ob-metaflow-stubs 6.0.3.158__py2.py3-none-any.whl → 6.0.3.159__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +768 -768
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +4 -4
- metaflow-stubs/client/filecache.pyi +1 -1
- metaflow-stubs/events.pyi +1 -1
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +3 -3
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +2 -2
- metaflow-stubs/info_file.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +1 -1
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +119 -119
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/parameters.pyi +2 -2
- metaflow-stubs/plugins/__init__.pyi +10 -10
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +5 -5
- metaflow-stubs/plugins/cards/card_client.pyi +1 -1
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +1 -1
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +1 -1
- metaflow-stubs/plugins/timeout_decorator.pyi +1 -1
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +29 -29
- metaflow-stubs/runner/deployer_impl.pyi +1 -1
- metaflow-stubs/runner/metaflow_runner.pyi +2 -2
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +1 -1
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_decorators.pyi +5 -5
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +6 -6
- {ob_metaflow_stubs-6.0.3.158.dist-info → ob_metaflow_stubs-6.0.3.159.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.3.159.dist-info/RECORD +200 -0
- ob_metaflow_stubs-6.0.3.158.dist-info/RECORD +0 -200
- {ob_metaflow_stubs-6.0.3.158.dist-info → ob_metaflow_stubs-6.0.3.159.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.3.158.dist-info → ob_metaflow_stubs-6.0.3.159.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,15 +1,15 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
3
|
# MF version: 2.15.7.2+obcheckpoint(0.2.1);ob(v1) #
|
4
|
-
# Generated on 2025-04-
|
4
|
+
# Generated on 2025-04-18T04:20:36.937065 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
8
8
|
|
9
9
|
import typing
|
10
10
|
if typing.TYPE_CHECKING:
|
11
|
-
import typing
|
12
11
|
import datetime
|
12
|
+
import typing
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
15
15
|
|
@@ -36,16 +36,16 @@ from .user_configs.config_parameters import config_expr as config_expr
|
|
36
36
|
from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
|
37
37
|
from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
|
38
38
|
from . import cards as cards
|
39
|
-
from . import tuple_util as tuple_util
|
40
39
|
from . import events as events
|
40
|
+
from . import tuple_util as tuple_util
|
41
41
|
from . import runner as runner
|
42
42
|
from . import plugins as plugins
|
43
43
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
44
44
|
from . import includefile as includefile
|
45
45
|
from .includefile import IncludeFile as IncludeFile
|
46
|
-
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
47
|
-
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
48
46
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
47
|
+
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
48
|
+
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
49
49
|
from . import client as client
|
50
50
|
from .client.core import namespace as namespace
|
51
51
|
from .client.core import get_namespace as get_namespace
|
@@ -150,136 +150,145 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
150
150
|
"""
|
151
151
|
...
|
152
152
|
|
153
|
-
|
154
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
153
|
+
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
155
154
|
"""
|
156
|
-
Specifies that
|
157
|
-
|
158
|
-
The decorator will create an optional artifact, specified by `var`, which
|
159
|
-
contains the exception raised. You can use it to detect the presence
|
160
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
161
|
-
are missing.
|
155
|
+
Specifies that this step is used to deploy an instance of the app.
|
156
|
+
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
162
157
|
|
163
158
|
|
164
159
|
Parameters
|
165
160
|
----------
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
Determines whether or not the exception is printed to
|
171
|
-
stdout when caught.
|
161
|
+
app_port : int
|
162
|
+
Number of GPUs to use.
|
163
|
+
app_name : str
|
164
|
+
Name of the app to deploy.
|
172
165
|
"""
|
173
166
|
...
|
174
167
|
|
175
|
-
|
176
|
-
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
177
|
-
...
|
178
|
-
|
179
|
-
@typing.overload
|
180
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
181
|
-
...
|
182
|
-
|
183
|
-
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
168
|
+
def ollama(*, models: "list[Ollama]", backend: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
184
169
|
"""
|
185
|
-
|
170
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
186
171
|
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
172
|
+
User code call
|
173
|
+
-----------
|
174
|
+
@ollama(
|
175
|
+
models=['meta/llama3-8b-instruct', 'meta/llama3-70b-instruct'],
|
176
|
+
backend='local'
|
177
|
+
)
|
178
|
+
|
179
|
+
Valid backend options
|
180
|
+
---------------------
|
181
|
+
- 'local': Run as a separate process on the local task machine.
|
182
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
183
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
184
|
+
|
185
|
+
Valid model options
|
186
|
+
----------------
|
187
|
+
- 'llama3.2'
|
188
|
+
- 'llama3.3'
|
189
|
+
- any model here https://ollama.com/search
|
191
190
|
|
192
191
|
|
193
192
|
Parameters
|
194
193
|
----------
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
Determines whether or not the exception is printed to
|
200
|
-
stdout when caught.
|
194
|
+
models: list[Ollama]
|
195
|
+
List of Ollama containers running models in sidecars.
|
196
|
+
backend: str
|
197
|
+
Determines where and how to run the Ollama process.
|
201
198
|
"""
|
202
199
|
...
|
203
200
|
|
204
201
|
@typing.overload
|
205
|
-
def
|
202
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
206
203
|
"""
|
207
|
-
|
208
|
-
|
209
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
204
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
205
|
+
the execution of a step.
|
210
206
|
|
211
207
|
|
212
208
|
Parameters
|
213
209
|
----------
|
214
|
-
|
215
|
-
|
216
|
-
id : str, optional, default None
|
217
|
-
If multiple cards are present, use this id to identify this card.
|
218
|
-
options : Dict[str, Any], default {}
|
219
|
-
Options passed to the card. The contents depend on the card type.
|
220
|
-
timeout : int, default 45
|
221
|
-
Interrupt reporting if it takes more than this many seconds.
|
210
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
211
|
+
List of secret specs, defining how the secrets are to be retrieved
|
222
212
|
"""
|
223
213
|
...
|
224
214
|
|
225
215
|
@typing.overload
|
226
|
-
def
|
216
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
227
217
|
...
|
228
218
|
|
229
219
|
@typing.overload
|
230
|
-
def
|
220
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
231
221
|
...
|
232
222
|
|
233
|
-
def
|
223
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []):
|
234
224
|
"""
|
235
|
-
|
236
|
-
|
237
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
225
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
226
|
+
the execution of a step.
|
238
227
|
|
239
228
|
|
240
229
|
Parameters
|
241
230
|
----------
|
242
|
-
|
243
|
-
|
244
|
-
id : str, optional, default None
|
245
|
-
If multiple cards are present, use this id to identify this card.
|
246
|
-
options : Dict[str, Any], default {}
|
247
|
-
Options passed to the card. The contents depend on the card type.
|
248
|
-
timeout : int, default 45
|
249
|
-
Interrupt reporting if it takes more than this many seconds.
|
231
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
232
|
+
List of secret specs, defining how the secrets are to be retrieved
|
250
233
|
"""
|
251
234
|
...
|
252
235
|
|
253
|
-
|
236
|
+
@typing.overload
|
237
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
254
238
|
"""
|
255
|
-
|
239
|
+
Specifies the Conda environment for the step.
|
256
240
|
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
backend='local'
|
262
|
-
)
|
241
|
+
Information in this decorator will augment any
|
242
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
243
|
+
you can use `@conda_base` to set packages required by all
|
244
|
+
steps and use `@conda` to specify step-specific overrides.
|
263
245
|
|
264
|
-
Valid backend options
|
265
|
-
---------------------
|
266
|
-
- 'local': Run as a separate process on the local task machine.
