ob-metaflow-stubs 6.0.10.6__py2.py3-none-any.whl → 6.0.10.8__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ob-metaflow-stubs might be problematic. Click here for more details.
- metaflow-stubs/__init__.pyi +977 -977
- metaflow-stubs/cards.pyi +3 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +5 -5
- metaflow-stubs/client/filecache.pyi +3 -3
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +5 -5
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +4 -4
- metaflow-stubs/meta_files.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +3 -3
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -2
- metaflow-stubs/metaflow_current.pyi +86 -86
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +6 -6
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/packaging_sys/__init__.pyi +7 -7
- metaflow-stubs/packaging_sys/backend.pyi +5 -5
- metaflow-stubs/packaging_sys/distribution_support.pyi +5 -5
- metaflow-stubs/packaging_sys/tar_backend.pyi +5 -5
- metaflow-stubs/packaging_sys/utils.pyi +2 -2
- metaflow-stubs/packaging_sys/v1.pyi +4 -4
- metaflow-stubs/parameters.pyi +4 -4
- metaflow-stubs/plugins/__init__.pyi +13 -13
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +4 -4
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +4 -4
- metaflow-stubs/plugins/argo/exit_hooks.pyi +3 -3
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +4 -4
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +84 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +4 -4
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +45 -4
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +3 -3
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
- metaflow-stubs/plugins/optuna/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +4 -4
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +3 -3
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +3 -3
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +34 -34
- metaflow-stubs/runner/deployer_impl.pyi +3 -3
- metaflow-stubs/runner/metaflow_runner.pyi +5 -5
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +3 -3
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_options.pyi +3 -3
- metaflow-stubs/user_configs/config_parameters.pyi +6 -6
- metaflow-stubs/user_decorators/__init__.pyi +2 -2
- metaflow-stubs/user_decorators/common.pyi +2 -2
- metaflow-stubs/user_decorators/mutable_flow.pyi +4 -4
- metaflow-stubs/user_decorators/mutable_step.pyi +4 -4
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +5 -5
- metaflow-stubs/user_decorators/user_step_decorator.pyi +4 -4
- {ob_metaflow_stubs-6.0.10.6.dist-info → ob_metaflow_stubs-6.0.10.8.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.10.8.dist-info/RECORD +262 -0
- ob_metaflow_stubs-6.0.10.6.dist-info/RECORD +0 -262
- {ob_metaflow_stubs-6.0.10.6.dist-info → ob_metaflow_stubs-6.0.10.8.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.10.6.dist-info → ob_metaflow_stubs-6.0.10.8.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
|
-
# MF version: 2.18.5
|
|
4
|
-
# Generated on 2025-09-
|
|
3
|
+
# MF version: 2.18.7.5+obcheckpoint(0.2.6);ob(v1) #
|
|
4
|
+
# Generated on 2025-09-19T21:56:58.875223 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
8
8
|
|
|
9
9
|
import typing
|
|
10
10
|
if typing.TYPE_CHECKING:
|
|
11
|
-
import datetime
|
|
12
11
|
import typing
|
|
12
|
+
import datetime
|
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
|
15
15
|
|
|
@@ -39,9 +39,9 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
-
from . import cards as cards
|
|
43
|
-
from . import tuple_util as tuple_util
|
|
44
42
|
from . import metaflow_git as metaflow_git
|
|
43
|
+
from . import tuple_util as tuple_util
|
|
44
|
+
from . import cards as cards
|
|
45
45
|
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
@@ -167,654 +167,233 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
167
167
|
"""
|
|
168
168
|
...
|
|
169
169
|
|
|
170
|
-
|
|
170
|
+
@typing.overload
|
|
171
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
171
172
|
"""
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
Parameters
|
|
176
|
-
----------
|
|
177
|
-
gpu : int
|
|
178
|
-
Number of GPUs to use.
|
|
179
|
-
gpu_type : str
|
|
180
|
-
Type of Nvidia GPU to use.
|
|
173
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
174
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
181
175
|
"""
|
|
182
176
|
...
|
|
183
177
|
|
|
184
|
-
|
|
178
|
+
@typing.overload
|
|
179
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
180
|
+
...
|
|
181
|
+
|
|
182
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
185
183
|
"""
|
|
186
|
-
|
|
184
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
185
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
186
|
+
"""
|
|
187
|
+
...
|
|
188
|
+
|
|
189
|
+
@typing.overload
|
|
190
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
191
|
+
"""
|
|
192
|
+
Specifies a timeout for your step.
|
|
187
193
|
|
|
188
|
-
|
|
189
|
-
--------------
|
|
190
|
-
@ollama(
|
|
191
|
-
models=[...],
|
|
192
|
-
...
|
|
193
|
-
)
|
|
194
|
+
This decorator is useful if this step may hang indefinitely.
|
|
194
195
|
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
199
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
196
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
197
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
198
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
200
199
|
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
200
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
201
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
204
202
|
|
|
205
203
|
|
|
206
204
|
Parameters
|
|
207
205
|
----------
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
cache_update_policy: str
|
|
215
|
-
Cache update policy: "auto", "force", or "never".
|
|
216
|
-
force_cache_update: bool
|
|
217
|
-
Simple override for "force" cache update policy.
|
|
218
|
-
debug: bool
|
|
219
|
-
Whether to turn on verbose debugging logs.
|
|
220
|
-
circuit_breaker_config: dict
|
|
221
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
222
|
-
timeout_config: dict
|
|
223
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
206
|
+
seconds : int, default 0
|
|
207
|
+
Number of seconds to wait prior to timing out.
|
|
208
|
+
minutes : int, default 0
|
|
209
|
+
Number of minutes to wait prior to timing out.
|
|
210
|
+
hours : int, default 0
|
|
211
|
+
Number of hours to wait prior to timing out.
|
|
224
212
|
"""
|
|
225
213
|
...
|
|
226
214
|
|
|
227
215
|
@typing.overload
|
|
228
|
-
def
|
|
229
|
-
"""
|
|
230
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
231
|
-
to inject a card and render simple markdown content.
|
|
232
|
-
"""
|
|
216
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
233
217
|
...
|
|
234
218
|
|
|
235
219
|
@typing.overload
|
|
236
|
-
def
|
|
237
|
-
...
|
|
238
|
-
|
|
239
|
-
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
240
|
-
"""
|
|
241
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
242
|
-
to inject a card and render simple markdown content.
|
|
243
|
-
"""
|
|
220
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
244
221
|
...
|
|
245
222
|
|
|
246
|
-
def
|
|
223
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
247
224
|
"""
|
|
248
|
-
|
|
225
|
+
Specifies a timeout for your step.
|
|
226
|
+
|
|
227
|
+
This decorator is useful if this step may hang indefinitely.
|
|
228
|
+
|
|
229
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
230
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
231
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
232
|
+
|
|
233
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
234
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
249
235
|
|
|
250
236
|
|
|
251
237
|
Parameters
|
|
252
238
|
----------
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
260
|
-
storage
|
|
261
|
-
"origin" -> only write to the target S3 bucket
|
|
262
|
-
"cache" -> only write to the object storage service used for caching
|
|
263
|
-
debug : bool, optional
|
|
264
|
-
Enable debug logging for proxy operations.
|
|
239
|
+
seconds : int, default 0
|
|
240
|
+
Number of seconds to wait prior to timing out.
|
|
241
|
+
minutes : int, default 0
|
|
242
|
+
Number of minutes to wait prior to timing out.
|
|
243
|
+
hours : int, default 0
|
|
244
|
+
Number of hours to wait prior to timing out.
|
|
265
245
|
"""
|
|
266
246
|
...
|
|
267
247
|
|
|
268
|
-
|
|
269
|
-
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
248
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
270
249
|
"""
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
250
|
+
Specifies that this step should execute on DGX cloud.
