ob-metaflow-stubs 6.0.3.176rc5__py2.py3-none-any.whl → 6.0.3.176rc6__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +739 -738
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +4 -4
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +1 -1
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +3 -3
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +2 -2
- metaflow-stubs/info_file.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +1 -1
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +114 -114
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +6 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +51 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +65 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +74 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +11 -0
- metaflow-stubs/parameters.pyi +2 -2
- metaflow-stubs/plugins/__init__.pyi +6 -6
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +1 -1
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +1 -1
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +3 -3
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +1 -1
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +1 -1
- metaflow-stubs/plugins/timeout_decorator.pyi +1 -1
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +1 -1
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +4 -4
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +2 -2
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_decorators.pyi +4 -4
- metaflow-stubs/user_configs/config_options.pyi +1 -1
- metaflow-stubs/user_configs/config_parameters.pyi +4 -4
- {ob_metaflow_stubs-6.0.3.176rc5.dist-info → ob_metaflow_stubs-6.0.3.176rc6.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.3.176rc6.dist-info/RECORD +218 -0
- ob_metaflow_stubs-6.0.3.176rc5.dist-info/RECORD +0 -213
- {ob_metaflow_stubs-6.0.3.176rc5.dist-info → ob_metaflow_stubs-6.0.3.176rc6.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.3.176rc5.dist-info → ob_metaflow_stubs-6.0.3.176rc6.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,15 +1,15 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
3
|
# MF version: 2.15.14.1+obcheckpoint(0.2.1);ob(v1) #
|
4
|
-
# Generated on 2025-06-
|
4
|
+
# Generated on 2025-06-04T22:04:18.327442 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
8
8
|
|
9
9
|
import typing
|
10
10
|
if typing.TYPE_CHECKING:
|
11
|
-
import typing
|
12
11
|
import datetime
|
12
|
+
import typing
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
15
15
|
|
@@ -45,8 +45,8 @@ from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package imp
|
|
45
45
|
from . import includefile as includefile
|
46
46
|
from .includefile import IncludeFile as IncludeFile
|
47
47
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
48
|
-
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
49
48
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
49
|
+
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
50
50
|
from . import client as client
|
51
51
|
from .client.core import namespace as namespace
|
52
52
|
from .client.core import get_namespace as get_namespace
|
@@ -77,6 +77,7 @@ from . import system as system
|
|
77
77
|
from . import pylint_wrapper as pylint_wrapper
|
78
78
|
from . import cli as cli
|
79
79
|
from . import profilers as profilers
|
80
|
+
from . import ob_internal as ob_internal
|
80
81
|
|
81
82
|
EXT_PKG: str
|
82
83
|
|
@@ -153,28 +154,60 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
153
154
|
"""
|
154
155
|
...
|
155
156
|
|
156
|
-
|
157
|
+
@typing.overload
|
158
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
157
159
|
"""
|
158
|
-
|
160
|
+
Enables checkpointing for a step.
|
161
|
+
|
159
162
|
|
160
163
|
|
161
164
|
Parameters
|
162
165
|
----------
|
163
|
-
|
164
|
-
The
|
166
|
+
load_policy : str, default: "fresh"
|
167
|
+
The policy for loading the checkpoint. The following policies are supported:
|
168
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
169
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
170
|
+
will be loaded at the start of the task.
|
171
|
+
- "none": Do not load any checkpoint
|
172
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
173
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
174
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
175
|
+
created within the task will be loaded when the task is retries execution on failure.
|
165
176
|
|
166
|
-
|
167
|
-
The
|
177
|
+
temp_dir_root : str, default: None
|
178
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
179
|
+
"""
|
180
|
+
...
|
181
|
+
|
182
|
+
@typing.overload
|
183
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
184
|
+
...
|
185
|
+
|
186
|
+
@typing.overload
|
187
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
188
|
+
...
|
189
|
+
|
190
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
191
|
+
"""
|
192
|
+
Enables checkpointing for a step.
|
168
193
|
|
169
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
170
194
|
|
171
|
-
- If repo (model/dataset) is not found in the datastore:
|
172
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
173
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
174
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
175
195
|
|
176
|
-
|
177
|
-
|
196
|
+
Parameters
|
197
|
+
----------
|
198
|
+
load_policy : str, default: "fresh"
|
199
|
+
The policy for loading the checkpoint. The following policies are supported:
|
200
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
201
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
202
|
+
will be loaded at the start of the task.
|
203
|
+
- "none": Do not load any checkpoint
|
204
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
205
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
206
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
207
|
+
created within the task will be loaded when the task is retries execution on failure.
|
208
|
+
|
209
|
+
temp_dir_root : str, default: None
|
210
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
178
211
|
"""
|
179
212
|
...
|
180
213
|
|
@@ -193,56 +226,81 @@ def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Cal
|
|
193
226
|
...
|
194
227
|
|
195
228
|
@typing.overload
|
196
|
-
def
|
197
|
-
"""
|
198
|
-
Decorator prototype for all step decorators. This function gets specialized
|
199
|
-
and imported for all decorators types by _import_plugin_decorators().
|
200
|
-
"""
|
201
|
-
...
|
202
|
-
|
203
|
-
@typing.overload
|
204
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
205
|
-
...
|
206
|
-
|
207
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
208
|
-
"""
|
209
|
-
Decorator prototype for all step decorators. This function gets specialized
|
210
|
-
and imported for all decorators types by _import_plugin_decorators().
|
211
|
-
"""
|
212
|
-
...
|
213
|
-
|
214
|
-
@typing.overload
|
215
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
229
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
216
230
|
"""
|
217
|
-
Specifies
|
218
|
-
|
231
|
+
Specifies the resources needed when executing this step.
|
232
|
+
|
233
|
+
Use `@resources` to specify the resource requirements
|
234
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
235
|
+
|
236
|
+
You can choose the compute layer on the command line by executing e.g.
|
237
|
+
```
|
238
|
+
python myflow.py run --with batch
|
239
|
+
```
|
240
|
+
or
|
241
|
+
```
|
242
|
+
python myflow.py run --with kubernetes
|
243
|
+
```
|
244
|
+
which executes the flow on the desired system using the
|
245
|
+
requirements specified in `@resources`.
|
219
246
|
|
220
247
|
|
221
248
|
Parameters
|
222
249
|
----------
|
223
|
-
|
224
|
-
|
250
|
+
cpu : int, default 1
|
251
|
+
Number of CPUs required for this step.
|
252
|
+
gpu : int, optional, default None
|
253
|
+
Number of GPUs required for this step.
|
254
|
+
disk : int, optional, default None
|
255
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
256
|
+
memory : int, default 4096
|
257
|
+
Memory size (in MB) required for this step.
|
258
|
+
shared_memory : int, optional, default None
|
259
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
260
|
+
This parameter maps to the `--shm-size` option in Docker.
|
225
261
|
"""
|
226
262
|
...