|
267
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
268
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
269
246
|
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
247
|
+
Parameters
|
248
|
+
----------
|
249
|
+
packages : Dict[str, str], default {}
|
250
|
+
Packages to use for this step. The key is the name of the package
|
251
|
+
and the value is the version to use.
|
252
|
+
libraries : Dict[str, str], default {}
|
253
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
254
|
+
python : str, optional, default None
|
255
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
256
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
257
|
+
disabled : bool, default False
|
258
|
+
If set to True, disables @conda.
|
259
|
+
"""
|
260
|
+
...
|
261
|
+
|
262
|
+
@typing.overload
|
263
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
264
|
+
...
|
265
|
+
|
266
|
+
@typing.overload
|
267
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
268
|
+
...
|
269
|
+
|
270
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
271
|
+
"""
|
272
|
+
Specifies the Conda environment for the step.
|
273
|
+
|
274
|
+
Information in this decorator will augment any
|
275
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
276
|
+
you can use `@conda_base` to set packages required by all
|
277
|
+
steps and use `@conda` to specify step-specific overrides.
|
275
278
|
|
276
279
|
|
277
280
|
Parameters
|
278
281
|
----------
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
282
|
+
packages : Dict[str, str], default {}
|
283
|
+
Packages to use for this step. The key is the name of the package
|
284
|
+
and the value is the version to use.
|
285
|
+
libraries : Dict[str, str], default {}
|
286
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
287
|
+
python : str, optional, default None
|
288
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
289
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
290
|
+
disabled : bool, default False
|
291
|
+
If set to True, disables @conda.
|
283
292
|
"""
|
284
293
|
...
|
285
294
|
|
@@ -360,260 +369,170 @@ def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: ty
|
|
360
369
|
"""
|
361
370
|
...
|
362
371
|
|
363
|
-
|
372
|
+
@typing.overload
|
373
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
364
374
|
"""
|
365
|
-
|
366
|
-
|
367
|
-
User code call
|
368
|
-
-----------
|
369
|
-
@nim(
|
370
|
-
models=['meta/llama3-8b-instruct', 'meta/llama3-70b-instruct'],
|
371
|
-
backend='managed'
|
372
|
-
)
|
375
|
+
Specifies the resources needed when executing this step.
|
373
376
|
|
374
|
-
|
375
|
-
|
376
|
-
- 'managed': Outerbounds selects a compute provider based on the model.
|
377
|
+
Use `@resources` to specify the resource requirements
|
378
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
377
379
|
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
|
380
|
+
You can choose the compute layer on the command line by executing e.g.
|
381
|
+
```
|
382
|
+
python myflow.py run --with batch
|
383
|
+
```
|
384
|
+
or
|
385
|
+
```
|
386
|
+
python myflow.py run --with kubernetes
|
387
|
+
```
|
388
|
+
which executes the flow on the desired system using the
|
389
|
+
requirements specified in `@resources`.
|
383
390
|
|
384
391
|
|
385
392
|
Parameters
|
386
393
|
----------
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
394
|
+
cpu : int, default 1
|
395
|
+
Number of CPUs required for this step.
|
396
|
+
gpu : int, optional, default None
|
397
|
+
Number of GPUs required for this step.
|
398
|
+
disk : int, optional, default None
|
399
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
400
|
+
memory : int, default 4096
|
401
|
+
Memory size (in MB) required for this step.
|
402
|
+
shared_memory : int, optional, default None
|
403
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
404
|
+
This parameter maps to the `--shm-size` option in Docker.
|
393
405
|
"""
|
394
406
|
...
|
395
407
|
|
396
408
|
@typing.overload
|
397
|
-
def
|
409
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
410
|
+
...
|
411
|
+
|
412
|
+
@typing.overload
|
413
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
414
|
+
...
|
415
|
+
|
416
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
398
417
|
"""
|
399
|
-
|
418
|
+
Specifies the resources needed when executing this step.
|
419
|
+
|
420
|
+
Use `@resources` to specify the resource requirements
|
421
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
400
422
|
|
423
|
+
You can choose the compute layer on the command line by executing e.g.
|
424
|
+
```
|
425
|
+
python myflow.py run --with batch
|
426
|
+
```
|
427
|
+
or
|
428
|
+
```
|
429
|
+
python myflow.py run --with kubernetes
|
430
|
+
```
|
431
|
+
which executes the flow on the desired system using the
|
432
|
+
requirements specified in `@resources`.
|
401
433
|
|
402
434
|
|
403
435
|
Parameters
|
404
436
|
----------
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
temp_dir_root : str, default: None
|
417
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
437
|
+
cpu : int, default 1
|
438
|
+
Number of CPUs required for this step.
|
439
|
+
gpu : int, optional, default None
|
440
|
+
Number of GPUs required for this step.
|
441
|
+
disk : int, optional, default None
|
442
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
443
|
+
memory : int, default 4096
|
444
|
+
Memory size (in MB) required for this step.
|
445
|
+
shared_memory : int, optional, default None
|
446
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
447
|
+
This parameter maps to the `--shm-size` option in Docker.
|
418
448
|
"""
|
419
449
|
...
|
420
450
|
|
421
451
|
@typing.overload
|
422
|
-
def
|
423
|
-
...
|
424
|
-
|
425
|
-
@typing.overload
|
426
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
427
|
-
...
|
428
|
-
|
429
|
-
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
452
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
430
453
|
"""
|
431
|
-
|
432
|
-
|
454
|
+
Specifies environment variables to be set prior to the execution of a step.
|
433
455
|
|
434
456
|
|
435
457
|
Parameters
|
436
458
|
----------
|
437
|
-
|
438
|
-
|
439
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
440
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
441
|
-
will be loaded at the start of the task.
|
442
|
-
- "none": Do not load any checkpoint
|
443
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
444
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
445
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
446
|
-
created within the task will be loaded when the task is retries execution on failure.
|
447
|
-
|
448
|
-
temp_dir_root : str, default: None
|
449
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
459
|
+
vars : Dict[str, str], default {}
|
460
|
+
Dictionary of environment variables to set.
|
450
461
|
"""
|
451
462
|
...
|
452
463
|
|
453
464
|
@typing.overload
|
454
|
-
def
|
455
|
-
"""
|
456
|
-
Internal decorator to support Fast bakery
|
457
|
-
"""
|
465
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
458
466
|
...
|
459
467
|
|
460
468
|
@typing.overload
|
461
|
-
def
|
462
|
-
...
|
463
|
-
|
464
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
465
|
-
"""
|
466
|
-
Internal decorator to support Fast bakery
|
467
|
-
"""
|
469
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
468
470
|
...
|
469
471
|
|
470
|
-
def
|
472
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
471
473
|
"""
|
472
|
-
|
474
|
+
Specifies environment variables to be set prior to the execution of a step.
|
473
475
|
|
474
476
|
|
475
477
|
Parameters
|
476
478
|
----------
|
477
|
-
|
478
|
-
|
479
|
-
|
480
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
481
|
-
The list of repos (models/datasets) to load.
|
482
|
-
|
483
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
484
|
-
|
485
|
-
- If repo (model/dataset) is not found in the datastore:
|
486
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
487
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
488
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
489
|
-
|
490
|
-
- If repo is found in the datastore:
|
491
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
479
|
+
vars : Dict[str, str], default {}
|
480
|
+
Dictionary of environment variables to set.
|
492
481
|
"""
|
493
482
|
...
