ob-metaflow-stubs 6.0.3.179rc5__py2.py3-none-any.whl → 6.0.3.180rc1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +803 -765
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +5 -5
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +1 -1
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +5 -5
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/info_file.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +53 -53
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +12 -12
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +1 -1
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +3 -3
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +1 -1
- metaflow-stubs/plugins/timeout_decorator.pyi +1 -1
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +29 -29
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +2 -2
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_decorators.pyi +4 -4
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +5 -5
- {ob_metaflow_stubs-6.0.3.179rc5.dist-info → ob_metaflow_stubs-6.0.3.180rc1.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.3.180rc1.dist-info/RECORD +220 -0
- ob_metaflow_stubs-6.0.3.179rc5.dist-info/RECORD +0 -220
- {ob_metaflow_stubs-6.0.3.179rc5.dist-info → ob_metaflow_stubs-6.0.3.180rc1.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.3.179rc5.dist-info → ob_metaflow_stubs-6.0.3.180rc1.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,15 +1,15 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
3
|
# MF version: 2.15.17.1+obcheckpoint(0.2.1);ob(v1) #
|
4
|
-
# Generated on 2025-06-
|
4
|
+
# Generated on 2025-06-17T09:48:39.040005 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
8
8
|
|
9
9
|
import typing
|
10
10
|
if typing.TYPE_CHECKING:
|
11
|
-
import typing
|
12
11
|
import datetime
|
12
|
+
import typing
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
15
15
|
|
@@ -35,10 +35,10 @@ from .user_configs.config_parameters import ConfigValue as ConfigValue
|
|
35
35
|
from .user_configs.config_parameters import config_expr as config_expr
|
36
36
|
from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
|
37
37
|
from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
|
38
|
-
from . import tuple_util as tuple_util
|
39
38
|
from . import cards as cards
|
40
39
|
from . import metaflow_git as metaflow_git
|
41
40
|
from . import events as events
|
41
|
+
from . import tuple_util as tuple_util
|
42
42
|
from . import runner as runner
|
43
43
|
from . import plugins as plugins
|
44
44
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
@@ -155,6 +155,125 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
155
155
|
"""
|
156
156
|
...
|
157
157
|
|
158
|
+
@typing.overload
|
159
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
160
|
+
"""
|
161
|
+
Internal decorator to support Fast bakery
|
162
|
+
"""
|
163
|
+
...
|
164
|
+
|
165
|
+
@typing.overload
|
166
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
167
|
+
...
|
168
|
+
|
169
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
170
|
+
"""
|
171
|
+
Internal decorator to support Fast bakery
|
172
|
+
"""
|
173
|
+
...
|
174
|
+
|
175
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
176
|
+
"""
|
177
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
178
|
+
|
179
|
+
User code call
|
180
|
+
--------------
|
181
|
+
@ollama(
|
182
|
+
models=[...],
|
183
|
+
...
|
184
|
+
)
|
185
|
+
|
186
|
+
Valid backend options
|
187
|
+
---------------------
|
188
|
+
- 'local': Run as a separate process on the local task machine.
|
189
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
190
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
191
|
+
|
192
|
+
Valid model options
|
193
|
+
-------------------
|
194
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
195
|
+
|
196
|
+
|
197
|
+
Parameters
|
198
|
+
----------
|
199
|
+
models: list[str]
|
200
|
+
List of Ollama containers running models in sidecars.
|
201
|
+
backend: str
|
202
|
+
Determines where and how to run the Ollama process.
|
203
|
+
force_pull: bool
|
204
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
205
|
+
cache_update_policy: str
|
206
|
+
Cache update policy: "auto", "force", or "never".
|
207
|
+
force_cache_update: bool
|
208
|
+
Simple override for "force" cache update policy.
|
209
|
+
debug: bool
|
210
|
+
Whether to turn on verbose debugging logs.
|
211
|
+
circuit_breaker_config: dict
|
212
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
213
|
+
timeout_config: dict
|
214
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
215
|
+
"""
|
216
|
+
...
|
217
|
+
|
218
|
+
@typing.overload
|
219
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
220
|
+
"""
|
221
|
+
Specifies the Conda environment for the step.
|
222
|
+
|
223
|
+
Information in this decorator will augment any
|
224
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
225
|
+
you can use `@conda_base` to set packages required by all
|
226
|
+
steps and use `@conda` to specify step-specific overrides.
|
227
|
+
|
228
|
+
|
229
|
+
Parameters
|
230
|
+
----------
|
231
|
+
packages : Dict[str, str], default {}
|
232
|
+
Packages to use for this step. The key is the name of the package
|
233
|
+
and the value is the version to use.
|
234
|
+
libraries : Dict[str, str], default {}
|
235
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
236
|
+
python : str, optional, default None
|
237
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
238
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
239
|
+
disabled : bool, default False
|
240
|
+
If set to True, disables @conda.
|
241
|
+
"""
|
242
|
+
...
|
243
|
+
|
244
|
+
@typing.overload
|
245
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
246
|
+
...
|
247
|
+
|
248
|
+
@typing.overload
|
249
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
250
|
+
...
|
251
|
+
|
252
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
253
|
+
"""
|
254
|
+
Specifies the Conda environment for the step.
|
255
|
+
|
256
|
+
Information in this decorator will augment any
|
257
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
258
|
+
you can use `@conda_base` to set packages required by all
|
259
|
+
steps and use `@conda` to specify step-specific overrides.
|
260
|
+
|
261
|
+
|
262
|
+
Parameters
|
263
|
+
----------
|
264
|
+
packages : Dict[str, str], default {}
|
265
|
+
Packages to use for this step. The key is the name of the package
|
266
|
+
and the value is the version to use.
|
267
|
+
libraries : Dict[str, str], default {}
|
268
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
269
|
+
python : str, optional, default None
|
270
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
271
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
272
|
+
disabled : bool, default False
|
273
|
+
If set to True, disables @conda.
|
274
|
+
"""
|
275
|
+
...
|
276
|
+
|
158
277
|
@typing.overload
|
159
278
|
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
160
279
|
"""
|
@@ -189,59 +308,116 @@ def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], Non
|
|
189
308
|
...
|
190
309
|
|
191
310
|
@typing.overload
|
192
|
-
def
|
311
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
193
312
|
"""
|
194
|
-
|
313
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
314
|
+
the execution of a step.
|
195
315
|
|
196
316
|
|
317
|
+
Parameters
|
318
|
+
----------
|
319
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
320
|
+
List of secret specs, defining how the secrets are to be retrieved
|
321
|
+
"""
|
322
|
+
...
|
323
|
+
|
324
|
+
@typing.overload
|
325
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
326
|
+
...
|
327
|
+
|
328
|
+
@typing.overload
|
329
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
330
|
+
...
|
331
|
+
|
332
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []):
|
333
|
+
"""
|
334
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
335
|
+
the execution of a step.
|
336
|
+
|
197
337
|
|
198
338
|
Parameters
|
199
339
|
----------
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
created within the task will be loaded when the task is retries execution on failure.
|
340
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
341
|
+
List of secret specs, defining how the secrets are to be retrieved
|
342
|
+
"""
|
343
|
+
...
|
344
|
+
|
345
|
+
@typing.overload
|
346
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
347
|
+
"""
|
348
|
+
Specifies the resources needed when executing this step.
|
210
349
|
|
211
|
-
|
212
|
-
|
350
|
+
Use `@resources` to specify the resource requirements
|
351
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
352
|
+
|
353
|
+
You can choose the compute layer on the command line by executing e.g.