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
Parameters
|
|
254
|
+
----------
|
|
255
|
+
gpu : int
|
|
256
|
+
Number of GPUs to use.
|
|
257
|
+
gpu_type : str
|
|
258
|
+
Type of Nvidia GPU to use.
|
|
274
259
|
"""
|
|
275
260
|
...
|
|
276
261
|
|
|
277
262
|
@typing.overload
|
|
278
|
-
def
|
|
279
|
-
...
|
|
280
|
-
|
|
281
|
-
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
263
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
282
264
|
"""
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
265
|
+
Specifies the Conda environment for the step.
|
|
266
|
+
|
|
267
|
+
Information in this decorator will augment any
|
|
268
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
269
|
+
you can use `@conda_base` to set packages required by all
|
|
270
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
Parameters
|
|
274
|
+
----------
|
|
275
|
+
packages : Dict[str, str], default {}
|
|
276
|
+
Packages to use for this step. The key is the name of the package
|
|
277
|
+
and the value is the version to use.
|
|
278
|
+
libraries : Dict[str, str], default {}
|
|
279
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
280
|
+
python : str, optional, default None
|
|
281
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
282
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
283
|
+
disabled : bool, default False
|
|
284
|
+
If set to True, disables @conda.
|
|
286
285
|
"""
|
|
287
286
|
...
|
|
288
287
|
|
|
289
288
|
@typing.overload
|
|
290
|
-
def
|
|
291
|
-
"""
|
|
292
|
-
Internal decorator to support Fast bakery
|
|
293
|
-
"""
|
|
289
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
294
290
|
...
|
|
295
291
|
|
|
296
292
|
@typing.overload
|
|
297
|
-
def
|
|
293
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
298
294
|
...
|
|
299
295
|
|
|
300
|
-
def
|
|
296
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
301
297
|
"""
|
|
302
|
-
|
|
298
|
+
Specifies the Conda environment for the step.
|
|
299
|
+
|
|
300
|
+
Information in this decorator will augment any
|
|
301
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
302
|
+
you can use `@conda_base` to set packages required by all
|
|
303
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
304
|
+
|
|
305
|
+
|
|
306
|
+
Parameters
|
|
307
|
+
----------
|
|
308
|
+
packages : Dict[str, str], default {}
|
|
309
|
+
Packages to use for this step. The key is the name of the package
|
|
310
|
+
and the value is the version to use.
|
|
311
|
+
libraries : Dict[str, str], default {}
|
|
312
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
313
|
+
python : str, optional, default None
|
|
314
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
315
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
316
|
+
disabled : bool, default False
|
|
317
|
+
If set to True, disables @conda.
|
|
303
318
|
"""
|
|
304
319
|
...
|
|
305
320
|
|
|
306
321
|
@typing.overload
|
|
307
|
-
def
|
|
322
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
308
323
|
"""
|
|
309
|
-
Specifies the
|
|
310
|
-
to a step needs to be retried.
|
|
324
|
+
Specifies the resources needed when executing this step.
|
|
311
325
|
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
326
|
+
Use `@resources` to specify the resource requirements
|
|
327
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
315
328
|
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
|
|
329
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
330
|
+
```
|
|
331
|
+
python myflow.py run --with batch
|
|
332
|
+
```
|
|
333
|
+
or
|
|
334
|
+
```
|
|
335
|
+
python myflow.py run --with kubernetes
|
|
336
|
+
```
|
|
337
|
+
which executes the flow on the desired system using the
|
|
338
|
+
requirements specified in `@resources`.
|
|
319
339
|
|
|
320
340
|
|
|
321
341
|
Parameters
|
|
322
342
|
----------
|
|
323
|
-
|
|
324
|
-
Number of
|
|
325
|
-
|
|
326
|
-
Number of
|
|
343
|
+
cpu : int, default 1
|
|
344
|
+
Number of CPUs required for this step.
|
|
345
|
+
gpu : int, optional, default None
|
|
346
|
+
Number of GPUs required for this step.
|
|
347
|
+
disk : int, optional, default None
|
|
348
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
349
|
+
memory : int, default 4096
|
|
350
|
+
Memory size (in MB) required for this step.
|
|
351
|
+
shared_memory : int, optional, default None
|
|
352
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
353
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
327
354
|
"""
|
|
328
355
|
...
|
|
329
356
|
|
|
330
357
|
@typing.overload
|
|
331
|
-
def
|
|
358
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
332
359
|
...
|
|
333
360
|
|
|
334
361
|
@typing.overload
|
|
335
|
-
def
|
|
362
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
336
363
|
...
|
|
337
364
|
|
|
338
|
-
def
|
|
365
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
339
366
|
"""
|
|
340
|
-
Specifies the
|
|
341
|
-
to a step needs to be retried.
|
|
342
|
-
|
|
343
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
|
344
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
345
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
346
|
-
|
|
347
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
348
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
|
349
|
-
ensuring that the flow execution can continue.
|
|
367
|
+
Specifies the resources needed when executing this step.
|
|
350
368
|
|
|
369
|
+
Use `@resources` to specify the resource requirements
|
|
370
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
351
371
|
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
361
|
-
|
|
362
|
-
"""
|
|
363
|
-
Decorator that helps cache, version, and store models/datasets from the Hugging Face Hub.
|
|
364
|
-
|
|
365
|
-
> Examples
|
|
366
|
-
|
|
367
|
-
**Usage: creating references to models from the Hugging Face Hub that may be loaded in downstream steps**
|
|
368
|
-
```python
|
|
369
|
-
@huggingface_hub
|
|
370
|
-
@step
|
|
371
|
-
def pull_model_from_huggingface(self):
|
|
372
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
373
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
374
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
375
|
-
# value of the function is a reference to the model in the backend storage.
|
|
376
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
377
|
-
|
|
378
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
379
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
380
|
-
repo_id=self.model_id,
|
|
381
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
382
|
-
)
|
|
383
|
-
self.next(self.train)
|
|
384
|
-
```
|
|
385
|
-
|
|
386
|
-
**Usage: explicitly loading models at runtime from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
387
|
-
```python
|
|
388
|
-
@huggingface_hub
|
|
389
|
-
@step
|
|
390
|
-
def run_training(self):
|
|
391
|
-
# Temporary directory (auto-cleaned on exit)
|
|
392
|
-
with current.huggingface_hub.load(
|
|
393
|
-
repo_id="google-bert/bert-base-uncased",
|
|
394
|
-
allow_patterns=["*.bin"],
|
|
395
|
-
) as local_path:
|
|
396
|
-
# Use files under local_path
|
|
397
|
-
train_model(local_path)
|
|
398
|
-
...
|
|
399
|
-
|
|
400
|
-
```
|
|
401
|
-
|
|
402
|
-
**Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
403
|
-
```python
|
|
404
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
405
|
-
@step
|
|
406
|
-
def pull_model_from_huggingface(self):
|
|
407
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
408
|
-
```
|
|
409
|
-
|
|
410
|
-
```python
|
|
411
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora", "/my-lora-directory")])
|
|
412
|
-
@step
|
|
413
|
-
def finetune_model(self):
|
|
414
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
415
|
-
# path_to_model will be /my-directory
|
|
416
|
-
```
|
|
417
|
-
|
|
418
|
-
```python
|
|
419
|
-
# Takes all the arguments passed to `snapshot_download`
|
|
420
|
-
# except for `local_dir`
|
|
421
|
-
@huggingface_hub(load=[
|
|
422
|
-
{
|
|
423
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
424
|
-
},
|
|
425
|
-
{
|
|
426
|
-
"repo_id": "myorg/mistral-lora",
|
|
427
|
-
"repo_type": "model",
|
|
428
|
-
},
|
|
429
|
-
])
|
|
430
|
-
@step
|
|
431
|
-
def finetune_model(self):
|
|
432
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
433
|
-
# path_to_model will be /my-directory
|
|
434
|
-
```
|
|
435
|
-
|
|
436
|
-
|
|
437
|
-
Parameters
|
|
438
|
-
----------
|
|
439
|
-
temp_dir_root : str, optional
|
|
440
|
-
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
441
|
-
|
|
442
|
-
cache_scope : str, optional
|
|
443
|
-
The scope of the cache. Can be `checkpoint` / `flow` / `global`.
|
|
444
|
-
|
|
445
|
-
- `checkpoint` (default): All repos are stored like objects saved by `@checkpoint`.