|
227
263
|
|
228
264
|
@typing.overload
|
229
|
-
def
|
265
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
230
266
|
...
|
231
267
|
|
232
268
|
@typing.overload
|
233
|
-
def
|
269
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
234
270
|
...
|
235
271
|
|
236
|
-
def
|
272
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
237
273
|
"""
|
238
|
-
Specifies
|
239
|
-
|
274
|
+
Specifies the resources needed when executing this step.
|
275
|
+
|
276
|
+
Use `@resources` to specify the resource requirements
|
277
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
278
|
+
|
279
|
+
You can choose the compute layer on the command line by executing e.g.
|
280
|
+
```
|
281
|
+
python myflow.py run --with batch
|
282
|
+
```
|
283
|
+
or
|
284
|
+
```
|
285
|
+
python myflow.py run --with kubernetes
|
286
|
+
```
|
287
|
+
which executes the flow on the desired system using the
|
288
|
+
requirements specified in `@resources`.
|
240
289
|
|
241
290
|
|
242
291
|
Parameters
|
243
292
|
----------
|
244
|
-
|
245
|
-
|
293
|
+
cpu : int, default 1
|
294
|
+
Number of CPUs required for this step.
|
295
|
+
gpu : int, optional, default None
|
296
|
+
Number of GPUs required for this step.
|
297
|
+
disk : int, optional, default None
|
298
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
299
|
+
memory : int, default 4096
|
300
|
+
Memory size (in MB) required for this step.
|
301
|
+
shared_memory : int, optional, default None
|
302
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
303
|
+
This parameter maps to the `--shm-size` option in Docker.
|
246
304
|
"""
|
247
305
|
...
|
248
306
|
|
@@ -279,62 +337,131 @@ def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], Non
|
|
279
337
|
"""
|
280
338
|
...
|
281
339
|
|
282
|
-
|
283
|
-
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
340
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
284
341
|
"""
|
285
|
-
Specifies
|
286
|
-
|
287
|
-
This decorator is useful if this step may hang indefinitely.
|
288
|
-
|
289
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
290
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
291
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
292
|
-
|
293
|
-
Note that all the values specified in parameters are added together so if you specify
|
294
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
342
|
+
Specifies that this step should execute on Kubernetes.
|
295
343
|
|
296
344
|
|
297
345
|
Parameters
|
298
346
|
----------
|
299
|
-
|
300
|
-
Number of
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
347
|
+
cpu : int, default 1
|
348
|
+
Number of CPUs required for this step. If `@resources` is
|
349
|
+
also present, the maximum value from all decorators is used.
|
350
|
+
memory : int, default 4096
|
351
|
+
Memory size (in MB) required for this step. If
|
352
|
+
`@resources` is also present, the maximum value from all decorators is
|
353
|
+
used.
|
354
|
+
disk : int, default 10240
|
355
|
+
Disk size (in MB) required for this step. If
|
356
|
+
`@resources` is also present, the maximum value from all decorators is
|
357
|
+
used.
|
358
|
+
image : str, optional, default None
|
359
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
360
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
361
|
+
not, a default Docker image mapping to the current version of Python is used.
|
362
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
363
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
364
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
365
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
366
|
+
secrets : List[str], optional, default None
|
367
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
368
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
369
|
+
in Metaflow configuration.
|
370
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
371
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
372
|
+
Can be passed in as a comma separated string of values e.g.
|
373
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
374
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
375
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
376
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
377
|
+
gpu : int, optional, default None
|
378
|
+
Number of GPUs required for this step. A value of zero implies that
|
379
|
+
the scheduled node should not have GPUs.
|
380
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
381
|
+
The vendor of the GPUs to be used for this step.
|
382
|
+
tolerations : List[str], default []
|
383
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
384
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
385
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
386
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
387
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
388
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
389
|
+
use_tmpfs : bool, default False
|
390
|
+
This enables an explicit tmpfs mount for this step.
|
391
|
+
tmpfs_tempdir : bool, default True
|
392
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
393
|
+
tmpfs_size : int, optional, default: None
|
394
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
395
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
396
|
+
memory allocated for this step.
|
397
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
398
|
+
Path to tmpfs mount for this step.
|
399
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
400
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
401
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
402
|
+
shared_memory: int, optional
|
403
|
+
Shared memory size (in MiB) required for this step
|
404
|
+
port: int, optional
|
405
|
+
Port number to specify in the Kubernetes job object
|
406
|
+
compute_pool : str, optional, default None
|
407
|
+
Compute pool to be used for for this step.
|
408
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
409
|
+
hostname_resolution_timeout: int, default 10 * 60
|
410
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
411
|
+
Only applicable when @parallel is used.
|
412
|
+
qos: str, default: Burstable
|
413
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
414
|
+
|
415
|
+
security_context: Dict[str, Any], optional, default None
|
416
|
+
Container security context. Applies to the task container. Allows the following keys:
|
417
|
+
- privileged: bool, optional, default None
|
418
|
+
- allow_privilege_escalation: bool, optional, default None
|
419
|
+
- run_as_user: int, optional, default None
|
420
|
+
- run_as_group: int, optional, default None
|
421
|
+
- run_as_non_root: bool, optional, default None
|
305
422
|
"""
|
306
423
|
...
|
307
424
|
|
308
|
-
|
309
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
310
|
-
...
|
311
|
-
|
312
|
-
@typing.overload
|
313
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
314
|
-
...
|
315
|
-
|
316
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
425
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
317
426
|
"""
|
318
|
-
|
427
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
319
428
|
|
320
|
-
|
429
|
+
User code call
|
430
|
+
--------------
|
431
|
+
@ollama(
|
432
|
+
models=[...],
|
433
|
+
...
|
434
|
+
)
|
321
435
|
|
322
|
-
|
323
|
-
|
324
|
-
|
436
|
+
Valid backend options
|
437
|
+
---------------------
|
438
|
+
- 'local': Run as a separate process on the local task machine.
|
439
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
440
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
325
441
|
|
326
|
-
|
327
|
-
|
442
|
+
Valid model options
|
443
|
+
-------------------
|
444
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
328
445
|
|
329
446
|
|
330
447
|
Parameters
|
331
448
|
----------
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
449
|
+
models: list[str]
|
450
|
+
List of Ollama containers running models in sidecars.
|
451
|
+
backend: str
|
452
|
+
Determines where and how to run the Ollama process.
|
453
|
+
force_pull: bool
|
454
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
455
|
+
cache_update_policy: str
|
456
|
+
Cache update policy: "auto", "force", or "never".
|
457
|
+
force_cache_update: bool
|
458
|
+
Simple override for "force" cache update policy.
|
459
|
+
debug: bool
|
460
|
+
Whether to turn on verbose debugging logs.
|
461
|
+
circuit_breaker_config: dict
|
462
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
463
|
+
timeout_config: dict
|
464
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
338
465
|
"""
|
339
466
|
...
