ob-metaflow-stubs 6.0.3.175rc0__py2.py3-none-any.whl → 6.0.3.176rc1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +622 -616
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +5 -5
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +3 -3
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/info_file.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +1 -1
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +71 -71
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +60 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +60 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +73 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +10 -10
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +1 -1
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +13 -4
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +1 -1
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +1 -1
- metaflow-stubs/plugins/timeout_decorator.pyi +1 -1
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +1 -1
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +4 -4
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +4 -4
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_decorators.pyi +5 -5
- metaflow-stubs/user_configs/config_options.pyi +1 -1
- metaflow-stubs/user_configs/config_parameters.pyi +5 -5
- {ob_metaflow_stubs-6.0.3.175rc0.dist-info → ob_metaflow_stubs-6.0.3.176rc1.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.3.176rc1.dist-info/RECORD +218 -0
- ob_metaflow_stubs-6.0.3.175rc0.dist-info/RECORD +0 -216
- {ob_metaflow_stubs-6.0.3.175rc0.dist-info → ob_metaflow_stubs-6.0.3.176rc1.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.3.175rc0.dist-info → ob_metaflow_stubs-6.0.3.176rc1.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,15 +1,15 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
3
|
# MF version: 2.15.14.1+obcheckpoint(0.2.1);ob(v1) #
|
4
|
-
# Generated on 2025-
|
4
|
+
# Generated on 2025-06-03T02:57:26.607647 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
8
8
|
|
9
9
|
import typing
|
10
10
|
if typing.TYPE_CHECKING:
|
11
|
-
import datetime
|
12
11
|
import typing
|
12
|
+
import datetime
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
15
15
|
|
@@ -36,17 +36,17 @@ from .user_configs.config_parameters import config_expr as config_expr
|
|
36
36
|
from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
|
37
37
|
from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
|
38
38
|
from . import cards as cards
|
39
|
-
from . import metaflow_git as metaflow_git
|
40
39
|
from . import tuple_util as tuple_util
|
41
40
|
from . import events as events
|
41
|
+
from . import metaflow_git as metaflow_git
|
42
42
|
from . import runner as runner
|
43
43
|
from . import plugins as plugins
|
44
44
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
45
45
|
from . import includefile as includefile
|
46
46
|
from .includefile import IncludeFile as IncludeFile
|
47
|
+
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
47
48
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
48
49
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
49
|
-
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
50
50
|
from . import client as client
|
51
51
|
from .client.core import namespace as namespace
|
52
52
|
from .client.core import get_namespace as get_namespace
|
@@ -154,142 +154,131 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
154
154
|
"""
|
155
155
|
...
|
156
156
|
|
157
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
158
|
+
"""
|
159
|
+
Specifies that this step should execute on DGX cloud.
|
160
|
+
|
161
|
+
|
162
|
+
Parameters
|
163
|
+
----------
|
164
|
+
gpu : int
|
165
|
+
Number of GPUs to use.
|
166
|
+
gpu_type : str
|
167
|
+
Type of Nvidia GPU to use.
|
168
|
+
queue_timeout : int
|
169
|
+
Time to keep the job in NVCF's queue.
|
170
|
+
"""
|
171
|
+
...
|
172
|
+
|
157
173
|
@typing.overload
|
158
|
-
def
|
174
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
159
175
|
"""
|
160
|
-
|
176
|
+
Enables checkpointing for a step.
|
161
177
|
|
162
|
-
Information in this decorator will augment any
|
163
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
164
|
-
you can use `@pypi_base` to set packages required by all
|
165
|
-
steps and use `@pypi` to specify step-specific overrides.
|
166
178
|
|
167
179
|
|
168
180
|
Parameters
|
169
181
|
----------
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
182
|
+
load_policy : str, default: "fresh"
|
183
|
+
The policy for loading the checkpoint. The following policies are supported:
|
184
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
185
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
186
|
+
will be loaded at the start of the task.
|
187
|
+
- "none": Do not load any checkpoint
|
188
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
189
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
190
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
191
|
+
created within the task will be loaded when the task is retries execution on failure.
|
192
|
+
|
193
|
+
temp_dir_root : str, default: None
|
194
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
176
195
|
"""
|
177
196
|
...
|
178
197
|
|
179
198
|
@typing.overload
|
180
|
-
def
|
199
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
181
200
|
...
|
182
201
|
|
183
202
|
@typing.overload
|
184
|
-
def
|
203
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
185
204
|
...
|
186
205
|
|
187
|
-
def
|
206
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
188
207
|
"""
|
189
|
-
|
208
|
+
Enables checkpointing for a step.
|
190
209
|
|
191
|
-
Information in this decorator will augment any
|
192
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
193
|
-
you can use `@pypi_base` to set packages required by all
|
194
|
-
steps and use `@pypi` to specify step-specific overrides.
|
195
210
|
|
196
211
|
|
197
212
|
Parameters
|
198
213
|
----------
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
214
|
+
load_policy : str, default: "fresh"
|
215
|
+
The policy for loading the checkpoint. The following policies are supported:
|
216
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
217
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
218
|
+
will be loaded at the start of the task.
|
219
|
+
- "none": Do not load any checkpoint
|
220
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
221
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
222
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
223
|
+
created within the task will be loaded when the task is retries execution on failure.
|
224
|
+
|
225
|
+
temp_dir_root : str, default: None
|
226
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
205
227
|
"""
|
206
228
|
...
|
207
229
|
|
208
230
|
@typing.overload
|
209
|
-
def
|
231
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
210
232
|
"""
|
211
|
-
Specifies
|
233
|
+
Specifies the number of times the task corresponding
|
234
|
+
to a step needs to be retried.
|
212
235
|
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
236
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
237
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
238
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
239
|
+
|
240
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
241
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
242
|
+
ensuring that the flow execution can continue.
|
217
243
|
|
218
244
|
|
219
245
|
Parameters
|
220
246
|
----------
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
Determines whether or not the exception is printed to
|
226
|
-
stdout when caught.
|
247
|
+
times : int, default 3
|
248
|
+
Number of times to retry this task.
|
249
|
+
minutes_between_retries : int, default 2
|
250
|
+
Number of minutes between retries.
|
227
251
|
"""
|
228
252
|
...