|
494
483
|
|
495
484
|
@typing.overload
|
496
|
-
def
|
485
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
497
486
|
"""
|
498
|
-
|
499
|
-
|
500
|
-
|
501
|
-
|
502
|
-
Parameters
|
503
|
-
----------
|
504
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
505
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
506
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
507
|
-
- `current.checkpoint`
|
508
|
-
- `current.model`
|
509
|
-
- `current.huggingface_hub`
|
510
|
-
|
511
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
512
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
513
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
487
|
+
Specifies the number of times the task corresponding
|
488
|
+
to a step needs to be retried.
|
514
489
|
|
515
|
-
|
516
|
-
|
517
|
-
|
518
|
-
...
|
519
|
-
|
520
|
-
@typing.overload
|
521
|
-
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
522
|
-
...
|
523
|
-
|
524
|
-
@typing.overload
|
525
|
-
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
526
|
-
...
|
527
|
-
|
528
|
-
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
529
|
-
"""
|
530
|
-
Enables loading / saving of models within a step.
|
490
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
491
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
492
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
531
493
|
|
494
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
495
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
496
|
+
ensuring that the flow execution can continue.
|
532
497
|
|
533
498
|
|
534
499
|
Parameters
|
535
500
|
----------
|
536
|
-
|
537
|
-
|
538
|
-
|
539
|
-
|
540
|
-
- `current.model`
|
541
|
-
- `current.huggingface_hub`
|
542
|
-
|
543
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
544
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
545
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
546
|
-
|
547
|
-
temp_dir_root : str, default: None
|
548
|
-
The root directory under which `current.model.loaded` will store loaded models
|
501
|
+
times : int, default 3
|
502
|
+
Number of times to retry this task.
|
503
|
+
minutes_between_retries : int, default 2
|
504
|
+
Number of minutes between retries.
|
549
505
|
"""
|
550
506
|
...
|
551
507
|
|
552
508
|
@typing.overload
|
553
|
-
def
|
554
|
-
"""
|
555
|
-
Decorator prototype for all step decorators. This function gets specialized
|
556
|
-
and imported for all decorators types by _import_plugin_decorators().
|
557
|
-
"""
|
509
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
558
510
|
...
|
559
511
|
|
560
512
|
@typing.overload
|
561
|
-
def
|
562
|
-
...
|
563
|
-
|
564
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
565
|
-
"""
|
566
|
-
Decorator prototype for all step decorators. This function gets specialized
|
567
|
-
and imported for all decorators types by _import_plugin_decorators().
|
568
|
-
"""
|
569
|
-
...
|
570
|
-
|
571
|
-
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
572
|
-
"""
|
573
|
-
Specifies that this step should execute on DGX cloud.
|
574
|
-
|
575
|
-
|
576
|
-
Parameters
|
577
|
-
----------
|
578
|
-
gpu : int
|
579
|
-
Number of GPUs to use.
|
580
|
-
gpu_type : str
|
581
|
-
Type of Nvidia GPU to use.
|
582
|
-
queue_timeout : int
|
583
|
-
Time to keep the job in NVCF's queue.
|
584
|
-
"""
|
513
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
585
514
|
...
|
586
515
|
|
587
|
-
|
588
|
-
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
516
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
589
517
|
"""
|
590
|
-
Specifies
|
518
|
+
Specifies the number of times the task corresponding
|
519
|
+
to a step needs to be retried.
|
591
520
|
|
521
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
522
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
523
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
592
524
|
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
Dictionary of environment variables to set.
|
597
|
-
"""
|
598
|
-
...
|
599
|
-
|
600
|
-
@typing.overload
|
601
|
-
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
602
|
-
...
|
603
|
-
|
604
|
-
@typing.overload
|
605
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
606
|
-
...
|
607
|
-
|
608
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
609
|
-
"""
|
610
|
-
Specifies environment variables to be set prior to the execution of a step.
|
525
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
526
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
527
|
+
ensuring that the flow execution can continue.
|
611
528
|
|
612
529
|
|
613
530
|
Parameters
|
614
531
|
----------
|
615
|
-
|
616
|
-
|
532
|
+
times : int, default 3
|
533
|
+
Number of times to retry this task.
|
534
|
+
minutes_between_retries : int, default 2
|
535
|
+
Number of minutes between retries.
|
617
536
|
"""
|
618
537
|
...
|
619
538
|
|
@@ -676,435 +595,345 @@ def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
676
595
|
"""
|
677
596
|
...
|
678
597
|
|
679
|
-
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
680
|
-
"""
|
681
|
-
Specifies that this step is used to deploy an instance of the app.
|
682
|
-
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
683
|
-
|
684
|
-
|
685
|
-
Parameters
|
686
|
-
----------
|
687
|
-
app_port : int
|
688
|
-
Number of GPUs to use.
|
689
|
-
app_name : str
|
690
|
-
Name of the app to deploy.
|
691
|
-
"""
|
692
|
-
...
|
693
|
-
|
694
598
|
@typing.overload
|
695
|
-
def
|
599
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
696
600
|
"""
|
697
|
-
Specifies the
|
601
|
+
Specifies that the step will success under all circumstances.
|
698
602
|
|
699
|
-
|
700
|
-
|
701
|
-
|
702
|
-
|
603
|
+
The decorator will create an optional artifact, specified by `var`, which
|
604
|
+
contains the exception raised. You can use it to detect the presence
|
605
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
606
|
+
are missing.
|
703
607
|
|
704
608
|
|
705
609
|
Parameters
|
706
610
|
----------
|
707
|
-
|
708
|
-
|
709
|
-
|
710
|
-
|
711
|
-
|
712
|
-
|
611
|
+
var : str, optional, default None
|
612
|
+
Name of the artifact in which to store the caught exception.
|
613
|
+
If not specified, the exception is not stored.
|
614
|
+
print_exception : bool, default True
|
615
|
+
Determines whether or not the exception is printed to
|
616
|
+
stdout when caught.
|
713
617
|
"""
|
714
618
|
...
|
715
619
|
|
716
620
|
@typing.overload
|
717
|
-
def
|
621
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
718
622
|
...
|
719
623
|
|
720
624
|
@typing.overload
|
721
|
-
def
|
625
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
722
626
|
...
|
723
627
|
|
724
|
-
def
|
628
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
725
629
|
"""
|
726
|
-
Specifies the
|
630
|
+
Specifies that the step will success under all circumstances.
|
727
631
|
|
728
|
-
|
729
|
-
|
730
|
-
|
731
|
-
|
632
|
+
The decorator will create an optional artifact, specified by `var`, which
|
633
|
+
contains the exception raised. You can use it to detect the presence
|
634
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
635
|
+
are missing.
|
732
636
|
|
733
637
|
|
734
638
|
Parameters
|
735
639
|
----------
|
736
|
-
|
737
|
-
|
738
|
-
|
739
|
-
|
740
|
-
|
741
|
-
|
640
|
+
var : str, optional, default None
|
641
|
+
Name of the artifact in which to store the caught exception.
|
642
|
+
If not specified, the exception is not stored.
|
643
|
+
print_exception : bool, default True
|
644
|
+
Determines whether or not the exception is printed to
|
645
|
+
stdout when caught.
|
742
646
|
"""
|
743
647
|
...
|
744
648
|
|
745
649
|
@typing.overload
|
746
|
-
def
|
650
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
747
651
|
"""
|
748
|
-
|
749
|
-
|
750
|
-
Use `@resources` to specify the resource requirements
|
751
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
652
|
+
Enables loading / saving of models within a step.