|
340
467
|
|
@@ -388,268 +515,210 @@ def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
388
515
|
...
|
389
516
|
|
390
517
|
@typing.overload
|
391
|
-
def
|
518
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
392
519
|
"""
|
393
|
-
Specifies
|
520
|
+
Specifies a timeout for your step.
|
394
521
|
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
522
|
+
This decorator is useful if this step may hang indefinitely.
|
523
|
+
|
524
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
525
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
526
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
527
|
+
|
528
|
+
Note that all the values specified in parameters are added together so if you specify
|
529
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
399
530
|
|
400
531
|
|
401
532
|
Parameters
|
402
533
|
----------
|
403
|
-
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
410
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
411
|
-
disabled : bool, default False
|
412
|
-
If set to True, disables @conda.
|
534
|
+
seconds : int, default 0
|
535
|
+
Number of seconds to wait prior to timing out.
|
536
|
+
minutes : int, default 0
|
537
|
+
Number of minutes to wait prior to timing out.
|
538
|
+
hours : int, default 0
|
539
|
+
Number of hours to wait prior to timing out.
|
413
540
|
"""
|
414
541
|
...
|
415
542
|
|
416
543
|
@typing.overload
|
417
|
-
def
|
544
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
418
545
|
...
|
419
546
|
|
420
547
|
@typing.overload
|
421
|
-
def
|
548
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
422
549
|
...
|
423
550
|
|
424
|
-
def
|
551
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
425
552
|
"""
|
426
|
-
Specifies
|
553
|
+
Specifies a timeout for your step.
|
427
554
|
|
428
|
-
|
429
|
-
|
430
|
-
|
431
|
-
|
555
|
+
This decorator is useful if this step may hang indefinitely.
|
556
|
+
|
557
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
558
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
559
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
560
|
+
|
561
|
+
Note that all the values specified in parameters are added together so if you specify
|
562
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
432
563
|
|
433
564
|
|
434
565
|
Parameters
|
435
566
|
----------
|
436
|
-
|
437
|
-
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
443
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
444
|
-
disabled : bool, default False
|
445
|
-
If set to True, disables @conda.
|
567
|
+
seconds : int, default 0
|
568
|
+
Number of seconds to wait prior to timing out.
|
569
|
+
minutes : int, default 0
|
570
|
+
Number of minutes to wait prior to timing out.
|
571
|
+
hours : int, default 0
|
572
|
+
Number of hours to wait prior to timing out.
|
446
573
|
"""
|
447
574
|
...
|
448
575
|
|
449
|
-
def
|
576
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
450
577
|
"""
|
451
|
-
|
578
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
452
579
|
|
453
580
|
|
454
581
|
Parameters
|
455
582
|
----------
|
456
|
-
|
457
|
-
|
458
|
-
also present, the maximum value from all decorators is used.
|
459
|
-
memory : int, default 4096
|
460
|
-
Memory size (in MB) required for this step. If
|
461
|
-
`@resources` is also present, the maximum value from all decorators is
|
462
|
-
used.
|
463
|
-
disk : int, default 10240
|
464
|
-
Disk size (in MB) required for this step. If
|
465
|
-
`@resources` is also present, the maximum value from all decorators is
|
466
|
-
used.
|
467
|
-
image : str, optional, default None
|
468
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
469
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
470
|
-
not, a default Docker image mapping to the current version of Python is used.
|
471
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
472
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
473
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
474
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
475
|
-
secrets : List[str], optional, default None
|
476
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
477
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
478
|
-
in Metaflow configuration.
|
479
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
480
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
481
|
-
Can be passed in as a comma separated string of values e.g.
|
482
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
483
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
484
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
485
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
486
|
-
gpu : int, optional, default None
|
487
|
-
Number of GPUs required for this step. A value of zero implies that
|
488
|
-
the scheduled node should not have GPUs.
|
489
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
490
|
-
The vendor of the GPUs to be used for this step.
|
491
|
-
tolerations : List[str], default []
|
492
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
493
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
494
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
495
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
496
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
497
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
498
|
-
use_tmpfs : bool, default False
|
499
|
-
This enables an explicit tmpfs mount for this step.
|
500
|
-
tmpfs_tempdir : bool, default True
|
501
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
502
|
-
tmpfs_size : int, optional, default: None
|
503
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
504
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
505
|
-
memory allocated for this step.
|
506
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
507
|
-
Path to tmpfs mount for this step.
|
508
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
509
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
510
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
511
|
-
shared_memory: int, optional
|
512
|
-
Shared memory size (in MiB) required for this step
|
513
|
-
port: int, optional
|
514
|
-
Port number to specify in the Kubernetes job object
|
515
|
-
compute_pool : str, optional, default None
|
516
|
-
Compute pool to be used for for this step.
|
517
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
518
|
-
hostname_resolution_timeout: int, default 10 * 60
|
519
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
520
|
-
Only applicable when @parallel is used.
|
521
|
-
qos: str, default: Burstable
|
522
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
583
|
+
temp_dir_root : str, optional
|
584
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
523
585
|
|
524
|
-
|
525
|
-
|
526
|
-
|
527
|
-
|
528
|
-
|
529
|
-
-
|
530
|
-
|
586
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
587
|
+
The list of repos (models/datasets) to load.
|
588
|
+
|
589
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
590
|
+
|
591
|
+
- If repo (model/dataset) is not found in the datastore:
|
592
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
593
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
594
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
595
|
+
|
596
|
+
- If repo is found in the datastore:
|
597
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
531
598
|
"""
|
532
599
|
...
|
533
600
|
|
534
601
|
@typing.overload
|
535
|
-
def
|
602
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
536
603
|
"""
|
537
|
-
|
538
|
-
|
539
|
-
Use `@resources` to specify the resource requirements
|
540
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
604
|
+
Enables loading / saving of models within a step.
|
541
605
|
|
542
|
-
You can choose the compute layer on the command line by executing e.g.
|
543
|
-
```
|
544
|
-
python myflow.py run --with batch
|
545
|
-
```
|
546
|
-
or
|
547
|
-
```
|
548
|
-
python myflow.py run --with kubernetes
|
549
|
-
```
|
550
|
-
which executes the flow on the desired system using the
|
551
|
-
requirements specified in `@resources`.
|
552
606
|
|
553
607
|
|
554
608
|
Parameters
|
555
609
|
----------
|
556
|
-
|
557
|
-
|
558
|
-
|
559
|
-
|
560
|
-
|
561
|
-
|
562
|
-
|
563
|
-
|
564
|
-
|
565
|
-
|
566
|
-
|
610
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
611
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
612
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
613
|
+
- `current.checkpoint`
|
614
|
+
- `current.model`
|
615
|
+
- `current.huggingface_hub`
|
616
|
+
|
617
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
618
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
619
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
620
|
+
|
621
|
+
temp_dir_root : str, default: None
|
622
|
+
The root directory under which `current.model.loaded` will store loaded models
|
567
623
|
"""
|
568
624
|
...
