ob-metaflow-stubs 6.0.3.159__py2.py3-none-any.whl → 6.0.3.160__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +790 -788
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +5 -5
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +2 -2
- metaflow-stubs/info_file.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +1 -1
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +88 -88
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +6 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +58 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +64 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +3 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/parameters.pyi +2 -2
- metaflow-stubs/plugins/__init__.pyi +12 -12
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +1 -1
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +4 -4
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +1 -1
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +29 -29
- metaflow-stubs/runner/deployer_impl.pyi +1 -1
- metaflow-stubs/runner/metaflow_runner.pyi +2 -2
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +1 -1
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_decorators.pyi +4 -4
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +4 -4
- {ob_metaflow_stubs-6.0.3.159.dist-info → ob_metaflow_stubs-6.0.3.160.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.3.160.dist-info/RECORD +203 -0
- ob_metaflow_stubs-6.0.3.159.dist-info/RECORD +0 -200
- {ob_metaflow_stubs-6.0.3.159.dist-info → ob_metaflow_stubs-6.0.3.160.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.3.159.dist-info → ob_metaflow_stubs-6.0.3.160.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
3
|
# MF version: 2.15.7.2+obcheckpoint(0.2.1);ob(v1) #
|
4
|
-
# Generated on 2025-
|
4
|
+
# Generated on 2025-05-01T00:24:18.378249 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
@@ -35,16 +35,16 @@ from .user_configs.config_parameters import ConfigValue as ConfigValue
|
|
35
35
|
from .user_configs.config_parameters import config_expr as config_expr
|
36
36
|
from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
|
37
37
|
from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
|
38
|
+
from . import tuple_util as tuple_util
|
38
39
|
from . import cards as cards
|
39
40
|
from . import events as events
|
40
|
-
from . import tuple_util as tuple_util
|
41
41
|
from . import runner as runner
|
42
42
|
from . import plugins as plugins
|
43
43
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
44
44
|
from . import includefile as includefile
|
45
45
|
from .includefile import IncludeFile as IncludeFile
|
46
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
47
46
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
47
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
48
48
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
49
49
|
from . import client as client
|
50
50
|
from .client.core import namespace as namespace
|
@@ -69,6 +69,8 @@ from .mf_extensions.obcheckpoint.plugins.machine_learning_utilities.datastructur
|
|
69
69
|
from .mf_extensions.obcheckpoint.plugins.machine_learning_utilities.datastore.context import artifact_store_from as artifact_store_from
|
70
70
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import get_aws_client as get_aws_client
|
71
71
|
from .mf_extensions.outerbounds.plugins.snowflake.snowflake import Snowflake as Snowflake
|
72
|
+
from .mf_extensions.outerbounds.plugins.checkpoint_datastores.nebius import nebius_checkpoints as nebius_checkpoints
|
73
|
+
from .mf_extensions.outerbounds.plugins.checkpoint_datastores.coreweave import coreweave_checkpoints as coreweave_checkpoints
|
72
74
|
from . import cli_components as cli_components
|
73
75
|
from . import system as system
|
74
76
|
from . import pylint_wrapper as pylint_wrapper
|
@@ -150,823 +152,823 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
150
152
|
"""
|
151
153
|
...
|
152
154
|
|
153
|
-
|
155
|
+
@typing.overload
|
156
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
154
157
|
"""
|
155
|
-
Specifies that
|
156
|
-
|
158
|
+
Specifies that the step will success under all circumstances.
|
159
|
+
|
160
|
+
The decorator will create an optional artifact, specified by `var`, which
|
161
|
+
contains the exception raised. You can use it to detect the presence
|
162
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
163
|
+
are missing.
|
157
164
|
|
158
165
|
|
159
166
|
Parameters
|
160
167
|
----------
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
168
|
+
var : str, optional, default None
|
169
|
+
Name of the artifact in which to store the caught exception.
|
170
|
+
If not specified, the exception is not stored.
|
171
|
+
print_exception : bool, default True
|
172
|
+
Determines whether or not the exception is printed to
|
173
|
+
stdout when caught.
|
165
174
|
"""
|
166
175
|
...
|
167
176
|
|
168
|
-
|
177
|
+
@typing.overload
|
178
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
179
|
+
...
|
180
|
+
|
181
|
+
@typing.overload
|
182
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
183
|
+
...
|
184
|
+
|
185
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
169
186
|
"""
|
170
|
-
|
171
|
-
|
172
|
-
User code call
|
173
|
-
-----------
|
174
|
-
@ollama(
|
175
|
-
models=['meta/llama3-8b-instruct', 'meta/llama3-70b-instruct'],
|
176
|
-
backend='local'
|
177
|
-
)
|
178
|
-
|
179
|
-
Valid backend options
|
180
|
-
---------------------
|
181
|
-
- 'local': Run as a separate process on the local task machine.
|
182
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
183
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
187
|
+
Specifies that the step will success under all circumstances.
|
184
188
|
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
- any model here https://ollama.com/search
|
189
|
+
The decorator will create an optional artifact, specified by `var`, which
|
190
|
+
contains the exception raised. You can use it to detect the presence
|
191
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
192
|
+
are missing.
|
190
193
|
|
191
194
|
|
192
195
|
Parameters
|
193
196
|
----------
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
197
|
+
var : str, optional, default None
|
198
|
+
Name of the artifact in which to store the caught exception.
|
199
|
+
If not specified, the exception is not stored.
|
200
|
+
print_exception : bool, default True
|
201
|
+
Determines whether or not the exception is printed to
|
202
|
+
stdout when caught.
|
198
203
|
"""
|
199
204
|
...
|
200
205
|
|
201
206
|
@typing.overload
|
202
|
-
def
|
207
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
203
208
|
"""
|
204
|
-
Specifies
|
205
|
-
|
209
|
+
Specifies the number of times the task corresponding
|
210
|
+
to a step needs to be retried.
|
211
|
+
|
212
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
213
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
214
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
215
|
+
|
216
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
217
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
218
|
+
ensuring that the flow execution can continue.
|
206
219
|
|
207
220
|
|
208
221
|
Parameters
|
209
222
|
----------
|
210
|
-
|
211
|
-
|
223
|
+
times : int, default 3
|
224
|
+
Number of times to retry this task.
|
225
|
+
minutes_between_retries : int, default 2
|
226
|
+
Number of minutes between retries.
|
212
227
|
"""
|
213
228
|
...
|
214
229
|
|
215
230
|
@typing.overload
|
216
|
-
def
|
231
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
217
232
|
...
|
218
233
|
|
219
234
|
@typing.overload
|
220
|
-
def
|
235
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
221
236
|
...
|
222
237
|
|
223
|
-
def
|
238
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
224
239
|
"""
|
225
|
-
Specifies
|
226
|
-
|
240
|
+
Specifies the number of times the task corresponding
|
241
|
+
to a step needs to be retried.
|
242
|
+
|
243
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
244
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
245
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
246
|
+
|
247
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
248
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
249
|
+
ensuring that the flow execution can continue.
|
227
250
|
|
228
251
|
|
229
252
|
Parameters
|
230
253
|
----------
|
231
|
-
|
232
|
-
|
254
|
+
times : int, default 3
|
255
|
+
Number of times to retry this task.
|
256
|
+
minutes_between_retries : int, default 2
|
257
|
+
Number of minutes between retries.
|
258
|
+
"""
|
259
|
+
...
|
260
|
+
|
261
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
262
|
+
"""
|
263
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
264
|
+
|
265
|
+
|
266
|
+
Parameters
|
267
|
+
----------
|
268
|
+
temp_dir_root : str, optional
|
269
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
270
|
+
|
271
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
272
|
+
The list of repos (models/datasets) to load.