|
354
|
+
```
|
355
|
+
python myflow.py run --with batch
|
356
|
+
```
|
357
|
+
or
|
358
|
+
```
|
359
|
+
python myflow.py run --with kubernetes
|
360
|
+
```
|
361
|
+
which executes the flow on the desired system using the
|
362
|
+
requirements specified in `@resources`.
|
363
|
+
|
364
|
+
|
365
|
+
Parameters
|
366
|
+
----------
|
367
|
+
cpu : int, default 1
|
368
|
+
Number of CPUs required for this step.
|
369
|
+
gpu : int, optional, default None
|
370
|
+
Number of GPUs required for this step.
|
371
|
+
disk : int, optional, default None
|
372
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
373
|
+
memory : int, default 4096
|
374
|
+
Memory size (in MB) required for this step.
|
375
|
+
shared_memory : int, optional, default None
|
376
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
377
|
+
This parameter maps to the `--shm-size` option in Docker.
|
213
378
|
"""
|
214
379
|
...
|
215
380
|
|
216
381
|
@typing.overload
|
217
|
-
def
|
382
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
218
383
|
...
|
219
384
|
|
220
385
|
@typing.overload
|
221
|
-
def
|
386
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
222
387
|
...
|
223
388
|
|
224
|
-
def
|
389
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
225
390
|
"""
|
226
|
-
|
391
|
+
Specifies the resources needed when executing this step.
|
392
|
+
|
393
|
+
Use `@resources` to specify the resource requirements
|
394
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
227
395
|
|
396
|
+
You can choose the compute layer on the command line by executing e.g.
|
397
|
+
```
|
398
|
+
python myflow.py run --with batch
|
399
|
+
```
|
400
|
+
or
|
401
|
+
```
|
402
|
+
python myflow.py run --with kubernetes
|
403
|
+
```
|
404
|
+
which executes the flow on the desired system using the
|
405
|
+
requirements specified in `@resources`.
|
228
406
|
|
229
407
|
|
230
408
|
Parameters
|
231
409
|
----------
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
temp_dir_root : str, default: None
|
244
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
410
|
+
cpu : int, default 1
|
411
|
+
Number of CPUs required for this step.
|
412
|
+
gpu : int, optional, default None
|
413
|
+
Number of GPUs required for this step.
|
414
|
+
disk : int, optional, default None
|
415
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
416
|
+
memory : int, default 4096
|
417
|
+
Memory size (in MB) required for this step.
|
418
|
+
shared_memory : int, optional, default None
|
419
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
420
|
+
This parameter maps to the `--shm-size` option in Docker.
|
245
421
|
"""
|
246
422
|
...
|
247
423
|
|
@@ -296,171 +472,96 @@ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
296
472
|
"""
|
297
473
|
...
|
298
474
|
|
299
|
-
|
475
|
+
@typing.overload
|
476
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
300
477
|
"""
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
Parameters
|
305
|
-
----------
|
306
|
-
cpu : int, default 1
|
307
|
-
Number of CPUs required for this step. If `@resources` is
|
308
|
-
also present, the maximum value from all decorators is used.
|
309
|
-
memory : int, default 4096
|
310
|
-
Memory size (in MB) required for this step. If
|
311
|
-
`@resources` is also present, the maximum value from all decorators is
|
312
|
-
used.
|
313
|
-
disk : int, default 10240
|
314
|
-
Disk size (in MB) required for this step. If
|
315
|
-
`@resources` is also present, the maximum value from all decorators is
|
316
|
-
used.
|
317
|
-
image : str, optional, default None
|
318
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
319
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
320
|
-
not, a default Docker image mapping to the current version of Python is used.
|
321
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
322
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
323
|
-
image_pull_secrets: List[str], default []
|
324
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
325
|
-
Kubernetes image pull secrets to use when pulling container images
|
326
|
-
in Kubernetes.
|
327
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
328
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
329
|
-
secrets : List[str], optional, default None
|
330
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
331
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
332
|
-
in Metaflow configuration.
|
333
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
334
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
335
|
-
Can be passed in as a comma separated string of values e.g.
|
336
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
337
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
338
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
339
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
340
|
-
gpu : int, optional, default None
|
341
|
-
Number of GPUs required for this step. A value of zero implies that
|
342
|
-
the scheduled node should not have GPUs.
|
343
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
344
|
-
The vendor of the GPUs to be used for this step.
|
345
|
-
tolerations : List[str], default []
|
346
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
347
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
348
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
349
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
350
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
351
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
352
|
-
use_tmpfs : bool, default False
|
353
|
-
This enables an explicit tmpfs mount for this step.
|
354
|
-
tmpfs_tempdir : bool, default True
|
355
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
356
|
-
tmpfs_size : int, optional, default: None
|
357
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
358
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
359
|
-
memory allocated for this step.
|
360
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
361
|
-
Path to tmpfs mount for this step.
|
362
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
363
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
364
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
365
|
-
shared_memory: int, optional
|
366
|
-
Shared memory size (in MiB) required for this step
|
367
|
-
port: int, optional
|
368
|
-
Port number to specify in the Kubernetes job object
|
369
|
-
compute_pool : str, optional, default None
|
370
|
-
Compute pool to be used for for this step.
|
371
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
372
|
-
hostname_resolution_timeout: int, default 10 * 60
|
373
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
374
|
-
Only applicable when @parallel is used.
|
375
|
-
qos: str, default: Burstable
|
376
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
377
|
-
|
378
|
-
security_context: Dict[str, Any], optional, default None
|
379
|
-
Container security context. Applies to the task container. Allows the following keys:
|
380
|
-
- privileged: bool, optional, default None
|
381
|
-
- allow_privilege_escalation: bool, optional, default None
|
382
|
-
- run_as_user: int, optional, default None
|
383
|
-
- run_as_group: int, optional, default None
|
384
|
-
- run_as_non_root: bool, optional, default None
|
478
|
+
Decorator prototype for all step decorators. This function gets specialized
|
479
|
+
and imported for all decorators types by _import_plugin_decorators().
|
385
480
|
"""
|
386
481
|
...
|
387
482
|
|
388
483
|
@typing.overload
|
389
|
-
def
|
484
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
485
|
+
...
|
486
|
+
|
487
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
390
488
|
"""
|
391
|
-
|
489
|
+
Decorator prototype for all step decorators. This function gets specialized
|
490
|
+
and imported for all decorators types by _import_plugin_decorators().
|
491
|
+
"""
|
492
|
+
...
|
493
|
+
|
494
|
+
@typing.overload
|
495
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
496
|
+
"""
|
497
|
+
Specifies a timeout for your step.
|
392
498
|
|
393
|
-
|
394
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
499
|
+
This decorator is useful if this step may hang indefinitely.
|
395
500
|
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
python myflow.py run --with kubernetes
|
403
|
-
```
|
404
|
-
which executes the flow on the desired system using the
|
405
|
-
requirements specified in `@resources`.
|
501
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
502
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
503
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
504
|
+
|
505
|
+
Note that all the values specified in parameters are added together so if you specify
|
506
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
406
507
|
|
407
508
|
|
408
509
|
Parameters
|
409
510
|
----------
|
410
|
-
|
411
|
-
Number of
|
412
|
-
|
413
|
-
Number of
|
414
|
-
|
415
|
-
|
416
|
-
memory : int, default 4096
|
417
|
-
Memory size (in MB) required for this step.
|
418
|
-
shared_memory : int, optional, default None
|
419
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
420
|
-
This parameter maps to the `--shm-size` option in Docker.
|
511
|
+
seconds : int, default 0
|
512
|
+
Number of seconds to wait prior to timing out.
|
513
|
+
minutes : int, default 0
|
514
|
+
Number of minutes to wait prior to timing out.
