|
+
- if `branch` is not specified:
|
1307
|
+
- if `production` is True: `prod`
|
1308
|
+
- if `production` is False: `user.<username>`
|
1309
|
+
"""
|
1310
|
+
...
|
1311
|
+
|
1312
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1313
|
+
"""
|
1314
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1315
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1316
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1317
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1318
|
+
starts only after all sensors finish.
|
1319
|
+
|
1320
|
+
|
1321
|
+
Parameters
|
1322
|
+
----------
|
1323
|
+
timeout : int
|
1324
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1325
|
+
poke_interval : int
|
1326
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1327
|
+
mode : str
|
1328
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1329
|
+
exponential_backoff : bool
|
1330
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1331
|
+
pool : str
|
1332
|
+
the slot pool this task should run in,
|
1333
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1334
|
+
soft_fail : bool
|
1335
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1336
|
+
name : str
|
1337
|
+
Name of the sensor on Airflow
|
1338
|
+
description : str
|
1339
|
+
Description of sensor in the Airflow UI
|
1340
|
+
bucket_key : Union[str, List[str]]
|
1341
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1342
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1343
|
+
bucket_name : str
|
1344
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1345
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1346
|
+
wildcard_match : bool
|
1347
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1348
|
+
aws_conn_id : str
|
1349
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1350
|
+
verify : bool
|
1351
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1352
|
+
"""
|
1353
|
+
...
|
1354
|
+
|
1355
|
+
@typing.overload
|
1356
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1357
|
+
"""
|
1358
|
+
Specifies the event(s) that this flow depends on.
|
1359
|
+
|
1360
|
+
```
|
1361
|
+
@trigger(event='foo')
|
1362
|
+
```
|
1363
|
+
or
|
1364
|
+
```
|
1365
|
+
@trigger(events=['foo', 'bar'])
|
1366
|
+
```
|
1367
|
+
|
1368
|
+
Additionally, you can specify the parameter mappings
|
1369
|
+
to map event payload to Metaflow parameters for the flow.
|
1370
|
+
```
|
1371
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1372
|
+
```
|
1373
|
+
or
|
1374
|
+
```
|
1375
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1376
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1377
|
+
```
|
1378
|
+
|
1379
|
+
'parameters' can also be a list of strings and tuples like so:
|
1380
|
+
```
|
1381
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1382
|
+
```
|
1383
|
+
This is equivalent to:
|
1384
|
+
```
|
1385
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1386
|
+
```
|
1387
|
+
|
1388
|
+
|
1389
|
+
Parameters
|
1390
|
+
----------
|
1391
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1392
|
+
Event dependency for this flow.
|
1393
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1394
|
+
Events dependency for this flow.
|
1395
|
+
options : Dict[str, Any], default {}
|
1396
|
+
Backend-specific configuration for tuning eventing behavior.
|
1397
|
+
"""
|
1398
|
+
...
|
1399
|
+
|
1400
|
+
@typing.overload
|
1401
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1402
|
+
...
|
1403
|
+
|
1404
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1405
|
+
"""
|
1406
|
+
Specifies the event(s) that this flow depends on.
|
1407
|
+
|
1408
|
+
```
|
1409
|
+
@trigger(event='foo')
|
1410
|
+
```
|
1411
|
+
or
|
1412
|
+
```
|
1413
|
+
@trigger(events=['foo', 'bar'])
|
1414
|
+
```
|
1415
|
+
|
1416
|
+
Additionally, you can specify the parameter mappings
|
1417
|
+
to map event payload to Metaflow parameters for the flow.
|
1418
|
+
```
|
1419
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1420
|
+
```
|
1421
|
+
or
|
1422
|
+
```
|
1423
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1424
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1425
|
+
```
|
1426
|
+
|
1427
|
+
'parameters' can also be a list of strings and tuples like so:
|
1428
|
+
```
|
1429
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1430
|
+
```
|
1431
|
+
This is equivalent to:
|
1432
|
+
```
|
1433
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1434
|
+
```
|
1435
|
+
|
1436
|
+
|
1437
|
+
Parameters
|
1438
|
+
----------
|
1439
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1440
|
+
Event dependency for this flow.
|
1441
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1442
|
+
Events dependency for this flow.
|
1443
|
+
options : Dict[str, Any], default {}
|
1444
|
+
Backend-specific configuration for tuning eventing behavior.
|
1445
|
+
"""
|
1446
|
+
...