|
273
|
+
|
274
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
275
|
+
|
276
|
+
- If repo (model/dataset) is not found in the datastore:
|
277
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
278
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
279
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
280
|
+
|
281
|
+
- If repo is found in the datastore:
|
282
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
283
|
+
"""
|
284
|
+
...
|
285
|
+
|
286
|
+
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
287
|
+
"""
|
288
|
+
Specifies that this step is used to deploy an instance of the app.
|
289
|
+
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
290
|
+
|
291
|
+
|
292
|
+
Parameters
|
293
|
+
----------
|
294
|
+
app_port : int
|
295
|
+
Number of GPUs to use.
|
296
|
+
app_name : str
|
297
|
+
Name of the app to deploy.
|
233
298
|
"""
|
234
299
|
...
|
235
300
|
|
236
301
|
@typing.overload
|
237
|
-
def
|
302
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
238
303
|
"""
|
239
|
-
Specifies
|
304
|
+
Specifies a timeout for your step.
|
240
305
|
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
306
|
+
This decorator is useful if this step may hang indefinitely.
|
307
|
+
|
308
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
309
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
310
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
311
|
+
|
312
|
+
Note that all the values specified in parameters are added together so if you specify
|
313
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
245
314
|
|
246
315
|
|
247
316
|
Parameters
|
248
317
|
----------
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
256
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
257
|
-
disabled : bool, default False
|
258
|
-
If set to True, disables @conda.
|
318
|
+
seconds : int, default 0
|
319
|
+
Number of seconds to wait prior to timing out.
|
320
|
+
minutes : int, default 0
|
321
|
+
Number of minutes to wait prior to timing out.
|
322
|
+
hours : int, default 0
|
323
|
+
Number of hours to wait prior to timing out.
|
259
324
|
"""
|
260
325
|
...
|
261
326
|
|
262
327
|
@typing.overload
|
263
|
-
def
|
328
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
264
329
|
...
|
265
330
|
|
266
331
|
@typing.overload
|
267
|
-
def
|
332
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
268
333
|
...
|
269
334
|
|
270
|
-
def
|
335
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
271
336
|
"""
|
272
|
-
Specifies
|
337
|
+
Specifies a timeout for your step.
|
273
338
|
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
339
|
+
This decorator is useful if this step may hang indefinitely.
|
340
|
+
|
341
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
342
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
343
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
344
|
+
|
345
|
+
Note that all the values specified in parameters are added together so if you specify
|
346
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
278
347
|
|
279
348
|
|
280
349
|
Parameters
|
281
350
|
----------
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
289
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
290
|
-
disabled : bool, default False
|
291
|
-
If set to True, disables @conda.
|
351
|
+
seconds : int, default 0
|
352
|
+
Number of seconds to wait prior to timing out.
|
353
|
+
minutes : int, default 0
|
354
|
+
Number of minutes to wait prior to timing out.
|
355
|
+
hours : int, default 0
|
356
|
+
Number of hours to wait prior to timing out.
|
292
357
|
"""
|
293
358
|
...
|
294
359
|
|
295
|
-
|
360
|
+
@typing.overload
|
361
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
296
362
|
"""
|
297
|
-
|
363
|
+
Internal decorator to support Fast bakery
|
364
|
+
"""
|
365
|
+
...
|
366
|
+
|
367
|
+
@typing.overload
|
368
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
369
|
+
...
|
370
|
+
|
371
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
372
|
+
"""
|
373
|
+
Internal decorator to support Fast bakery
|
374
|
+
"""
|
375
|
+
...
|
376
|
+
|
377
|
+
@typing.overload
|
378
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
379
|
+
"""
|
380
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
381
|
+
|
382
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
298
383
|
|
299
384
|
|
300
385
|
Parameters
|
301
386
|
----------
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
Disk size (in MB) required for this step. If
|
311
|
-
`@resources` is also present, the maximum value from all decorators is
|
312
|
-
used.
|
313
|
-
image : str, optional, default None
|
314
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
315
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
316
|
-
not, a default Docker image mapping to the current version of Python is used.
|
317
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
318
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
319
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
320
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
321
|
-
secrets : List[str], optional, default None
|
322
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
323
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
324
|
-
in Metaflow configuration.
|
325
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
326
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
327
|
-
Can be passed in as a comma separated string of values e.g.
|
328
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
329
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
330
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
331
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
332
|
-
gpu : int, optional, default None
|
333
|
-
Number of GPUs required for this step. A value of zero implies that
|
334
|
-
the scheduled node should not have GPUs.
|
335
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
336
|
-
The vendor of the GPUs to be used for this step.
|
337
|
-
tolerations : List[str], default []
|
338
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
339
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
340
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
341
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
342
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
343
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
344
|
-
use_tmpfs : bool, default False
|
345
|
-
This enables an explicit tmpfs mount for this step.
|
346
|
-
tmpfs_tempdir : bool, default True
|
347
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
348
|
-
tmpfs_size : int, optional, default: None
|
349
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
350
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
351
|
-
memory allocated for this step.
|
352
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
353
|
-
Path to tmpfs mount for this step.
|
354
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
355
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
356
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
357
|
-
shared_memory: int, optional
|
358
|
-
Shared memory size (in MiB) required for this step
|
359
|
-
port: int, optional
|
360
|
-
Port number to specify in the Kubernetes job object
|
361
|
-
compute_pool : str, optional, default None
|
362
|
-
Compute pool to be used for for this step.
|
363
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
364
|
-
hostname_resolution_timeout: int, default 10 * 60
|
365
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
366
|
-
Only applicable when @parallel is used.
|
367
|
-
qos: str, default: Burstable
|
368
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
387
|
+
type : str, default 'default'
|
388
|
+
Card type.
|
389
|
+
id : str, optional, default None
|
390
|
+
If multiple cards are present, use this id to identify this card.
|
391
|
+
options : Dict[str, Any], default {}
|
392
|
+
Options passed to the card. The contents depend on the card type.
|
393
|
+
timeout : int, default 45
|
394
|
+
Interrupt reporting if it takes more than this many seconds.
|
369
395
|
"""
|
370
396
|
...
|
371
397
|
|
372
398
|
@typing.overload
|
373
|
-
def
|
399
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
400
|
+
...
|
401
|
+
|
402
|
+
@typing.overload
|
403
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
404
|
+
...
|
405
|
+
|
406
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
374
407
|
"""
|
375
|
-
|
376
|
-
|
377
|
-
Use `@resources` to specify the resource requirements
|
378
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
408
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
379
409
|
|
380
|
-
|
381
|
-
```
|
382
|
-
python myflow.py run --with batch
|
383
|
-
```
|
384
|
-
or
|
385
|
-
```
|
386
|
-
python myflow.py run --with kubernetes
|
387
|
-
```
|
388
|
-
which executes the flow on the desired system using the
|
389
|
-
requirements specified in `@resources`.
|
410
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
390
411
|
|
391
412
|
|
392
413
|
Parameters
|
393
414
|
----------
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
shared_memory : int, optional, default None
|
403
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
404
|
-
This parameter maps to the `--shm-size` option in Docker.
|
415
|
+
type : str, default 'default'
|
416
|
+
Card type.
|
417
|
+
id : str, optional, default None
|
418
|
+
If multiple cards are present, use this id to identify this card.
|
419
|
+
options : Dict[str, Any], default {}
|
420
|
+
Options passed to the card. The contents depend on the card type.
|
421
|
+
timeout : int, default 45
|
422
|
+
Interrupt reporting if it takes more than this many seconds.
|
405
423
|
"""
|
406
424
|
...