|
229
253
|
|
230
254
|
@typing.overload
|
231
|
-
def
|
255
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
232
256
|
...
|
233
257
|
|
234
258
|
@typing.overload
|
235
|
-
def
|
236
|
-
...
|
237
|
-
|
238
|
-
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
239
|
-
"""
|
240
|
-
Specifies that the step will success under all circumstances.
|
241
|
-
|
242
|
-
The decorator will create an optional artifact, specified by `var`, which
|
243
|
-
contains the exception raised. You can use it to detect the presence
|
244
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
245
|
-
are missing.
|
246
|
-
|
247
|
-
|
248
|
-
Parameters
|
249
|
-
----------
|
250
|
-
var : str, optional, default None
|
251
|
-
Name of the artifact in which to store the caught exception.
|
252
|
-
If not specified, the exception is not stored.
|
253
|
-
print_exception : bool, default True
|
254
|
-
Determines whether or not the exception is printed to
|
255
|
-
stdout when caught.
|
256
|
-
"""
|
259
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
257
260
|
...
|
258
261
|
|
259
|
-
def
|
262
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
260
263
|
"""
|
261
|
-
|
262
|
-
|
263
|
-
User code call
|
264
|
-
--------------
|
265
|
-
@ollama(
|
266
|
-
models=[...],
|
267
|
-
...
|
268
|
-
)
|
264
|
+
Specifies the number of times the task corresponding
|
265
|
+
to a step needs to be retried.
|
269
266
|
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
274
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
267
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
268
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
269
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
275
270
|
|
276
|
-
|
277
|
-
|
278
|
-
|
271
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
272
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
273
|
+
ensuring that the flow execution can continue.
|
279
274
|
|
280
275
|
|
281
276
|
Parameters
|
282
277
|
----------
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
force_pull: bool
|
288
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
289
|
-
skip_push_check: bool
|
290
|
-
Whether to skip the check that populates/overwrites remote cache on terminating an ollama model.
|
291
|
-
debug: bool
|
292
|
-
Whether to turn on verbose debugging logs.
|
278
|
+
times : int, default 3
|
279
|
+
Number of times to retry this task.
|
280
|
+
minutes_between_retries : int, default 2
|
281
|
+
Number of minutes between retries.
|
293
282
|
"""
|
294
283
|
...
|
295
284
|
|
@@ -379,203 +368,180 @@ def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: ty
|
|
379
368
|
...
|
380
369
|
|
381
370
|
@typing.overload
|
382
|
-
def
|
371
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
383
372
|
"""
|
384
|
-
|
373
|
+
Specifies that the step will success under all circumstances.
|
385
374
|
|
375
|
+
The decorator will create an optional artifact, specified by `var`, which
|
376
|
+
contains the exception raised. You can use it to detect the presence
|
377
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
378
|
+
are missing.
|
386
379
|
|
387
380
|
|
388
381
|
Parameters
|
389
382
|
----------
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
398
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
399
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
400
|
-
|
401
|
-
temp_dir_root : str, default: None
|
402
|
-
The root directory under which `current.model.loaded` will store loaded models
|
383
|
+
var : str, optional, default None
|
384
|
+
Name of the artifact in which to store the caught exception.
|
385
|
+
If not specified, the exception is not stored.
|
386
|
+
print_exception : bool, default True
|
387
|
+
Determines whether or not the exception is printed to
|
388
|
+
stdout when caught.
|
403
389
|
"""
|
404
390
|
...
|
405
391
|
|
406
392
|
@typing.overload
|
407
|
-
def
|
393
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
408
394
|
...
|
409
395
|
|
410
396
|
@typing.overload
|
411
|
-
def
|
397
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
412
398
|
...
|
413
399
|
|
414
|
-
def
|
400
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
415
401
|
"""
|
416
|
-
|
402
|
+
Specifies that the step will success under all circumstances.
|
417
403
|
|
404
|
+
The decorator will create an optional artifact, specified by `var`, which
|
405
|
+
contains the exception raised. You can use it to detect the presence
|
406
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
407
|
+
are missing.
|
418
408
|
|
419
409
|
|
420
410
|
Parameters
|
421
411
|
----------
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
430
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
431
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
432
|
-
|
433
|
-
temp_dir_root : str, default: None
|
434
|
-
The root directory under which `current.model.loaded` will store loaded models
|
412
|
+
var : str, optional, default None
|
413
|
+
Name of the artifact in which to store the caught exception.
|
414
|
+
If not specified, the exception is not stored.
|
415
|
+
print_exception : bool, default True
|
416
|
+
Determines whether or not the exception is printed to
|
417
|
+
stdout when caught.
|
435
418
|
"""
|
436
419
|
...
|
437
420
|
|
438
|
-
def
|
421
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
439
422
|
"""
|
440
|
-
|
441
|
-
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
423
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
442
424
|
|
443
425
|
|
444
426
|
Parameters
|
445
427
|
----------
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
|
428
|
+
temp_dir_root : str, optional
|
429
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
430
|
+
|
431
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
432
|
+
The list of repos (models/datasets) to load.
|
433
|
+
|
434
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
435
|
+
|
436
|
+
- If repo (model/dataset) is not found in the datastore:
|
437
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
438
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
439
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
440
|
+
|
441
|
+
- If repo is found in the datastore:
|
442
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
450
443
|
"""
|
451
444
|
...
|
452
445
|
|
453
|
-
|
454
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
446
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
455
447
|
"""
|
456
|
-
|
457
|
-
to a step needs to be retried.
|
448
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
458
449
|
|
459
|
-
|
460
|
-
|
461
|
-
|
450
|
+
User code call
|
451
|
+
--------------
|
452
|
+
@ollama(
|
453
|
+
models=[...],
|
454
|
+
...
|
455
|
+
)
|
462
456
|
|
463
|
-
|
464
|
-
|
465
|
-
|
457
|
+
Valid backend options
|
458
|
+
---------------------
|
459
|
+
- 'local': Run as a separate process on the local task machine.
|
460
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
461
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
462
|
+
|
463
|
+
Valid model options
|
464
|
+
-------------------
|
465
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
466
466
|
|
467
467
|
|
468
468
|
Parameters
|
469
469
|
----------
|
470
|
-
|
471
|
-
|
472
|
-
|
473
|
-
|
470
|
+
models: list[str]
|
471
|
+
List of Ollama containers running models in sidecars.