|
569
625
|
|
570
626
|
@typing.overload
|
571
|
-
def
|
627
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
572
628
|
...
|
573
629
|
|
574
630
|
@typing.overload
|
575
|
-
def
|
631
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
576
632
|
...
|
577
633
|
|
578
|
-
def
|
634
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
579
635
|
"""
|
580
|
-
|
636
|
+
Enables loading / saving of models within a step.
|
581
637
|
|
582
|
-
Use `@resources` to specify the resource requirements
|
583
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
584
|
-
|
585
|
-
You can choose the compute layer on the command line by executing e.g.
|
586
|
-
```
|
587
|
-
python myflow.py run --with batch
|
588
|
-
```
|
589
|
-
or
|
590
|
-
```
|
591
|
-
python myflow.py run --with kubernetes
|
592
|
-
```
|
593
|
-
which executes the flow on the desired system using the
|
594
|
-
requirements specified in `@resources`.
|
595
638
|
|
596
639
|
|
597
640
|
Parameters
|
598
641
|
----------
|
599
|
-
|
600
|
-
|
601
|
-
|
602
|
-
|
603
|
-
|
604
|
-
|
605
|
-
|
606
|
-
|
607
|
-
|
608
|
-
|
609
|
-
|
642
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
643
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
644
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
645
|
+
- `current.checkpoint`
|
646
|
+
- `current.model`
|
647
|
+
- `current.huggingface_hub`
|
648
|
+
|
649
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
650
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
651
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
652
|
+
|
653
|
+
temp_dir_root : str, default: None
|
654
|
+
The root directory under which `current.model.loaded` will store loaded models
|
610
655
|
"""
|
611
656
|
...
|
612
657
|
|
613
|
-
def
|
658
|
+
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
614
659
|
"""
|
615
|
-
|
660
|
+
Specifies that this step is used to deploy an instance of the app.
|
661
|
+
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
616
662
|
|
617
|
-
User code call
|
618
|
-
--------------
|
619
|
-
@ollama(
|
620
|
-
models=[...],
|
621
|
-
...
|
622
|
-
)
|
623
663
|
|
624
|
-
|
625
|
-
|
626
|
-
|
627
|
-
|
628
|
-
|
664
|
+
Parameters
|
665
|
+
----------
|
666
|
+
app_port : int
|
667
|
+
Number of GPUs to use.
|
668
|
+
app_name : str
|
669
|
+
Name of the app to deploy.
|
670
|
+
"""
|
671
|
+
...
|
672
|
+
|
673
|
+
@typing.overload
|
674
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
675
|
+
"""
|
676
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
677
|
+
the execution of a step.
|
629
678
|
|
630
|
-
|
631
|
-
|
632
|
-
|
679
|
+
|
680
|
+
Parameters
|
681
|
+
----------
|
682
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
683
|
+
List of secret specs, defining how the secrets are to be retrieved
|
684
|
+
"""
|
685
|
+
...
|
686
|
+
|
687
|
+
@typing.overload
|
688
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
689
|
+
...
|
690
|
+
|
691
|
+
@typing.overload
|
692
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
693
|
+
...
|
694
|
+
|
695
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []):
|
696
|
+
"""
|
697
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
698
|
+
the execution of a step.
|
633
699
|
|
634
700
|
|
635
701
|
Parameters
|
636
702
|
----------
|
637
|
-
|
638
|
-
List of
|
639
|
-
|
640
|
-
|
641
|
-
|
642
|
-
|
643
|
-
|
644
|
-
|
645
|
-
|
646
|
-
|
647
|
-
|
648
|
-
|
649
|
-
|
650
|
-
|
651
|
-
|
652
|
-
|
703
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
704
|
+
List of secret specs, defining how the secrets are to be retrieved
|
705
|
+
"""
|
706
|
+
...
|
707
|
+
|
708
|
+
@typing.overload
|
709
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
710
|
+
"""
|
711
|
+
Internal decorator to support Fast bakery
|
712
|
+
"""
|
713
|
+
...
|
714
|
+
|
715
|
+
@typing.overload
|
716
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
717
|
+
...
|
718
|
+
|
719
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
720
|
+
"""
|
721
|
+
Internal decorator to support Fast bakery
|
653
722
|
"""
|
654
723
|
...
|
655
724
|
|
@@ -695,29 +764,106 @@ def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
695
764
|
|
696
765
|
Parameters
|
697
766
|
----------
|
698
|
-
packages : Dict[str, str], default: {}
|
699
|
-
Packages to use for this step. The key is the name of the package
|
700
|
-
and the value is the version to use.
|
701
|
-
python : str, optional, default: None
|
702
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
703
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
767
|
+
packages : Dict[str, str], default: {}
|
768
|
+
Packages to use for this step. The key is the name of the package
|
769
|
+
and the value is the version to use.
|
770
|
+
python : str, optional, default: None
|
771
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
772
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
773
|
+
"""
|
774
|
+
...
|
775
|
+
|
776
|
+
@typing.overload
|
777
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
778
|
+
"""
|
779
|
+
Specifies the Conda environment for the step.
|
780
|
+
|
781
|
+
Information in this decorator will augment any
|
782
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
783
|
+
you can use `@conda_base` to set packages required by all
|
784
|
+
steps and use `@conda` to specify step-specific overrides.
|
785
|
+
|
786
|
+
|
787
|
+
Parameters
|
788
|
+
----------
|
789
|
+
packages : Dict[str, str], default {}
|
790
|
+
Packages to use for this step. The key is the name of the package
|
791
|
+
and the value is the version to use.
|
792
|
+
libraries : Dict[str, str], default {}
|
793
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
794
|
+
python : str, optional, default None
|
795
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
796
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
797
|
+
disabled : bool, default False
|
798
|
+
If set to True, disables @conda.
|
799
|
+
"""
|
800
|
+
...
|
801
|
+
|
802
|
+
@typing.overload
|
803
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
804
|
+
...
|
805
|
+
|
806
|
+
@typing.overload
|
807
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
808
|
+
...
|
809
|
+
|
810
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
811
|
+
"""
|
812
|
+
Specifies the Conda environment for the step.
|
813
|
+
|
814
|
+
Information in this decorator will augment any
|
815
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
816
|
+
you can use `@conda_base` to set packages required by all
|
817
|
+
steps and use `@conda` to specify step-specific overrides.
|
818
|
+
|
819
|
+
|
820
|
+
Parameters
|
821
|
+
----------
|
822
|
+
packages : Dict[str, str], default {}
|
823
|
+
Packages to use for this step. The key is the name of the package
|
824
|
+
and the value is the version to use.
|
825
|
+
libraries : Dict[str, str], default {}
|
826
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
827
|
+
python : str, optional, default None
|
828
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
829
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
830
|
+
disabled : bool, default False
|
831
|
+
If set to True, disables @conda.