|
752
653
|
|
753
|
-
You can choose the compute layer on the command line by executing e.g.
|
754
|
-
```
|
755
|
-
python myflow.py run --with batch
|
756
|
-
```
|
757
|
-
or
|
758
|
-
```
|
759
|
-
python myflow.py run --with kubernetes
|
760
|
-
```
|
761
|
-
which executes the flow on the desired system using the
|
762
|
-
requirements specified in `@resources`.
|
763
654
|
|
764
655
|
|
765
656
|
Parameters
|
766
657
|
----------
|
767
|
-
|
768
|
-
|
769
|
-
|
770
|
-
|
771
|
-
|
772
|
-
|
773
|
-
|
774
|
-
|
775
|
-
|
776
|
-
|
777
|
-
|
658
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
659
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
660
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
661
|
+
- `current.checkpoint`
|
662
|
+
- `current.model`
|
663
|
+
- `current.huggingface_hub`
|
664
|
+
|
665
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
666
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
667
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
668
|
+
|
669
|
+
temp_dir_root : str, default: None
|
670
|
+
The root directory under which `current.model.loaded` will store loaded models
|
778
671
|
"""
|
779
672
|
...
|
780
673
|
|
781
674
|
@typing.overload
|
782
|
-
def
|
675
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
783
676
|
...
|
784
677
|
|
785
678
|
@typing.overload
|
786
|
-
def
|
679
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
787
680
|
...
|
788
681
|
|
789
|
-
def
|
682
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
790
683
|
"""
|
791
|
-
|
792
|
-
|
793
|
-
Use `@resources` to specify the resource requirements
|
794
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
684
|
+
Enables loading / saving of models within a step.
|
795
685
|
|
796
|
-
You can choose the compute layer on the command line by executing e.g.
|
797
|
-
```
|
798
|
-
python myflow.py run --with batch
|
799
|
-
```
|
800
|
-
or
|
801
|
-
```
|
802
|
-
python myflow.py run --with kubernetes
|
803
|
-
```
|
804
|
-
which executes the flow on the desired system using the
|
805
|
-
requirements specified in `@resources`.
|
806
686
|
|
807
687
|
|
808
688
|
Parameters
|
809
689
|
----------
|
810
|
-
|
811
|
-
|
812
|
-
|
813
|
-
|
814
|
-
|
815
|
-
|
816
|
-
|
817
|
-
|
818
|
-
|
819
|
-
|
820
|
-
|
690
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
691
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
692
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
693
|
+
- `current.checkpoint`
|
694
|
+
- `current.model`
|
695
|
+
- `current.huggingface_hub`
|
696
|
+
|
697
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
698
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
699
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
700
|
+
|
701
|
+
temp_dir_root : str, default: None
|
702
|
+
The root directory under which `current.model.loaded` will store loaded models
|
821
703
|
"""
|
822
704
|
...
|
823
705
|
|
824
|
-
|
825
|
-
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
706
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
826
707
|
"""
|
827
|
-
Specifies
|
828
|
-
|
829
|
-
Information in this decorator will augment any
|
830
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
831
|
-
you can use `@conda_base` to set packages required by all
|
832
|
-
steps and use `@conda` to specify step-specific overrides.
|
708
|
+
Specifies that this step should execute on DGX cloud.
|
833
709
|
|
834
710
|
|
835
711
|
Parameters
|
836
712
|
----------
|
837
|
-
|
838
|
-
|
839
|
-
|
840
|
-
|
841
|
-
|
842
|
-
|
843
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
844
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
845
|
-
disabled : bool, default False
|
846
|
-
If set to True, disables @conda.
|
713
|
+
gpu : int
|
714
|
+
Number of GPUs to use.
|
715
|
+
gpu_type : str
|
716
|
+
Type of Nvidia GPU to use.
|
717
|
+
queue_timeout : int
|
718
|
+
Time to keep the job in NVCF's queue.
|
847
719
|
"""
|
848
720
|
...
|
849
721
|
|
850
|
-
|
851
|
-
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
852
|
-
...
|
853
|
-
|
854
|
-
@typing.overload
|
855
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
856
|
-
...
|
857
|
-
|
858
|
-
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
722
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
859
723
|
"""
|
860
|
-
|
861
|
-
|
862
|
-
Information in this decorator will augment any
|
863
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
864
|
-
you can use `@conda_base` to set packages required by all
|
865
|
-
steps and use `@conda` to specify step-specific overrides.
|
724
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
866
725
|
|
867
726
|
|
868
727
|
Parameters
|
869
728
|
----------
|
870
|
-
|
871
|
-
|
872
|
-
|
873
|
-
|
874
|
-
|
875
|
-
|
876
|
-
|
877
|
-
|
878
|
-
|
879
|
-
|
729
|
+
temp_dir_root : str, optional
|
730
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
731
|
+
|
732
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
733
|
+
The list of repos (models/datasets) to load.
|
734
|
+
|
735
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
736
|
+
|
737
|
+
- If repo (model/dataset) is not found in the datastore:
|
738
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
739
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
740
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
741
|
+
|
742
|
+
- If repo is found in the datastore:
|
743
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
880
744
|
"""
|
881
745
|
...
|
882
746
|
|
883
747
|
@typing.overload
|
884
|
-
def
|
748
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
885
749
|
"""
|
886
|
-
|
887
|
-
|
750
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
751
|
+
|
752
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
888
753
|
|
889
754
|
|
890
755
|
Parameters
|
891
756
|
----------
|
892
|
-
|
893
|
-
|
757
|
+
type : str, default 'default'
|
758
|
+
Card type.
|
759
|
+
id : str, optional, default None
|
760
|
+
If multiple cards are present, use this id to identify this card.
|
761
|
+
options : Dict[str, Any], default {}
|
762
|
+
Options passed to the card. The contents depend on the card type.
|
763
|
+
timeout : int, default 45
|
764
|
+
Interrupt reporting if it takes more than this many seconds.
|
894
765
|
"""
|
895
766
|
...
|
896
767
|
|
897
768
|
@typing.overload
|
898
|
-
def
|
769
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
899
770
|
...
|
900
771
|
|
901
772
|
@typing.overload
|
902
|
-
def
|
773
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
903
774
|
...
|
904
775
|
|
905
|
-
def
|
776
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
906
777
|
"""
|
907
|
-
|
908
|
-
|
778
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
779
|
+
|
780
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
909
781
|
|
910
782
|
|
911
783
|
Parameters
|
912
784
|
----------
|
913
|
-
|
914
|
-
|
785
|
+
type : str, default 'default'
|
786
|
+
Card type.
|
787
|
+
id : str, optional, default None
|
788
|
+
If multiple cards are present, use this id to identify this card.
|
789
|
+
options : Dict[str, Any], default {}
|
790
|
+
Options passed to the card. The contents depend on the card type.
|
791
|
+
timeout : int, default 45
|
792
|
+
Interrupt reporting if it takes more than this many seconds.
|
915
793
|
"""
|
916
794
|
...
|
917
795
|
|
918
796
|
@typing.overload
|
919
|
-
def
|
797
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
920
798
|
"""
|
921
|
-
|
922
|
-
to a step needs to be retried.
|
923
|
-
|
924
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
925
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
926
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
799
|
+
Enables checkpointing for a step.
|
927
800
|
|
928
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
929
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
930
|
-
ensuring that the flow execution can continue.