|
472
|
+
backend: str
|
473
|
+
Determines where and how to run the Ollama process.
|
474
|
+
force_pull: bool
|
475
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
476
|
+
cache_update_policy: str
|
477
|
+
Cache update policy: "auto", "force", or "never".
|
478
|
+
force_cache_update: bool
|
479
|
+
Simple override for "force" cache update policy.
|
480
|
+
debug: bool
|
481
|
+
Whether to turn on verbose debugging logs.
|
482
|
+
circuit_breaker_config: dict
|
483
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
484
|
+
timeout_config: dict
|
485
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
474
486
|
"""
|
475
487
|
...
|
476
488
|
|
477
489
|
@typing.overload
|
478
|
-
def
|
479
|
-
...
|
480
|
-
|
481
|
-
@typing.overload
|
482
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
483
|
-
...
|
484
|
-
|
485
|
-
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
490
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
486
491
|
"""
|
487
|
-
Specifies
|
488
|
-
to a step needs to be retried.
|
489
|
-
|
490
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
491
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
492
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
493
|
-
|
494
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
495
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
496
|
-
ensuring that the flow execution can continue.
|
492
|
+
Specifies a timeout for your step.
|
497
493
|
|
494
|
+
This decorator is useful if this step may hang indefinitely.
|
498
495
|
|
499
|
-
|
500
|
-
|
501
|
-
|
502
|
-
Number of times to retry this task.
|
503
|
-
minutes_between_retries : int, default 2
|
504
|
-
Number of minutes between retries.
|
505
|
-
"""
|
506
|
-
...
|
507
|
-
|
508
|
-
@typing.overload
|
509
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
510
|
-
"""
|
511
|
-
Enables checkpointing for a step.
|
496
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
497
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
498
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
512
499
|
|
500
|
+
Note that all the values specified in parameters are added together so if you specify
|
501
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
513
502
|
|
514
503
|
|
515
504
|
Parameters
|
516
505
|
----------
|
517
|
-
|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
|
522
|
-
|
523
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
524
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
525
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
526
|
-
created within the task will be loaded when the task is retries execution on failure.
|
527
|
-
|
528
|
-
temp_dir_root : str, default: None
|
529
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
506
|
+
seconds : int, default 0
|
507
|
+
Number of seconds to wait prior to timing out.
|
508
|
+
minutes : int, default 0
|
509
|
+
Number of minutes to wait prior to timing out.
|
510
|
+
hours : int, default 0
|
511
|
+
Number of hours to wait prior to timing out.
|
530
512
|
"""
|
531
513
|
...
|
532
514
|
|
533
515
|
@typing.overload
|
534
|
-
def
|
516
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
535
517
|
...
|
536
518
|
|
537
519
|
@typing.overload
|
538
|
-
def
|
520
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
539
521
|
...
|
540
522
|
|
541
|
-
def
|
523
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
542
524
|
"""
|
543
|
-
|
525
|
+
Specifies a timeout for your step.
|
526
|
+
|
527
|
+
This decorator is useful if this step may hang indefinitely.
|
528
|
+
|
529
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
530
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
531
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
544
532
|
|
533
|
+
Note that all the values specified in parameters are added together so if you specify
|
534
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
545
535
|
|
546
536
|
|
547
537
|
Parameters
|
548
538
|
----------
|
549
|
-
|
550
|
-
|
551
|
-
|
552
|
-
|
553
|
-
|
554
|
-
|
555
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
556
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
557
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
558
|
-
created within the task will be loaded when the task is retries execution on failure.
|
559
|
-
|
560
|
-
temp_dir_root : str, default: None
|
561
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
562
|
-
"""
|
563
|
-
...
|
564
|
-
|
565
|
-
@typing.overload
|
566
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
567
|
-
"""
|
568
|
-
Internal decorator to support Fast bakery
|
569
|
-
"""
|
570
|
-
...
|
571
|
-
|
572
|
-
@typing.overload
|
573
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
574
|
-
...
|
575
|
-
|
576
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
577
|
-
"""
|
578
|
-
Internal decorator to support Fast bakery
|
539
|
+
seconds : int, default 0
|
540
|
+
Number of seconds to wait prior to timing out.
|
541
|
+
minutes : int, default 0
|
542
|
+
Number of minutes to wait prior to timing out.
|
543
|
+
hours : int, default 0
|
544
|
+
Number of hours to wait prior to timing out.
|
579
545
|
"""
|
580
546
|
...
|
581
547
|
|
@@ -658,125 +624,114 @@ def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None]
|
|
658
624
|
"""
|
659
625
|
...
|
660
626
|
|
661
|
-
|
627
|
+
@typing.overload
|
628
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
662
629
|
"""
|
663
|
-
|
664
|
-
|
665
|
-
|
666
|
-
Parameters
|
667
|
-
----------
|
668
|
-
temp_dir_root : str, optional
|
669
|
-
The root directory that will hold the temporary directory where objects will be downloaded.
|
670
|
-
|
671
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
672
|
-
The list of repos (models/datasets) to load.
|
673
|
-
|
674
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
675
|
-
|
676
|
-
- If repo (model/dataset) is not found in the datastore:
|
677
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
678
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
679
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
680
|
-
|
681
|
-
- If repo is found in the datastore:
|
682
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
630
|
+
Internal decorator to support Fast bakery
|
683
631
|
"""
|
684
632
|
...
|
685
633
|
|
686
634
|
@typing.overload
|
687
|
-
def
|
635
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
636
|
+
...
|
637
|
+
|
638
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
688
639
|
"""
|
689
|
-
|
690
|
-
|
691
|
-
|
692
|
-
|
693
|
-
|
694
|
-
|
695
|
-
|
696
|
-
|
697
|
-
Note that all the values specified in parameters are added together so if you specify
|
698
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
640
|
+
Internal decorator to support Fast bakery
|
641
|
+
"""
|
642
|
+
...
|
643
|
+
|
644
|
+
@typing.overload
|
645
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
646
|
+
"""
|
647
|
+
Specifies environment variables to be set prior to the execution of a step.
|
699
648
|
|
700
649
|
|
701
650
|
Parameters
|
702
651
|
----------
|
703
|
-
|
704
|
-
|
705
|
-
minutes : int, default 0
|
706
|
-
Number of minutes to wait prior to timing out.