|
|
446
|
-
i.e., the cached path is derived from the namespace, flow, step, and Metaflow foreach iteration.
|
|
447
|
-
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
448
|
-
|
|
449
|
-
- `flow`: All repos are cached under the flow, regardless of namespace.
|
|
450
|
-
i.e., the cached path is derived solely from the flow name.
|
|
451
|
-
When to use this mode:
|
|
452
|
-
- Multiple users are executing the same flow and want shared access to the repos cached by the decorator.
|
|
453
|
-
- Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
454
|
-
|
|
455
|
-
- `global`: All repos are cached under a globally static path.
|
|
456
|
-
i.e., the base path of the cache is static and all repos are stored under it.
|
|
457
|
-
When to use this mode:
|
|
458
|
-
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
459
|
-
|
|
460
|
-
Each caching scope comes with its own trade-offs:
|
|
461
|
-
- `checkpoint`:
|
|
462
|
-
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
463
|
-
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
464
|
-
- `flow`:
|
|
465
|
-
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
466
|
-
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
467
|
-
- It doesn't promote cache reuse across flows.
|
|
468
|
-
- `global`:
|
|
469
|
-
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
470
|
-
- It promotes cache reuse across flows.
|
|
471
|
-
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
472
|
-
|
|
473
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
474
|
-
The list of repos (models/datasets) to load.
|
|
475
|
-
|
|
476
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
477
|
-
|
|
478
|
-
- If repo (model/dataset) is not found in the datastore:
|
|
479
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
480
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
481
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
482
|
-
|
|
483
|
-
- If repo is found in the datastore:
|
|
484
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
485
|
-
"""
|
|
486
|
-
...
|
|
487
|
-
|
|
488
|
-
@typing.overload
|
|
489
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
490
|
-
"""
|
|
491
|
-
Specifies the resources needed when executing this step.
|
|
492
|
-
|
|
493
|
-
Use `@resources` to specify the resource requirements
|
|
494
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
495
|
-
|
|
496
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
497
|
-
```
|
|
498
|
-
python myflow.py run --with batch
|
|
499
|
-
```
|
|
500
|
-
or
|
|
501
|
-
```
|
|
502
|
-
python myflow.py run --with kubernetes
|
|
503
|
-
```
|
|
504
|
-
which executes the flow on the desired system using the
|
|
505
|
-
requirements specified in `@resources`.
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
Parameters
|
|
509
|
-
----------
|
|
510
|
-
cpu : int, default 1
|
|
511
|
-
Number of CPUs required for this step.
|
|
512
|
-
gpu : int, optional, default None
|
|
513
|
-
Number of GPUs required for this step.
|
|
514
|
-
disk : int, optional, default None
|
|
515
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
516
|
-
memory : int, default 4096
|
|
517
|
-
Memory size (in MB) required for this step.
|
|
518
|
-
shared_memory : int, optional, default None
|
|
519
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
520
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
521
|
-
"""
|
|
522
|
-
...
|
|
523
|
-
|
|
524
|
-
@typing.overload
|
|
525
|
-
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
526
|
-
...
|
|
527
|
-
|
|
528
|
-
@typing.overload
|
|
529
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
530
|
-
...
|
|
531
|
-
|
|
532
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
533
|
-
"""
|
|
534
|
-
Specifies the resources needed when executing this step.
|
|
535
|
-
|
|
536
|
-
Use `@resources` to specify the resource requirements
|
|
537
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
538
|
-
|
|
539
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
540
|
-
```
|
|
541
|
-
python myflow.py run --with batch
|
|
542
|
-
```
|
|
543
|
-
or
|
|
544
|
-
```
|
|
545
|
-
python myflow.py run --with kubernetes
|
|
546
|
-
```
|
|
547
|
-
which executes the flow on the desired system using the
|
|
548
|
-
requirements specified in `@resources`.
|
|
549
|
-
|
|
550
|
-
|
|
551
|
-
Parameters
|
|
552
|
-
----------
|
|
553
|
-
cpu : int, default 1
|
|
554
|
-
Number of CPUs required for this step.
|
|
555
|
-
gpu : int, optional, default None
|
|
556
|
-
Number of GPUs required for this step.
|
|
557
|
-
disk : int, optional, default None
|
|
558
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
559
|
-
memory : int, default 4096
|
|
560
|
-
Memory size (in MB) required for this step.
|
|
561
|
-
shared_memory : int, optional, default None
|
|
562
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
563
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
564
|
-
"""
|
|
565
|
-
...
|
|
566
|
-
|
|
567
|
-
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
568
|
-
"""
|
|
569
|
-
Specifies that this step should execute on DGX cloud.
|
|
570
|
-
|
|
571
|
-
|
|
572
|
-
Parameters
|
|
573
|
-
----------
|
|
574
|
-
gpu : int
|
|
575
|
-
Number of GPUs to use.
|
|
576
|
-
gpu_type : str
|
|
577
|
-
Type of Nvidia GPU to use.
|
|
578
|
-
queue_timeout : int
|
|
579
|
-
Time to keep the job in NVCF's queue.
|
|
580
|
-
"""
|
|
581
|
-
...
|
|
582
|
-
|
|
583
|
-
@typing.overload
|
|
584
|
-
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
585
|
-
"""
|
|
586
|
-
Specifies a timeout for your step.
|
|
587
|
-
|
|
588
|
-
This decorator is useful if this step may hang indefinitely.
|
|
589
|
-
|
|
590
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
591
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
592
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
593
|
-
|
|
594
|
-
Note that all the values specified in parameters are added together so if you specify
|
|
595
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
Parameters
|
|
599
|
-
----------
|
|
600
|
-
seconds : int, default 0
|
|
601
|
-
Number of seconds to wait prior to timing out.
|
|
602
|
-
minutes : int, default 0
|
|
603
|
-
Number of minutes to wait prior to timing out.
|
|
604
|
-
hours : int, default 0
|
|
605
|
-
Number of hours to wait prior to timing out.
|
|
606
|
-
"""
|
|
607
|
-
...
|
|
608
|
-
|
|
609
|
-
@typing.overload
|
|
610
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
611
|
-
...
|
|
612
|
-
|
|
613
|
-
@typing.overload
|
|
614
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
615
|
-
...
|
|
616
|
-
|
|
617
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
618
|
-
"""
|
|
619
|
-
Specifies a timeout for your step.
|
|
620
|
-
|
|
621
|
-
This decorator is useful if this step may hang indefinitely.
|
|
622
|
-
|
|
623
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
624
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
625
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
626
|
-
|
|
627
|
-
Note that all the values specified in parameters are added together so if you specify
|
|
628
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
629
|
-
|
|
630
|
-
|
|
631
|
-
Parameters
|
|
632
|
-
----------
|
|
633
|
-
seconds : int, default 0
|
|
634
|
-
Number of seconds to wait prior to timing out.
|
|
635
|
-
minutes : int, default 0
|
|
636
|
-
Number of minutes to wait prior to timing out.
|
|
637
|
-
hours : int, default 0
|
|
638
|
-
Number of hours to wait prior to timing out.
|
|
639
|
-
"""
|
|
640
|
-
...
|
|
641
|
-
|
|
642
|
-
@typing.overload
|
|
643
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
644
|
-
"""
|
|
645
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
646
|
-
the execution of a step.
|
|
647
|
-
|
|
648
|
-
|
|
649
|
-
Parameters
|
|
650
|
-
----------
|
|
651
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
652
|
-
List of secret specs, defining how the secrets are to be retrieved
|
|
653
|
-
role : str, optional, default: None
|
|
654
|
-
Role to use for fetching secrets
|
|
655
|
-
"""
|
|
656
|
-
...
|
|
657
|
-
|
|
658
|
-
@typing.overload
|
|
659
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
660
|
-
...
|
|
661
|
-
|
|
662
|
-
@typing.overload
|
|
663
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
664
|
-
...
|
|
665
|
-
|
|
666
|
-
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
667
|
-
"""
|
|
668
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
669
|
-
the execution of a step.