|
1447
|
+
|
1448
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1071
1449
|
"""
|
1072
1450
|
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1073
1451
|
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
@@ -1110,171 +1488,6 @@ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str,
|
|
1110
1488
|
"""
|
1111
1489
|
...
|
1112
1490
|
|
1113
|
-
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1114
|
-
"""
|
1115
|
-
Allows setting external datastores to save data for the
|
1116
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1117
|
-
|
1118
|
-
This decorator is useful when users wish to save data to a different datastore
|
1119
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
1120
|
-
|
1121
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1122
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1123
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1124
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1125
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1126
|
-
|
1127
|
-
Usage:
|
1128
|
-
----------
|
1129
|
-
|
1130
|
-
- Using a custom IAM role to access the datastore.
|
1131
|
-
|
1132
|
-
```python
|
1133
|
-
@with_artifact_store(
|
1134
|
-
type="s3",
|
1135
|
-
config=lambda: {
|
1136
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1137
|
-
"role_arn": ROLE,
|
1138
|
-
},
|
1139
|
-
)
|
1140
|
-
class MyFlow(FlowSpec):
|
1141
|
-
|
1142
|
-
@checkpoint
|
1143
|
-
@step
|
1144
|
-
def start(self):
|
1145
|
-
with open("my_file.txt", "w") as f:
|
1146
|
-
f.write("Hello, World!")
|
1147
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1148
|
-
self.next(self.end)
|
1149
|
-
|
1150
|
-
```
|
1151
|
-
|
1152
|
-
- Using credentials to access the s3-compatible datastore.
|
1153
|
-
|
1154
|
-
```python
|
1155
|
-
@with_artifact_store(
|
1156
|
-
type="s3",
|
1157
|
-
config=lambda: {
|
1158
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1159
|
-
"client_params": {
|
1160
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1161
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1162
|
-
},
|
1163
|
-
},
|
1164
|
-
)
|
1165
|
-
class MyFlow(FlowSpec):
|
1166
|
-
|
1167
|
-
@checkpoint
|
1168
|
-
@step
|
1169
|
-
def start(self):
|
1170
|
-
with open("my_file.txt", "w") as f:
|
1171
|
-
f.write("Hello, World!")
|
1172
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1173
|
-
self.next(self.end)
|
1174
|
-
|
1175
|
-
```
|
1176
|
-
|
1177
|
-
- Accessing objects stored in external datastores after task execution.
|
1178
|
-
|
1179
|
-
```python
|
1180
|
-
run = Run("CheckpointsTestsFlow/8992")
|
1181
|
-
with artifact_store_from(run=run, config={
|
1182
|
-
"client_params": {
|
1183
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1184
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1185
|
-
},
|
1186
|
-
}):
|
1187
|
-
with Checkpoint() as cp:
|
1188
|
-
latest = cp.list(
|
1189
|
-
task=run["start"].task
|
1190
|
-
)[0]
|
1191
|
-
print(latest)
|
1192
|
-
cp.load(
|
1193
|
-
latest,
|
1194
|
-
"test-checkpoints"
|
1195
|
-
)
|
1196
|
-
|
1197
|
-
task = Task("TorchTuneFlow/8484/train/53673")
|
1198
|
-
with artifact_store_from(run=run, config={
|
1199
|
-
"client_params": {
|
1200
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1201
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1202
|
-
},
|
1203
|
-
}):
|
1204
|
-
load_model(
|
1205
|
-
task.data.model_ref,
|
1206
|
-
"test-models"
|
1207
|
-
)
|
1208
|
-
```
|
1209
|
-
Parameters:
|
1210
|
-
----------
|
1211
|
-
|
1212
|
-
type: str
|
1213
|
-
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1214
|
-
|
1215
|
-
config: dict or Callable
|
1216
|
-
Dictionary of configuration options for the datastore. The following keys are required:
|
1217
|
-
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1218
|
-
- example: 's3://bucket-name/path/to/root'
|
1219
|
-
- example: 'gs://bucket-name/path/to/root'
|
1220
|
-
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1221
|
-
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1222
|
-
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1223
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1224
|
-
"""
|
1225
|
-
...
|
1226
|
-
|
1227
|
-
@typing.overload
|
1228
|
-
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1229
|
-
"""
|
1230
|
-
Specifies the times when the flow should be run when running on a
|
1231
|
-
production scheduler.
|
1232
|
-
|
1233
|
-
|
1234
|
-
Parameters
|
1235
|
-
----------
|
1236
|
-
hourly : bool, default False
|
1237
|
-
Run the workflow hourly.