|
515
|
+
hours : int, default 0
|
516
|
+
Number of hours to wait prior to timing out.
|
421
517
|
"""
|
422
518
|
...
|
423
519
|
|
424
520
|
@typing.overload
|
425
|
-
def
|
521
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
426
522
|
...
|
427
523
|
|
428
524
|
@typing.overload
|
429
|
-
def
|
525
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
430
526
|
...
|
431
527
|
|
432
|
-
def
|
528
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
433
529
|
"""
|
434
|
-
Specifies
|
530
|
+
Specifies a timeout for your step.
|
435
531
|
|
436
|
-
|
437
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
532
|
+
This decorator is useful if this step may hang indefinitely.
|
438
533
|
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
|
444
|
-
|
445
|
-
python myflow.py run --with kubernetes
|
446
|
-
```
|
447
|
-
which executes the flow on the desired system using the
|
448
|
-
requirements specified in `@resources`.
|
534
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
535
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
536
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
537
|
+
|
538
|
+
Note that all the values specified in parameters are added together so if you specify
|
539
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
449
540
|
|
450
541
|
|
451
542
|
Parameters
|
452
543
|
----------
|
453
|
-
|
454
|
-
Number of
|
455
|
-
|
456
|
-
Number of
|
457
|
-
|
458
|
-
|
459
|
-
|
460
|
-
|
461
|
-
|
462
|
-
|
463
|
-
|
544
|
+
seconds : int, default 0
|
545
|
+
Number of seconds to wait prior to timing out.
|
546
|
+
minutes : int, default 0
|
547
|
+
Number of minutes to wait prior to timing out.
|
548
|
+
hours : int, default 0
|
549
|
+
Number of hours to wait prior to timing out.
|
550
|
+
"""
|
551
|
+
...
|
552
|
+
|
553
|
+
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
554
|
+
"""
|
555
|
+
Specifies that this step is used to deploy an instance of the app.
|
556
|
+
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
557
|
+
|
558
|
+
|
559
|
+
Parameters
|
560
|
+
----------
|
561
|
+
app_port : int
|
562
|
+
Number of GPUs to use.
|
563
|
+
app_name : str
|
564
|
+
Name of the app to deploy.
|
464
565
|
"""
|
465
566
|
...
|
466
567
|
|
@@ -513,62 +614,17 @@ def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
513
614
|
"""
|
514
615
|
...
|
515
616
|
|
516
|
-
def
|
617
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
517
618
|
"""
|
518
|
-
Specifies that this step
|
519
|
-
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
619
|
+
Specifies that this step should execute on DGX cloud.
|
520
620
|
|
521
621
|
|
522
622
|
Parameters
|
523
623
|
----------
|
524
|
-
|
624
|
+
gpu : int
|
525
625
|
Number of GPUs to use.
|
526
|
-
|
527
|
-
|
528
|
-
"""
|
529
|
-
...
|
530
|
-
|
531
|
-
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
532
|
-
"""
|
533
|
-
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
534
|
-
|
535
|
-
|
536
|
-
Parameters
|
537
|
-
----------
|
538
|
-
temp_dir_root : str, optional
|
539
|
-
The root directory that will hold the temporary directory where objects will be downloaded.
|
540
|
-
|
541
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
542
|
-
The list of repos (models/datasets) to load.
|
543
|
-
|
544
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
545
|
-
|
546
|
-
- If repo (model/dataset) is not found in the datastore:
|
547
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
548
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
549
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
550
|
-
|
551
|
-
- If repo is found in the datastore:
|
552
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
553
|
-
"""
|
554
|
-
...
|
555
|
-
|
556
|
-
@typing.overload
|
557
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
558
|
-
"""
|
559
|
-
Decorator prototype for all step decorators. This function gets specialized
|
560
|
-
and imported for all decorators types by _import_plugin_decorators().
|
561
|
-
"""
|
562
|
-
...
|
563
|
-
|
564
|
-
@typing.overload
|
565
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
566
|
-
...
|
567
|
-
|
568
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
569
|
-
"""
|
570
|
-
Decorator prototype for all step decorators. This function gets specialized
|
571
|
-
and imported for all decorators types by _import_plugin_decorators().
|
626
|
+
gpu_type : str
|
627
|
+
Type of Nvidia GPU to use.
|
572
628
|
"""
|
573
629
|
...
|
574
630
|
|
@@ -623,160 +679,212 @@ def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
623
679
|
"""
|
624
680
|
...
|
625
681
|
|
626
|
-
|
682
|
+
@typing.overload
|
683
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
627
684
|
"""
|
628
|
-
|
685
|
+
Enables checkpointing for a step.
|
629
686
|
|
630
|
-
User code call
|
631
|
-
--------------
|
632
|
-
@ollama(
|
633
|
-
models=[...],
|
634
|
-
...
|
635
|
-
)
|
636
|
-
|
637
|
-
Valid backend options
|
638
|
-
---------------------
|
639
|
-
- 'local': Run as a separate process on the local task machine.
|
640
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
641
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
642
|
-
|
643
|
-
Valid model options
|
644
|
-
-------------------
|
645
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
646
687
|
|
647
688
|
|
648
689
|
Parameters
|
649
690
|
----------
|
650
|
-
|
651
|
-
|
652
|
-
|
653
|
-
|
654
|
-
|
655
|
-
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
|
660
|
-
|
661
|
-
|
662
|
-
|
663
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
664
|
-
timeout_config: dict
|
665
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
691
|
+
load_policy : str, default: "fresh"
|
692
|
+
The policy for loading the checkpoint. The following policies are supported:
|
693
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
694
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
695
|
+
will be loaded at the start of the task.
|
696
|
+
- "none": Do not load any checkpoint
|
697
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
698
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
699
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
700
|
+
created within the task will be loaded when the task is retries execution on failure.
|
701
|
+
|
702
|
+
temp_dir_root : str, default: None
|
703
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
666
704
|
"""
|
667
705
|
...
|
668
706
|
|
669
707
|
@typing.overload
|
670
|
-
def
|
708
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
709
|
+
...
|
710
|
+
|
711
|
+
@typing.overload
|
712
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
713
|
+
...
|
714
|
+
|
715
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
671
716
|
"""
|
672
|
-
|
673
|
-
|
674
|
-
This decorator is useful if this step may hang indefinitely.
|
675
|
-
|
676
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
677
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
678
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
717
|
+
Enables checkpointing for a step.
|
679
718
|
|
680
|
-
Note that all the values specified in parameters are added together so if you specify
|
681
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
682
719
|
|
683
720
|
|
684
721
|
Parameters
|
685
722
|
----------
|
686
|
-
|
687
|
-
|
688
|
-
|
689
|
-
|
690
|
-
|
691
|
-
|
723
|
+
load_policy : str, default: "fresh"
|
724
|
+
The policy for loading the checkpoint. The following policies are supported:
|
725
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
726
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
727
|
+
will be loaded at the start of the task.
|
728
|
+
- "none": Do not load any checkpoint
|
729
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
730
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
731
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
732
|
+
created within the task will be loaded when the task is retries execution on failure.
|
733
|
+
|
734
|
+
temp_dir_root : str, default: None
|
735
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
692
736
|
"""
|
693
737
|
...
|
694
738
|
|
695
|
-
|
696
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
697
|
-
...
|
698
|
-
|
699
|
-
@typing.overload
|
700
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
701
|
-
...
|
702
|
-
|
703
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
739
|
+
def vllm(*, model: str, backend: str, debug: bool, kwargs: typing.Any) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
704
740
|
"""
|
705
|
-
|
741
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
706
742
|
|
707
|
-
|
743
|
+
User code call
|
744
|
+
--------------
|
745
|
+
@vllm(
|
746
|
+
model="...",
|
747
|
+
...