|
931
801
|
|
932
802
|
|
933
803
|
Parameters
|
934
804
|
----------
|
935
|
-
|
936
|
-
|
937
|
-
|
938
|
-
|
805
|
+
load_policy : str, default: "fresh"
|
806
|
+
The policy for loading the checkpoint. The following policies are supported:
|
807
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
808
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
809
|
+
will be loaded at the start of the task.
|
810
|
+
- "none": Do not load any checkpoint
|
811
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
812
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
813
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
814
|
+
created within the task will be loaded when the task is retries execution on failure.
|
815
|
+
|
816
|
+
temp_dir_root : str, default: None
|
817
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
939
818
|
"""
|
940
819
|
...
|
941
820
|
|
942
821
|
@typing.overload
|
943
|
-
def
|
822
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
944
823
|
...
|
945
824
|
|
946
825
|
@typing.overload
|
947
|
-
def
|
826
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
948
827
|
...
|
949
828
|
|
950
|
-
def
|
829
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
951
830
|
"""
|
952
|
-
|
953
|
-
to a step needs to be retried.
|
831
|
+
Enables checkpointing for a step.
|
954
832
|
|
955
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
956
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
957
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
958
|
-
|
959
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
960
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
961
|
-
ensuring that the flow execution can continue.
|
962
833
|
|
963
834
|
|
964
835
|
Parameters
|
965
836
|
----------
|
966
|
-
|
967
|
-
|
968
|
-
|
969
|
-
|
837
|
+
load_policy : str, default: "fresh"
|
838
|
+
The policy for loading the checkpoint. The following policies are supported:
|
839
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
840
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
841
|
+
will be loaded at the start of the task.
|
842
|
+
- "none": Do not load any checkpoint
|
843
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
844
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
845
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
846
|
+
created within the task will be loaded when the task is retries execution on failure.
|
847
|
+
|
848
|
+
temp_dir_root : str, default: None
|
849
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
970
850
|
"""
|
971
851
|
...
|
972
852
|
|
973
|
-
|
974
|
-
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
853
|
+
def nim(*, models: "list[NIM]", backend: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
975
854
|
"""
|
976
|
-
|
977
|
-
|
978
|
-
```
|
979
|
-
@trigger_on_finish(flow='FooFlow')
|
980
|
-
```
|
981
|
-
or
|
982
|
-
```
|
983
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
984
|
-
```
|
985
|
-
This decorator respects the @project decorator and triggers the flow
|
986
|
-
when upstream runs within the same namespace complete successfully
|
855
|
+
This decorator is used to run NIM containers in Metaflow tasks as sidecars.
|
987
856
|
|
988
|
-
|
989
|
-
|
990
|
-
|
991
|
-
|
992
|
-
|
993
|
-
|
994
|
-
```
|
995
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
996
|
-
```
|
857
|
+
User code call
|
858
|
+
-----------
|
859
|
+
@nim(
|
860
|
+
models=['meta/llama3-8b-instruct', 'meta/llama3-70b-instruct'],
|
861
|
+
backend='managed'
|
862
|
+
)
|
997
863
|
|
998
|
-
|
999
|
-
|
1000
|
-
|
1001
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1002
|
-
```
|
864
|
+
Valid backend options
|
865
|
+
---------------------
|
866
|
+
- 'managed': Outerbounds selects a compute provider based on the model.
|
1003
867
|
|
1004
|
-
|
1005
|
-
|
1006
|
-
|
1007
|
-
|
1008
|
-
|
868
|
+
Valid model options
|
869
|
+
----------------
|
870
|
+
- 'meta/llama3-8b-instruct': 8B parameter model
|
871
|
+
- 'meta/llama3-70b-instruct': 70B parameter model
|
872
|
+
- any model here: https://nvcf.ngc.nvidia.com/functions?filter=nvidia-functions
|
1009
873
|
|
1010
874
|
|
1011
875
|
Parameters
|
1012
876
|
----------
|
1013
|
-
|
1014
|
-
|
1015
|
-
|
1016
|
-
|
1017
|
-
|
1018
|
-
|
877
|
+
models: list[NIM]
|
878
|
+
List of NIM containers running models in sidecars.
|
879
|
+
backend: str
|
880
|
+
Compute provider to run the NIM container.
|
881
|
+
queue_timeout : int
|
882
|
+
Time to keep the job in NVCF's queue.
|
1019
883
|
"""
|
1020
884
|
...
|
1021
885
|
|
1022
886
|
@typing.overload
|
1023
|
-
def
|
887
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
888
|
+
"""
|
889
|
+
Decorator prototype for all step decorators. This function gets specialized
|
890
|
+
and imported for all decorators types by _import_plugin_decorators().
|
891
|
+
"""
|
1024
892
|
...
|
1025
893
|
|
1026
|
-
|
894
|
+
@typing.overload
|
895
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
896
|
+
...
|
897
|
+
|
898
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1027
899
|
"""
|
1028
|
-
|
1029
|
-
|
1030
|
-
```
|
1031
|
-
@trigger_on_finish(flow='FooFlow')
|
1032
|
-
```
|
1033
|
-
or
|
1034
|
-
```
|
1035
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1036
|
-
```
|
1037
|
-
This decorator respects the @project decorator and triggers the flow
|
1038
|
-
when upstream runs within the same namespace complete successfully
|
1039
|
-
|
1040
|
-
Additionally, you can specify project aware upstream flow dependencies
|
1041
|
-
by specifying the fully qualified project_flow_name.
|
1042
|
-
```
|
1043
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1044
|
-
```
|
1045
|
-
or
|
1046
|
-
```
|
1047
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1048
|
-
```
|
1049
|
-
|
1050
|
-
You can also specify just the project or project branch (other values will be
|
1051
|
-
inferred from the current project or project branch):
|
1052
|
-
```
|
1053
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1054
|
-
```
|
1055
|
-
|
1056
|
-
Note that `branch` is typically one of:
|
1057
|
-
- `prod`
|
1058
|
-
- `user.bob`
|
1059
|
-
- `test.my_experiment`
|
1060
|
-
- `prod.staging`
|
1061
|
-
|
1062
|
-
|
1063
|
-
Parameters
|
1064
|
-
----------
|
1065
|
-
flow : Union[str, Dict[str, str]], optional, default None
|
1066
|
-
Upstream flow dependency for this flow.
|
1067
|
-
flows : List[Union[str, Dict[str, str]]], default []
|
1068
|
-
Upstream flow dependencies for this flow.
|
1069
|
-
options : Dict[str, Any], default {}
|
1070
|
-
Backend-specific configuration for tuning eventing behavior.
|
900
|
+
Decorator prototype for all step decorators. This function gets specialized
|
901
|
+
and imported for all decorators types by _import_plugin_decorators().
|
1071
902
|
"""
|
1072
903
|
...
|
1073
904
|
|
1074
905
|
@typing.overload
|
1075
|
-
def
|
906
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1076
907
|
"""
|
1077
|
-
|
1078
|
-
|
1079
|
-
Use `@pypi_base` to set common packages required by all
|
1080
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1081
|
-
|
1082
|
-
Parameters
|
1083
|
-
----------
|
1084
|
-
packages : Dict[str, str], default: {}
|
1085
|
-
Packages to use for this flow. The key is the name of the package
|
1086
|
-
and the value is the version to use.
|
1087
|
-
python : str, optional, default: None
|
1088
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1089
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
908
|
+
Internal decorator to support Fast bakery
|
1090
909
|
"""
|
1091
910
|
...
|
1092
911
|
|
1093
912
|
@typing.overload
|
1094
|
-
def
|
913
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1095
914
|
...