|
|
670
|
-
|
|
671
|
-
|
|
672
|
-
Parameters
|
|
673
|
-
----------
|
|
674
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
675
|
-
List of secret specs, defining how the secrets are to be retrieved
|
|
676
|
-
role : str, optional, default: None
|
|
677
|
-
Role to use for fetching secrets
|
|
678
|
-
"""
|
|
679
|
-
...
|
|
680
|
-
|
|
681
|
-
@typing.overload
|
|
682
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
683
|
-
"""
|
|
684
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
685
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
686
|
-
a Neo Cloud like Nebius.
|
|
687
|
-
"""
|
|
688
|
-
...
|
|
689
|
-
|
|
690
|
-
@typing.overload
|
|
691
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
692
|
-
...
|
|
693
|
-
|
|
694
|
-
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
695
|
-
"""
|
|
696
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
697
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
698
|
-
a Neo Cloud like Nebius.
|
|
699
|
-
"""
|
|
700
|
-
...
|
|
701
|
-
|
|
702
|
-
@typing.overload
|
|
703
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
704
|
-
"""
|
|
705
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
706
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
707
|
-
"""
|
|
708
|
-
...
|
|
709
|
-
|
|
710
|
-
@typing.overload
|
|
711
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
712
|
-
...
|
|
713
|
-
|
|
714
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
715
|
-
"""
|
|
716
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
717
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
718
|
-
"""
|
|
719
|
-
...
|
|
720
|
-
|
|
721
|
-
@typing.overload
|
|
722
|
-
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
723
|
-
"""
|
|
724
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
725
|
-
|
|
726
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
727
|
-
|
|
728
|
-
|
|
729
|
-
Parameters
|
|
730
|
-
----------
|
|
731
|
-
type : str, default 'default'
|
|
732
|
-
Card type.
|
|
733
|
-
id : str, optional, default None
|
|
734
|
-
If multiple cards are present, use this id to identify this card.
|
|
735
|
-
options : Dict[str, Any], default {}
|
|
736
|
-
Options passed to the card. The contents depend on the card type.
|
|
737
|
-
timeout : int, default 45
|
|
738
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
739
|
-
"""
|
|
740
|
-
...
|
|
741
|
-
|
|
742
|
-
@typing.overload
|
|
743
|
-
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
744
|
-
...
|
|
745
|
-
|
|
746
|
-
@typing.overload
|
|
747
|
-
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
748
|
-
...
|
|
749
|
-
|
|
750
|
-
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
751
|
-
"""
|
|
752
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
753
|
-
|
|
754
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
755
|
-
|
|
756
|
-
|
|
757
|
-
Parameters
|
|
758
|
-
----------
|
|
759
|
-
type : str, default 'default'
|
|
760
|
-
Card type.
|
|
761
|
-
id : str, optional, default None
|
|
762
|
-
If multiple cards are present, use this id to identify this card.
|
|
763
|
-
options : Dict[str, Any], default {}
|
|
764
|
-
Options passed to the card. The contents depend on the card type.
|
|
765
|
-
timeout : int, default 45
|
|
766
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
767
|
-
"""
|
|
768
|
-
...
|
|
769
|
-
|
|
770
|
-
@typing.overload
|
|
771
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
772
|
-
"""
|
|
773
|
-
Specifies that the step will success under all circumstances.
|
|
774
|
-
|
|
775
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
776
|
-
contains the exception raised. You can use it to detect the presence
|
|
777
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
778
|
-
are missing.
|
|
779
|
-
|
|
780
|
-
|
|
781
|
-
Parameters
|
|
782
|
-
----------
|
|
783
|
-
var : str, optional, default None
|
|
784
|
-
Name of the artifact in which to store the caught exception.
|
|
785
|
-
If not specified, the exception is not stored.
|
|
786
|
-
print_exception : bool, default True
|
|
787
|
-
Determines whether or not the exception is printed to
|
|
788
|
-
stdout when caught.
|
|
789
|
-
"""
|
|
790
|
-
...
|
|
791
|
-
|
|
792
|
-
@typing.overload
|
|
793
|
-
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
794
|
-
...
|
|
795
|
-
|
|
796
|
-
@typing.overload
|
|
797
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
798
|
-
...
|
|
799
|
-
|
|
800
|
-
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
801
|
-
"""
|
|
802
|
-
Specifies that the step will success under all circumstances.
|
|
803
|
-
|
|
804
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
805
|
-
contains the exception raised. You can use it to detect the presence
|
|
806
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
807
|
-
are missing.
|
|
372
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
373
|
+
```
|
|
374
|
+
python myflow.py run --with batch
|
|
375
|
+
```
|
|
376
|
+
or
|
|
377
|
+
```
|
|
378
|
+
python myflow.py run --with kubernetes
|
|
379
|
+
```
|
|
380
|
+
which executes the flow on the desired system using the
|
|
381
|
+
requirements specified in `@resources`.
|
|
808
382
|
|
|
809
383
|
|
|
810
384
|
Parameters
|
|
811
385
|
----------
|
|
812
|
-
|
|
813
|
-
|
|
814
|
-
|
|
815
|
-
|
|
816
|
-
|
|
817
|
-
|
|
386
|
+
cpu : int, default 1
|
|
387
|
+
Number of CPUs required for this step.
|
|
388
|
+
gpu : int, optional, default None
|
|
389
|
+
Number of GPUs required for this step.
|
|
390
|
+
disk : int, optional, default None
|
|
391
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
392
|
+
memory : int, default 4096
|
|
393
|
+
Memory size (in MB) required for this step.
|
|
394
|
+
shared_memory : int, optional, default None
|
|
395
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
396
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
818
397
|
"""
|
|
819
398
|
...
|
|
820
399
|
|
|
@@ -918,37 +497,260 @@ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
918
497
|
self.next(self.end)
|
|
919
498
|
```
|
|
920
499
|
|
|
921
|
-
- Loading models
|
|
500
|
+
- Loading models
|
|
501
|
+
```python
|
|
502
|
+
@step
|
|
503
|
+
def train(self):
|
|
504
|
+
# current.model.load returns the path to the model loaded
|
|
505
|
+
checkpoint_path = current.model.load(
|
|
506
|
+
self.checkpoint_key,
|
|
507
|
+
)
|
|
508
|
+
model_path = current.model.load(
|
|
509
|
+
self.model,
|
|
510
|
+
)
|
|
511
|
+
self.next(self.test)
|
|
512
|
+
```
|
|
513
|
+
|
|
514
|
+
|
|
515
|
+
Parameters
|
|
516
|
+
----------
|
|
517
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
518
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
519
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
520
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
521
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
522
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
523
|
+
|
|
524
|
+
temp_dir_root : str, default: None
|
|
525
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
526
|
+
"""
|
|
527
|
+
...
|
|
528
|
+
|
|
529
|
+
@typing.overload
|
|
530
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
531
|
+
"""
|
|
532
|
+
Specifies that the step will success under all circumstances.
|
|
533
|
+
|
|
534
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
535
|
+
contains the exception raised. You can use it to detect the presence
|
|
536
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
537
|
+
are missing.
|
|
538
|
+
|
|
539
|
+
|
|
540
|
+
Parameters
|
|
541
|
+
----------
|
|
542
|
+
var : str, optional, default None
|
|
543
|
+
Name of the artifact in which to store the caught exception.
|
|
544
|
+
If not specified, the exception is not stored.
|
|
545
|
+
print_exception : bool, default True
|
|
546
|
+
Determines whether or not the exception is printed to
|
|
547
|
+
stdout when caught.
|
|
548
|
+
"""
|
|
549
|
+
...
|
|
550
|
+
|
|
551
|
+
@typing.overload
|
|
552
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
553
|
+
...
|
|
554
|
+
|
|
555
|
+
@typing.overload
|
|
556
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
557
|
+
...
|
|
558
|
+
|
|
559
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
560
|
+
"""
|
|
561
|
+
Specifies that the step will success under all circumstances.
|
|
562
|
+
|
|
563
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
564
|
+
contains the exception raised. You can use it to detect the presence
|
|
565
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
566
|
+
are missing.