|
748
|
+
)
|
708
749
|
|
709
|
-
|
710
|
-
|
711
|
-
|
750
|
+
Valid backend options
|
751
|
+
---------------------
|
752
|
+
- 'local': Run as a separate process on the local task machine.
|
712
753
|
|
713
|
-
|
714
|
-
|
754
|
+
Valid model options
|
755
|
+
-------------------
|
756
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
757
|
+
|
758
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
759
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
715
760
|
|
716
761
|
|
717
762
|
Parameters
|
718
763
|
----------
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
|
723
|
-
|
724
|
-
|
764
|
+
model: str
|
765
|
+
HuggingFace model identifier to be served by vLLM.
|
766
|
+
backend: str
|
767
|
+
Determines where and how to run the vLLM process.
|
768
|
+
debug: bool
|
769
|
+
Whether to turn on verbose debugging logs.
|
770
|
+
kwargs : Any
|
771
|
+
Any other keyword arguments are passed directly to the vLLM engine.
|
772
|
+
This allows for flexible configuration of vLLM server settings.
|
773
|
+
For example, `tensor_parallel_size=2`.
|
725
774
|
"""
|
726
775
|
...
|
727
776
|
|
728
|
-
|
729
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
777
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
730
778
|
"""
|
731
|
-
Specifies
|
732
|
-
to a step needs to be retried.
|
733
|
-
|
734
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
735
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
736
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
737
|
-
|
738
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
739
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
740
|
-
ensuring that the flow execution can continue.
|
779
|
+
Specifies that this step should execute on Kubernetes.
|
741
780
|
|
742
781
|
|
743
782
|
Parameters
|
744
783
|
----------
|
745
|
-
|
746
|
-
Number of
|
747
|
-
|
748
|
-
|
784
|
+
cpu : int, default 1
|
785
|
+
Number of CPUs required for this step. If `@resources` is
|
786
|
+
also present, the maximum value from all decorators is used.
|
787
|
+
memory : int, default 4096
|
788
|
+
Memory size (in MB) required for this step. If
|
789
|
+
`@resources` is also present, the maximum value from all decorators is
|
790
|
+
used.
|
791
|
+
disk : int, default 10240
|
792
|
+
Disk size (in MB) required for this step. If
|
793
|
+
`@resources` is also present, the maximum value from all decorators is
|
794
|
+
used.
|
795
|
+
image : str, optional, default None
|
796
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
797
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
798
|
+
not, a default Docker image mapping to the current version of Python is used.
|
799
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
800
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
801
|
+
image_pull_secrets: List[str], default []
|
802
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
803
|
+
Kubernetes image pull secrets to use when pulling container images
|
804
|
+
in Kubernetes.
|
805
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
806
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
807
|
+
secrets : List[str], optional, default None
|
808
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
809
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
810
|
+
in Metaflow configuration.
|
811
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
812
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
813
|
+
Can be passed in as a comma separated string of values e.g.
|
814
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
815
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
816
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
817
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
818
|
+
gpu : int, optional, default None
|
819
|
+
Number of GPUs required for this step. A value of zero implies that
|
820
|
+
the scheduled node should not have GPUs.
|
821
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
822
|
+
The vendor of the GPUs to be used for this step.
|
823
|
+
tolerations : List[str], default []
|
824
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
825
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
826
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
827
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
828
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
829
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
830
|
+
use_tmpfs : bool, default False
|
831
|
+
This enables an explicit tmpfs mount for this step.
|
832
|
+
tmpfs_tempdir : bool, default True
|
833
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
834
|
+
tmpfs_size : int, optional, default: None
|
835
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
836
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
837
|
+
memory allocated for this step.
|
838
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
839
|
+
Path to tmpfs mount for this step.
|
840
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
841
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
842
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
843
|
+
shared_memory: int, optional
|
844
|
+
Shared memory size (in MiB) required for this step
|
845
|
+
port: int, optional
|
846
|
+
Port number to specify in the Kubernetes job object
|
847
|
+
compute_pool : str, optional, default None
|
848
|
+
Compute pool to be used for for this step.
|
849
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
850
|
+
hostname_resolution_timeout: int, default 10 * 60
|
851
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
852
|
+
Only applicable when @parallel is used.
|
853
|
+
qos: str, default: Burstable
|
854
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
855
|
+
|
856
|
+
security_context: Dict[str, Any], optional, default None
|
857
|
+
Container security context. Applies to the task container. Allows the following keys:
|
858
|
+
- privileged: bool, optional, default None
|
859
|
+
- allow_privilege_escalation: bool, optional, default None
|
860
|
+
- run_as_user: int, optional, default None
|
861
|
+
- run_as_group: int, optional, default None
|
862
|
+
- run_as_non_root: bool, optional, default None
|
749
863
|
"""
|
750
864
|
...
|
751
865
|
|
752
|
-
|
753
|
-
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
754
|
-
...
|
755
|
-
|
756
|
-
@typing.overload
|
757
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
758
|
-
...
|
759
|
-
|
760
|
-
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
866
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
761
867
|
"""
|
762
|
-
|
763
|
-
to a step needs to be retried.
|
764
|
-
|
765
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
766
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
767
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
768
|
-
|
769
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
770
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
771
|
-
ensuring that the flow execution can continue.
|
868
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
772
869
|
|
773
870
|
|
774
871
|
Parameters
|
775
872
|
----------
|
776
|
-
|
777
|
-
|
778
|
-
|
779
|
-
|
873
|
+
temp_dir_root : str, optional
|
874
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
875
|
+
|
876
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
877
|
+
The list of repos (models/datasets) to load.
|
878
|
+
|
879
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
880
|
+
|
881
|
+
- If repo (model/dataset) is not found in the datastore:
|
882
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
883
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
884
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
885
|
+
|
886
|
+
- If repo is found in the datastore:
|
887
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
780
888
|
"""
|
781
889
|
...
|
782
890
|
|
@@ -837,291 +945,362 @@ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
837
945
|
"""
|
838
946
|
...
|
839
947
|
|
840
|
-
|
841
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
948
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
842
949
|
"""
|
843
|
-
Specifies
|
844
|
-
the execution of a step.
|
950
|
+
Specifies that this step should execute on DGX cloud.
|
845
951
|
|
846
952
|
|
847
953
|
Parameters
|
848
954
|
----------
|
849
|
-
|
850
|
-
|
851
|
-
|
852
|
-
|
853
|
-
|
854
|
-
|
855
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
856
|
-
...
|
857
|
-
|
858
|
-
@typing.overload
|
859
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
860
|
-
...
|
861
|
-
|
862
|
-
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []):
|
863
|
-
"""
|
864
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
865
|
-
the execution of a step.
|
866
|
-
|
867
|
-
|
868
|
-
Parameters
|
869
|
-
----------
|
870
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
871
|
-
List of secret specs, defining how the secrets are to be retrieved
|
872
|
-
"""
|
873
|
-
...
|
874
|
-
|
875
|
-
@typing.overload
|
876
|
-
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
877
|
-
"""
|
878
|
-
Specifies the Conda environment for the step.
|
879
|
-
|
880
|
-
Information in this decorator will augment any
|
881
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
882
|
-
you can use `@conda_base` to set packages required by all
|
883
|
-
steps and use `@conda` to specify step-specific overrides.
|
884
|
-
|
885
|
-
|
886
|
-
Parameters
|
887
|
-
----------
|
888
|
-
packages : Dict[str, str], default {}
|
889
|
-
Packages to use for this step. The key is the name of the package
|
890
|
-
and the value is the version to use.