|
1238
|
-
daily : bool, default True
|
1239
|
-
Run the workflow daily.
|
1240
|
-
weekly : bool, default False
|
1241
|
-
Run the workflow weekly.
|
1242
|
-
cron : str, optional, default None
|
1243
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1244
|
-
specified by this expression.
|
1245
|
-
timezone : str, optional, default None
|
1246
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1247
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1248
|
-
"""
|
1249
|
-
...
|
1250
|
-
|
1251
|
-
@typing.overload
|
1252
|
-
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1253
|
-
...
|
1254
|
-
|
1255
|
-
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1256
|
-
"""
|
1257
|
-
Specifies the times when the flow should be run when running on a
|
1258
|
-
production scheduler.
|
1259
|
-
|
1260
|
-
|
1261
|
-
Parameters
|
1262
|
-
----------
|
1263
|
-
hourly : bool, default False
|
1264
|
-
Run the workflow hourly.
|
1265
|
-
daily : bool, default True
|
1266
|
-
Run the workflow daily.
|
1267
|
-
weekly : bool, default False
|
1268
|
-
Run the workflow weekly.
|
1269
|
-
cron : str, optional, default None
|
1270
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1271
|
-
specified by this expression.
|
1272
|
-
timezone : str, optional, default None
|
1273
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1274
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1275
|
-
"""
|
1276
|
-
...
|
1277
|
-
|
1278
1491
|
@typing.overload
|
1279
1492
|
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1280
1493
|
"""
|
@@ -1376,215 +1589,219 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
1376
1589
|
"""
|
1377
1590
|
...
|
1378
1591
|
|
1379
|
-
|
1592
|
+
@typing.overload
|
1593
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1380
1594
|
"""
|
1381
|
-
|
1382
|
-
|
1383
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1384
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1385
|
-
starts only after all sensors finish.
|
1595
|
+
Specifies the times when the flow should be run when running on a
|
1596
|
+
production scheduler.
|
1386
1597
|
|
1387
1598
|
|
1388
1599
|
Parameters
|
1389
1600
|
----------
|
1390
|
-
|
1391
|
-
|
1392
|
-
|
1393
|
-
|
1394
|
-
|
1395
|
-
|
1396
|
-
|
1397
|
-
|
1398
|
-
|
1399
|
-
|
1400
|
-
|
1401
|
-
|
1402
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1403
|
-
name : str
|
1404
|
-
Name of the sensor on Airflow
|
1405
|
-
description : str
|
1406
|
-
Description of sensor in the Airflow UI
|
1407
|
-
bucket_key : Union[str, List[str]]
|
1408
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1409
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1410
|
-
bucket_name : str
|
1411
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1412
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1413
|
-
wildcard_match : bool
|
1414
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1415
|
-
aws_conn_id : str
|
1416
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
1417
|
-
verify : bool
|
1418
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1601
|
+
hourly : bool, default False
|
1602
|
+
Run the workflow hourly.
|
1603
|
+
daily : bool, default True
|
1604
|
+
Run the workflow daily.
|
1605
|
+
weekly : bool, default False
|
1606
|
+
Run the workflow weekly.
|
1607
|
+
cron : str, optional, default None
|
1608
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1609
|
+
specified by this expression.
|
1610
|
+
timezone : str, optional, default None
|
1611
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1612
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1419
1613
|
"""
|
1420
1614
|
...
|
1421
1615
|
|
1422
|
-
|
1616
|
+
@typing.overload
|
1617
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1618
|
+
...
|
1619
|
+
|
1620
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1423
1621
|
"""
|
1424
|
-
Specifies
|
1425
|
-
|
1426
|
-
A project-specific namespace is created for all flows that
|
1427
|
-
use the same `@project(name)`.
|
1622
|
+
Specifies the times when the flow should be run when running on a
|
1623
|
+
production scheduler.
|
1428
1624
|
|
1429
1625
|
|
1430
1626
|
Parameters
|
1431
1627
|
----------
|
1432
|
-
|
1433
|
-
|
1434
|
-
|
1435
|
-
|
1436
|
-
|
1437
|
-
|
1438
|
-
|
1439
|
-
|
1440
|
-
|
1441
|
-
|
1442
|
-
|
1443
|
-
|
1444
|
-
Whether or not the branch is the production branch. This can also be set on the
|
1445
|
-
command line using `--production` as a top-level option. It is an error to specify
|
1446
|
-
`production` in the decorator and on the command line.