|
407
425
|
|
408
|
-
|
409
|
-
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
410
|
-
...
|
411
|
-
|
412
|
-
@typing.overload
|
413
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
414
|
-
...
|
415
|
-
|
416
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
426
|
+
def nim(*, models: "list[NIM]", backend: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
417
427
|
"""
|
418
|
-
|
428
|
+
This decorator is used to run NIM containers in Metaflow tasks as sidecars.
|
419
429
|
|
420
|
-
|
421
|
-
|
430
|
+
User code call
|
431
|
+
-----------
|
432
|
+
@nim(
|
433
|
+
models=['meta/llama3-8b-instruct', 'meta/llama3-70b-instruct'],
|
434
|
+
backend='managed'
|
435
|
+
)
|
422
436
|
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
430
|
-
|
431
|
-
|
432
|
-
requirements specified in `@resources`.
|
437
|
+
Valid backend options
|
438
|
+
---------------------
|
439
|
+
- 'managed': Outerbounds selects a compute provider based on the model.
|
440
|
+
|
441
|
+
Valid model options
|
442
|
+
----------------
|
443
|
+
- 'meta/llama3-8b-instruct': 8B parameter model
|
444
|
+
- 'meta/llama3-70b-instruct': 70B parameter model
|
445
|
+
- any model here: https://nvcf.ngc.nvidia.com/functions?filter=nvidia-functions
|
433
446
|
|
434
447
|
|
435
448
|
Parameters
|
436
449
|
----------
|
437
|
-
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
memory : int, default 4096
|
444
|
-
Memory size (in MB) required for this step.
|
445
|
-
shared_memory : int, optional, default None
|
446
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
447
|
-
This parameter maps to the `--shm-size` option in Docker.
|
450
|
+
models: list[NIM]
|
451
|
+
List of NIM containers running models in sidecars.
|
452
|
+
backend: str
|
453
|
+
Compute provider to run the NIM container.
|
454
|
+
queue_timeout : int
|
455
|
+
Time to keep the job in NVCF's queue.
|
448
456
|
"""
|
449
457
|
...
|
450
458
|
|
451
459
|
@typing.overload
|
452
|
-
def
|
460
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
453
461
|
"""
|
454
|
-
Specifies
|
462
|
+
Specifies the Conda environment for the step.
|
463
|
+
|
464
|
+
Information in this decorator will augment any
|
465
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
466
|
+
you can use `@conda_base` to set packages required by all
|
467
|
+
steps and use `@conda` to specify step-specific overrides.
|
455
468
|
|
456
469
|
|
457
470
|
Parameters
|
458
471
|
----------
|
459
|
-
|
460
|
-
|
472
|
+
packages : Dict[str, str], default {}
|
473
|
+
Packages to use for this step. The key is the name of the package
|
474
|
+
and the value is the version to use.
|
475
|
+
libraries : Dict[str, str], default {}
|
476
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
477
|
+
python : str, optional, default None
|
478
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
479
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
480
|
+
disabled : bool, default False
|
481
|
+
If set to True, disables @conda.
|
461
482
|
"""
|
462
483
|
...
|
463
484
|
|
464
485
|
@typing.overload
|
465
|
-
def
|
486
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
466
487
|
...
|
467
488
|
|
468
489
|
@typing.overload
|
469
|
-
def
|
490
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
470
491
|
...
|
471
492
|
|
472
|
-
def
|
493
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
473
494
|
"""
|
474
|
-
Specifies
|
495
|
+
Specifies the Conda environment for the step.
|
496
|
+
|
497
|
+
Information in this decorator will augment any
|
498
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
499
|
+
you can use `@conda_base` to set packages required by all
|
500
|
+
steps and use `@conda` to specify step-specific overrides.
|
475
501
|
|
476
502
|
|
477
503
|
Parameters
|
478
504
|
----------
|
479
|
-
|
480
|
-
|
505
|
+
packages : Dict[str, str], default {}
|
506
|
+
Packages to use for this step. The key is the name of the package
|
507
|
+
and the value is the version to use.
|
508
|
+
libraries : Dict[str, str], default {}
|
509
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
510
|
+
python : str, optional, default None
|
511
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
512
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
513
|
+
disabled : bool, default False
|
514
|
+
If set to True, disables @conda.
|
481
515
|
"""
|
482
516
|
...
|
483
517
|
|
484
|
-
|
485
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
518
|
+
def ollama(*, models: "list[Ollama]", backend: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
486
519
|
"""
|
487
|
-
|
488
|
-
to a step needs to be retried.
|
520
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
489
521
|
|
490
|
-
|
491
|
-
|
492
|
-
|
522
|
+
User code call
|
523
|
+
-----------
|
524
|
+
@ollama(
|
525
|
+
models=['meta/llama3-8b-instruct', 'meta/llama3-70b-instruct'],
|
526
|
+
backend='local'
|
527
|
+
)
|
493
528
|
|
494
|
-
|
495
|
-
|
496
|
-
|
529
|
+
Valid backend options
|
530
|
+
---------------------
|
531
|
+
- 'local': Run as a separate process on the local task machine.
|
532
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
533
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
534
|
+
|
535
|
+
Valid model options
|
536
|
+
----------------
|
537
|
+
- 'llama3.2'
|
538
|
+
- 'llama3.3'
|
539
|
+
- any model here https://ollama.com/search
|
497
540
|
|
498
541
|
|
499
542
|
Parameters
|
500
543
|
----------
|
501
|
-
|
502
|
-
|
503
|
-
|
504
|
-
|
544
|
+
models: list[Ollama]
|
545
|
+
List of Ollama containers running models in sidecars.
|
546
|
+
backend: str
|
547
|
+
Determines where and how to run the Ollama process.
|
505
548
|
"""
|
506
549
|
...
|
507
550
|
|
508
551
|
@typing.overload
|
509
|
-
def
|
552
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
553
|
+
"""
|
554
|
+
Decorator prototype for all step decorators. This function gets specialized
|
555
|
+
and imported for all decorators types by _import_plugin_decorators().
|
556
|
+
"""
|
510
557
|
...
|
511
558
|
|
512
559
|
@typing.overload
|
513
|
-
def
|
560
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
514
561
|
...
|
515
562
|
|
516
|
-
def
|
563
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
517
564
|
"""
|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
522
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
523
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
524
|
-
|
525
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
526
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
527
|
-
ensuring that the flow execution can continue.
|
528
|
-
|
529
|
-
|
530
|
-
Parameters
|
531
|
-
----------
|
532
|
-
times : int, default 3
|
533
|
-
Number of times to retry this task.
|
534
|
-
minutes_between_retries : int, default 2
|
535
|
-
Number of minutes between retries.
|
565
|
+
Decorator prototype for all step decorators. This function gets specialized
|
566
|
+
and imported for all decorators types by _import_plugin_decorators().
|
536
567
|
"""
|
537
568
|
...
|
538
569
|
|
539
570
|
@typing.overload
|
540
|
-
def
|
571
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
541
572
|
"""
|
542
|
-
Specifies
|
543
|
-
|
544
|
-
This decorator is useful if this step may hang indefinitely.
|
545
|
-
|
546
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
547
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
548
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
549
|
-
|
550
|
-
Note that all the values specified in parameters are added together so if you specify
|
551
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
573
|
+
Specifies environment variables to be set prior to the execution of a step.
|
552
574
|
|
553
575
|
|
554
576
|
Parameters
|
555
577
|
----------
|
556
|
-
|
557
|
-
|
558
|
-
minutes : int, default 0
|
559
|
-
Number of minutes to wait prior to timing out.
|
560
|
-
hours : int, default 0
|
561
|
-
Number of hours to wait prior to timing out.