|
|
567
|
+
|
|
568
|
+
|
|
569
|
+
Parameters
|
|
570
|
+
----------
|
|
571
|
+
var : str, optional, default None
|
|
572
|
+
Name of the artifact in which to store the caught exception.
|
|
573
|
+
If not specified, the exception is not stored.
|
|
574
|
+
print_exception : bool, default True
|
|
575
|
+
Determines whether or not the exception is printed to
|
|
576
|
+
stdout when caught.
|
|
577
|
+
"""
|
|
578
|
+
...
|
|
579
|
+
|
|
580
|
+
@typing.overload
|
|
581
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
582
|
+
"""
|
|
583
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
584
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
585
|
+
a Neo Cloud like CoreWeave.
|
|
586
|
+
"""
|
|
587
|
+
...
|
|
588
|
+
|
|
589
|
+
@typing.overload
|
|
590
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
591
|
+
...
|
|
592
|
+
|
|
593
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
594
|
+
"""
|
|
595
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
596
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
597
|
+
a Neo Cloud like CoreWeave.
|
|
598
|
+
"""
|
|
599
|
+
...
|
|
600
|
+
|
|
601
|
+
@typing.overload
|
|
602
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
603
|
+
"""
|
|
604
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
605
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
606
|
+
"""
|
|
607
|
+
...
|
|
608
|
+
|
|
609
|
+
@typing.overload
|
|
610
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
611
|
+
...
|
|
612
|
+
|
|
613
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
614
|
+
"""
|
|
615
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
616
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
617
|
+
"""
|
|
618
|
+
...
|
|
619
|
+
|
|
620
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
621
|
+
"""
|
|
622
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
623
|
+
|
|
624
|
+
|
|
625
|
+
Parameters
|
|
626
|
+
----------
|
|
627
|
+
integration_name : str, optional
|
|
628
|
+
Name of the S3 proxy integration. If not specified, will use the only
|
|
629
|
+
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
630
|
+
write_mode : str, optional
|
|
631
|
+
The desired behavior during write operations to target (origin) S3 bucket.
|
|
632
|
+
allowed options are:
|
|
633
|
+
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
634
|
+
storage
|
|
635
|
+
"origin" -> only write to the target S3 bucket
|
|
636
|
+
"cache" -> only write to the object storage service used for caching
|
|
637
|
+
debug : bool, optional
|
|
638
|
+
Enable debug logging for proxy operations.
|
|
639
|
+
"""
|
|
640
|
+
...
|
|
641
|
+
|
|
642
|
+
@typing.overload
|
|
643
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
644
|
+
"""
|
|
645
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
646
|
+
|
|
647
|
+
|
|
648
|
+
Parameters
|
|
649
|
+
----------
|
|
650
|
+
vars : Dict[str, str], default {}
|
|
651
|
+
Dictionary of environment variables to set.
|
|
652
|
+
"""
|
|
653
|
+
...
|
|
654
|
+
|
|
655
|
+
@typing.overload
|
|
656
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
657
|
+
...
|
|
658
|
+
|
|
659
|
+
@typing.overload
|
|
660
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
661
|
+
...
|
|
662
|
+
|
|
663
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
664
|
+
"""
|
|
665
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
666
|
+
|
|
667
|
+
|
|
668
|
+
Parameters
|
|
669
|
+
----------
|
|
670
|
+
vars : Dict[str, str], default {}
|
|
671
|
+
Dictionary of environment variables to set.
|
|
672
|
+
"""
|
|
673
|
+
...
|
|
674
|
+
|
|
675
|
+
@typing.overload
|
|
676
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
677
|
+
"""
|
|
678
|
+
Enables checkpointing for a step.
|
|
679
|
+
|
|
680
|
+
> Examples
|
|
681
|
+
|
|
682
|
+
- Saving Checkpoints
|
|
683
|
+
|
|
684
|
+
```python
|
|
685
|
+
@checkpoint
|
|
686
|
+
@step
|
|
687
|
+
def train(self):
|
|
688
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
689
|
+
for i in range(self.epochs):
|
|
690
|
+
# some training logic
|
|
691
|
+
loss = model.train(self.dataset)
|
|
692
|
+
if i % 10 == 0:
|
|
693
|
+
model.save(
|
|
694
|
+
current.checkpoint.directory,
|
|
695
|
+
)
|
|
696
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
697
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
698
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
699
|
+
name="epoch_checkpoint",
|
|
700
|
+
metadata={
|
|
701
|
+
"epoch": i,
|
|
702
|
+
"loss": loss,
|
|
703
|
+
}
|
|
704
|
+
)
|
|
705
|
+
```
|
|
706
|
+
|
|
707
|
+
- Using Loaded Checkpoints
|
|
708
|
+
|
|
922
709
|
```python
|
|
710
|
+
@retry(times=3)
|
|
711
|
+
@checkpoint
|
|
923
712
|
@step
|
|
924
713
|
def train(self):
|
|
925
|
-
#
|
|
926
|
-
|
|
927
|
-
|
|
928
|
-
|
|
929
|
-
|
|
930
|
-
|
|
931
|
-
|
|
932
|
-
|
|
714
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
715
|
+
# saved a checkpoint
|
|
716
|
+
checkpoint_path = None
|
|
717
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
718
|
+
print("Loaded checkpoint from the previous attempt")
|
|
719
|
+
checkpoint_path = current.checkpoint.directory
|
|
720
|
+
|
|
721
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
722
|
+
for i in range(self.epochs):
|
|
723
|
+
...
|
|
933
724
|
```
|
|
934
725
|
|
|
935
726
|
|
|
936
727
|
Parameters
|
|
937
728
|
----------
|
|
938
|
-
|
|
939
|
-
|
|
940
|
-
|
|
941
|
-
|
|
942
|
-
|
|
943
|
-
|
|
729
|
+
load_policy : str, default: "fresh"
|
|
730
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
731
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
732
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
733
|
+
will be loaded at the start of the task.
|
|
734
|
+
- "none": Do not load any checkpoint
|
|
735
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
736
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
737
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
738
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
944
739
|
|
|
945
740
|
temp_dir_root : str, default: None
|
|
946
|
-
The root directory under which `current.
|
|
741
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
947
742
|
"""
|
|
948
743
|
...
|
|
949
744
|
|
|
950
745
|
@typing.overload
|
|
951
|
-
def checkpoint(
|
|
746
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
747
|
+
...
|
|
748
|
+
|
|
749
|
+
@typing.overload
|
|
750
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
751
|
+
...
|
|
752
|
+
|
|
753
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
952
754
|
"""
|
|
953
755
|
Enables checkpointing for a step.
|
|
954
756
|
|
|
@@ -1001,174 +803,349 @@ def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typi
|
|
|
1001
803
|
|
|
1002
804
|
Parameters
|
|
1003
805
|
----------
|
|
1004
|
-
load_policy : str, default: "fresh"
|
|
1005
|
-
The policy for loading the checkpoint. The following policies are supported:
|
|
1006
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1007
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1008
|
-
will be loaded at the start of the task.
|
|
1009
|
-
- "none": Do not load any checkpoint
|
|
1010
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1011
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1012
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1013
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
1014
|
-
|
|
1015
|
-
temp_dir_root : str, default: None
|
|
1016
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
1017
|
-
"""
|
|
1018
|
-
...
|
|
1019
|
-
|
|
1020
|
-
@typing.overload
|
|
1021
|
-
def
|
|
1022
|
-
|
|
1023
|
-
|
|
1024
|
-
|
|
1025
|
-
|
|
1026
|
-
|
|
1027
|
-
|
|
1028
|
-
|
|
1029
|
-
|
|
1030
|
-
|
|
806
|
+
load_policy : str, default: "fresh"
|
|
807
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
808
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
809
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
810
|
+
will be loaded at the start of the task.
|
|
811
|
+
- "none": Do not load any checkpoint
|
|
812
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
813
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
814
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
815
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
816
|
+
|
|
817
|
+
temp_dir_root : str, default: None
|
|
818
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
819
|
+
"""
|
|
820
|
+
...