|
832
|
+
"""
|
833
|
+
...
|
834
|
+
|
835
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
836
|
+
"""
|
837
|
+
Specifies that this step should execute on DGX cloud.
|
838
|
+
|
839
|
+
|
840
|
+
Parameters
|
841
|
+
----------
|
842
|
+
gpu : int
|
843
|
+
Number of GPUs to use.
|
844
|
+
gpu_type : str
|
845
|
+
Type of Nvidia GPU to use.
|
846
|
+
queue_timeout : int
|
847
|
+
Time to keep the job in NVCF's queue.
|
704
848
|
"""
|
705
849
|
...
|
706
850
|
|
707
851
|
@typing.overload
|
708
|
-
def
|
852
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
709
853
|
"""
|
710
|
-
|
854
|
+
Decorator prototype for all step decorators. This function gets specialized
|
855
|
+
and imported for all decorators types by _import_plugin_decorators().
|
711
856
|
"""
|
712
857
|
...
|
713
858
|
|
714
859
|
@typing.overload
|
715
|
-
def
|
860
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
716
861
|
...
|
717
862
|
|
718
|
-
def
|
863
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
719
864
|
"""
|
720
|
-
|
865
|
+
Decorator prototype for all step decorators. This function gets specialized
|
866
|
+
and imported for all decorators types by _import_plugin_decorators().
|
721
867
|
"""
|
722
868
|
...
|
723
869
|
|
@@ -827,262 +973,197 @@ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
827
973
|
"""
|
828
974
|
...
|
829
975
|
|
830
|
-
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
831
|
-
"""
|
832
|
-
Specifies that this step is used to deploy an instance of the app.
|
833
|
-
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
834
|
-
|
835
|
-
|
836
|
-
Parameters
|
837
|
-
----------
|
838
|
-
app_port : int
|
839
|
-
Number of GPUs to use.
|
840
|
-
app_name : str
|
841
|
-
Name of the app to deploy.
|
842
|
-
"""
|
843
|
-
...
|
844
|
-
|
845
|
-
@typing.overload
|
846
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
847
|
-
"""
|
848
|
-
Enables checkpointing for a step.
|
849
|
-
|
850
|
-
|
851
|
-
|
852
|
-
Parameters
|
853
|
-
----------
|
854
|
-
load_policy : str, default: "fresh"
|
855
|
-
The policy for loading the checkpoint. The following policies are supported:
|
856
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
857
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
858
|
-
will be loaded at the start of the task.
|
859
|
-
- "none": Do not load any checkpoint
|
860
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
861
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
862
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
863
|
-
created within the task will be loaded when the task is retries execution on failure.
|
864
|
-
|
865
|
-
temp_dir_root : str, default: None
|
866
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
867
|
-
"""
|
868
|
-
...
|
869
|
-
|
870
|
-
@typing.overload
|
871
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
872
|
-
...
|
873
|
-
|
874
976
|
@typing.overload
|
875
|
-
def
|
876
|
-
...
|
877
|
-
|
878
|
-
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
977
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
879
978
|
"""
|
880
|
-
|
881
|
-
|
979
|
+
Specifies the flow(s) that this flow depends on.
|
882
980
|
|
981
|
+
```
|
982
|
+
@trigger_on_finish(flow='FooFlow')
|
983
|
+
```
|
984
|
+
or
|
985
|
+
```
|
986
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
987
|
+
```
|
988
|
+
This decorator respects the @project decorator and triggers the flow
|
989
|
+
when upstream runs within the same namespace complete successfully
|
883
990
|
|
884
|
-
|
885
|
-
|
886
|
-
|
887
|
-
|
888
|
-
|
889
|
-
|
890
|
-
|
891
|
-
|
892
|
-
|
893
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
894
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
895
|
-
created within the task will be loaded when the task is retries execution on failure.
|
991
|
+
Additionally, you can specify project aware upstream flow dependencies
|
992
|
+
by specifying the fully qualified project_flow_name.
|
993
|
+
```
|
994
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
995
|
+
```
|
996
|
+
or
|
997
|
+
```
|
998
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
999
|
+
```
|
896
1000
|
|
897
|
-
|
898
|
-
|
899
|
-
|
900
|
-
|
901
|
-
|
902
|
-
@typing.overload
|
903
|
-
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
904
|
-
"""
|
905
|
-
Enables loading / saving of models within a step.
|
1001
|
+
You can also specify just the project or project branch (other values will be
|
1002
|
+
inferred from the current project or project branch):
|
1003
|
+
```
|
1004
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1005
|
+
```
|
906
1006
|
|
1007
|
+
Note that `branch` is typically one of:
|
1008
|
+
- `prod`
|
1009
|
+
- `user.bob`
|
1010
|
+
- `test.my_experiment`
|
1011
|
+
- `prod.staging`
|
907
1012
|
|
908
1013
|
|
909
1014
|
Parameters
|
910
1015
|
----------
|
911
|
-
|
912
|
-
|
913
|
-
|
914
|
-
|
915
|
-
|
916
|
-
-
|
917
|
-
|
918
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
919
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
920
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
921
|
-
|
922
|
-
temp_dir_root : str, default: None
|
923
|
-
The root directory under which `current.model.loaded` will store loaded models
|
1016
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
1017
|
+
Upstream flow dependency for this flow.
|
1018
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
1019
|
+
Upstream flow dependencies for this flow.
|
1020
|
+
options : Dict[str, Any], default {}
|
1021
|
+
Backend-specific configuration for tuning eventing behavior.
|
924
1022
|
"""
|
925
1023
|
...
|
926
1024
|
|
927
1025
|
@typing.overload
|
928
|
-
def
|
929
|
-
...
|
930
|
-
|
931
|
-
@typing.overload
|
932
|
-
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1026
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
933
1027
|
...
|
934
1028
|
|
935
|
-
def
|
1029
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
936
1030
|
"""
|
937
|
-
|
938
|
-
|
1031
|
+
Specifies the flow(s) that this flow depends on.
|
939
1032
|
|
1033
|
+
```
|
1034
|
+
@trigger_on_finish(flow='FooFlow')
|
1035
|
+
```
|
1036
|
+
or
|
1037
|
+
```
|
1038
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1039
|
+
```
|
1040
|
+
This decorator respects the @project decorator and triggers the flow
|
1041
|
+
when upstream runs within the same namespace complete successfully
|
940
1042
|
|
941
|
-
|
942
|
-
|
943
|
-
|
944
|
-
|
945
|
-
|
946
|
-
|
947
|
-
|
948
|
-
|
1043
|
+
Additionally, you can specify project aware upstream flow dependencies
|
1044
|
+
by specifying the fully qualified project_flow_name.