|
578
|
+
vars : Dict[str, str], default {}
|
579
|
+
Dictionary of environment variables to set.
|
562
580
|
"""
|
563
581
|
...
|
564
582
|
|
565
583
|
@typing.overload
|
566
|
-
def
|
584
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
567
585
|
...
|
568
586
|
|
569
587
|
@typing.overload
|
570
|
-
def
|
588
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
571
589
|
...
|
572
590
|
|
573
|
-
def
|
591
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
574
592
|
"""
|
575
|
-
Specifies
|
576
|
-
|
577
|
-
This decorator is useful if this step may hang indefinitely.
|
578
|
-
|
579
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
580
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
581
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
582
|
-
|
583
|
-
Note that all the values specified in parameters are added together so if you specify
|
584
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
593
|
+
Specifies environment variables to be set prior to the execution of a step.
|
585
594
|
|
586
595
|
|
587
596
|
Parameters
|
588
597
|
----------
|
589
|
-
|
590
|
-
|
591
|
-
minutes : int, default 0
|
592
|
-
Number of minutes to wait prior to timing out.
|
593
|
-
hours : int, default 0
|
594
|
-
Number of hours to wait prior to timing out.
|
598
|
+
vars : Dict[str, str], default {}
|
599
|
+
Dictionary of environment variables to set.
|
595
600
|
"""
|
596
601
|
...
|
597
602
|
|
598
603
|
@typing.overload
|
599
|
-
def
|
604
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
600
605
|
"""
|
601
|
-
|
606
|
+
Enables checkpointing for a step.
|
602
607
|
|
603
|
-
The decorator will create an optional artifact, specified by `var`, which
|
604
|
-
contains the exception raised. You can use it to detect the presence
|
605
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
606
|
-
are missing.
|
607
608
|
|
608
609
|
|
609
610
|
Parameters
|
610
611
|
----------
|
611
|
-
|
612
|
-
|
613
|
-
|
614
|
-
|
615
|
-
|
616
|
-
|
612
|
+
load_policy : str, default: "fresh"
|
613
|
+
The policy for loading the checkpoint. The following policies are supported:
|
614
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
615
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
616
|
+
will be loaded at the start of the task.
|
617
|
+
- "none": Do not load any checkpoint
|
618
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
619
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
620
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
621
|
+
created within the task will be loaded when the task is retries execution on failure.
|
622
|
+
|
623
|
+
temp_dir_root : str, default: None
|
624
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
617
625
|
"""
|
618
626
|
...
|
619
627
|
|
620
628
|
@typing.overload
|
621
|
-
def
|
629
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
622
630
|
...
|
623
631
|
|
624
632
|
@typing.overload
|
625
|
-
def
|
633
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
626
634
|
...
|
627
635
|
|
628
|
-
def
|
636
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
629
637
|
"""
|
630
|
-
|
638
|
+
Enables checkpointing for a step.
|
631
639
|
|
632
|
-
The decorator will create an optional artifact, specified by `var`, which
|
633
|
-
contains the exception raised. You can use it to detect the presence
|
634
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
635
|
-
are missing.
|
636
640
|
|
637
641
|
|
638
642
|
Parameters
|
639
643
|
----------
|
640
|
-
|
641
|
-
|
642
|
-
|
643
|
-
|
644
|
-
|
645
|
-
|
644
|
+
load_policy : str, default: "fresh"
|
645
|
+
The policy for loading the checkpoint. The following policies are supported:
|
646
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
647
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
648
|
+
will be loaded at the start of the task.
|
649
|
+
- "none": Do not load any checkpoint
|
650
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
651
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
652
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
653
|
+
created within the task will be loaded when the task is retries execution on failure.
|
654
|
+
|
655
|
+
temp_dir_root : str, default: None
|
656
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
646
657
|
"""
|
647
658
|
...
|
648
659
|
|
649
660
|
@typing.overload
|
650
|
-
def
|
661
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
651
662
|
"""
|
652
|
-
|
653
|
-
|
663
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
664
|
+
the execution of a step.
|
654
665
|
|
655
666
|
|
656
667
|
Parameters
|
657
668
|
----------
|
658
|
-
|
659
|
-
|
660
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
661
|
-
- `current.checkpoint`
|
662
|
-
- `current.model`
|
663
|
-
- `current.huggingface_hub`
|
664
|
-
|
665
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
666
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
667
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
668
|
-
|
669
|
-
temp_dir_root : str, default: None
|
670
|
-
The root directory under which `current.model.loaded` will store loaded models
|
669
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
670
|
+
List of secret specs, defining how the secrets are to be retrieved
|
671
671
|
"""
|
672
672
|
...
|
673
673
|
|
674
674
|
@typing.overload
|
675
|
-
def
|
675
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
676
676
|
...
|
677
677
|
|
678
678
|
@typing.overload
|
679
|
-
def
|
680
|
-
...
|
681
|
-
|
682
|
-
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
683
|
-
"""
|
684
|
-
Enables loading / saving of models within a step.
|
685
|
-
|
686
|
-
|
687
|
-
|
688
|
-
Parameters
|
689
|
-
----------
|
690
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
691
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
692
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
693
|
-
- `current.checkpoint`
|
694
|
-
- `current.model`
|
695
|
-
- `current.huggingface_hub`
|
696
|
-
|
697
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
698
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
699
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
700
|
-
|
701
|
-
temp_dir_root : str, default: None
|
702
|
-
The root directory under which `current.model.loaded` will store loaded models
|
703
|
-
"""
|
704
|
-
...
|
705
|
-
|
706
|
-
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
707
|
-
"""
|
708
|
-
Specifies that this step should execute on DGX cloud.
|
709
|
-
|
710
|
-
|
711
|
-
Parameters
|
712
|
-
----------
|
713
|
-
gpu : int
|
714
|
-
Number of GPUs to use.
|
715
|
-
gpu_type : str
|
716
|
-
Type of Nvidia GPU to use.
|
717
|
-
queue_timeout : int
|
718
|
-
Time to keep the job in NVCF's queue.
|
719
|
-
"""
|
679
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
720
680
|
...
|
721
681
|
|
722
|
-
def
|
682
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []):
|
723
683
|
"""
|
724
|
-
|
684
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
685
|
+
the execution of a step.
|
725
686
|
|
726
687
|
|
727
688
|
Parameters
|
728
689
|
----------
|
729
|
-
|
730
|
-
|
731
|
-
|
732
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
733
|
-
The list of repos (models/datasets) to load.
|
734
|
-
|
735
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
736
|
-
|
737
|
-
- If repo (model/dataset) is not found in the datastore:
|
738
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
739
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
740
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
741
|
-
|
742
|
-
- If repo is found in the datastore:
|
743
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
690
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
691
|
+
List of secret specs, defining how the secrets are to be retrieved
|
744
692
|
"""
|
745
693
|
...
|
746
694
|
|
747
695
|
@typing.overload
|
748
|
-
def
|
696
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
749
697
|
"""
|
750
|
-
|
698
|
+
Specifies the PyPI packages for the step.
|
751
699
|
|
752
|
-
|
700
|
+
Information in this decorator will augment any
|
701
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
702
|
+
you can use `@pypi_base` to set packages required by all
|
703
|
+
steps and use `@pypi` to specify step-specific overrides.
|
753
704
|
|
754
705
|
|
755
706
|
Parameters
|
756
707
|
----------
|
757
|
-
|
758
|
-
|
759
|
-
|
760
|
-
|
761
|
-
|
762
|
-
|
763
|
-
timeout : int, default 45
|
764
|
-
Interrupt reporting if it takes more than this many seconds.