|
1447
|
-
The project branch name will be:
|
1448
|
-
- if `branch` is specified:
|
1449
|
-
- if `production` is True: `prod.<branch>`
|
1450
|
-
- if `production` is False: `test.<branch>`
|
1451
|
-
- if `branch` is not specified:
|
1452
|
-
- if `production` is True: `prod`
|
1453
|
-
- if `production` is False: `user.<username>`
|
1628
|
+
hourly : bool, default False
|
1629
|
+
Run the workflow hourly.
|
1630
|
+
daily : bool, default True
|
1631
|
+
Run the workflow daily.
|
1632
|
+
weekly : bool, default False
|
1633
|
+
Run the workflow weekly.
|
1634
|
+
cron : str, optional, default None
|
1635
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1636
|
+
specified by this expression.
|
1637
|
+
timezone : str, optional, default None
|
1638
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1639
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1454
1640
|
"""
|
1455
1641
|
...
|
1456
1642
|
|
1457
1643
|
@typing.overload
|
1458
|
-
def
|
1644
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1459
1645
|
"""
|
1460
|
-
Specifies the
|
1646
|
+
Specifies the Conda environment for all steps of the flow.
|
1647
|
+
|
1648
|
+
Use `@conda_base` to set common libraries required by all
|
1649
|
+
steps and use `@conda` to specify step-specific additions.
|
1461
1650
|
|
1462
|
-
Use `@pypi_base` to set common packages required by all
|
1463
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1464
1651
|
|
1465
1652
|
Parameters
|
1466
1653
|
----------
|
1467
|
-
packages : Dict[str, str], default
|
1654
|
+
packages : Dict[str, str], default {}
|
1468
1655
|
Packages to use for this flow. The key is the name of the package
|
1469
1656
|
and the value is the version to use.
|
1470
|
-
|
1657
|
+
libraries : Dict[str, str], default {}
|
1658
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1659
|
+
python : str, optional, default None
|
1471
1660
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1472
1661
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1662
|
+
disabled : bool, default False
|
1663
|
+
If set to True, disables Conda.
|
1473
1664
|
"""
|
1474
1665
|
...
|
1475
1666
|
|
1476
1667
|
@typing.overload
|
1477
|
-
def
|
1668
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1478
1669
|
...
|
1479
1670
|
|
1480
|
-
def
|
1671
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1481
1672
|
"""
|
1482
|
-
Specifies the
|
1673
|
+
Specifies the Conda environment for all steps of the flow.
|
1674
|
+
|
1675
|
+
Use `@conda_base` to set common libraries required by all
|
1676
|
+
steps and use `@conda` to specify step-specific additions.
|
1483
1677
|
|
1484
|
-
Use `@pypi_base` to set common packages required by all
|
1485
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1486
1678
|
|
1487
1679
|
Parameters
|
1488
1680
|
----------
|
1489
|
-
packages : Dict[str, str], default
|
1681
|
+
packages : Dict[str, str], default {}
|
1490
1682
|
Packages to use for this flow. The key is the name of the package
|
1491
1683
|
and the value is the version to use.
|
1492
|
-
|
1684
|
+
libraries : Dict[str, str], default {}
|
1685
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1686
|
+
python : str, optional, default None
|
1493
1687
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1494
1688
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1689
|
+
disabled : bool, default False
|
1690
|
+
If set to True, disables Conda.
|
1495
1691
|
"""
|
1496
1692
|
...
|
1497
1693
|
|
1498
|
-
|
1499
|
-
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1694
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1500
1695
|
"""
|
1501
|
-
|
1696
|
+
Allows setting external datastores to save data for the
|
1697
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1502
1698
|
|
1503
|
-
|
1504
|
-
|
1505
|
-
```
|
1506
|
-
or
|
1507
|
-
```
|
1508
|
-
@trigger(events=['foo', 'bar'])
|
1509
|
-
```
|
1699
|
+
This decorator is useful when users wish to save data to a different datastore
|
1700
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1510
1701
|
|
1511
|
-
|
1512
|
-
|
1513
|
-
|
1514
|
-
|
1515
|
-
|
1516
|
-
or
|
1517
|
-
```
|
1518
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1519
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1520
|
-
```
|
1702
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1703
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1704
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1705
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1706
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1521
1707
|
|
1522
|
-
|
1523
|
-
|
1524
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1525
|
-
```
|
1526
|
-
This is equivalent to:
|
1527
|
-
```
|
1528
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1529
|
-
```
|
1708
|
+
Usage:
|
1709
|
+
----------
|
1530
1710
|
|
1711
|
+
- Using a custom IAM role to access the datastore.