|
707
|
-
hours : int, default 0
|
708
|
-
Number of hours to wait prior to timing out.
|
652
|
+
vars : Dict[str, str], default {}
|
653
|
+
Dictionary of environment variables to set.
|
709
654
|
"""
|
710
655
|
...
|
711
656
|
|
712
657
|
@typing.overload
|
713
|
-
def
|
658
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
714
659
|
...
|
715
660
|
|
716
661
|
@typing.overload
|
717
|
-
def
|
662
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
718
663
|
...
|
719
664
|
|
720
|
-
def
|
665
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
721
666
|
"""
|
722
|
-
Specifies
|
723
|
-
|
724
|
-
This decorator is useful if this step may hang indefinitely.
|
725
|
-
|
726
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
727
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
728
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
729
|
-
|
730
|
-
Note that all the values specified in parameters are added together so if you specify
|
731
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
667
|
+
Specifies environment variables to be set prior to the execution of a step.
|
732
668
|
|
733
669
|
|
734
670
|
Parameters
|
735
671
|
----------
|
736
|
-
|
737
|
-
|
738
|
-
minutes : int, default 0
|
739
|
-
Number of minutes to wait prior to timing out.
|
740
|
-
hours : int, default 0
|
741
|
-
Number of hours to wait prior to timing out.
|
672
|
+
vars : Dict[str, str], default {}
|
673
|
+
Dictionary of environment variables to set.
|
742
674
|
"""
|
743
675
|
...
|
744
676
|
|
745
677
|
@typing.overload
|
746
|
-
def
|
678
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
747
679
|
"""
|
748
|
-
|
680
|
+
Specifies the PyPI packages for the step.
|
749
681
|
|
750
|
-
|
682
|
+
Information in this decorator will augment any
|
683
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
684
|
+
you can use `@pypi_base` to set packages required by all
|
685
|
+
steps and use `@pypi` to specify step-specific overrides.
|
751
686
|
|
752
687
|
|
753
688
|
Parameters
|
754
689
|
----------
|
755
|
-
|
756
|
-
|
757
|
-
|
758
|
-
|
759
|
-
|
760
|
-
|
761
|
-
timeout : int, default 45
|
762
|
-
Interrupt reporting if it takes more than this many seconds.
|
690
|
+
packages : Dict[str, str], default: {}
|
691
|
+
Packages to use for this step. The key is the name of the package
|
692
|
+
and the value is the version to use.
|
693
|
+
python : str, optional, default: None
|
694
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
695
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
763
696
|
"""
|
764
697
|
...
|
765
698
|
|
766
699
|
@typing.overload
|
767
|
-
def
|
700
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
768
701
|
...
|
769
702
|
|
770
703
|
@typing.overload
|
771
|
-
def
|
704
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
772
705
|
...
|
773
706
|
|
774
|
-
def
|
707
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
775
708
|
"""
|
776
|
-
|
777
|
-
|
778
|
-
|
779
|
-
|
709
|
+
Specifies the PyPI packages for the step.
|
710
|
+
|
711
|
+
Information in this decorator will augment any
|
712
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
713
|
+
you can use `@pypi_base` to set packages required by all
|
714
|
+
steps and use `@pypi` to specify step-specific overrides.
|
715
|
+
|
716
|
+
|
717
|
+
Parameters
|
718
|
+
----------
|
719
|
+
packages : Dict[str, str], default: {}
|
720
|
+
Packages to use for this step. The key is the name of the package
|
721
|
+
and the value is the version to use.
|
722
|
+
python : str, optional, default: None
|
723
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
724
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
725
|
+
"""
|
726
|
+
...
|
727
|
+
|
728
|
+
@typing.overload
|
729
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
730
|
+
"""
|
731
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
732
|
+
|
733
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
734
|
+
|
780
735
|
|
781
736
|
Parameters
|
782
737
|
----------
|
@@ -792,39 +747,53 @@ def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
792
747
|
...
|
793
748
|
|
794
749
|
@typing.overload
|
795
|
-
def
|
750
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
751
|
+
...
|
752
|
+
|
753
|
+
@typing.overload
|
754
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
755
|
+
...
|
756
|
+
|
757
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
796
758
|
"""
|
797
|
-
|
759
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
760
|
+
|
761
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
798
762
|
|
799
763
|
|
800
764
|
Parameters
|
801
765
|
----------
|
802
|
-
|
803
|
-
|
766
|
+
type : str, default 'default'
|
767
|
+
Card type.
|
768
|
+
id : str, optional, default None
|
769
|
+
If multiple cards are present, use this id to identify this card.
|
770
|
+
options : Dict[str, Any], default {}
|
771
|
+
Options passed to the card. The contents depend on the card type.
|
772
|
+
timeout : int, default 45
|
773
|
+
Interrupt reporting if it takes more than this many seconds.
|
804
774
|
"""
|
805
775
|
...
|
806
776
|
|
807
777
|
@typing.overload
|
808
|
-
def
|
778
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
779
|
+
"""
|
780
|
+
Decorator prototype for all step decorators. This function gets specialized
|
781
|
+
and imported for all decorators types by _import_plugin_decorators().
|
782
|
+
"""
|
809
783
|
...
|
810
784
|
|
811
785
|
@typing.overload
|
812
|
-
def
|
786
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
813
787
|
...
|
814
788
|
|
815
|
-
def
|
789
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
816
790
|
"""
|
817
|
-
|
818
|
-
|
819
|
-
|
820
|
-
Parameters
|
821
|
-
----------
|
822
|
-
vars : Dict[str, str], default {}
|
823
|
-
Dictionary of environment variables to set.
|
791
|
+
Decorator prototype for all step decorators. This function gets specialized
|
792
|
+
and imported for all decorators types by _import_plugin_decorators().
|
824
793
|
"""
|
825
794
|
...
|
826
795
|
|
827
|
-
def
|
796
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
828
797
|
"""
|
829
798
|
Specifies that this step should execute on DGX cloud.
|
830
799
|
|
@@ -835,22 +804,78 @@ def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[t
|
|
835
804
|
Number of GPUs to use.
|
836
805
|
gpu_type : str
|
837
806
|
Type of Nvidia GPU to use.