|
1045
|
+
```
|
1046
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1047
|
+
```
|
1048
|
+
or
|
1049
|
+
```
|
1050
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1051
|
+
```
|
949
1052
|
|
950
|
-
|
951
|
-
|
952
|
-
|
1053
|
+
You can also specify just the project or project branch (other values will be
|
1054
|
+
inferred from the current project or project branch):
|
1055
|
+
```
|
1056
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1057
|
+
```
|
953
1058
|
|
954
|
-
|
955
|
-
|
956
|
-
|
957
|
-
|
958
|
-
|
959
|
-
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
960
|
-
"""
|
961
|
-
Specifies that this step should execute on DGX cloud.
|
1059
|
+
Note that `branch` is typically one of:
|
1060
|
+
- `prod`
|
1061
|
+
- `user.bob`
|
1062
|
+
- `test.my_experiment`
|
1063
|
+
- `prod.staging`
|
962
1064
|
|
963
1065
|
|
964
1066
|
Parameters
|
965
1067
|
----------
|
966
|
-
|
967
|
-
|
968
|
-
|
969
|
-
|
970
|
-
|
971
|
-
|
1068
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
1069
|
+
Upstream flow dependency for this flow.
|
1070
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
1071
|
+
Upstream flow dependencies for this flow.
|
1072
|
+
options : Dict[str, Any], default {}
|
1073
|
+
Backend-specific configuration for tuning eventing behavior.
|
972
1074
|
"""
|
973
1075
|
...
|
974
1076
|
|
975
|
-
|
1077
|
+
@typing.overload
|
1078
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
976
1079
|
"""
|
977
|
-
|
978
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
979
|
-
|
980
|
-
This decorator is useful when users wish to save data to a different datastore
|
981
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
982
|
-
|
983
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
984
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
985
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
986
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
987
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
988
|
-
|
989
|
-
Usage:
|
990
|
-
----------
|
991
|
-
|
992
|
-
- Using a custom IAM role to access the datastore.
|
993
|
-
|
994
|
-
```python
|
995
|
-
@with_artifact_store(
|
996
|
-
type="s3",
|
997
|
-
config=lambda: {
|
998
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
999
|
-
"role_arn": ROLE,
|
1000
|
-
},
|
1001
|
-
)
|
1002
|
-
class MyFlow(FlowSpec):
|
1003
|
-
|
1004
|
-
@checkpoint
|
1005
|
-
@step
|
1006
|
-
def start(self):
|
1007
|
-
with open("my_file.txt", "w") as f:
|
1008
|
-
f.write("Hello, World!")
|
1009
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1010
|
-
self.next(self.end)
|
1080
|
+
Specifies the event(s) that this flow depends on.
|
1011
1081
|
|
1012
|
-
|
1082
|
+
```
|
1083
|
+
@trigger(event='foo')
|
1084
|
+
```
|
1085
|
+
or
|
1086
|
+
```
|
1087
|
+
@trigger(events=['foo', 'bar'])
|
1088
|
+
```
|
1013
1089
|
|
1014
|
-
|
1090
|
+
Additionally, you can specify the parameter mappings
|
1091
|
+
to map event payload to Metaflow parameters for the flow.
|
1092
|
+
```
|
1093
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1094
|
+
```
|
1095
|
+
or
|
1096
|
+
```
|
1097
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1098
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1099
|
+
```
|
1015
1100
|
|
1016
|
-
|
1017
|
-
|
1018
|
-
|
1019
|
-
|
1020
|
-
|
1021
|
-
|
1022
|
-
|
1023
|
-
|
1024
|
-
},
|
1025
|
-
},
|
1026
|
-
)
|
1027
|
-
class MyFlow(FlowSpec):
|
1101
|
+
'parameters' can also be a list of strings and tuples like so:
|
1102
|
+
```
|
1103
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1104
|
+
```
|
1105
|
+
This is equivalent to:
|
1106
|
+
```
|
1107
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1108
|
+
```
|
1028
1109
|
|
1029
|
-
@checkpoint
|
1030
|
-
@step
|
1031
|
-
def start(self):
|
1032
|
-
with open("my_file.txt", "w") as f:
|
1033
|
-
f.write("Hello, World!")
|
1034
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1035
|
-
self.next(self.end)
|
1036
1110
|
|
1037
|
-
|
1111
|
+
Parameters
|
1112
|
+
----------
|
1113
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1114
|
+
Event dependency for this flow.
|
1115
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1116
|
+
Events dependency for this flow.
|
1117
|
+
options : Dict[str, Any], default {}
|
1118
|
+
Backend-specific configuration for tuning eventing behavior.
|
1119
|
+
"""
|
1120
|
+
...
|
1121
|
+
|
1122
|
+
@typing.overload
|
1123
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1124
|
+
...
|
1125
|
+
|
1126
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1127
|
+
"""
|
1128
|
+
Specifies the event(s) that this flow depends on.
|
1038
1129
|
|
1039
|
-
|
1130
|
+
```
|
1131
|
+
@trigger(event='foo')
|
1132
|
+
```
|
1133
|
+
or
|
1134
|
+
```
|
1135
|
+
@trigger(events=['foo', 'bar'])
|
1136
|
+
```
|
1040
1137
|
|
1041
|
-
|
1042
|
-
|
1043
|
-
|
1044
|
-
|
1045
|
-
|
1046
|
-
|
1047
|
-
|
1048
|
-
|
1049
|
-
|
1050
|
-
|
1051
|
-
task=run["start"].task
|
1052
|
-
)[0]
|
1053
|
-
print(latest)
|
1054
|
-
cp.load(
|
1055
|
-
latest,
|
1056
|
-
"test-checkpoints"
|
1057
|
-
)
|
1138
|
+
Additionally, you can specify the parameter mappings
|
1139
|
+
to map event payload to Metaflow parameters for the flow.
|
1140
|
+
```
|
1141
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1142
|
+
```
|
1143
|
+
or
|
1144
|
+
```
|
1145
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1146
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1147
|
+
```
|
1058
1148
|
|
1059
|
-
|
1060
|
-
|
1061
|
-
|
1062
|
-
|
1063
|
-
|
1064
|
-
|
1065
|
-
|
1066
|
-
|
1067
|
-
task.data.model_ref,
|
1068
|
-
"test-models"
|
1069
|
-
)
|
1070
|
-
```
|
1071
|
-
Parameters:
|
1072
|
-
----------
|
1149
|
+
'parameters' can also be a list of strings and tuples like so:
|
1150
|
+
```
|
1151
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1152
|
+
```
|
1153
|
+
This is equivalent to:
|
1154
|
+
```
|
1155
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1156
|
+
```
|
1073
1157
|
|
1074
|
-
type: str
|
1075
|
-
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1076
1158
|
|
1077
|
-
|
1078
|
-
|
1079
|
-
|
1080
|
-
|
1081
|
-
|
1082
|
-
|
1083
|
-
|
1084
|
-
-
|
1085
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1159
|
+
Parameters
|
1160
|
+
----------
|
1161
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1162
|
+
Event dependency for this flow.