|
708
|
+
packages : Dict[str, str], default: {}
|
709
|
+
Packages to use for this step. The key is the name of the package
|
710
|
+
and the value is the version to use.
|
711
|
+
python : str, optional, default: None
|
712
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
713
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
765
714
|
"""
|
766
715
|
...
|
767
716
|
|
768
717
|
@typing.overload
|
769
|
-
def
|
718
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
770
719
|
...
|
771
720
|
|
772
721
|
@typing.overload
|
773
|
-
def
|
722
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
774
723
|
...
|
775
724
|
|
776
|
-
def
|
725
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
777
726
|
"""
|
778
|
-
|
727
|
+
Specifies the PyPI packages for the step.
|
779
728
|
|
780
|
-
|
729
|
+
Information in this decorator will augment any
|
730
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
731
|
+
you can use `@pypi_base` to set packages required by all
|
732
|
+
steps and use `@pypi` to specify step-specific overrides.
|
781
733
|
|
782
734
|
|
783
735
|
Parameters
|
784
736
|
----------
|
785
|
-
|
786
|
-
|
787
|
-
|
788
|
-
|
789
|
-
|
790
|
-
|
791
|
-
|
792
|
-
|
737
|
+
packages : Dict[str, str], default: {}
|
738
|
+
Packages to use for this step. The key is the name of the package
|
739
|
+
and the value is the version to use.
|
740
|
+
python : str, optional, default: None
|
741
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
742
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
743
|
+
"""
|
744
|
+
...
|
745
|
+
|
746
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable') -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
747
|
+
"""
|
748
|
+
Specifies that this step should execute on Kubernetes.
|
749
|
+
|
750
|
+
|
751
|
+
Parameters
|
752
|
+
----------
|
753
|
+
cpu : int, default 1
|
754
|
+
Number of CPUs required for this step. If `@resources` is
|
755
|
+
also present, the maximum value from all decorators is used.
|
756
|
+
memory : int, default 4096
|
757
|
+
Memory size (in MB) required for this step. If
|
758
|
+
`@resources` is also present, the maximum value from all decorators is
|
759
|
+
used.
|
760
|
+
disk : int, default 10240
|
761
|
+
Disk size (in MB) required for this step. If
|
762
|
+
`@resources` is also present, the maximum value from all decorators is
|
763
|
+
used.
|
764
|
+
image : str, optional, default None
|
765
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
766
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
767
|
+
not, a default Docker image mapping to the current version of Python is used.
|
768
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
769
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
770
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
771
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
772
|
+
secrets : List[str], optional, default None
|
773
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
774
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
775
|
+
in Metaflow configuration.
|
776
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
777
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
778
|
+
Can be passed in as a comma separated string of values e.g.
|
779
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
780
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
781
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
782
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
783
|
+
gpu : int, optional, default None
|
784
|
+
Number of GPUs required for this step. A value of zero implies that
|
785
|
+
the scheduled node should not have GPUs.
|
786
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
787
|
+
The vendor of the GPUs to be used for this step.
|
788
|
+
tolerations : List[str], default []
|
789
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
790
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
791
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
792
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
793
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
794
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
795
|
+
use_tmpfs : bool, default False
|
796
|
+
This enables an explicit tmpfs mount for this step.
|
797
|
+
tmpfs_tempdir : bool, default True
|
798
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
799
|
+
tmpfs_size : int, optional, default: None
|
800
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
801
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
802
|
+
memory allocated for this step.
|
803
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
804
|
+
Path to tmpfs mount for this step.
|
805
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
806
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
807
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
808
|
+
shared_memory: int, optional
|
809
|
+
Shared memory size (in MiB) required for this step
|
810
|
+
port: int, optional
|
811
|
+
Port number to specify in the Kubernetes job object
|
812
|
+
compute_pool : str, optional, default None
|
813
|
+
Compute pool to be used for for this step.
|
814
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
815
|
+
hostname_resolution_timeout: int, default 10 * 60
|
816
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
817
|
+
Only applicable when @parallel is used.
|
818
|
+
qos: str, default: Burstable
|
819
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
793
820
|
"""
|
794
821
|
...
|
795
822
|
|
796
823
|
@typing.overload
|
797
|
-
def
|
824
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
798
825
|
"""
|
799
|
-
|
826
|
+
Specifies the resources needed when executing this step.
|
800
827
|
|
828
|
+
Use `@resources` to specify the resource requirements
|
829
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
830
|
+
|
831
|
+
You can choose the compute layer on the command line by executing e.g.
|
832
|
+
```
|
833
|
+
python myflow.py run --with batch
|
834
|
+
```
|
835
|
+
or
|
836
|
+
```
|
837
|
+
python myflow.py run --with kubernetes
|
838
|
+
```
|
839
|
+
which executes the flow on the desired system using the
|
840
|
+
requirements specified in `@resources`.
|
801
841
|
|
802
842
|
|
803
843
|
Parameters
|
804
844
|
----------
|
805
|
-
|
806
|
-
|
807
|
-
|
808
|
-
|
809
|
-
|
810
|
-
|
811
|
-
|
812
|
-
|
813
|
-
|
814
|
-
|
815
|
-
|
816
|
-
temp_dir_root : str, default: None
|
817
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
845
|
+
cpu : int, default 1
|
846
|
+
Number of CPUs required for this step.
|
847
|
+
gpu : int, optional, default None
|
848
|
+
Number of GPUs required for this step.
|
849
|
+
disk : int, optional, default None
|
850
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
851
|
+
memory : int, default 4096
|
852
|
+
Memory size (in MB) required for this step.
|
853
|
+
shared_memory : int, optional, default None
|
854
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
855
|
+
This parameter maps to the `--shm-size` option in Docker.
|
818
856
|
"""
|
819
857
|
...
|
820
858
|
|
821
859
|
@typing.overload
|
822
|
-
def
|
860
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
823
861
|
...
|
824
862
|
|
825
863
|
@typing.overload
|
826
|
-
def
|
864
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
827
865
|
...
|
828
866
|
|
829
|
-
def
|
867
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
830
868
|
"""
|
831
|
-
|
869
|
+
Specifies the resources needed when executing this step.
|
832
870
|
|
871
|
+
Use `@resources` to specify the resource requirements
|
872
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
873
|
+
|
874
|
+
You can choose the compute layer on the command line by executing e.g.
|
875
|
+
```
|
876
|
+
python myflow.py run --with batch
|
877
|
+
```
|
878
|
+
or
|
879
|
+
```
|
880
|
+
python myflow.py run --with kubernetes
|
881
|
+
```
|
882
|
+
which executes the flow on the desired system using the
|
883
|
+
requirements specified in `@resources`.
|
833
884
|
|
834
885
|
|
835
886
|
Parameters
|
836
887
|
----------
|
837
|
-
|
838
|
-
|
839
|
-
|
840
|
-
|
841
|
-
|
842
|
-
|
843
|
-
|
844
|
-
|
845
|
-
|
846
|
-
|
847
|
-
|
848
|
-
temp_dir_root : str, default: None
|
849
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
888
|
+
cpu : int, default 1
|
889
|
+
Number of CPUs required for this step.
|
890
|
+
gpu : int, optional, default None
|
891
|
+
Number of GPUs required for this step.
|
892
|
+
disk : int, optional, default None
|
893
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
894
|
+
memory : int, default 4096
|
895
|
+
Memory size (in MB) required for this step.
|
896
|
+
shared_memory : int, optional, default None
|
897
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
898
|
+
This parameter maps to the `--shm-size` option in Docker.
|
850
899
|
"""
|
851
900
|
...