|
838
|
-
queue_timeout : int
|
839
|
-
Time to keep the job in NVCF's queue.
|
840
807
|
"""
|
841
808
|
...
|
842
809
|
|
843
|
-
def
|
810
|
+
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
844
811
|
"""
|
845
|
-
Specifies that this step
|
812
|
+
Specifies that this step is used to deploy an instance of the app.
|
813
|
+
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
846
814
|
|
847
815
|
|
848
816
|
Parameters
|
849
817
|
----------
|
850
|
-
|
818
|
+
app_port : int
|
851
819
|
Number of GPUs to use.
|
852
|
-
|
853
|
-
|
820
|
+
app_name : str
|
821
|
+
Name of the app to deploy.
|
822
|
+
"""
|
823
|
+
...
|
824
|
+
|
825
|
+
@typing.overload
|
826
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
827
|
+
"""
|
828
|
+
Enables loading / saving of models within a step.
|
829
|
+
|
830
|
+
|
831
|
+
|
832
|
+
Parameters
|
833
|
+
----------
|
834
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
835
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
836
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
837
|
+
- `current.checkpoint`
|
838
|
+
- `current.model`
|
839
|
+
- `current.huggingface_hub`
|
840
|
+
|
841
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
842
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
843
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
844
|
+
|
845
|
+
temp_dir_root : str, default: None
|
846
|
+
The root directory under which `current.model.loaded` will store loaded models
|
847
|
+
"""
|
848
|
+
...
|
849
|
+
|
850
|
+
@typing.overload
|
851
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
852
|
+
...
|
853
|
+
|
854
|
+
@typing.overload
|
855
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
856
|
+
...
|
857
|
+
|
858
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
859
|
+
"""
|
860
|
+
Enables loading / saving of models within a step.
|
861
|
+
|
862
|
+
|
863
|
+
|
864
|
+
Parameters
|
865
|
+
----------
|
866
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
867
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
868
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
869
|
+
- `current.checkpoint`
|
870
|
+
- `current.model`
|
871
|
+
- `current.huggingface_hub`
|
872
|
+
|
873
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
874
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
875
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
876
|
+
|
877
|
+
temp_dir_root : str, default: None
|
878
|
+
The root directory under which `current.model.loaded` will store loaded models
|
854
879
|
"""
|
855
880
|
...
|
856
881
|
|
@@ -948,53 +973,155 @@ def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
948
973
|
"""
|
949
974
|
...
|
950
975
|
|
951
|
-
|
952
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
976
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
953
977
|
"""
|
954
|
-
|
955
|
-
and
|
978
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
979
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
980
|
+
|
981
|
+
|
982
|
+
Parameters
|
983
|
+
----------
|
984
|
+
timeout : int
|
985
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
986
|
+
poke_interval : int
|
987
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
988
|
+
mode : str
|
989
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
990
|
+
exponential_backoff : bool
|
991
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
992
|
+
pool : str
|
993
|
+
the slot pool this task should run in,
|
994
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
995
|
+
soft_fail : bool
|
996
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
997
|
+
name : str
|
998
|
+
Name of the sensor on Airflow
|
999
|
+
description : str
|
1000
|
+
Description of sensor in the Airflow UI
|
1001
|
+
external_dag_id : str
|
1002
|
+
The dag_id that contains the task you want to wait for.
|
1003
|
+
external_task_ids : List[str]
|
1004
|
+
The list of task_ids that you want to wait for.
|
1005
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1006
|
+
allowed_states : List[str]
|
1007
|
+
Iterable of allowed states, (Default: ['success'])
|
1008
|
+
failed_states : List[str]
|
1009
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1010
|
+
execution_delta : datetime.timedelta
|
1011
|
+
time difference with the previous execution to look at,
|
1012
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1013
|
+
check_existence: bool
|
1014
|
+
Set to True to check if the external task exists or check if
|
1015
|
+
the DAG to wait for exists. (Default: True)
|
956
1016
|
"""
|
957
1017
|
...
|
958
1018
|
|
959
|
-
|
960
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
961
|
-
...
|
962
|
-
|
963
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1019
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
964
1020
|
"""
|
965
|
-
|
966
|
-
|
1021
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1022
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1023
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1024
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1025
|
+
starts only after all sensors finish.
|
1026
|
+
|
1027
|
+
|
1028
|
+
Parameters
|
1029
|
+
----------
|
1030
|
+
timeout : int
|
1031
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1032
|
+
poke_interval : int
|
1033
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1034
|
+
mode : str
|
1035
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1036
|
+
exponential_backoff : bool
|
1037
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1038
|
+
pool : str
|
1039
|
+
the slot pool this task should run in,
|
1040
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1041
|
+
soft_fail : bool
|
1042
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1043
|
+
name : str
|
1044
|
+
Name of the sensor on Airflow
|
1045
|
+
description : str
|
1046
|
+
Description of sensor in the Airflow UI
|
1047
|
+
bucket_key : Union[str, List[str]]
|
1048
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1049
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1050
|
+
bucket_name : str
|
1051
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1052
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1053
|
+
wildcard_match : bool
|
1054
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1055
|
+
aws_conn_id : str
|
1056
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1057
|
+
verify : bool
|
1058
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
967
1059
|
"""
|
968
1060
|
...
|
969
1061
|
|
970
|
-
|
971
|
-
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1062
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
972
1063
|
"""
|
973
|
-
Specifies
|
1064
|
+
Specifies what flows belong to the same project.
|
974
1065
|
|
975
|
-
|
976
|
-
|
977
|
-
```
|
978
|
-
or
|
979
|
-
```
|
980
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
981
|
-
```
|
982
|
-
This decorator respects the @project decorator and triggers the flow
|
983
|
-
when upstream runs within the same namespace complete successfully
|
1066
|
+
A project-specific namespace is created for all flows that
|
1067
|
+
use the same `@project(name)`.
|
984
1068
|
|
985
|
-
Additionally, you can specify project aware upstream flow dependencies
|
986
|
-
by specifying the fully qualified project_flow_name.