|
1096
915
|
|
1097
|
-
def
|
916
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
1098
917
|
"""
|
1099
|
-
|
918
|
+
Internal decorator to support Fast bakery
|
919
|
+
"""
|
920
|
+
...
|
921
|
+
|
922
|
+
@typing.overload
|
923
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
924
|
+
"""
|
925
|
+
Specifies the PyPI packages for the step.
|
1100
926
|
|
1101
|
-
|
927
|
+
Information in this decorator will augment any
|
928
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
929
|
+
you can use `@pypi_base` to set packages required by all
|
1102
930
|
steps and use `@pypi` to specify step-specific overrides.
|
1103
931
|
|
932
|
+
|
1104
933
|
Parameters
|
1105
934
|
----------
|
1106
935
|
packages : Dict[str, str], default: {}
|
1107
|
-
Packages to use for this
|
936
|
+
Packages to use for this step. The key is the name of the package
|
1108
937
|
and the value is the version to use.
|
1109
938
|
python : str, optional, default: None
|
1110
939
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
@@ -1112,203 +941,32 @@ def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packag
|
|
1112
941
|
"""
|
1113
942
|
...
|
1114
943
|
|
1115
|
-
|
1116
|
-
|
1117
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1118
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1119
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1120
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1121
|
-
starts only after all sensors finish.
|
1122
|
-
|
1123
|
-
|
1124
|
-
Parameters
|
1125
|
-
----------
|
1126
|
-
timeout : int
|
1127
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
1128
|
-
poke_interval : int
|
1129
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
1130
|
-
mode : str
|
1131
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1132
|
-
exponential_backoff : bool
|
1133
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1134
|
-
pool : str
|
1135
|
-
the slot pool this task should run in,
|
1136
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1137
|
-
soft_fail : bool
|
1138
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1139
|
-
name : str
|
1140
|
-
Name of the sensor on Airflow
|
1141
|
-
description : str
|
1142
|
-
Description of sensor in the Airflow UI
|
1143
|
-
bucket_key : Union[str, List[str]]
|
1144
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1145
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1146
|
-
bucket_name : str
|
1147
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1148
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1149
|
-
wildcard_match : bool
|
1150
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1151
|
-
aws_conn_id : str
|
1152
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
1153
|
-
verify : bool
|
1154
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1155
|
-
"""
|
944
|
+
@typing.overload
|
945
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1156
946
|
...
|
1157
947
|
|
1158
|
-
|
1159
|
-
|
1160
|
-
Allows setting external datastores to save data for the
|
1161
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1162
|
-
|
1163
|
-
This decorator is useful when users wish to save data to a different datastore
|
1164
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
1165
|
-
|
1166
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1167
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1168
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1169
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1170
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1171
|
-
|
1172
|
-
Usage:
|
1173
|
-
----------
|
1174
|
-
|
1175
|
-
- Using a custom IAM role to access the datastore.
|
1176
|
-
|
1177
|
-
```python
|
1178
|
-
@with_artifact_store(
|
1179
|
-
type="s3",
|
1180
|
-
config=lambda: {
|
1181
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1182
|
-
"role_arn": ROLE,
|
1183
|
-
},
|
1184
|
-
)
|
1185
|
-
class MyFlow(FlowSpec):
|
1186
|
-
|
1187
|
-
@checkpoint
|
1188
|
-
@step
|
1189
|
-
def start(self):
|
1190
|
-
with open("my_file.txt", "w") as f:
|
1191
|
-
f.write("Hello, World!")
|
1192
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1193
|
-
self.next(self.end)
|
1194
|
-
|
1195
|
-
```
|
1196
|
-
|
1197
|
-
- Using credentials to access the s3-compatible datastore.
|
1198
|
-
|
1199
|
-
```python
|
1200
|
-
@with_artifact_store(
|
1201
|
-
type="s3",
|
1202
|
-
config=lambda: {
|
1203
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
1204
|
-
"client_params": {
|
1205
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1206
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1207
|
-
},
|
1208
|
-
},
|
1209
|
-
)
|
1210
|
-
class MyFlow(FlowSpec):
|
1211
|
-
|
1212
|
-
@checkpoint
|
1213
|
-
@step
|
1214
|
-
def start(self):
|
1215
|
-
with open("my_file.txt", "w") as f:
|
1216
|
-
f.write("Hello, World!")
|
1217
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1218
|
-
self.next(self.end)
|
1219
|
-
|
1220
|
-
```
|
1221
|
-
|
1222
|
-
- Accessing objects stored in external datastores after task execution.
|
1223
|
-
|
1224
|
-
```python
|
1225
|
-
run = Run("CheckpointsTestsFlow/8992")
|
1226
|
-
with artifact_store_from(run=run, config={
|
1227
|
-
"client_params": {
|
1228
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1229
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1230
|
-
},
|
1231
|
-
}):
|
1232
|
-
with Checkpoint() as cp:
|
1233
|
-
latest = cp.list(
|
1234
|
-
task=run["start"].task
|
1235
|
-
)[0]
|
1236
|
-
print(latest)
|
1237
|
-
cp.load(
|
1238
|
-
latest,
|
1239
|
-
"test-checkpoints"
|
1240
|
-
)
|
1241
|
-
|
1242
|
-
task = Task("TorchTuneFlow/8484/train/53673")
|
1243
|
-
with artifact_store_from(run=run, config={
|
1244
|
-
"client_params": {
|
1245
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1246
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1247
|
-
},
|
1248
|
-
}):
|
1249
|
-
load_model(
|
1250
|
-
task.data.model_ref,
|
1251
|
-
"test-models"
|
1252
|
-
)
|
1253
|
-
```
|
1254
|
-
Parameters:
|
1255
|
-
----------
|
1256
|
-
|
1257
|
-
type: str
|
1258
|
-
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1259
|
-
|
1260
|
-
config: dict or Callable
|
1261
|
-
Dictionary of configuration options for the datastore. The following keys are required:
|
1262
|
-
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1263
|
-
- example: 's3://bucket-name/path/to/root'
|
1264
|
-
- example: 'gs://bucket-name/path/to/root'
|
1265
|
-
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1266
|
-
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1267
|
-
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1268
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1269
|
-
"""
|
948
|
+
@typing.overload
|
949
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
1270
950
|
...
|
1271
951
|
|
1272
|
-
def
|
952
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1273
953
|
"""
|
1274
|
-
|
1275
|
-
|
954
|
+
Specifies the PyPI packages for the step.
|
955
|
+
|
956
|
+
Information in this decorator will augment any
|
957
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
958
|
+
you can use `@pypi_base` to set packages required by all
|
959
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1276
960
|
|
1277
961
|
|
1278
962
|
Parameters
|
1279
963
|
----------
|
1280
|
-
|
1281
|
-
|
1282
|
-
|
1283
|
-
|
1284
|
-
|
1285
|
-
|
1286
|
-
exponential_backoff : bool
|
1287
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1288
|
-
pool : str
|
1289
|
-
the slot pool this task should run in,
|
1290
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1291
|
-
soft_fail : bool
|
1292
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1293
|
-
name : str
|
1294
|
-
Name of the sensor on Airflow
|
1295
|
-
description : str
|
1296
|
-
Description of sensor in the Airflow UI
|
1297
|
-
external_dag_id : str
|
1298
|
-
The dag_id that contains the task you want to wait for.
|
1299
|
-
external_task_ids : List[str]
|
1300
|
-
The list of task_ids that you want to wait for.