|
852
901
|
|
853
|
-
|
902
|
+
@typing.overload
|
903
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
854
904
|
"""
|
855
|
-
|
856
|
-
|
857
|
-
User code call
|
858
|
-
-----------
|
859
|
-
@nim(
|
860
|
-
models=['meta/llama3-8b-instruct', 'meta/llama3-70b-instruct'],
|
861
|
-
backend='managed'
|
862
|
-
)
|
863
|
-
|
864
|
-
Valid backend options
|
865
|
-
---------------------
|
866
|
-
- 'managed': Outerbounds selects a compute provider based on the model.
|
905
|
+
Enables loading / saving of models within a step.
|
867
906
|
|
868
|
-
Valid model options
|
869
|
-
----------------
|
870
|
-
- 'meta/llama3-8b-instruct': 8B parameter model
|
871
|
-
- 'meta/llama3-70b-instruct': 70B parameter model
|
872
|
-
- any model here: https://nvcf.ngc.nvidia.com/functions?filter=nvidia-functions
|
873
907
|
|
874
908
|
|
875
909
|
Parameters
|
876
910
|
----------
|
877
|
-
|
878
|
-
|
879
|
-
|
880
|
-
|
881
|
-
|
882
|
-
|
883
|
-
|
884
|
-
|
885
|
-
|
886
|
-
|
887
|
-
|
888
|
-
|
889
|
-
|
890
|
-
and imported for all decorators types by _import_plugin_decorators().
|
891
|
-
"""
|
892
|
-
...
|
893
|
-
|
894
|
-
@typing.overload
|
895
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
896
|
-
...
|
897
|
-
|
898
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
899
|
-
"""
|
900
|
-
Decorator prototype for all step decorators. This function gets specialized
|
901
|
-
and imported for all decorators types by _import_plugin_decorators().
|
911
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
912
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
913
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
914
|
+
- `current.checkpoint`
|
915
|
+
- `current.model`
|
916
|
+
- `current.huggingface_hub`
|
917
|
+
|
918
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
919
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
920
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
921
|
+
|
922
|
+
temp_dir_root : str, default: None
|
923
|
+
The root directory under which `current.model.loaded` will store loaded models
|
902
924
|
"""
|
903
925
|
...
|
904
926
|
|
905
927
|
@typing.overload
|
906
|
-
def
|
907
|
-
"""
|
908
|
-
Internal decorator to support Fast bakery
|
909
|
-
"""
|
928
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
910
929
|
...
|
911
930
|
|
912
931
|
@typing.overload
|
913
|
-
def
|
914
|
-
...
|
915
|
-
|
916
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
917
|
-
"""
|
918
|
-
Internal decorator to support Fast bakery
|
919
|
-
"""
|
932
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
920
933
|
...
|
921
934
|
|
922
|
-
|
923
|
-
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
935
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
924
936
|
"""
|
925
|
-
|
937
|
+
Enables loading / saving of models within a step.
|
926
938
|
|
927
|
-
Information in this decorator will augment any
|
928
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
929
|
-
you can use `@pypi_base` to set packages required by all
|
930
|
-
steps and use `@pypi` to specify step-specific overrides.
|
931
939
|
|
932
940
|
|
933
941
|
Parameters
|
934
942
|
----------
|
935
|
-
|
936
|
-
|
937
|
-
|
938
|
-
|
939
|
-
|
940
|
-
|
943
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
944
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
945
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
946
|
+
- `current.checkpoint`
|
947
|
+
- `current.model`
|
948
|
+
- `current.huggingface_hub`
|
949
|
+
|
950
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
951
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
952
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
953
|
+
|
954
|
+
temp_dir_root : str, default: None
|
955
|
+
The root directory under which `current.model.loaded` will store loaded models
|
941
956
|
"""
|
942
957
|
...
|
943
958
|
|
944
|
-
|
945
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
946
|
-
...
|
947
|
-
|
948
|
-
@typing.overload
|
949
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
950
|
-
...
|
951
|
-
|
952
|
-
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
959
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
953
960
|
"""
|
954
|
-
Specifies
|
955
|
-
|
956
|
-
Information in this decorator will augment any
|
957
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
958
|
-
you can use `@pypi_base` to set packages required by all
|
959
|
-
steps and use `@pypi` to specify step-specific overrides.
|
961
|
+
Specifies that this step should execute on DGX cloud.
|
960
962
|
|
961
963
|
|
962
|
-
Parameters
|
963
|
-
----------
|
964
|
-
|
965
|
-
|
966
|
-
|
967
|
-
|
968
|
-
|
969
|
-
|
964
|
+
Parameters
|
965
|
+
----------
|
966
|
+
gpu : int
|
967
|
+
Number of GPUs to use.
|
968
|
+
gpu_type : str
|
969
|
+
Type of Nvidia GPU to use.
|
970
|
+
queue_timeout : int
|
971
|
+
Time to keep the job in NVCF's queue.
|
970
972
|
"""
|
971
973
|
...
|
972
974
|
|
@@ -1005,54 +1007,244 @@ def project(*, name: str, branch: typing.Optional[str] = None, production: bool
|
|
1005
1007
|
"""
|
1006
1008
|
...
|
1007
1009
|
|
1010
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1011
|
+
"""
|
1012
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1013
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1014
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1015
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1016
|
+
starts only after all sensors finish.
|
1017
|
+
|
1018
|
+
|
1019
|
+
Parameters
|
1020
|
+
----------
|
1021
|
+
timeout : int
|
1022
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1023
|
+
poke_interval : int
|
1024
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1025
|
+
mode : str
|
1026
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1027
|
+
exponential_backoff : bool
|
1028
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1029
|
+
pool : str
|
1030
|
+
the slot pool this task should run in,
|
1031
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1032
|
+
soft_fail : bool
|
1033
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1034
|
+
name : str
|
1035
|
+
Name of the sensor on Airflow
|
1036
|
+
description : str
|
1037
|
+
Description of sensor in the Airflow UI
|
1038
|
+
bucket_key : Union[str, List[str]]
|
1039
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1040
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1041
|
+
bucket_name : str
|
1042
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1043
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1044
|
+
wildcard_match : bool
|
1045
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1046
|
+
aws_conn_id : str
|
1047
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1048
|
+
verify : bool
|
1049
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1050
|
+
"""
|
1051
|
+
...
|
1052
|
+
|
1053
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1054
|
+
"""
|
1055
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1056
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1057
|
+
|
1058
|
+
|
1059
|
+
Parameters
|
1060
|
+
----------
|
1061
|
+
timeout : int
|
1062
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1063
|
+
poke_interval : int
|
1064
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1065
|
+
mode : str
|
1066
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1067
|
+
exponential_backoff : bool
|
1068
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1069
|
+
pool : str
|
1070
|
+
the slot pool this task should run in,
|
1071
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1072
|
+
soft_fail : bool
|
1073
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1074
|
+
name : str
|
1075
|
+
Name of the sensor on Airflow
|
1076
|
+
description : str
|
1077
|
+
Description of sensor in the Airflow UI
|
1078
|
+
external_dag_id : str
|
1079
|
+
The dag_id that contains the task you want to wait for.
|
1080
|
+
external_task_ids : List[str]
|
1081
|
+
The list of task_ids that you want to wait for.
|
1082
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1083
|
+
allowed_states : List[str]
|
1084
|
+
Iterable of allowed states, (Default: ['success'])
|
1085
|
+
failed_states : List[str]
|
1086
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1087
|
+
execution_delta : datetime.timedelta
|
1088
|
+
time difference with the previous execution to look at,
|
1089
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1090
|
+
check_existence: bool
|
1091
|
+
Set to True to check if the external task exists or check if
|
1092
|
+
the DAG to wait for exists. (Default: True)
|
1093
|
+
"""
|
1094
|
+
...