|
987
|
-
```
|
988
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
989
|
-
```
|
990
|
-
or
|
991
|
-
```
|
992
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
993
|
-
```
|
994
1069
|
|
995
|
-
|
996
|
-
|
997
|
-
|
1070
|
+
Parameters
|
1071
|
+
----------
|
1072
|
+
name : str
|
1073
|
+
Project name. Make sure that the name is unique amongst all
|
1074
|
+
projects that use the same production scheduler. The name may
|
1075
|
+
contain only lowercase alphanumeric characters and underscores.
|
1076
|
+
|
1077
|
+
branch : Optional[str], default None
|
1078
|
+
The branch to use. If not specified, the branch is set to
|
1079
|
+
`user.<username>` unless `production` is set to `True`. This can
|
1080
|
+
also be set on the command line using `--branch` as a top-level option.
|
1081
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
1082
|
+
|
1083
|
+
production : bool, default False
|
1084
|
+
Whether or not the branch is the production branch. This can also be set on the
|
1085
|
+
command line using `--production` as a top-level option. It is an error to specify
|
1086
|
+
`production` in the decorator and on the command line.
|
1087
|
+
The project branch name will be:
|
1088
|
+
- if `branch` is specified:
|
1089
|
+
- if `production` is True: `prod.<branch>`
|
1090
|
+
- if `production` is False: `test.<branch>`
|
1091
|
+
- if `branch` is not specified:
|
1092
|
+
- if `production` is True: `prod`
|
1093
|
+
- if `production` is False: `user.<username>`
|
1094
|
+
"""
|
1095
|
+
...
|
1096
|
+
|
1097
|
+
@typing.overload
|
1098
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1099
|
+
"""
|
1100
|
+
Specifies the flow(s) that this flow depends on.
|
1101
|
+
|
1102
|
+
```
|
1103
|
+
@trigger_on_finish(flow='FooFlow')
|
1104
|
+
```
|
1105
|
+
or
|
1106
|
+
```
|
1107
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1108
|
+
```
|
1109
|
+
This decorator respects the @project decorator and triggers the flow
|
1110
|
+
when upstream runs within the same namespace complete successfully
|
1111
|
+
|
1112
|
+
Additionally, you can specify project aware upstream flow dependencies
|
1113
|
+
by specifying the fully qualified project_flow_name.
|
1114
|
+
```
|
1115
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1116
|
+
```
|
1117
|
+
or
|
1118
|
+
```
|
1119
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1120
|
+
```
|
1121
|
+
|
1122
|
+
You can also specify just the project or project branch (other values will be
|
1123
|
+
inferred from the current project or project branch):
|
1124
|
+
```
|
998
1125
|
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
999
1126
|
```
|
1000
1127
|
|
@@ -1161,168 +1288,44 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
1161
1288
|
"""
|
1162
1289
|
...
|
1163
1290
|
|
1164
|
-
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1165
|
-
"""
|
1166
|
-
Allows setting external datastores to save data for the
|
1167
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1168
|
-
|
1169
|
-
This decorator is useful when users wish to save data to a different datastore
|
1170
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
1171
|
-
|
1172
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1173
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1174
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1175
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1176
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1177
|
-
|
1178
|
-
Usage:
|
1179
|
-
----------
|
1180
|
-
|
1181
|
-
- Using a custom IAM role to access the datastore.
|
1182
|
-
|
1183
|
-
```python
|
1184
|
-
@with_artifact_store(
|
1185
|
-
type="s3",
|
1186
|
-
config=lambda: {
|
1187
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1188
|
-
"role_arn": ROLE,
|
1189
|
-
},
|
1190
|
-
)
|
1191
|
-
class MyFlow(FlowSpec):
|
1192
|
-
|
1193
|
-
@checkpoint
|
1194
|
-
@step
|
1195
|
-
def start(self):
|
1196
|
-
with open("my_file.txt", "w") as f:
|
1197
|
-
f.write("Hello, World!")
|
1198
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1199
|
-
self.next(self.end)
|
1200
|
-
|
1201
|
-
```
|
1202
|
-
|
1203
|
-
- Using credentials to access the s3-compatible datastore.
|
1204
|
-
|
1205
|
-
```python
|
1206
|
-
@with_artifact_store(
|
1207
|
-
type="s3",
|
1208
|
-
config=lambda: {
|
1209
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1210
|
-
"client_params": {
|
1211
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1212
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1213
|
-
},
|
1214
|
-
},
|
1215
|
-
)
|
1216
|
-
class MyFlow(FlowSpec):
|
1217
|
-
|
1218
|
-
@checkpoint
|
1219
|
-
@step
|
1220
|
-
def start(self):
|
1221
|
-
with open("my_file.txt", "w") as f:
|
1222
|
-
f.write("Hello, World!")
|
1223
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1224
|
-
self.next(self.end)
|
1225
|
-
|
1226
|
-
```
|
1227
|
-
|
1228
|
-
- Accessing objects stored in external datastores after task execution.
|
1229
|
-
|
1230
|
-
```python
|
1231
|
-
run = Run("CheckpointsTestsFlow/8992")
|
1232
|
-
with artifact_store_from(run=run, config={
|
1233
|
-
"client_params": {
|
1234
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1235
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1236
|
-
},
|
1237
|
-
}):
|
1238
|
-
with Checkpoint() as cp:
|
1239
|
-
latest = cp.list(
|
1240
|
-
task=run["start"].task
|
1241
|
-
)[0]
|
1242
|
-
print(latest)
|
1243
|
-
cp.load(
|
1244
|
-
latest,
|
1245
|
-
"test-checkpoints"
|
1246
|
-
)
|
1247
|
-
|
1248
|
-
task = Task("TorchTuneFlow/8484/train/53673")
|
1249
|
-
with artifact_store_from(run=run, config={
|
1250
|
-
"client_params": {
|
1251
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1252
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1253
|
-
},
|
1254
|
-
}):
|
1255
|
-
load_model(
|
1256
|
-
task.data.model_ref,
|
1257
|
-
"test-models"
|
1258
|
-
)
|
1259
|
-
```
|
1260
|
-
Parameters:
|
1261
|
-
----------
|
1262
|
-
|
1263
|
-
type: str
|
1264
|
-
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1265
|
-
|
1266
|
-
config: dict or Callable
|
1267
|
-
Dictionary of configuration options for the datastore. The following keys are required:
|
1268
|
-
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1269
|
-
- example: 's3://bucket-name/path/to/root'
|
1270
|
-
- example: 'gs://bucket-name/path/to/root'
|
1271
|
-
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1272
|
-
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1273
|
-
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1274
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1275
|
-
"""
|
1276
|
-
...