|
1301
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
1302
|
-
allowed_states : List[str]
|
1303
|
-
Iterable of allowed states, (Default: ['success'])
|
1304
|
-
failed_states : List[str]
|
1305
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1306
|
-
execution_delta : datetime.timedelta
|
1307
|
-
time difference with the previous execution to look at,
|
1308
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1309
|
-
check_existence: bool
|
1310
|
-
Set to True to check if the external task exists or check if
|
1311
|
-
the DAG to wait for exists. (Default: True)
|
964
|
+
packages : Dict[str, str], default: {}
|
965
|
+
Packages to use for this step. The key is the name of the package
|
966
|
+
and the value is the version to use.
|
967
|
+
python : str, optional, default: None
|
968
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
969
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1312
970
|
"""
|
1313
971
|
...
|
1314
972
|
|
@@ -1434,58 +1092,202 @@ def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = No
|
|
1434
1092
|
|
1435
1093
|
Parameters
|
1436
1094
|
----------
|
1437
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
1438
|
-
Event dependency for this flow.
|
1439
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
1440
|
-
Events dependency for this flow.
|
1095
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1096
|
+
Event dependency for this flow.
|
1097
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1098
|
+
Events dependency for this flow.
|
1099
|
+
options : Dict[str, Any], default {}
|
1100
|
+
Backend-specific configuration for tuning eventing behavior.
|
1101
|
+
"""
|
1102
|
+
...
|
1103
|
+
|
1104
|
+
@typing.overload
|
1105
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1106
|
+
...
|
1107
|
+
|
1108
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1109
|
+
"""
|
1110
|
+
Specifies the event(s) that this flow depends on.
|
1111
|
+
|
1112
|
+
```
|
1113
|
+
@trigger(event='foo')
|
1114
|
+
```
|
1115
|
+
or
|
1116
|
+
```
|
1117
|
+
@trigger(events=['foo', 'bar'])
|
1118
|
+
```
|
1119
|
+
|
1120
|
+
Additionally, you can specify the parameter mappings
|
1121
|
+
to map event payload to Metaflow parameters for the flow.
|
1122
|
+
```
|
1123
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
1124
|
+
```
|
1125
|
+
or
|
1126
|
+
```
|
1127
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
1128
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1129
|
+
```
|
1130
|
+
|
1131
|
+
'parameters' can also be a list of strings and tuples like so:
|
1132
|
+
```
|
1133
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1134
|
+
```
|
1135
|
+
This is equivalent to:
|
1136
|
+
```
|
1137
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
1138
|
+
```
|
1139
|
+
|
1140
|
+
|
1141
|
+
Parameters
|
1142
|
+
----------
|
1143
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
1144
|
+
Event dependency for this flow.
|
1145
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
1146
|
+
Events dependency for this flow.
|
1147
|
+
options : Dict[str, Any], default {}
|
1148
|
+
Backend-specific configuration for tuning eventing behavior.
|
1149
|
+
"""
|
1150
|
+
...
|
1151
|
+
|
1152
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1153
|
+
"""
|
1154
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
1155
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
1156
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
1157
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
1158
|
+
starts only after all sensors finish.
|
1159
|
+
|
1160
|
+
|
1161
|
+
Parameters
|
1162
|
+
----------
|
1163
|
+
timeout : int
|
1164
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1165
|
+
poke_interval : int
|
1166
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1167
|
+
mode : str
|
1168
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1169
|
+
exponential_backoff : bool
|
1170
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1171
|
+
pool : str
|
1172
|
+
the slot pool this task should run in,
|
1173
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1174
|
+
soft_fail : bool
|
1175
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1176
|
+
name : str
|
1177
|
+
Name of the sensor on Airflow
|
1178
|
+
description : str
|
1179
|
+
Description of sensor in the Airflow UI
|
1180
|
+
bucket_key : Union[str, List[str]]
|
1181
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
1182
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
1183
|
+
bucket_name : str
|
1184
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
1185
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
1186
|
+
wildcard_match : bool
|
1187
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
1188
|
+
aws_conn_id : str
|
1189
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
1190
|
+
verify : bool
|
1191
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
1192
|
+
"""
|
1193
|
+
...
|
1194
|
+
|
1195
|
+
@typing.overload
|
1196
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1197
|
+
"""
|
1198
|
+
Specifies the flow(s) that this flow depends on.
|
1199
|
+
|
1200
|
+
```
|
1201
|
+
@trigger_on_finish(flow='FooFlow')
|
1202
|
+
```
|
1203
|
+
or
|
1204
|
+
```
|
1205
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1206
|
+
```
|
1207
|
+
This decorator respects the @project decorator and triggers the flow
|
1208
|
+
when upstream runs within the same namespace complete successfully
|
1209
|
+
|
1210
|
+
Additionally, you can specify project aware upstream flow dependencies
|
1211
|
+
by specifying the fully qualified project_flow_name.
|
1212
|
+
```
|
1213
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1214
|
+
```
|
1215
|
+
or
|
1216
|
+
```
|
1217
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1218
|
+
```
|
1219
|
+
|
1220
|
+
You can also specify just the project or project branch (other values will be
|
1221
|
+
inferred from the current project or project branch):
|
1222
|
+
```
|
1223
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1224
|
+
```
|
1225
|
+
|
1226
|
+
Note that `branch` is typically one of:
|
1227
|
+
- `prod`
|
1228
|
+
- `user.bob`
|
1229
|
+
- `test.my_experiment`
|
1230
|
+
- `prod.staging`
|
1231
|
+
|
1232
|
+
|
1233
|
+
Parameters
|
1234
|
+
----------
|
1235
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
1236
|
+
Upstream flow dependency for this flow.
|
1237
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
1238
|
+
Upstream flow dependencies for this flow.
|
1441
1239
|
options : Dict[str, Any], default {}
|
1442
1240
|
Backend-specific configuration for tuning eventing behavior.
|
1443
1241
|
"""
|
1444
1242
|
...
|
1445
1243
|
|
1446
1244
|
@typing.overload
|
1447
|
-
def
|
1245
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1448
1246
|
...
|
1449
1247
|
|
1450
|
-
def
|
1248
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1451
1249
|
"""
|
1452
|
-
Specifies the
|
1250
|
+
Specifies the flow(s) that this flow depends on.
|
1453
1251
|
|
1454
1252
|
```
|
1455
|
-
@
|
1253
|
+
@trigger_on_finish(flow='FooFlow')
|
1456
1254
|
```
|
1457
1255
|
or
|
1458
1256
|
```
|
1459
|
-
@
|
1257
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1460
1258
|
```
|
1259
|
+
This decorator respects the @project decorator and triggers the flow
|
1260
|
+
when upstream runs within the same namespace complete successfully
|
1461
1261
|
|
1462
|
-
Additionally, you can specify
|
1463
|
-
|
1262
|
+
Additionally, you can specify project aware upstream flow dependencies
|
1263
|
+
by specifying the fully qualified project_flow_name.
|
1464
1264
|
```
|
1465
|
-
@
|
1265
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1466
1266
|
```
|
1467
1267
|
or
|
1468
1268
|
```
|
1469
|
-
@
|
1470
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
1269
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1471
1270
|
```
|
1472
1271
|
|
1473
|
-
|
1474
|
-
|
1475
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
1476
|
-
```
|
1477
|
-
This is equivalent to:
|
1272
|
+
You can also specify just the project or project branch (other values will be
|
1273
|
+
inferred from the current project or project branch):
|
1478
1274
|
```
|
1479
|
-
@
|
1275
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1480
1276
|
```
|
1481
1277
|
|
1278
|
+
Note that `branch` is typically one of:
|
1279
|
+
- `prod`
|
1280
|
+
- `user.bob`
|
1281
|
+
- `test.my_experiment`
|
1282
|
+
- `prod.staging`
|
1283
|
+
|
1482
1284
|
|
1483
1285
|
Parameters
|
1484
1286
|
----------
|
1485
|
-
|
1486
|
-
|
1487
|
-
|
1488
|
-
|
1287
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
1288
|
+
Upstream flow dependency for this flow.