|
|
821
|
+
|
|
822
|
+
@typing.overload
|
|
823
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
824
|
+
"""
|
|
825
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
826
|
+
the execution of a step.
|
|
827
|
+
|
|
828
|
+
|
|
829
|
+
Parameters
|
|
830
|
+
----------
|
|
831
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
832
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
833
|
+
role : str, optional, default: None
|
|
834
|
+
Role to use for fetching secrets
|
|
835
|
+
"""
|
|
836
|
+
...
|
|
837
|
+
|
|
838
|
+
@typing.overload
|
|
839
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
840
|
+
...
|
|
841
|
+
|
|
842
|
+
@typing.overload
|
|
843
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
844
|
+
...
|
|
845
|
+
|
|
846
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
847
|
+
"""
|
|
848
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
849
|
+
the execution of a step.
|
|
850
|
+
|
|
851
|
+
|
|
852
|
+
Parameters
|
|
853
|
+
----------
|
|
854
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
855
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
856
|
+
role : str, optional, default: None
|
|
857
|
+
Role to use for fetching secrets
|
|
858
|
+
"""
|
|
859
|
+
...
|
|
860
|
+
|
|
861
|
+
@typing.overload
|
|
862
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
863
|
+
"""
|
|
864
|
+
Specifies the number of times the task corresponding
|
|
865
|
+
to a step needs to be retried.
|
|
866
|
+
|
|
867
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
868
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
869
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
870
|
+
|
|
871
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
872
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
873
|
+
ensuring that the flow execution can continue.
|
|
874
|
+
|
|
875
|
+
|
|
876
|
+
Parameters
|
|
877
|
+
----------
|
|
878
|
+
times : int, default 3
|
|
879
|
+
Number of times to retry this task.
|
|
880
|
+
minutes_between_retries : int, default 2
|
|
881
|
+
Number of minutes between retries.
|
|
882
|
+
"""
|
|
883
|
+
...
|
|
884
|
+
|
|
885
|
+
@typing.overload
|
|
886
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
887
|
+
...
|
|
888
|
+
|
|
889
|
+
@typing.overload
|
|
890
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
891
|
+
...
|
|
892
|
+
|
|
893
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
894
|
+
"""
|
|
895
|
+
Specifies the number of times the task corresponding
|
|
896
|
+
to a step needs to be retried.
|
|
897
|
+
|
|
898
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
899
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
900
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
901
|
+
|
|
902
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
903
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
904
|
+
ensuring that the flow execution can continue.
|
|
905
|
+
|
|
906
|
+
|
|
907
|
+
Parameters
|
|
908
|
+
----------
|
|
909
|
+
times : int, default 3
|
|
910
|
+
Number of times to retry this task.
|
|
911
|
+
minutes_between_retries : int, default 2
|
|
912
|
+
Number of minutes between retries.
|
|
913
|
+
"""
|
|
914
|
+
...
|
|
915
|
+
|
|
916
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
917
|
+
"""
|
|
918
|
+
Decorator that helps cache, version, and store models/datasets from the Hugging Face Hub.
|
|
919
|
+
|
|
920
|
+
> Examples
|
|
921
|
+
|
|
922
|
+
**Usage: creating references to models from the Hugging Face Hub that may be loaded in downstream steps**
|
|
923
|
+
```python
|
|
924
|
+
@huggingface_hub
|
|
925
|
+
@step
|
|
926
|
+
def pull_model_from_huggingface(self):
|
|
927
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
928
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
929
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
930
|
+
# value of the function is a reference to the model in the backend storage.
|
|
931
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
932
|
+
|
|
933
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
934
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
935
|
+
repo_id=self.model_id,
|
|
936
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
937
|
+
)
|
|
938
|
+
self.next(self.train)
|
|
939
|
+
```
|
|
940
|
+
|
|
941
|
+
**Usage: explicitly loading models at runtime from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
942
|
+
```python
|
|
943
|
+
@huggingface_hub
|
|
944
|
+
@step
|
|
945
|
+
def run_training(self):
|
|
946
|
+
# Temporary directory (auto-cleaned on exit)
|
|
947
|
+
with current.huggingface_hub.load(
|
|
948
|
+
repo_id="google-bert/bert-base-uncased",
|
|
949
|
+
allow_patterns=["*.bin"],
|
|
950
|
+
) as local_path:
|
|
951
|
+
# Use files under local_path
|
|
952
|
+
train_model(local_path)
|
|
953
|
+
...
|
|
954
|
+
|
|
955
|
+
```
|
|
956
|
+
|
|
957
|
+
**Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
958
|
+
```python
|
|
959
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
960
|
+
@step
|
|
961
|
+
def pull_model_from_huggingface(self):
|
|
962
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
963
|
+
```
|
|
964
|
+
|
|
965
|
+
```python
|
|
966
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora", "/my-lora-directory")])
|
|
967
|
+
@step
|
|
968
|
+
def finetune_model(self):
|
|
969
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
970
|
+
# path_to_model will be /my-directory
|
|
971
|
+
```
|
|
972
|
+
|
|
973
|
+
```python
|
|
974
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
975
|
+
# except for `local_dir`
|
|
976
|
+
@huggingface_hub(load=[
|
|
977
|
+
{
|
|
978
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
979
|
+
},
|
|
980
|
+
{
|
|
981
|
+
"repo_id": "myorg/mistral-lora",
|
|
982
|
+
"repo_type": "model",
|
|
983
|
+
},
|
|
984
|
+
])
|
|
985
|
+
@step
|
|
986
|
+
def finetune_model(self):
|
|
987
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
988
|
+
# path_to_model will be /my-directory
|
|
989
|
+
```
|
|
990
|
+
|
|
991
|
+
|
|
992
|
+
Parameters
|
|
993
|
+
----------
|
|
994
|
+
temp_dir_root : str, optional
|
|
995
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
1031
996
|
|
|
1032
|
-
|
|
997
|
+
cache_scope : str, optional
|
|
998
|
+
The scope of the cache. Can be `checkpoint` / `flow` / `global`.
|
|
1033
999
|
|
|
1034
|
-
|
|
1000
|
+
- `checkpoint` (default): All repos are stored like objects saved by `@checkpoint`.
|
|
1001
|
+
i.e., the cached path is derived from the namespace, flow, step, and Metaflow foreach iteration.
|
|
1002
|
+
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
1035
1003
|
|
|
1036
|
-
|
|
1037
|
-
|
|
1038
|
-
|
|
1039
|
-
|
|
1040
|
-
|
|
1041
|
-
for i in range(self.epochs):
|
|
1042
|
-
# some training logic
|
|
1043
|
-
loss = model.train(self.dataset)
|
|
1044
|
-
if i % 10 == 0:
|
|
1045
|
-
model.save(
|
|
1046
|
-
current.checkpoint.directory,
|
|
1047
|
-
)
|
|
1048
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1049
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1050
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
1051
|
-
name="epoch_checkpoint",
|
|
1052
|
-
metadata={
|
|
1053
|
-
"epoch": i,
|
|
1054
|
-
"loss": loss,
|
|
1055
|
-
}
|
|
1056
|
-
)
|
|
1057
|
-
```
|
|
1004
|
+
- `flow`: All repos are cached under the flow, regardless of namespace.
|
|
1005
|
+
i.e., the cached path is derived solely from the flow name.
|
|
1006
|
+
When to use this mode:
|
|
1007
|
+
- Multiple users are executing the same flow and want shared access to the repos cached by the decorator.
|
|
1008
|
+
- Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
1058
1009
|
|
|
1059
|
-
|
|
1010
|
+
- `global`: All repos are cached under a globally static path.
|
|
1011
|
+
i.e., the base path of the cache is static and all repos are stored under it.
|
|
1012
|
+
When to use this mode:
|
|
1013
|
+
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
1060
1014
|
|
|
1061
|
-
|
|
1062
|
-
|
|
1063
|
-
|
|
1064
|
-
|
|
1065
|
-
|
|
1066
|
-
|
|
1067
|
-
|
|
1068
|
-
|
|
1069
|
-
|
|
1070
|
-
|
|
1071
|
-
|
|
1015
|
+
Each caching scope comes with its own trade-offs:
|
|
1016
|
+
- `checkpoint`:
|
|
1017
|
+
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
1018
|
+
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
1019
|
+
- `flow`:
|
|
1020
|
+
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
1021
|
+
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
1022
|
+
- It doesn't promote cache reuse across flows.