|
1277
|
-
|
1278
1291
|
@typing.overload
|
1279
|
-
def
|
1292
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1280
1293
|
"""
|
1281
|
-
Specifies the
|
1282
|
-
|
1283
|
-
Use `@conda_base` to set common libraries required by all
|
1284
|
-
steps and use `@conda` to specify step-specific additions.
|
1294
|
+
Specifies the PyPI packages for all steps of the flow.
|
1285
1295
|
|
1296
|
+
Use `@pypi_base` to set common packages required by all
|
1297
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1286
1298
|
|
1287
1299
|
Parameters
|
1288
1300
|
----------
|
1289
|
-
packages : Dict[str, str], default {}
|
1301
|
+
packages : Dict[str, str], default: {}
|
1290
1302
|
Packages to use for this flow. The key is the name of the package
|
1291
1303
|
and the value is the version to use.
|
1292
|
-
|
1293
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1294
|
-
python : str, optional, default None
|
1304
|
+
python : str, optional, default: None
|
1295
1305
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1296
1306
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1297
|
-
disabled : bool, default False
|
1298
|
-
If set to True, disables Conda.
|
1299
1307
|
"""
|
1300
1308
|
...
|
1301
1309
|
|
1302
1310
|
@typing.overload
|
1303
|
-
def
|
1311
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1304
1312
|
...
|
1305
1313
|
|
1306
|
-
def
|
1314
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1307
1315
|
"""
|
1308
|
-
Specifies the
|
1309
|
-
|
1310
|
-
Use `@conda_base` to set common libraries required by all
|
1311
|
-
steps and use `@conda` to specify step-specific additions.
|
1316
|
+
Specifies the PyPI packages for all steps of the flow.
|
1312
1317
|
|
1318
|
+
Use `@pypi_base` to set common packages required by all
|
1319
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1313
1320
|
|
1314
1321
|
Parameters
|
1315
1322
|
----------
|
1316
|
-
packages : Dict[str, str], default {}
|
1323
|
+
packages : Dict[str, str], default: {}
|
1317
1324
|
Packages to use for this flow. The key is the name of the package
|
1318
1325
|
and the value is the version to use.
|
1319
|
-
|
1320
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1321
|
-
python : str, optional, default None
|
1326
|
+
python : str, optional, default: None
|
1322
1327
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1323
1328
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1324
|
-
disabled : bool, default False
|
1325
|
-
If set to True, disables Conda.
|
1326
1329
|
"""
|
1327
1330
|
...
|
1328
1331
|
|
@@ -1377,165 +1380,168 @@ def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly:
|
|
1377
1380
|
"""
|
1378
1381
|
...
|
1379
1382
|
|
1380
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1381
|
-
"""
|
1382
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1383
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1384
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1385
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1386
|
-
starts only after all sensors finish.
|
1387
|
-
|
1388
|
-
|
1389
|
-
Parameters
|
1390
|
-
----------
|
1391
|
-
timeout : int
|
1392
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
1393
|
-
poke_interval : int
|
1394
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
1395
|
-
mode : str
|
1396
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1397
|
-
exponential_backoff : bool
|
1398
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1399
|
-
pool : str
|
1400
|
-
the slot pool this task should run in,
|
1401
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1402
|
-
soft_fail : bool
|
1403
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1404
|
-
name : str
|
1405
|
-
Name of the sensor on Airflow
|
1406
|
-
description : str
|
1407
|
-
Description of sensor in the Airflow UI
|
1408
|
-
bucket_key : Union[str, List[str]]
|
1409
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1410
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1411
|
-
bucket_name : str
|
1412
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1413
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1414
|
-
wildcard_match : bool
|
1415
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1416
|
-
aws_conn_id : str
|
1417
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
1418
|
-
verify : bool
|
1419
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1420
|
-
"""
|
1421
|
-
...
|
1422
|
-
|
1423
|
-
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1424
|
-
"""
|
1425
|
-
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1426
|
-
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1427
|
-
|
1428
|
-
|
1429
|
-
Parameters
|
1430
|
-
----------
|
1431
|
-
timeout : int
|
1432
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
1433
|
-
poke_interval : int
|
1434
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
1435
|
-
mode : str
|
1436
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1437
|
-
exponential_backoff : bool
|
1438
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1439
|
-
pool : str
|
1440
|
-
the slot pool this task should run in,
|
1441
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1442
|
-
soft_fail : bool
|
1443
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1444
|
-
name : str
|
1445
|
-
Name of the sensor on Airflow
|
1446
|
-
description : str
|
1447
|
-
Description of sensor in the Airflow UI
|
1448
|
-
external_dag_id : str
|
1449
|
-
The dag_id that contains the task you want to wait for.
|
1450
|
-
external_task_ids : List[str]
|
1451
|
-
The list of task_ids that you want to wait for.
|
1452
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
1453
|
-
allowed_states : List[str]
|
1454
|
-
Iterable of allowed states, (Default: ['success'])
|
1455
|
-
failed_states : List[str]
|
1456
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1457
|
-
execution_delta : datetime.timedelta
|
1458
|
-
time difference with the previous execution to look at,
|
1459
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1460
|
-
check_existence: bool
|
1461
|
-
Set to True to check if the external task exists or check if
|
1462
|
-
the DAG to wait for exists. (Default: True)
|
1463
|
-
"""
|
1464
|
-
...
|
1465
|
-
|
1466
1383
|
@typing.overload
|
1467
|
-
def
|
1384
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1468
1385
|
"""
|
1469
|
-
Specifies the
|
1386
|
+
Specifies the Conda environment for all steps of the flow.
|
1387
|
+
|
1388
|
+
Use `@conda_base` to set common libraries required by all
|
1389
|
+
steps and use `@conda` to specify step-specific additions.
|
1470
1390
|
|
1471
|
-
Use `@pypi_base` to set common packages required by all
|
1472
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1473
1391
|
|
1474
1392
|
Parameters
|
1475
1393
|
----------
|
1476
|
-
packages : Dict[str, str], default
|
1394
|
+
packages : Dict[str, str], default {}
|
1477
1395
|
Packages to use for this flow. The key is the name of the package
|
1478
1396
|
and the value is the version to use.