|
1289
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
1290
|
+
Upstream flow dependencies for this flow.
|
1489
1291
|
options : Dict[str, Any], default {}
|
1490
1292
|
Backend-specific configuration for tuning eventing behavior.
|
1491
1293
|
"""
|
@@ -1542,5 +1344,203 @@ def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packa
|
|
1542
1344
|
"""
|
1543
1345
|
...
|
1544
1346
|
|
1347
|
+
@typing.overload
|
1348
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1349
|
+
"""
|
1350
|
+
Specifies the PyPI packages for all steps of the flow.
|
1351
|
+
|
1352
|
+
Use `@pypi_base` to set common packages required by all
|
1353
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1354
|
+
|
1355
|
+
Parameters
|
1356
|
+
----------
|
1357
|
+
packages : Dict[str, str], default: {}
|
1358
|
+
Packages to use for this flow. The key is the name of the package
|
1359
|
+
and the value is the version to use.
|
1360
|
+
python : str, optional, default: None
|
1361
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1362
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1363
|
+
"""
|
1364
|
+
...
|
1365
|
+
|
1366
|
+
@typing.overload
|
1367
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1368
|
+
...
|
1369
|
+
|
1370
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1371
|
+
"""
|
1372
|
+
Specifies the PyPI packages for all steps of the flow.
|
1373
|
+
|
1374
|
+
Use `@pypi_base` to set common packages required by all
|
1375
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1376
|
+
|
1377
|
+
Parameters
|
1378
|
+
----------
|
1379
|
+
packages : Dict[str, str], default: {}
|
1380
|
+
Packages to use for this flow. The key is the name of the package
|
1381
|
+
and the value is the version to use.
|
1382
|
+
python : str, optional, default: None
|
1383
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1384
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1385
|
+
"""
|
1386
|
+
...
|
1387
|
+
|
1388
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1389
|
+
"""
|
1390
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1391
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1392
|
+
|
1393
|
+
|
1394
|
+
Parameters
|
1395
|
+
----------
|
1396
|
+
timeout : int
|
1397
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1398
|
+
poke_interval : int
|
1399
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1400
|
+
mode : str
|
1401
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1402
|
+
exponential_backoff : bool
|
1403
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1404
|
+
pool : str
|
1405
|
+
the slot pool this task should run in,
|
1406
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1407
|
+
soft_fail : bool
|
1408
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1409
|
+
name : str
|
1410
|
+
Name of the sensor on Airflow
|
1411
|
+
description : str
|
1412
|
+
Description of sensor in the Airflow UI
|
1413
|
+
external_dag_id : str
|
1414
|
+
The dag_id that contains the task you want to wait for.
|
1415
|
+
external_task_ids : List[str]
|
1416
|
+
The list of task_ids that you want to wait for.
|
1417
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1418
|
+
allowed_states : List[str]
|
1419
|
+
Iterable of allowed states, (Default: ['success'])
|
1420
|
+
failed_states : List[str]
|
1421
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1422
|
+
execution_delta : datetime.timedelta
|
1423
|
+
time difference with the previous execution to look at,
|
1424
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1425
|
+
check_existence: bool
|
1426
|
+
Set to True to check if the external task exists or check if
|
1427
|
+
the DAG to wait for exists. (Default: True)
|
1428
|
+
"""
|
1429
|
+
...
|
1430
|
+
|
1431
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1432
|
+
"""
|
1433
|
+
Allows setting external datastores to save data for the
|
1434
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
1435
|
+
|
1436
|
+
This decorator is useful when users wish to save data to a different datastore
|
1437
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
1438
|
+
|
1439
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
1440
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
1441
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
1442
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
1443
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
1444
|
+
|
1445
|
+
Usage:
|
1446
|
+
----------
|
1447
|
+
|
1448
|
+
- Using a custom IAM role to access the datastore.
|
1449
|
+
|
1450
|
+
```python
|
1451
|
+
@with_artifact_store(
|
1452
|
+
type="s3",
|
1453
|
+
config=lambda: {
|
1454
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1455
|
+
"role_arn": ROLE,
|
1456
|
+
},
|
1457
|
+
)
|
1458
|
+
class MyFlow(FlowSpec):
|
1459
|
+
|
1460
|
+
@checkpoint
|
1461
|
+
@step
|
1462
|
+
def start(self):
|
1463
|
+
with open("my_file.txt", "w") as f:
|
1464
|
+
f.write("Hello, World!")
|
1465
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1466
|
+
self.next(self.end)
|
1467
|
+
|
1468
|
+
```
|
1469
|
+
|
1470
|
+
- Using credentials to access the s3-compatible datastore.
|
1471
|
+
|
1472
|
+
```python
|
1473
|
+
@with_artifact_store(
|
1474
|
+
type="s3",
|
1475
|
+
config=lambda: {
|
1476
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
1477
|
+
"client_params": {
|
1478
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1479
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1480
|
+
},
|
1481
|
+
},
|
1482
|
+
)
|
1483
|
+
class MyFlow(FlowSpec):
|
1484
|
+
|
1485
|
+
@checkpoint
|
1486
|
+
@step
|
1487
|
+
def start(self):
|
1488
|
+
with open("my_file.txt", "w") as f:
|
1489
|
+
f.write("Hello, World!")
|
1490
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
1491
|
+
self.next(self.end)
|
1492
|
+
|
1493
|
+
```
|
1494
|
+
|
1495
|
+
- Accessing objects stored in external datastores after task execution.
|
1496
|
+
|
1497
|
+
```python
|
1498
|
+
run = Run("CheckpointsTestsFlow/8992")
|
1499
|
+
with artifact_store_from(run=run, config={
|
1500
|
+
"client_params": {
|
1501
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1502
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1503
|
+
},
|
1504
|
+
}):
|
1505
|
+
with Checkpoint() as cp:
|
1506
|
+
latest = cp.list(
|
1507
|
+
task=run["start"].task
|
1508
|
+
)[0]
|
1509
|
+
print(latest)
|
1510
|
+
cp.load(
|
1511
|
+
latest,
|
1512
|
+
"test-checkpoints"
|
1513
|
+
)
|
1514
|
+
|
1515
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1516
|
+
with artifact_store_from(run=run, config={
|
1517
|
+
"client_params": {
|
1518
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1519
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1520
|
+
},
|
1521
|
+
}):
|
1522
|
+
load_model(
|
1523
|
+
task.data.model_ref,
|
1524
|
+
"test-models"
|
1525
|
+
)
|
1526
|
+
```
|
1527
|
+
Parameters:
|
1528
|
+
----------
|
1529
|
+
|
1530
|
+
type: str
|
1531
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1532
|
+
|
1533
|
+
config: dict or Callable
|
1534
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1535
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1536
|
+
- example: 's3://bucket-name/path/to/root'
|
1537
|
+
- example: 'gs://bucket-name/path/to/root'
|
1538
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1539
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1540
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1541
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1542
|
+
"""
|
1543
|
+
...
|
1544
|
+
|
1545
1545
|
pkg_name: str
|
1546
1546
|
|