|
|
1023
|
+
- `global`:
|
|
1024
|
+
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
1025
|
+
- It promotes cache reuse across flows.
|
|
1026
|
+
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
1072
1027
|
|
|
1073
|
-
|
|
1074
|
-
|
|
1075
|
-
...
|
|
1076
|
-
```
|
|
1028
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
1029
|
+
The list of repos (models/datasets) to load.
|
|
1077
1030
|
|
|
1031
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
1078
1032
|
|
|
1079
|
-
|
|
1080
|
-
|
|
1081
|
-
|
|
1082
|
-
|
|
1083
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1084
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1085
|
-
will be loaded at the start of the task.
|
|
1086
|
-
- "none": Do not load any checkpoint
|
|
1087
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1088
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1089
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1090
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
1033
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
1034
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
1035
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
1036
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
1091
1037
|
|
|
1092
|
-
|
|
1093
|
-
|
|
1038
|
+
- If repo is found in the datastore:
|
|
1039
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
1094
1040
|
"""
|
|
1095
1041
|
...
|
|
1096
1042
|
|
|
1097
|
-
|
|
1098
|
-
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1043
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1099
1044
|
"""
|
|
1100
|
-
|
|
1045
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
1101
1046
|
|
|
1102
|
-
|
|
1103
|
-
|
|
1104
|
-
|
|
1105
|
-
|
|
1047
|
+
User code call
|
|
1048
|
+
--------------
|
|
1049
|
+
@ollama(
|
|
1050
|
+
models=[...],
|
|
1051
|
+
...
|
|
1052
|
+
)
|
|
1053
|
+
|
|
1054
|
+
Valid backend options
|
|
1055
|
+
---------------------
|
|
1056
|
+
- 'local': Run as a separate process on the local task machine.
|
|
1057
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
1058
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
1059
|
+
|
|
1060
|
+
Valid model options
|
|
1061
|
+
-------------------
|
|
1062
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
1106
1063
|
|
|
1107
1064
|
|
|
1108
1065
|
Parameters
|
|
1109
1066
|
----------
|
|
1110
|
-
|
|
1111
|
-
|
|
1112
|
-
|
|
1113
|
-
|
|
1114
|
-
|
|
1115
|
-
|
|
1116
|
-
|
|
1117
|
-
|
|
1118
|
-
|
|
1119
|
-
|
|
1067
|
+
models: list[str]
|
|
1068
|
+
List of Ollama containers running models in sidecars.
|
|
1069
|
+
backend: str
|
|
1070
|
+
Determines where and how to run the Ollama process.
|
|
1071
|
+
force_pull: bool
|
|
1072
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
1073
|
+
cache_update_policy: str
|
|
1074
|
+
Cache update policy: "auto", "force", or "never".
|
|
1075
|
+
force_cache_update: bool
|
|
1076
|
+
Simple override for "force" cache update policy.
|
|
1077
|
+
debug: bool
|
|
1078
|
+
Whether to turn on verbose debugging logs.
|
|
1079
|
+
circuit_breaker_config: dict
|
|
1080
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
1081
|
+
timeout_config: dict
|
|
1082
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
1120
1083
|
"""
|
|
1121
1084
|
...
|
|
1122
1085
|
|
|
1123
1086
|
@typing.overload
|
|
1124
|
-
def
|
|
1087
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1088
|
+
"""
|
|
1089
|
+
Internal decorator to support Fast bakery
|
|
1090
|
+
"""
|
|
1125
1091
|
...
|
|
1126
1092
|
|
|
1127
1093
|
@typing.overload
|
|
1128
|
-
def
|
|
1094
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1129
1095
|
...
|
|
1130
1096
|
|
|
1131
|
-
def
|
|
1097
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1132
1098
|
"""
|
|
1133
|
-
|
|
1099
|
+
Internal decorator to support Fast bakery
|
|
1100
|
+
"""
|
|
1101
|
+
...
|
|
1102
|
+
|
|
1103
|
+
@typing.overload
|
|
1104
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1105
|
+
"""
|
|
1106
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1134
1107
|
|
|
1135
|
-
|
|
1136
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1137
|
-
you can use `@conda_base` to set packages required by all
|
|
1138
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
1108
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1139
1109
|
|
|
1140
1110
|
|
|
1141
1111
|
Parameters
|
|
1142
1112
|
----------
|
|
1143
|
-
|
|
1144
|
-
|
|
1145
|
-
|
|
1146
|
-
|
|
1147
|
-
|
|
1148
|
-
|
|
1149
|
-
|
|
1150
|
-
|
|
1151
|
-
disabled : bool, default False
|
|
1152
|
-
If set to True, disables @conda.
|
|
1113
|
+
type : str, default 'default'
|
|
1114
|
+
Card type.
|
|
1115
|
+
id : str, optional, default None
|
|
1116
|
+
If multiple cards are present, use this id to identify this card.
|
|
1117
|
+
options : Dict[str, Any], default {}
|
|
1118
|
+
Options passed to the card. The contents depend on the card type.
|
|
1119
|
+
timeout : int, default 45
|
|
1120
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1153
1121
|
"""
|
|
1154
1122
|
...
|
|
1155
1123
|
|
|
1156
1124
|
@typing.overload
|
|
1157
|
-
def
|
|
1158
|
-
"""
|
|
1159
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
1160
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
1161
|
-
"""
|
|
1125
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1162
1126
|
...
|
|
1163
1127
|
|
|
1164
1128
|
@typing.overload
|
|
1165
|
-
def
|
|
1129
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1166
1130
|
...
|
|
1167
1131
|
|
|
1168
|
-
def
|
|
1132
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
1169
1133
|
"""
|
|
1170
|
-
|
|
1171
|
-
|
|
1134
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1135
|
+
|
|
1136
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1137
|
+
|
|
1138
|
+
|
|
1139
|
+
Parameters
|
|
1140
|
+
----------
|
|
1141
|
+
type : str, default 'default'
|
|
1142
|
+
Card type.
|
|
1143
|
+
id : str, optional, default None
|
|
1144
|
+
If multiple cards are present, use this id to identify this card.
|
|
1145
|
+
options : Dict[str, Any], default {}
|
|
1146
|
+
Options passed to the card. The contents depend on the card type.
|
|
1147
|
+
timeout : int, default 45
|
|
1148
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1172
1149
|
"""
|
|
1173
1150
|
...
|
|
1174
1151
|
|
|
@@ -1251,13 +1228,69 @@ def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: ty
|
|
|
1251
1228
|
qos: str, default: Burstable
|
|
1252
1229
|
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
1253
1230
|
|
|
1254
|
-
security_context: Dict[str, Any], optional, default None
|
|
1255
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
1256
|
-
- privileged: bool, optional, default None
|
|
1257
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
1258
|
-
- run_as_user: int, optional, default None
|
|
1259
|
-
- run_as_group: int, optional, default None
|
|
1260
|
-
- run_as_non_root: bool, optional, default None
|
|
1231
|
+
security_context: Dict[str, Any], optional, default None
|
|
1232
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
1233
|
+
- privileged: bool, optional, default None
|
|
1234
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
1235
|
+
- run_as_user: int, optional, default None
|
|
1236
|
+
- run_as_group: int, optional, default None
|
|
1237
|
+
- run_as_non_root: bool, optional, default None
|
|
1238
|
+
"""
|
|
1239
|
+
...
|
|
1240
|
+
|
|
1241
|
+
@typing.overload
|
|
1242
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1243
|
+
"""
|
|
1244
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1245
|
+
to inject a card and render simple markdown content.
|
|
1246
|
+
"""
|
|
1247
|
+
...
|
|
1248
|
+
|
|
1249
|
+
@typing.overload
|
|
1250
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1251
|
+
...
|
|
1252
|
+
|
|
1253
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1254
|
+
"""
|
|
1255
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1256
|
+
to inject a card and render simple markdown content.