|
1095
|
+
|
1096
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1097
|
+
"""
|
1098
|
+
Allows setting external datastores to save data for the
|
1099
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1100
|
+
|
1101
|
+
This decorator is useful when users wish to save data to a different datastore
|
1102
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1103
|
+
|
1104
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1105
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1106
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1107
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1108
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1109
|
+
|
1110
|
+
Usage:
|
1111
|
+
----------
|
1112
|
+
|
1113
|
+
- Using a custom IAM role to access the datastore.
|
1114
|
+
|
1115
|
+
```python
|
1116
|
+
@with_artifact_store(
|
1117
|
+
type="s3",
|
1118
|
+
config=lambda: {
|
1119
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1120
|
+
"role_arn": ROLE,
|
1121
|
+
},
|
1122
|
+
)
|
1123
|
+
class MyFlow(FlowSpec):
|
1124
|
+
|
1125
|
+
@checkpoint
|
1126
|
+
@step
|
1127
|
+
def start(self):
|
1128
|
+
with open("my_file.txt", "w") as f:
|
1129
|
+
f.write("Hello, World!")
|
1130
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1131
|
+
self.next(self.end)
|
1132
|
+
|
1133
|
+
```
|
1134
|
+
|
1135
|
+
- Using credentials to access the s3-compatible datastore.
|
1136
|
+
|
1137
|
+
```python
|
1138
|
+
@with_artifact_store(
|
1139
|
+
type="s3",
|
1140
|
+
config=lambda: {
|
1141
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1142
|
+
"client_params": {
|
1143
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1144
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1145
|
+
},
|
1146
|
+
},
|
1147
|
+
)
|
1148
|
+
class MyFlow(FlowSpec):
|
1149
|
+
|
1150
|
+
@checkpoint
|
1151
|
+
@step
|
1152
|
+
def start(self):
|
1153
|
+
with open("my_file.txt", "w") as f:
|
1154
|
+
f.write("Hello, World!")
|
1155
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1156
|
+
self.next(self.end)
|
1157
|
+
|
1158
|
+
```
|
1159
|
+
|
1160
|
+
- Accessing objects stored in external datastores after task execution.
|
1161
|
+
|
1162
|
+
```python
|
1163
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1164
|
+
with artifact_store_from(run=run, config={
|
1165
|
+
"client_params": {
|
1166
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1167
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1168
|
+
},
|
1169
|
+
}):
|
1170
|
+
with Checkpoint() as cp:
|
1171
|
+
latest = cp.list(
|
1172
|
+
task=run["start"].task
|
1173
|
+
)[0]
|
1174
|
+
print(latest)
|
1175
|
+
cp.load(
|
1176
|
+
latest,
|
1177
|
+
"test-checkpoints"
|
1178
|
+
)
|
1179
|
+
|
1180
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1181
|
+
with artifact_store_from(run=run, config={
|
1182
|
+
"client_params": {
|
1183
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1184
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1185
|
+
},
|
1186
|
+
}):
|
1187
|
+
load_model(
|
1188
|
+
task.data.model_ref,
|
1189
|
+
"test-models"
|
1190
|
+
)
|
1191
|
+
```
|
1192
|
+
Parameters:
|
1193
|
+
----------
|
1194
|
+
|
1195
|
+
type: str
|
1196
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1197
|
+
|
1198
|
+
config: dict or Callable
|
1199
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1200
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1201
|
+
- example: 's3://bucket-name/path/to/root'
|
1202
|
+
- example: 'gs://bucket-name/path/to/root'
|
1203
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1204
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1205
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1206
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1207
|
+
"""
|
1208
|
+
...
|
1209
|
+
|
1008
1210
|
@typing.overload
|
1009
|
-
def
|
1211
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1010
1212
|
"""
|
1011
|
-
Specifies the
|
1012
|
-
production scheduler.
|
1213
|
+
Specifies the PyPI packages for all steps of the flow.
|
1013
1214
|
|
1215
|
+
Use `@pypi_base` to set common packages required by all
|
1216
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1014
1217
|
|
1015
1218
|
Parameters
|
1016
1219
|
----------
|
1017
|
-
|
1018
|
-
|
1019
|
-
|
1020
|
-
|
1021
|
-
|
1022
|
-
|
1023
|
-
cron : str, optional, default None
|
1024
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1025
|
-
specified by this expression.
|
1026
|
-
timezone : str, optional, default None
|
1027
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1028
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1220
|
+
packages : Dict[str, str], default: {}
|
1221
|
+
Packages to use for this flow. The key is the name of the package
|
1222
|
+
and the value is the version to use.
|
1223
|
+
python : str, optional, default: None
|
1224
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1225
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1029
1226
|
"""
|
1030
1227
|
...
|
1031
1228
|
|
1032
1229
|
@typing.overload
|
1033
|
-
def
|
1230
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1034
1231
|
...
|
1035
1232
|
|
1036
|
-
def
|
1233
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1037
1234
|
"""
|
1038
|
-
Specifies the
|
1039
|
-
production scheduler.
|
1235
|
+
Specifies the PyPI packages for all steps of the flow.
|
1040
1236
|
|
1237
|
+
Use `@pypi_base` to set common packages required by all
|
1238
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1041
1239
|
|
1042
1240
|
Parameters
|
1043
1241
|
----------
|
1044
|
-
|
1045
|
-
|
1046
|
-
|
1047
|
-
|
1048
|
-
|
1049
|
-
|
1050
|
-
cron : str, optional, default None
|
1051
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1052
|
-
specified by this expression.
|
1053
|
-
timezone : str, optional, default None
|
1054
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1055
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1242
|
+
packages : Dict[str, str], default: {}
|
1243
|
+
Packages to use for this flow. The key is the name of the package
|
1244
|
+
and the value is the version to use.
|
1245
|
+
python : str, optional, default: None
|
1246
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1247
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1056
1248
|
"""
|
1057
1249
|
...
|
1058
1250
|
|
@@ -1149,49 +1341,6 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
1149
1341
|
"""
|
1150
1342
|
...
|
1151
1343
|
|
1152
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1153
|
-
"""
|
1154
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1155
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1156
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1157
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1158
|
-
starts only after all sensors finish.
|
1159
|
-
|
1160
|
-
|
1161
|
-
Parameters
|
1162
|
-
----------
|
1163
|
-
timeout : int
|
1164
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
1165
|
-
poke_interval : int
|
1166
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
1167
|
-
mode : str
|
1168
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1169
|
-
exponential_backoff : bool
|
1170
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1171
|
-
pool : str
|
1172
|
-
the slot pool this task should run in,
|
1173
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1174
|
-
soft_fail : bool
|
1175
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1176
|
-
name : str
|
1177
|
-
Name of the sensor on Airflow
|
1178
|
-
description : str
|
1179
|
-
Description of sensor in the Airflow UI
|
1180
|
-
bucket_key : Union[str, List[str]]
|
1181
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1182
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1183
|
-
bucket_name : str
|
1184
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1185
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1186
|
-
wildcard_match : bool
|
1187
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1188
|
-
aws_conn_id : str
|
1189
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
1190
|
-
verify : bool
|
1191
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1192
|
-
"""
|
1193
|
-
...
|
1194
|
-
|
1195
1344
|
@typing.overload
|
1196
1345
|
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1197
1346
|
"""
|
@@ -1345,200 +1494,53 @@ def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packa
|
|
1345
1494
|
...
|
1346
1495
|
|
1347
1496
|
@typing.overload
|
1348
|
-
def
|
1497
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1349
1498
|
"""
|
1350
|
-
Specifies the
|
1499
|
+
Specifies the times when the flow should be run when running on a
|
1500
|
+
production scheduler.