|
891
|
-
libraries : Dict[str, str], default {}
|
892
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
893
|
-
python : str, optional, default None
|
894
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
895
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
896
|
-
disabled : bool, default False
|
897
|
-
If set to True, disables @conda.
|
955
|
+
gpu : int
|
956
|
+
Number of GPUs to use.
|
957
|
+
gpu_type : str
|
958
|
+
Type of Nvidia GPU to use.
|
959
|
+
queue_timeout : int
|
960
|
+
Time to keep the job in NVCF's queue.
|
898
961
|
"""
|
899
962
|
...
|
900
963
|
|
901
964
|
@typing.overload
|
902
|
-
def
|
903
|
-
...
|
904
|
-
|
905
|
-
@typing.overload
|
906
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
907
|
-
...
|
908
|
-
|
909
|
-
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
965
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
910
966
|
"""
|
911
|
-
Specifies the
|
912
|
-
|
913
|
-
Information in this decorator will augment any
|
914
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
915
|
-
you can use `@conda_base` to set packages required by all
|
916
|
-
steps and use `@conda` to specify step-specific overrides.
|
967
|
+
Specifies the number of times the task corresponding
|
968
|
+
to a step needs to be retried.
|
917
969
|
|
970
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
971
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
972
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
918
973
|
|
919
|
-
|
920
|
-
|
921
|
-
|
922
|
-
Packages to use for this step. The key is the name of the package
|
923
|
-
and the value is the version to use.
|
924
|
-
libraries : Dict[str, str], default {}
|
925
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
926
|
-
python : str, optional, default None
|
927
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
928
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
929
|
-
disabled : bool, default False
|
930
|
-
If set to True, disables @conda.
|
931
|
-
"""
|
932
|
-
...
|
933
|
-
|
934
|
-
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
935
|
-
"""
|
936
|
-
Specifies that this step should execute on DGX cloud.
|
974
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
975
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
976
|
+
ensuring that the flow execution can continue.
|
937
977
|
|
938
978
|
|
939
979
|
Parameters
|
940
980
|
----------
|
941
|
-
|
942
|
-
Number of
|
943
|
-
|
944
|
-
|
981
|
+
times : int, default 3
|
982
|
+
Number of times to retry this task.
|
983
|
+
minutes_between_retries : int, default 2
|
984
|
+
Number of minutes between retries.
|
945
985
|
"""
|
946
986
|
...
|
947
987
|
|
948
988
|
@typing.overload
|
949
|
-
def
|
950
|
-
"""
|
951
|
-
Internal decorator to support Fast bakery
|
952
|
-
"""
|
989
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
953
990
|
...
|
954
991
|
|
955
992
|
@typing.overload
|
956
|
-
def
|
957
|
-
...
|
958
|
-
|
959
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
960
|
-
"""
|
961
|
-
Internal decorator to support Fast bakery
|
962
|
-
"""
|
993
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
963
994
|
...
|
964
995
|
|
965
|
-
def
|
996
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
966
997
|
"""
|
967
|
-
Specifies
|
998
|
+
Specifies the number of times the task corresponding
|
999
|
+
to a step needs to be retried.
|
968
1000
|
|
1001
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
1002
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
1003
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
969
1004
|
|
970
|
-
|
971
|
-
|
972
|
-
|
973
|
-
Number of GPUs to use.
|
974
|
-
gpu_type : str
|
975
|
-
Type of Nvidia GPU to use.
|
976
|
-
queue_timeout : int
|
977
|
-
Time to keep the job in NVCF's queue.
|
978
|
-
"""
|
979
|
-
...
|
980
|
-
|
981
|
-
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
982
|
-
"""
|
983
|
-
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
984
|
-
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1005
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
1006
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
1007
|
+
ensuring that the flow execution can continue.
|
985
1008
|
|
986
1009
|
|
987
1010
|
Parameters
|
988
1011
|
----------
|
989
|
-
|
990
|
-
|
991
|
-
|
992
|
-
|
993
|
-
mode : str
|
994
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
995
|
-
exponential_backoff : bool
|
996
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
997
|
-
pool : str
|
998
|
-
the slot pool this task should run in,
|
999
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1000
|
-
soft_fail : bool
|
1001
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1002
|
-
name : str
|
1003
|
-
Name of the sensor on Airflow
|
1004
|
-
description : str
|
1005
|
-
Description of sensor in the Airflow UI
|
1006
|
-
external_dag_id : str
|
1007
|
-
The dag_id that contains the task you want to wait for.
|
1008
|
-
external_task_ids : List[str]
|
1009
|
-
The list of task_ids that you want to wait for.
|
1010
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
1011
|
-
allowed_states : List[str]
|
1012
|
-
Iterable of allowed states, (Default: ['success'])
|
1013
|
-
failed_states : List[str]
|
1014
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1015
|
-
execution_delta : datetime.timedelta
|
1016
|
-
time difference with the previous execution to look at,
|
1017
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1018
|
-
check_existence: bool
|
1019
|
-
Set to True to check if the external task exists or check if
|
1020
|
-
the DAG to wait for exists. (Default: True)
|
1012
|
+
times : int, default 3
|
1013
|
+
Number of times to retry this task.
|
1014
|
+
minutes_between_retries : int, default 2
|
1015
|
+
Number of minutes between retries.
|
1021
1016
|
"""
|
1022
1017
|
...
|
1023
1018
|
|
1024
1019
|
@typing.overload
|
1025
|
-
def
|
1020
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1026
1021
|
"""
|
1027
|
-
Specifies the
|
1022
|
+
Specifies the event(s) that this flow depends on.
|
1028
1023
|
|
1029
1024
|
```
|
1030
|
-
@
|
1025
|
+
@trigger(event='foo')
|
1031
1026
|
```
|
1032
1027
|
or
|
1033
1028
|
```
|
1034
|
-
@
|
1029
|
+
@trigger(events=['foo', 'bar'])
|
1035
1030
|
```
|
1036
|
-
This decorator respects the @project decorator and triggers the flow
|
1037
|
-
when upstream runs within the same namespace complete successfully
|
1038
1031
|
|
1039
|
-
Additionally, you can specify
|
1040
|
-
|
1032
|
+
Additionally, you can specify the parameter mappings
|
1033
|
+
to map event payload to Metaflow parameters for the flow.
|
1041
1034
|
```
|
1042
|
-
@
|
1035
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1043
1036
|
```
|
1044
1037
|
or
|
1045
1038
|
```
|
1046
|
-
@
|
1039
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1040
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1047
1041
|
```
|
1048
1042
|
|
1049
|
-
|
1050
|
-
inferred from the current project or project branch):
|
1043
|
+
'parameters' can also be a list of strings and tuples like so:
|
1051
1044
|
```
|
1052
|
-
@
|
1045
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1046
|
+
```
|
1047
|
+
This is equivalent to:
|
1048
|
+
```
|
1049
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1053
1050
|
```
|
1054
|
-
|
1055
|
-
Note that `branch` is typically one of:
|
1056
|
-
- `prod`
|
1057
|
-
- `user.bob`
|
1058
|
-
- `test.my_experiment`
|
1059
|
-
- `prod.staging`
|
1060
1051
|
|
1061
1052
|
|
1062
1053
|
Parameters
|
1063
1054
|
----------
|
1064
|
-
|
1065
|
-
|
1066
|
-
|
1067
|
-
|
1055
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1056
|
+
Event dependency for this flow.
|
1057
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1058
|
+
Events dependency for this flow.
|
1068
1059
|
options : Dict[str, Any], default {}
|
1069
1060
|
Backend-specific configuration for tuning eventing behavior.
|
1070
1061
|
"""
|
1071
1062
|
...