|
1531
1712
|
|
1532
|
-
|
1533
|
-
|
1534
|
-
|
1535
|
-
|
1536
|
-
|
1537
|
-
|
1538
|
-
|
1539
|
-
|
1540
|
-
|
1541
|
-
...
|
1542
|
-
|
1543
|
-
@typing.overload
|
1544
|
-
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1545
|
-
...
|
1546
|
-
|
1547
|
-
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1548
|
-
"""
|
1549
|
-
Specifies the event(s) that this flow depends on.
|
1713
|
+
```python
|
1714
|
+
@with_artifact_store(
|
1715
|
+
type="s3",
|
1716
|
+
config=lambda: {
|
1717
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1718
|
+
"role_arn": ROLE,
|
1719
|
+
},
|
1720
|
+
)
|
1721
|
+
class MyFlow(FlowSpec):
|
1550
1722
|
|
1551
|
-
|
1552
|
-
|
1553
|
-
|
1554
|
-
|
1555
|
-
|
1556
|
-
|
1557
|
-
|
1723
|
+
@checkpoint
|
1724
|
+
@step
|
1725
|
+
def start(self):
|
1726
|
+
with open("my_file.txt", "w") as f:
|
1727
|
+
f.write("Hello, World!")
|
1728
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1729
|
+
self.next(self.end)
|
1558
1730
|
|
1559
|
-
|
1560
|
-
to map event payload to Metaflow parameters for the flow.
|
1561
|
-
```
|
1562
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1563
|
-
```
|
1564
|
-
or
|
1565
|
-
```
|
1566
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1567
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1568
|
-
```
|
1731
|
+
```
|
1569
1732
|
|
1570
|
-
|
1571
|
-
|
1572
|
-
|
1573
|
-
|
1574
|
-
|
1575
|
-
|
1576
|
-
|
1577
|
-
|
1733
|
+
- Using credentials to access the s3-compatible datastore.
|
1734
|
+
|
1735
|
+
```python
|
1736
|
+
@with_artifact_store(
|
1737
|
+
type="s3",
|
1738
|
+
config=lambda: {
|
1739
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1740
|
+
"client_params": {
|
1741
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1742
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1743
|
+
},
|
1744
|
+
},
|
1745
|
+
)
|
1746
|
+
class MyFlow(FlowSpec):
|
1747
|
+
|
1748
|
+
@checkpoint
|
1749
|
+
@step
|
1750
|
+
def start(self):
|
1751
|
+
with open("my_file.txt", "w") as f:
|
1752
|
+
f.write("Hello, World!")
|
1753
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1754
|
+
self.next(self.end)
|
1578
1755
|
|
1756
|
+
```
|
1579
1757
|
|
1580
|
-
|
1758
|
+
- Accessing objects stored in external datastores after task execution.
|
1759
|
+
|
1760
|
+
```python
|
1761
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1762
|
+
with artifact_store_from(run=run, config={
|
1763
|
+
"client_params": {
|
1764
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1765
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1766
|
+
},
|
1767
|
+
}):
|
1768
|
+
with Checkpoint() as cp:
|
1769
|
+
latest = cp.list(
|
1770
|
+
task=run["start"].task
|
1771
|
+
)[0]
|
1772
|
+
print(latest)
|
1773
|
+
cp.load(
|
1774
|
+
latest,
|
1775
|
+
"test-checkpoints"
|
1776
|
+
)
|
1777
|
+
|
1778
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1779
|
+
with artifact_store_from(run=run, config={
|
1780
|
+
"client_params": {
|
1781
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1782
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1783
|
+
},
|
1784
|
+
}):
|
1785
|
+
load_model(
|
1786
|
+
task.data.model_ref,
|
1787
|
+
"test-models"
|
1788
|
+
)
|
1789
|
+
```
|
1790
|
+
Parameters:
|
1581
1791
|
----------
|
1582
|
-
|
1583
|
-
|
1584
|
-
|
1585
|
-
|
1586
|
-
|
1587
|
-
|
1792
|
+
|
1793
|
+
type: str
|
1794
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1795
|
+
|
1796
|
+
config: dict or Callable
|
1797
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1798
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1799
|
+
- example: 's3://bucket-name/path/to/root'
|
1800
|
+
- example: 'gs://bucket-name/path/to/root'
|
1801
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1802
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1803
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1804
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1588
1805
|
"""
|
1589
1806
|
...
|
1590
1807
|
|