|
1163
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1164
|
+
Events dependency for this flow.
|
1165
|
+
options : Dict[str, Any], default {}
|
1166
|
+
Backend-specific configuration for tuning eventing behavior.
|
1086
1167
|
"""
|
1087
1168
|
...
|
1088
1169
|
|
@@ -1187,146 +1268,45 @@ def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly:
|
|
1187
1268
|
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1188
1269
|
"""
|
1189
1270
|
...
|
1190
|
-
|
1191
|
-
@typing.overload
|
1192
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1193
|
-
"""
|
1194
|
-
Specifies the PyPI packages for all steps of the flow.
|
1195
|
-
|
1196
|
-
Use `@pypi_base` to set common packages required by all
|
1197
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1198
|
-
|
1199
|
-
Parameters
|
1200
|
-
----------
|
1201
|
-
packages : Dict[str, str], default: {}
|
1202
|
-
Packages to use for this flow. The key is the name of the package
|
1203
|
-
and the value is the version to use.
|
1204
|
-
python : str, optional, default: None
|
1205
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1206
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1207
|
-
"""
|
1208
|
-
...
|
1209
|
-
|
1210
|
-
@typing.overload
|
1211
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1212
|
-
...
|
1213
|
-
|
1214
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1215
|
-
"""
|
1216
|
-
Specifies the PyPI packages for all steps of the flow.
|
1217
|
-
|
1218
|
-
Use `@pypi_base` to set common packages required by all
|
1219
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1220
|
-
|
1221
|
-
Parameters
|
1222
|
-
----------
|
1223
|
-
packages : Dict[str, str], default: {}
|
1224
|
-
Packages to use for this flow. The key is the name of the package
|
1225
|
-
and the value is the version to use.
|
1226
|
-
python : str, optional, default: None
|
1227
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1228
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1229
|
-
"""
|
1230
|
-
...
|
1231
|
-
|
1232
|
-
@typing.overload
|
1233
|
-
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1234
|
-
"""
|
1235
|
-
Specifies the flow(s) that this flow depends on.
|
1236
|
-
|
1237
|
-
```
|
1238
|
-
@trigger_on_finish(flow='FooFlow')
|
1239
|
-
```
|
1240
|
-
or
|
1241
|
-
```
|
1242
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1243
|
-
```
|
1244
|
-
This decorator respects the @project decorator and triggers the flow
|
1245
|
-
when upstream runs within the same namespace complete successfully
|
1246
|
-
|
1247
|
-
Additionally, you can specify project aware upstream flow dependencies
|
1248
|
-
by specifying the fully qualified project_flow_name.
|
1249
|
-
```
|
1250
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1251
|
-
```
|
1252
|
-
or
|
1253
|
-
```
|
1254
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1255
|
-
```
|
1256
|
-
|
1257
|
-
You can also specify just the project or project branch (other values will be
|
1258
|
-
inferred from the current project or project branch):
|
1259
|
-
```
|
1260
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1261
|
-
```
|
1262
|
-
|
1263
|
-
Note that `branch` is typically one of:
|
1264
|
-
- `prod`
|
1265
|
-
- `user.bob`
|
1266
|
-
- `test.my_experiment`
|
1267
|
-
- `prod.staging`
|
1268
|
-
|
1269
|
-
|
1270
|
-
Parameters
|
1271
|
-
----------
|
1272
|
-
flow : Union[str, Dict[str, str]], optional, default None
|
1273
|
-
Upstream flow dependency for this flow.
|
1274
|
-
flows : List[Union[str, Dict[str, str]]], default []
|
1275
|
-
Upstream flow dependencies for this flow.
|
1276
|
-
options : Dict[str, Any], default {}
|
1277
|
-
Backend-specific configuration for tuning eventing behavior.
|
1278
|
-
"""
|
1279
|
-
...
|
1280
|
-
|
1281
|
-
@typing.overload
|
1282
|
-
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1283
|
-
...
|
1284
|
-
|
1285
|
-
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1286
|
-
"""
|
1287
|
-
Specifies the flow(s) that this flow depends on.
|
1288
|
-
|
1289
|
-
```
|
1290
|
-
@trigger_on_finish(flow='FooFlow')
|
1291
|
-
```
|
1292
|
-
or
|
1293
|
-
```
|
1294
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1295
|
-
```
|
1296
|
-
This decorator respects the @project decorator and triggers the flow
|
1297
|
-
when upstream runs within the same namespace complete successfully
|
1298
|
-
|
1299
|
-
Additionally, you can specify project aware upstream flow dependencies
|
1300
|
-
by specifying the fully qualified project_flow_name.
|
1301
|
-
```
|
1302
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1303
|
-
```
|
1304
|
-
or
|
1305
|
-
```
|
1306
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1307
|
-
```
|
1271
|
+
|
1272
|
+
@typing.overload
|
1273
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1274
|
+
"""
|
1275
|
+
Specifies the PyPI packages for all steps of the flow.
|
1308
1276
|
|
1309
|
-
|
1310
|
-
|
1311
|
-
```
|
1312
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1313
|
-
```
|
1277
|
+
Use `@pypi_base` to set common packages required by all
|
1278
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1314
1279
|
|
1315
|
-
|
1316
|
-
|
1317
|
-
|
1318
|
-
|
1319
|
-
|
1280
|
+
Parameters
|
1281
|
+
----------
|
1282
|
+
packages : Dict[str, str], default: {}
|
1283
|
+
Packages to use for this flow. The key is the name of the package
|
1284
|
+
and the value is the version to use.
|
1285
|
+
python : str, optional, default: None
|
1286
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1287
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1288
|
+
"""
|
1289
|
+
...
|
1290
|
+
|
1291
|
+
@typing.overload
|
1292
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1293
|
+
...
|
1294
|
+
|
1295
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1296
|
+
"""
|
1297
|
+
Specifies the PyPI packages for all steps of the flow.
|
1320
1298
|
|
1299
|
+
Use `@pypi_base` to set common packages required by all
|
1300
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1321
1301
|
|
1322
1302
|
Parameters
|
1323
1303
|
----------
|
1324
|
-
|
1325
|
-
|
1326
|
-
|
1327
|
-
|
1328
|
-
|
1329
|
-
|
1304
|
+
packages : Dict[str, str], default: {}
|
1305
|
+
Packages to use for this flow. The key is the name of the package
|
1306
|
+
and the value is the version to use.
|
1307
|
+
python : str, optional, default: None
|
1308
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1309
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1330
1310
|
"""
|
1331
1311
|
...
|
1332
1312
|
|
@@ -1373,99 +1353,6 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
1373
1353
|
"""
|
1374
1354
|
...
|
1375
1355
|
|
1376
|
-
@typing.overload
|
1377
|
-
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1378
|
-
"""
|
1379
|
-
Specifies the event(s) that this flow depends on.