|
1072
1063
|
|
1073
1064
|
@typing.overload
|
1074
|
-
def
|
1065
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1075
1066
|
...
|
1076
1067
|
|
1077
|
-
def
|
1068
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1078
1069
|
"""
|
1079
|
-
Specifies the
|
1070
|
+
Specifies the event(s) that this flow depends on.
|
1080
1071
|
|
1081
1072
|
```
|
1082
|
-
@
|
1073
|
+
@trigger(event='foo')
|
1083
1074
|
```
|
1084
1075
|
or
|
1085
1076
|
```
|
1086
|
-
@
|
1077
|
+
@trigger(events=['foo', 'bar'])
|
1087
1078
|
```
|
1088
|
-
This decorator respects the @project decorator and triggers the flow
|
1089
|
-
when upstream runs within the same namespace complete successfully
|
1090
1079
|
|
1091
|
-
Additionally, you can specify
|
1092
|
-
|
1080
|
+
Additionally, you can specify the parameter mappings
|
1081
|
+
to map event payload to Metaflow parameters for the flow.
|
1093
1082
|
```
|
1094
|
-
@
|
1083
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1095
1084
|
```
|
1096
1085
|
or
|
1097
1086
|
```
|
1098
|
-
@
|
1087
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1088
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1099
1089
|
```
|
1100
1090
|
|
1101
|
-
|
1102
|
-
inferred from the current project or project branch):
|
1091
|
+
'parameters' can also be a list of strings and tuples like so:
|
1103
1092
|
```
|
1104
|
-
@
|
1093
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1094
|
+
```
|
1095
|
+
This is equivalent to:
|
1096
|
+
```
|
1097
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1105
1098
|
```
|
1106
|
-
|
1107
|
-
Note that `branch` is typically one of:
|
1108
|
-
- `prod`
|
1109
|
-
- `user.bob`
|
1110
|
-
- `test.my_experiment`
|
1111
|
-
- `prod.staging`
|
1112
1099
|
|
1113
1100
|
|
1114
1101
|
Parameters
|
1115
1102
|
----------
|
1116
|
-
|
1117
|
-
|
1118
|
-
|
1119
|
-
|
1120
|
-
options : Dict[str, Any], default {}
|
1103
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1104
|
+
Event dependency for this flow.
|
1105
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1106
|
+
Events dependency for this flow.
|
1107
|
+
options : Dict[str, Any], default {}
|
1121
1108
|
Backend-specific configuration for tuning eventing behavior.
|
1122
1109
|
"""
|
1123
1110
|
...
|
1124
1111
|
|
1112
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1113
|
+
"""
|
1114
|
+
Allows setting external datastores to save data for the
|
1115
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1116
|
+
|
1117
|
+
This decorator is useful when users wish to save data to a different datastore
|
1118
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1119
|
+
|
1120
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1121
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1122
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1123
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1124
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1125
|
+
|
1126
|
+
Usage:
|
1127
|
+
----------
|
1128
|
+
|
1129
|
+
- Using a custom IAM role to access the datastore.
|
1130
|
+
|
1131
|
+
```python
|
1132
|
+
@with_artifact_store(
|
1133
|
+
type="s3",
|
1134
|
+
config=lambda: {
|
1135
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1136
|
+
"role_arn": ROLE,
|
1137
|
+
},
|
1138
|
+
)
|
1139
|
+
class MyFlow(FlowSpec):
|
1140
|
+
|
1141
|
+
@checkpoint
|
1142
|
+
@step
|
1143
|
+
def start(self):
|
1144
|
+
with open("my_file.txt", "w") as f:
|
1145
|
+
f.write("Hello, World!")
|
1146
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1147
|
+
self.next(self.end)
|
1148
|
+
|
1149
|
+
```
|
1150
|
+
|
1151
|
+
- Using credentials to access the s3-compatible datastore.
|
1152
|
+
|
1153
|
+
```python
|
1154
|
+
@with_artifact_store(
|
1155
|
+
type="s3",
|
1156
|
+
config=lambda: {
|
1157
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1158
|
+
"client_params": {
|
1159
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1160
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1161
|
+
},
|
1162
|
+
},
|
1163
|
+
)
|
1164
|
+
class MyFlow(FlowSpec):
|
1165
|
+
|
1166
|
+
@checkpoint
|
1167
|
+
@step
|
1168
|
+
def start(self):
|
1169
|
+
with open("my_file.txt", "w") as f:
|
1170
|
+
f.write("Hello, World!")
|
1171
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1172
|
+
self.next(self.end)
|
1173
|
+
|
1174
|
+
```
|
1175
|
+
|
1176
|
+
- Accessing objects stored in external datastores after task execution.
|
1177
|
+
|
1178
|
+
```python
|
1179
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1180
|
+
with artifact_store_from(run=run, config={
|
1181
|
+
"client_params": {
|
1182
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1183
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1184
|
+
},
|
1185
|
+
}):
|
1186
|
+
with Checkpoint() as cp:
|
1187
|
+
latest = cp.list(
|
1188
|
+
task=run["start"].task
|
1189
|
+
)[0]
|
1190
|
+
print(latest)
|
1191
|
+
cp.load(
|
1192
|
+
latest,
|
1193
|
+
"test-checkpoints"
|
1194
|
+
)
|
1195
|
+
|
1196
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1197
|
+
with artifact_store_from(run=run, config={
|
1198
|
+
"client_params": {
|
1199
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1200
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1201
|
+
},
|
1202
|
+
}):
|
1203
|
+
load_model(
|
1204
|
+
task.data.model_ref,
|
1205
|
+
"test-models"
|
1206
|
+
)
|
1207
|
+
```
|
1208
|
+
Parameters:
|
1209
|
+
----------
|
1210
|
+
|
1211
|
+
type: str
|
1212
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1213
|
+
|
1214
|
+
config: dict or Callable
|
1215
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1216
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1217
|
+
- example: 's3://bucket-name/path/to/root'
|
1218
|
+
- example: 'gs://bucket-name/path/to/root'
|
1219
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1220
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1221
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1222
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1223
|
+
"""
|
1224
|
+
...
|
1225
|
+
|
1226
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1227
|
+
"""
|
1228
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1229
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1230
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1231
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1232
|
+
starts only after all sensors finish.
|
1233
|
+
|
1234
|
+
|
1235
|
+
Parameters
|
1236
|
+
----------
|
1237
|
+
timeout : int
|
1238
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1239
|
+
poke_interval : int
|
1240
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1241
|
+
mode : str
|
1242
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1243
|
+
exponential_backoff : bool
|
1244
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1245
|
+
pool : str
|
1246
|
+
the slot pool this task should run in,
|
1247
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1248
|
+
soft_fail : bool
|
1249
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1250
|
+
name : str
|
1251
|
+
Name of the sensor on Airflow
|
1252
|
+
description : str
|
1253
|
+
Description of sensor in the Airflow UI
|
1254
|
+
bucket_key : Union[str, List[str]]
|
1255
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1256
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1257
|
+
bucket_name : str
|
1258
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1259
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1260
|
+
wildcard_match : bool
|
1261
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1262
|
+
aws_conn_id : str
|
1263
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1264
|
+
verify : bool
|
1265
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1266
|
+
"""
|
1267
|
+
...
|
1268
|
+
|
1269
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1270
|
+
"""
|
1271
|
+
Specifies what flows belong to the same project.
|
1272
|
+
|
1273
|
+
A project-specific namespace is created for all flows that
|
1274
|
+
use the same `@project(name)`.