|
1351
1501
|
|
1352
|
-
Use `@pypi_base` to set common packages required by all
|
1353
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1354
1502
|
|
1355
1503
|
Parameters
|
1356
1504
|
----------
|
1357
|
-
|
1358
|
-
|
1359
|
-
|
1360
|
-
|
1361
|
-
|
1362
|
-
|
1505
|
+
hourly : bool, default False
|
1506
|
+
Run the workflow hourly.
|
1507
|
+
daily : bool, default True
|
1508
|
+
Run the workflow daily.
|
1509
|
+
weekly : bool, default False
|
1510
|
+
Run the workflow weekly.
|
1511
|
+
cron : str, optional, default None
|
1512
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1513
|
+
specified by this expression.
|
1514
|
+
timezone : str, optional, default None
|
1515
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1516
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1363
1517
|
"""
|
1364
1518
|
...
|
1365
1519
|
|
1366
1520
|
@typing.overload
|
1367
|
-
def
|
1368
|
-
...
|
1369
|
-
|
1370
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1371
|
-
"""
|
1372
|
-
Specifies the PyPI packages for all steps of the flow.
|
1373
|
-
|
1374
|
-
Use `@pypi_base` to set common packages required by all
|
1375
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1376
|
-
|
1377
|
-
Parameters
|
1378
|
-
----------
|
1379
|
-
packages : Dict[str, str], default: {}
|
1380
|
-
Packages to use for this flow. The key is the name of the package
|
1381
|
-
and the value is the version to use.
|
1382
|
-
python : str, optional, default: None
|
1383
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1384
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1385
|
-
"""
|
1521
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1386
1522
|
...
|
1387
1523
|
|
1388
|
-
def
|
1524
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1389
1525
|
"""
|
1390
|
-
|
1391
|
-
|
1526
|
+
Specifies the times when the flow should be run when running on a
|
1527
|
+
production scheduler.
|
1392
1528
|
|
1393
1529
|
|
1394
1530
|
Parameters
|
1395
1531
|
----------
|
1396
|
-
|
1397
|
-
|
1398
|
-
|
1399
|
-
|
1400
|
-
|
1401
|
-
|
1402
|
-
|
1403
|
-
|
1404
|
-
|
1405
|
-
|
1406
|
-
|
1407
|
-
|
1408
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1409
|
-
name : str
|
1410
|
-
Name of the sensor on Airflow
|
1411
|
-
description : str
|
1412
|
-
Description of sensor in the Airflow UI
|
1413
|
-
external_dag_id : str
|
1414
|
-
The dag_id that contains the task you want to wait for.
|
1415
|
-
external_task_ids : List[str]
|
1416
|
-
The list of task_ids that you want to wait for.
|
1417
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
1418
|
-
allowed_states : List[str]
|
1419
|
-
Iterable of allowed states, (Default: ['success'])
|
1420
|
-
failed_states : List[str]
|
1421
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1422
|
-
execution_delta : datetime.timedelta
|
1423
|
-
time difference with the previous execution to look at,
|
1424
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1425
|
-
check_existence: bool
|
1426
|
-
Set to True to check if the external task exists or check if
|
1427
|
-
the DAG to wait for exists. (Default: True)
|
1428
|
-
"""
|
1429
|
-
...
|
1430
|
-
|
1431
|
-
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1432
|
-
"""
|
1433
|
-
Allows setting external datastores to save data for the
|
1434
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1435
|
-
|
1436
|
-
This decorator is useful when users wish to save data to a different datastore
|
1437
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
1438
|
-
|
1439
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1440
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1441
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1442
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1443
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1444
|
-
|
1445
|
-
Usage:
|
1446
|
-
----------
|
1447
|
-
|
1448
|
-
- Using a custom IAM role to access the datastore.
|
1449
|
-
|
1450
|
-
```python
|
1451
|
-
@with_artifact_store(
|
1452
|
-
type="s3",
|
1453
|
-
config=lambda: {
|
1454
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1455
|
-
"role_arn": ROLE,
|
1456
|
-
},
|
1457
|
-
)
|
1458
|
-
class MyFlow(FlowSpec):
|
1459
|
-
|
1460
|
-
@checkpoint
|
1461
|
-
@step
|
1462
|
-
def start(self):
|
1463
|
-
with open("my_file.txt", "w") as f:
|
1464
|
-
f.write("Hello, World!")
|
1465
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1466
|
-
self.next(self.end)
|
1467
|
-
|
1468
|
-
```
|
1469
|
-
|
1470
|
-
- Using credentials to access the s3-compatible datastore.
|
1471
|
-
|
1472
|
-
```python
|
1473
|
-
@with_artifact_store(
|
1474
|
-
type="s3",
|
1475
|
-
config=lambda: {
|
1476
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1477
|
-
"client_params": {
|
1478
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1479
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1480
|
-
},
|
1481
|
-
},
|
1482
|
-
)
|
1483
|
-
class MyFlow(FlowSpec):
|
1484
|
-
|
1485
|
-
@checkpoint
|
1486
|
-
@step
|
1487
|
-
def start(self):
|
1488
|
-
with open("my_file.txt", "w") as f:
|
1489
|
-
f.write("Hello, World!")
|
1490
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1491
|
-
self.next(self.end)
|
1492
|
-
|
1493
|
-
```
|
1494
|
-
|
1495
|
-
- Accessing objects stored in external datastores after task execution.
|
1496
|
-
|
1497
|
-
```python
|
1498
|
-
run = Run("CheckpointsTestsFlow/8992")
|
1499
|
-
with artifact_store_from(run=run, config={
|
1500
|
-
"client_params": {
|
1501
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1502
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1503
|
-
},
|
1504
|
-
}):
|
1505
|
-
with Checkpoint() as cp:
|
1506
|
-
latest = cp.list(
|
1507
|
-
task=run["start"].task
|
1508
|
-
)[0]
|
1509
|
-
print(latest)
|
1510
|
-
cp.load(
|
1511
|
-
latest,
|
1512
|
-
"test-checkpoints"
|
1513
|
-
)
|
1514
|
-
|
1515
|
-
task = Task("TorchTuneFlow/8484/train/53673")
|
1516
|
-
with artifact_store_from(run=run, config={
|
1517
|
-
"client_params": {
|
1518
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1519
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1520
|
-
},
|
1521
|
-
}):
|
1522
|
-
load_model(
|
1523
|
-
task.data.model_ref,
|
1524
|
-
"test-models"
|
1525
|
-
)
|
1526
|
-
```
|
1527
|
-
Parameters:
|
1528
|
-
----------
|
1529
|
-
|
1530
|
-
type: str
|
1531
|
-
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1532
|
-
|
1533
|
-
config: dict or Callable
|
1534
|
-
Dictionary of configuration options for the datastore. The following keys are required:
|
1535
|
-
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1536
|
-
- example: 's3://bucket-name/path/to/root'
|
1537
|
-
- example: 'gs://bucket-name/path/to/root'
|
1538
|
-
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1539
|
-
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1540
|
-
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1541
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1532
|
+
hourly : bool, default False
|
1533
|
+
Run the workflow hourly.
|
1534
|
+
daily : bool, default True
|
1535
|
+
Run the workflow daily.
|
1536
|
+
weekly : bool, default False
|
1537
|
+
Run the workflow weekly.
|
1538
|
+
cron : str, optional, default None
|
1539
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1540
|
+
specified by this expression.
|
1541
|
+
timezone : str, optional, default None
|
1542
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1543
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1542
1544
|
"""
|
1543
1545
|
...
|
1544
1546
|
|