|
1479
|
-
|
1397
|
+
libraries : Dict[str, str], default {}
|
1398
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1399
|
+
python : str, optional, default None
|
1480
1400
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1481
1401
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1402
|
+
disabled : bool, default False
|
1403
|
+
If set to True, disables Conda.
|
1482
1404
|
"""
|
1483
1405
|
...
|
1484
1406
|
|
1485
1407
|
@typing.overload
|
1486
|
-
def
|
1408
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1487
1409
|
...
|
1488
1410
|
|
1489
|
-
def
|
1411
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
1490
1412
|
"""
|
1491
|
-
Specifies the
|
1413
|
+
Specifies the Conda environment for all steps of the flow.
|
1414
|
+
|
1415
|
+
Use `@conda_base` to set common libraries required by all
|
1416
|
+
steps and use `@conda` to specify step-specific additions.
|
1492
1417
|
|
1493
|
-
Use `@pypi_base` to set common packages required by all
|
1494
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1495
1418
|
|
1496
1419
|
Parameters
|
1497
1420
|
----------
|
1498
|
-
packages : Dict[str, str], default
|
1421
|
+
packages : Dict[str, str], default {}
|
1499
1422
|
Packages to use for this flow. The key is the name of the package
|
1500
1423
|
and the value is the version to use.
|
1501
|
-
|
1424
|
+
libraries : Dict[str, str], default {}
|
1425
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
1426
|
+
python : str, optional, default None
|
1502
1427
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1503
1428
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1429
|
+
disabled : bool, default False
|
1430
|
+
If set to True, disables Conda.
|
1504
1431
|
"""
|
1505
1432
|
...
|
1506
1433
|
|
1507
|
-
def
|
1434
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1508
1435
|
"""
|
1509
|
-
|
1436
|
+
Allows setting external datastores to save data for the
|
1437
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1510
1438
|
|
1511
|
-
|
1512
|
-
|
1439
|
+
This decorator is useful when users wish to save data to a different datastore
|
1440
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1513
1441
|
|
1442
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1443
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1444
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1445
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1446
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1514
1447
|
|
1515
|
-
|
1448
|
+
Usage:
|
1516
1449
|
----------
|
1517
|
-
name : str
|
1518
|
-
Project name. Make sure that the name is unique amongst all
|
1519
|
-
projects that use the same production scheduler. The name may
|
1520
|
-
contain only lowercase alphanumeric characters and underscores.
|
1521
1450
|
|
1522
|
-
|
1523
|
-
The branch to use. If not specified, the branch is set to
|
1524
|
-
`user.<username>` unless `production` is set to `True`. This can
|
1525
|
-
also be set on the command line using `--branch` as a top-level option.
|
1526
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
1451
|
+
- Using a custom IAM role to access the datastore.
|
1527
1452
|
|
1528
|
-
|
1529
|
-
|
1530
|
-
|
1531
|
-
|
1532
|
-
|
1533
|
-
|
1534
|
-
|
1535
|
-
|
1536
|
-
|
1537
|
-
|
1538
|
-
|
1453
|
+
```python
|
1454
|
+
@with_artifact_store(
|
1455
|
+
type="s3",
|
1456
|
+
config=lambda: {
|
1457
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1458
|
+
"role_arn": ROLE,
|
1459
|
+
},
|
1460
|
+
)
|
1461
|
+
class MyFlow(FlowSpec):
|
1462
|
+
|
1463
|
+
@checkpoint
|
1464
|
+
@step
|
1465
|
+
def start(self):
|
1466
|
+
with open("my_file.txt", "w") as f:
|
1467
|
+
f.write("Hello, World!")
|
1468
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1469
|
+
self.next(self.end)
|
1470
|
+
|
1471
|
+
```
|
1472
|
+
|
1473
|
+
- Using credentials to access the s3-compatible datastore.
|
1474
|
+
|
1475
|
+
```python
|
1476
|
+
@with_artifact_store(
|
1477
|
+
type="s3",
|
1478
|
+
config=lambda: {
|
1479
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1480
|
+
"client_params": {
|
1481
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1482
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1483
|
+
},
|
1484
|
+
},
|
1485
|
+
)
|
1486
|
+
class MyFlow(FlowSpec):
|
1487
|
+
|
1488
|
+
@checkpoint
|
1489
|
+
@step
|
1490
|
+
def start(self):
|
1491
|
+
with open("my_file.txt", "w") as f:
|
1492
|
+
f.write("Hello, World!")
|
1493
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1494
|
+
self.next(self.end)
|
1495
|
+
|
1496
|
+
```
|
1497
|
+
|
1498
|
+
- Accessing objects stored in external datastores after task execution.
|
1499
|
+
|
1500
|
+
```python
|
1501
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1502
|
+
with artifact_store_from(run=run, config={
|
1503
|
+
"client_params": {
|
1504
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1505
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1506
|
+
},
|
1507
|
+
}):
|
1508
|
+
with Checkpoint() as cp:
|
1509
|
+
latest = cp.list(
|
1510
|
+
task=run["start"].task
|
1511
|
+
)[0]
|
1512
|
+
print(latest)
|
1513
|
+
cp.load(
|
1514
|
+
latest,
|
1515
|
+
"test-checkpoints"
|
1516
|
+
)
|
1517
|
+
|
1518
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1519
|
+
with artifact_store_from(run=run, config={
|
1520
|
+
"client_params": {
|
1521
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1522
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1523
|
+
},
|
1524
|
+
}):
|
1525
|
+
load_model(
|
1526
|
+
task.data.model_ref,
|
1527
|
+
"test-models"
|
1528
|
+
)
|
1529
|
+
```
|
1530
|
+
Parameters:
|
1531
|
+
----------
|
1532
|
+
|
1533
|
+
type: str
|
1534
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1535
|
+
|
1536
|
+
config: dict or Callable
|
1537
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1538
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1539
|
+
- example: 's3://bucket-name/path/to/root'
|
1540
|
+
- example: 'gs://bucket-name/path/to/root'
|
1541
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1542
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1543
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1544
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1539
1545
|
"""
|
1540
1546
|
...
|
1541
1547
|
|