|
1275
|
+
|
1276
|
+
|
1277
|
+
Parameters
|
1278
|
+
----------
|
1279
|
+
name : str
|
1280
|
+
Project name. Make sure that the name is unique amongst all
|
1281
|
+
projects that use the same production scheduler. The name may
|
1282
|
+
contain only lowercase alphanumeric characters and underscores.
|
1283
|
+
|
1284
|
+
branch : Optional[str], default None
|
1285
|
+
The branch to use. If not specified, the branch is set to
|
1286
|
+
`user.<username>` unless `production` is set to `True`. This can
|
1287
|
+
also be set on the command line using `--branch` as a top-level option.
|
1288
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
1289
|
+
|
1290
|
+
production : bool, default False
|
1291
|
+
Whether or not the branch is the production branch. This can also be set on the
|
1292
|
+
command line using `--production` as a top-level option. It is an error to specify
|
1293
|
+
`production` in the decorator and on the command line.
|
1294
|
+
The project branch name will be:
|
1295
|
+
- if `branch` is specified:
|
1296
|
+
- if `production` is True: `prod.<branch>`
|
1297
|
+
- if `production` is False: `test.<branch>`
|
1298
|
+
- if `branch` is not specified:
|
1299
|
+
- if `production` is True: `prod`
|
1300
|
+
- if `production` is False: `user.<username>`
|
1301
|
+
"""
|
1302
|
+
...
|
1303
|
+
|
1125
1304
|
@typing.overload
|
1126
1305
|
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1127
1306
|
"""
|
@@ -1173,13 +1352,10 @@ def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packa
|
|
1173
1352
|
"""
|
1174
1353
|
...
|
1175
1354
|
|
1176
|
-
def
|
1355
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1177
1356
|
"""
|
1178
|
-
The `@
|
1179
|
-
|
1180
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1181
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1182
|
-
starts only after all sensors finish.
|
1357
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1358
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1183
1359
|
|
1184
1360
|
|
1185
1361
|
Parameters
|
@@ -1201,18 +1377,21 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
1201
1377
|
Name of the sensor on Airflow
|
1202
1378
|
description : str
|
1203
1379
|
Description of sensor in the Airflow UI
|
1204
|
-
|
1205
|
-
The
|
1206
|
-
|
1207
|
-
|
1208
|
-
|
1209
|
-
|
1210
|
-
|
1211
|
-
|
1212
|
-
|
1213
|
-
|
1214
|
-
|
1215
|
-
|
1380
|
+
external_dag_id : str
|
1381
|
+
The dag_id that contains the task you want to wait for.
|
1382
|
+
external_task_ids : List[str]
|
1383
|
+
The list of task_ids that you want to wait for.
|
1384
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1385
|
+
allowed_states : List[str]
|
1386
|
+
Iterable of allowed states, (Default: ['success'])
|
1387
|
+
failed_states : List[str]
|
1388
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1389
|
+
execution_delta : datetime.timedelta
|
1390
|
+
time difference with the previous execution to look at,
|
1391
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1392
|
+
check_existence: bool
|
1393
|
+
Set to True to check if the external task exists or check if
|
1394
|
+
the DAG to wait for exists. (Default: True)
|
1216
1395
|
"""
|
1217
1396
|
...
|
1218
1397
|
|
@@ -1268,285 +1447,144 @@ def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly:
|
|
1268
1447
|
...
|
1269
1448
|
|
1270
1449
|
@typing.overload
|
1271
|
-
def
|
1450
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1272
1451
|
"""
|
1273
|
-
Specifies the
|
1452
|
+
Specifies the flow(s) that this flow depends on.
|
1274
1453
|
|
1275
|
-
|
1276
|
-
|
1277
|
-
|
1278
|
-
|
1279
|
-
|
1280
|
-
|
1281
|
-
|
1282
|
-
|
1283
|
-
|
1284
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1285
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1286
|
-
"""
|
1287
|
-
...
|
1288
|
-
|
1289
|
-
@typing.overload
|
1290
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1291
|
-
...
|
1292
|
-
|
1293
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1294
|
-
"""
|
1295
|
-
Specifies the PyPI packages for all steps of the flow.
|
1296
|
-
|
1297
|
-
Use `@pypi_base` to set common packages required by all
|
1298
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1299
|
-
|
1300
|
-
Parameters
|
1301
|
-
----------
|
1302
|
-
packages : Dict[str, str], default: {}
|
1303
|
-
Packages to use for this flow. The key is the name of the package
|
1304
|
-
and the value is the version to use.
|
1305
|
-
python : str, optional, default: None
|
1306
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1307
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1308
|
-
"""
|
1309
|
-
...
|
1310
|
-
|
1311
|
-
@typing.overload
|
1312
|
-
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1313
|
-
"""
|
1314
|
-
Specifies the event(s) that this flow depends on.
|
1454
|
+
```
|
1455
|
+
@trigger_on_finish(flow='FooFlow')
|
1456
|
+
```
|
1457
|
+
or
|
1458
|
+
```
|
1459
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1460
|
+
```
|
1461
|
+
This decorator respects the @project decorator and triggers the flow
|
1462
|
+
when upstream runs within the same namespace complete successfully
|
1315
1463
|
|
1464
|
+
Additionally, you can specify project aware upstream flow dependencies
|
1465
|
+
by specifying the fully qualified project_flow_name.
|
1316
1466
|
```
|
1317
|
-
@
|
1467
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1318
1468
|
```
|
1319
1469
|
or
|
1320
1470
|
```
|
1321
|
-
@
|
1471
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1322
1472
|
```
|
1323
1473
|
|
1324
|
-
|
1325
|
-
|
1326
|
-
```
|
1327
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1328
|
-
```
|
1329
|
-
or
|
1474
|
+
You can also specify just the project or project branch (other values will be
|
1475
|
+
inferred from the current project or project branch):
|
1330
1476
|
```
|
1331
|
-
@
|
1332
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1477
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1333
1478
|
```
|
1334
1479
|
|
1335
|
-
|
1336
|
-
|
1337
|
-
|
1338
|
-
|
1339
|
-
|
1340
|
-
```
|
1341
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1342
|
-
```
|
1480
|
+
Note that `branch` is typically one of:
|
1481
|
+
- `prod`
|
1482
|
+
- `user.bob`
|
1483
|
+
- `test.my_experiment`
|
1484
|
+
- `prod.staging`
|
1343
1485
|
|
1344
1486
|
|
1345
1487
|
Parameters
|
1346
1488
|
----------
|
1347
|
-
|
1348
|
-
|
1349
|
-
|
1350
|
-
|
1489
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
1490
|
+
Upstream flow dependency for this flow.
|
1491
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
1492
|
+
Upstream flow dependencies for this flow.
|
1351
1493
|
options : Dict[str, Any], default {}
|
1352
1494
|
Backend-specific configuration for tuning eventing behavior.
|
1353
1495
|
"""
|
1354
1496
|
...
|
1355
1497
|
|
1356
1498
|
@typing.overload
|
1357
|
-
def
|
1499
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1358
1500
|
...
|
1359
1501
|
|
1360
|
-
def
|
1502
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1361
1503
|
"""
|
1362
|
-
Specifies the
|
1504
|
+
Specifies the flow(s) that this flow depends on.
|
1363
1505
|
|
1364
1506
|
```
|
1365
|
-
@
|
1507
|
+
@trigger_on_finish(flow='FooFlow')
|
1366
1508
|
```
|
1367
1509
|
or
|
1368
1510
|
```
|
1369
|
-
@
|
1511
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1370
1512
|
```
|
1513
|
+
This decorator respects the @project decorator and triggers the flow
|
1514
|
+
when upstream runs within the same namespace complete successfully
|
1371
1515
|
|
1372
|
-
Additionally, you can specify
|
1373
|
-
|
1516
|
+
Additionally, you can specify project aware upstream flow dependencies
|
1517
|
+
by specifying the fully qualified project_flow_name.