|
1380
|
-
|
1381
|
-
```
|
1382
|
-
@trigger(event='foo')
|
1383
|
-
```
|
1384
|
-
or
|
1385
|
-
```
|
1386
|
-
@trigger(events=['foo', 'bar'])
|
1387
|
-
```
|
1388
|
-
|
1389
|
-
Additionally, you can specify the parameter mappings
|
1390
|
-
to map event payload to Metaflow parameters for the flow.
|
1391
|
-
```
|
1392
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1393
|
-
```
|
1394
|
-
or
|
1395
|
-
```
|
1396
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1397
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1398
|
-
```
|
1399
|
-
|
1400
|
-
'parameters' can also be a list of strings and tuples like so:
|
1401
|
-
```
|
1402
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1403
|
-
```
|
1404
|
-
This is equivalent to:
|
1405
|
-
```
|
1406
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1407
|
-
```
|
1408
|
-
|
1409
|
-
|
1410
|
-
Parameters
|
1411
|
-
----------
|
1412
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
1413
|
-
Event dependency for this flow.
|
1414
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
1415
|
-
Events dependency for this flow.
|
1416
|
-
options : Dict[str, Any], default {}
|
1417
|
-
Backend-specific configuration for tuning eventing behavior.
|
1418
|
-
"""
|
1419
|
-
...
|
1420
|
-
|
1421
|
-
@typing.overload
|
1422
|
-
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1423
|
-
...
|
1424
|
-
|
1425
|
-
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1426
|
-
"""
|
1427
|
-
Specifies the event(s) that this flow depends on.
|
1428
|
-
|
1429
|
-
```
|
1430
|
-
@trigger(event='foo')
|
1431
|
-
```
|
1432
|
-
or
|
1433
|
-
```
|
1434
|
-
@trigger(events=['foo', 'bar'])
|
1435
|
-
```
|
1436
|
-
|
1437
|
-
Additionally, you can specify the parameter mappings
|
1438
|
-
to map event payload to Metaflow parameters for the flow.
|
1439
|
-
```
|
1440
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1441
|
-
```
|
1442
|
-
or
|
1443
|
-
```
|
1444
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1445
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1446
|
-
```
|
1447
|
-
|
1448
|
-
'parameters' can also be a list of strings and tuples like so:
|
1449
|
-
```
|
1450
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1451
|
-
```
|
1452
|
-
This is equivalent to:
|
1453
|
-
```
|
1454
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1455
|
-
```
|
1456
|
-
|
1457
|
-
|
1458
|
-
Parameters
|
1459
|
-
----------
|
1460
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
1461
|
-
Event dependency for this flow.
|
1462
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
1463
|
-
Events dependency for this flow.
|
1464
|
-
options : Dict[str, Any], default {}
|
1465
|
-
Backend-specific configuration for tuning eventing behavior.
|
1466
|
-
"""
|
1467
|
-
...
|
1468
|
-
|
1469
1356
|
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1470
1357
|
"""
|
1471
1358
|
Specifies what flows belong to the same project.
|
@@ -1544,5 +1431,119 @@ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str,
|
|
1544
1431
|
"""
|
1545
1432
|
...
|
1546
1433
|
|
1434
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1435
|
+
"""
|
1436
|
+
Allows setting external datastores to save data for the
|
1437
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1438
|
+
|
1439
|
+
This decorator is useful when users wish to save data to a different datastore
|
1440
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1441
|
+
|
1442
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1443
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1444
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1445
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1446
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1447
|
+
|
1448
|
+
Usage:
|
1449
|
+
----------
|
1450
|
+
|
1451
|
+
- Using a custom IAM role to access the datastore.
|
1452
|
+
|
1453
|
+
```python
|
1454
|
+
@with_artifact_store(
|
1455
|
+
type="s3",
|
1456
|
+
config=lambda: {
|
1457
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1458
|
+
"role_arn": ROLE,
|
1459
|
+
},
|
1460
|
+
)
|
1461
|
+
class MyFlow(FlowSpec):
|
1462
|
+
|
1463
|
+
@checkpoint
|
1464
|
+
@step
|
1465
|
+
def start(self):
|
1466
|
+
with open("my_file.txt", "w") as f:
|
1467
|
+
f.write("Hello, World!")
|
1468
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1469
|
+
self.next(self.end)
|
1470
|
+
|
1471
|
+
```
|
1472
|
+
|
1473
|
+
- Using credentials to access the s3-compatible datastore.
|
1474
|
+
|
1475
|
+
```python
|
1476
|
+
@with_artifact_store(
|
1477
|
+
type="s3",
|
1478
|
+
config=lambda: {
|
1479
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1480
|
+
"client_params": {
|
1481
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1482
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1483
|
+
},
|
1484
|
+
},
|
1485
|
+
)
|
1486
|
+
class MyFlow(FlowSpec):
|
1487
|
+
|
1488
|
+
@checkpoint
|
1489
|
+
@step
|
1490
|
+
def start(self):
|
1491
|
+
with open("my_file.txt", "w") as f:
|
1492
|
+
f.write("Hello, World!")
|
1493
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1494
|
+
self.next(self.end)
|
1495
|
+
|
1496
|
+
```
|
1497
|
+
|
1498
|
+
- Accessing objects stored in external datastores after task execution.
|
1499
|
+
|
1500
|
+
```python
|
1501
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1502
|
+
with artifact_store_from(run=run, config={
|
1503
|
+
"client_params": {
|
1504
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1505
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1506
|
+
},
|
1507
|
+
}):
|
1508
|
+
with Checkpoint() as cp:
|
1509
|
+
latest = cp.list(
|
1510
|
+
task=run["start"].task
|
1511
|
+
)[0]
|
1512
|
+
print(latest)
|
1513
|
+
cp.load(
|
1514
|
+
latest,
|
1515
|
+
"test-checkpoints"
|
1516
|
+
)
|
1517
|
+
|
1518
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1519
|
+
with artifact_store_from(run=run, config={
|
1520
|
+
"client_params": {
|
1521
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1522
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1523
|
+
},
|
1524
|
+
}):
|
1525
|
+
load_model(
|
1526
|
+
task.data.model_ref,
|
1527
|
+
"test-models"
|
1528
|
+
)
|
1529
|
+
```
|
1530
|
+
Parameters:
|
1531
|
+
----------
|
1532
|
+
|
1533
|
+
type: str
|
1534
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1535
|
+
|
1536
|
+
config: dict or Callable
|
1537
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1538
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1539
|
+
- example: 's3://bucket-name/path/to/root'
|
1540
|
+
- example: 'gs://bucket-name/path/to/root'
|
1541
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1542
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1543
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1544
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1545
|
+
"""
|
1546
|
+
...
|
1547
|
+
|
1547
1548
|
pkg_name: str
|
1548
1549
|
|