|
1374
1518
|
```
|
1375
|
-
@
|
1519
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1376
1520
|
```
|
1377
1521
|
or
|
1378
1522
|
```
|
1379
|
-
@
|
1380
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1523
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1381
1524
|
```
|
1382
1525
|
|
1383
|
-
|
1384
|
-
|
1385
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1386
|
-
```
|
1387
|
-
This is equivalent to:
|
1526
|
+
You can also specify just the project or project branch (other values will be
|
1527
|
+
inferred from the current project or project branch):
|
1388
1528
|
```
|
1389
|
-
@
|
1529
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1390
1530
|
```
|
1391
1531
|
|
1532
|
+
Note that `branch` is typically one of:
|
1533
|
+
- `prod`
|
1534
|
+
- `user.bob`
|
1535
|
+
- `test.my_experiment`
|
1536
|
+
- `prod.staging`
|
1537
|
+
|
1392
1538
|
|
1393
1539
|
Parameters
|
1394
1540
|
----------
|
1395
|
-
|
1396
|
-
|
1397
|
-
|
1398
|
-
|
1541
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
1542
|
+
Upstream flow dependency for this flow.
|
1543
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
1544
|
+
Upstream flow dependencies for this flow.
|
1399
1545
|
options : Dict[str, Any], default {}
|
1400
1546
|
Backend-specific configuration for tuning eventing behavior.
|
1401
1547
|
"""
|
1402
1548
|
...
|
1403
1549
|
|
1404
|
-
|
1550
|
+
@typing.overload
|
1551
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1405
1552
|
"""
|
1406
|
-
|
1407
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1408
|
-
|
1409
|
-
This decorator is useful when users wish to save data to a different datastore
|
1410
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
1411
|
-
|
1412
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1413
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1414
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1415
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1416
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1417
|
-
|
1418
|
-
Usage:
|
1419
|
-
----------
|
1420
|
-
|
1421
|
-
- Using a custom IAM role to access the datastore.
|
1422
|
-
|
1423
|
-
```python
|
1424
|
-
@with_artifact_store(
|
1425
|
-
type="s3",
|
1426
|
-
config=lambda: {
|
1427
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1428
|
-
"role_arn": ROLE,
|
1429
|
-
},
|
1430
|
-
)
|
1431
|
-
class MyFlow(FlowSpec):
|
1432
|
-
|
1433
|
-
@checkpoint
|
1434
|
-
@step
|
1435
|
-
def start(self):
|
1436
|
-
with open("my_file.txt", "w") as f:
|
1437
|
-
f.write("Hello, World!")
|
1438
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1439
|
-
self.next(self.end)
|
1440
|
-
|
1441
|
-
```
|
1442
|
-
|
1443
|
-
- Using credentials to access the s3-compatible datastore.
|
1444
|
-
|
1445
|
-
```python
|
1446
|
-
@with_artifact_store(
|
1447
|
-
type="s3",
|
1448
|
-
config=lambda: {
|
1449
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1450
|
-
"client_params": {
|
1451
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1452
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1453
|
-
},
|
1454
|
-
},
|
1455
|
-
)
|
1456
|
-
class MyFlow(FlowSpec):
|
1457
|
-
|
1458
|
-
@checkpoint
|
1459
|
-
@step
|
1460
|
-
def start(self):
|
1461
|
-
with open("my_file.txt", "w") as f:
|
1462
|
-
f.write("Hello, World!")
|
1463
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1464
|
-
self.next(self.end)
|
1465
|
-
|
1466
|
-
```
|
1467
|
-
|
1468
|
-
- Accessing objects stored in external datastores after task execution.
|
1553
|
+
Specifies the PyPI packages for all steps of the flow.
|
1469
1554
|
|
1470
|
-
|
1471
|
-
|
1472
|
-
with artifact_store_from(run=run, config={
|
1473
|
-
"client_params": {
|
1474
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1475
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1476
|
-
},
|
1477
|
-
}):
|
1478
|
-
with Checkpoint() as cp:
|
1479
|
-
latest = cp.list(
|
1480
|
-
task=run["start"].task
|
1481
|
-
)[0]
|
1482
|
-
print(latest)
|
1483
|
-
cp.load(
|
1484
|
-
latest,
|
1485
|
-
"test-checkpoints"
|
1486
|
-
)
|
1555
|
+
Use `@pypi_base` to set common packages required by all
|
1556
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1487
1557
|
|
1488
|
-
|
1489
|
-
with artifact_store_from(run=run, config={
|
1490
|
-
"client_params": {
|
1491
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1492
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1493
|
-
},
|
1494
|
-
}):
|
1495
|
-
load_model(
|
1496
|
-
task.data.model_ref,
|
1497
|
-
"test-models"
|
1498
|
-
)
|
1499
|
-
```
|
1500
|
-
Parameters:
|
1558
|
+
Parameters
|
1501
1559
|
----------
|
1502
|
-
|
1503
|
-
|
1504
|
-
|
1505
|
-
|
1506
|
-
|
1507
|
-
|
1508
|
-
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1509
|
-
- example: 's3://bucket-name/path/to/root'
|
1510
|
-
- example: 'gs://bucket-name/path/to/root'
|
1511
|
-
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1512
|
-
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1513
|
-
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1514
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1560
|
+
packages : Dict[str, str], default: {}
|
1561
|
+
Packages to use for this flow. The key is the name of the package
|
1562
|
+
and the value is the version to use.
|
1563
|
+
python : str, optional, default: None
|
1564
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1565
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1515
1566
|
"""
|
1516
1567
|
...
|
1517
1568
|
|
1518
|
-
|
1569
|
+
@typing.overload
|
1570
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1571
|
+
...
|
1572
|
+
|
1573
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1519
1574
|
"""
|
1520
|
-
Specifies
|
1521
|
-
|
1522
|
-
A project-specific namespace is created for all flows that
|
1523
|
-
use the same `@project(name)`.
|
1575
|
+
Specifies the PyPI packages for all steps of the flow.
|
1524
1576
|
|
1577
|
+
Use `@pypi_base` to set common packages required by all
|
1578
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1525
1579
|
|
1526
1580
|
Parameters
|
1527
1581
|
----------
|
1528
|
-
|
1529
|
-
|
1530
|
-
|
1531
|
-
|
1532
|
-
|
1533
|
-
|
1534
|
-
The branch to use. If not specified, the branch is set to
|
1535
|
-
`user.<username>` unless `production` is set to `True`. This can
|
1536
|
-
also be set on the command line using `--branch` as a top-level option.
|
1537
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
1538
|
-
|
1539
|
-
production : bool, default False
|
1540
|
-
Whether or not the branch is the production branch. This can also be set on the
|
1541
|
-
command line using `--production` as a top-level option. It is an error to specify
|
1542
|
-
`production` in the decorator and on the command line.
|
1543
|
-
The project branch name will be:
|
1544
|
-
- if `branch` is specified:
|
1545
|
-
- if `production` is True: `prod.<branch>`
|
1546
|
-
- if `production` is False: `test.<branch>`
|
1547
|
-
- if `branch` is not specified:
|
1548
|
-
- if `production` is True: `prod`
|
1549
|
-
- if `production` is False: `user.<username>`
|
1582
|
+
packages : Dict[str, str], default: {}
|
1583
|
+
Packages to use for this flow. The key is the name of the package
|
1584
|
+
and the value is the version to use.
|
1585
|
+
python : str, optional, default: None
|
1586
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1587
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1550
1588
|
"""
|
1551
1589
|
...
|
1552
1590
|
|