|
|
1257
|
+
"""
|
|
1258
|
+
...
|
|
1259
|
+
|
|
1260
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1261
|
+
"""
|
|
1262
|
+
Specifies that this step should execute on DGX cloud.
|
|
1263
|
+
|
|
1264
|
+
|
|
1265
|
+
Parameters
|
|
1266
|
+
----------
|
|
1267
|
+
gpu : int
|
|
1268
|
+
Number of GPUs to use.
|
|
1269
|
+
gpu_type : str
|
|
1270
|
+
Type of Nvidia GPU to use.
|
|
1271
|
+
queue_timeout : int
|
|
1272
|
+
Time to keep the job in NVCF's queue.
|
|
1273
|
+
"""
|
|
1274
|
+
...
|
|
1275
|
+
|
|
1276
|
+
@typing.overload
|
|
1277
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1278
|
+
"""
|
|
1279
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1280
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1281
|
+
a Neo Cloud like Nebius.
|
|
1282
|
+
"""
|
|
1283
|
+
...
|
|
1284
|
+
|
|
1285
|
+
@typing.overload
|
|
1286
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1287
|
+
...
|
|
1288
|
+
|
|
1289
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1290
|
+
"""
|
|
1291
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1292
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1293
|
+
a Neo Cloud like Nebius.
|
|
1261
1294
|
"""
|
|
1262
1295
|
...
|
|
1263
1296
|
|
|
@@ -1312,39 +1345,6 @@ def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
|
1312
1345
|
"""
|
|
1313
1346
|
...
|
|
1314
1347
|
|
|
1315
|
-
@typing.overload
|
|
1316
|
-
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1317
|
-
"""
|
|
1318
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
1319
|
-
|
|
1320
|
-
|
|
1321
|
-
Parameters
|
|
1322
|
-
----------
|
|
1323
|
-
vars : Dict[str, str], default {}
|
|
1324
|
-
Dictionary of environment variables to set.
|
|
1325
|
-
"""
|
|
1326
|
-
...
|
|
1327
|
-
|
|
1328
|
-
@typing.overload
|
|
1329
|
-
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1330
|
-
...
|
|
1331
|
-
|
|
1332
|
-
@typing.overload
|
|
1333
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1334
|
-
...
|
|
1335
|
-
|
|
1336
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
1337
|
-
"""
|
|
1338
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
1339
|
-
|
|
1340
|
-
|
|
1341
|
-
Parameters
|
|
1342
|
-
----------
|
|
1343
|
-
vars : Dict[str, str], default {}
|
|
1344
|
-
Dictionary of environment variables to set.
|
|
1345
|
-
"""
|
|
1346
|
-
...
|
|
1347
|
-
|
|
1348
1348
|
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1349
1349
|
"""
|
|
1350
1350
|
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
@@ -1395,38 +1395,46 @@ def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card
|
|
|
1395
1395
|
"""
|
|
1396
1396
|
...
|
|
1397
1397
|
|
|
1398
|
-
def
|
|
1398
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1399
1399
|
"""
|
|
1400
|
-
|
|
1401
|
-
|
|
1402
|
-
|
|
1403
|
-
|
|
1400
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1401
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1402
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1403
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1404
|
+
starts only after all sensors finish.
|
|
1404
1405
|
|
|
1405
1406
|
|
|
1406
1407
|
Parameters
|
|
1407
1408
|
----------
|
|
1409
|
+
timeout : int
|
|
1410
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1411
|
+
poke_interval : int
|
|
1412
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1413
|
+
mode : str
|
|
1414
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1415
|
+
exponential_backoff : bool
|
|
1416
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1417
|
+
pool : str
|
|
1418
|
+
the slot pool this task should run in,
|
|
1419
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1420
|
+
soft_fail : bool
|
|
1421
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1408
1422
|
name : str
|
|
1409
|
-
|
|
1410
|
-
|
|
1411
|
-
|
|
1412
|
-
|
|
1413
|
-
|
|
1414
|
-
|
|
1415
|
-
|
|
1416
|
-
|
|
1417
|
-
|
|
1418
|
-
|
|
1419
|
-
|
|
1420
|
-
|
|
1421
|
-
|
|
1422
|
-
|
|
1423
|
-
|
|
1424
|
-
- if `branch` is specified:
|
|
1425
|
-
- if `production` is True: `prod.<branch>`
|
|
1426
|
-
- if `production` is False: `test.<branch>`
|
|
1427
|
-
- if `branch` is not specified:
|
|
1428
|
-
- if `production` is True: `prod`
|
|
1429
|
-
- if `production` is False: `user.<username>`
|
|
1423
|
+
Name of the sensor on Airflow
|
|
1424
|
+
description : str
|
|
1425
|
+
Description of sensor in the Airflow UI
|
|
1426
|
+
bucket_key : Union[str, List[str]]
|
|
1427
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1428
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1429
|
+
bucket_name : str
|
|
1430
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1431
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1432
|
+
wildcard_match : bool
|
|
1433
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1434
|
+
aws_conn_id : str
|
|
1435
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1436
|
+
verify : bool
|
|
1437
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1430
1438
|
"""
|
|
1431
1439
|
...
|
|
1432
1440
|
|
|
@@ -1481,117 +1489,44 @@ def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly:
|
|
|
1481
1489
|
"""
|
|
1482
1490
|
...
|
|
1483
1491
|
|
|
1484
|
-
|
|
1492
|
+
@typing.overload
|
|
1493
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1485
1494
|
"""
|
|
1486
|
-
|
|
1487
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
|
1488
|
-
|
|
1489
|
-
This decorator is useful when users wish to save data to a different datastore
|
|
1490
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
|
1491
|
-
|
|
1492
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
|
1493
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
|
1494
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
|
1495
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
|
1496
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
|
1497
|
-
|
|
1498
|
-
Usage:
|
|
1499
|
-
----------
|
|
1500
|
-
|
|
1501
|
-
- Using a custom IAM role to access the datastore.
|
|
1502
|
-
|
|
1503
|
-
```python
|
|
1504
|
-
@with_artifact_store(
|
|
1505
|
-
type="s3",
|
|
1506
|
-
config=lambda: {
|
|
1507
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
|
1508
|
-
"role_arn": ROLE,
|
|
1509
|
-
},
|
|
1510
|
-
)
|
|
1511
|
-
class MyFlow(FlowSpec):
|
|
1512
|
-
|
|
1513
|
-
@checkpoint
|
|
1514
|
-
@step
|
|
1515
|
-
def start(self):
|
|
1516
|
-
with open("my_file.txt", "w") as f:
|
|
1517
|
-
f.write("Hello, World!")
|
|
1518
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
|
1519
|
-
self.next(self.end)
|
|
1520
|
-
|
|
1521
|
-
```
|
|
1522
|
-
|
|
1523
|
-
- Using credentials to access the s3-compatible datastore.
|
|
1524
|
-
|
|
1525
|
-
```python
|
|
1526
|
-
@with_artifact_store(
|
|
1527
|
-
type="s3",
|
|
1528
|
-
config=lambda: {
|
|
1529
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
|
1530
|
-
"client_params": {
|
|
1531
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1532
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1533
|
-
},
|
|
1534
|
-
},
|
|
1535
|
-
)
|
|
1536
|
-
class MyFlow(FlowSpec):
|
|
1537
|
-
|
|
1538
|
-
@checkpoint
|
|
1539
|
-
@step
|
|
1540
|
-
def start(self):
|
|
1541
|
-
with open("my_file.txt", "w") as f:
|
|
1542
|
-
f.write("Hello, World!")
|
|
1543
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
|
1544
|
-
self.next(self.end)
|
|
1545
|
-
|
|
1546
|
-
```
|
|
1547
|
-
|
|
1548
|
-
- Accessing objects stored in external datastores after task execution.
|
|
1495
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1549
1496
|
|
|
1550
|
-
|
|
1551
|
-
|
|
1552
|
-
with artifact_store_from(run=run, config={
|
|
1553
|
-
"client_params": {
|
|
1554
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1555
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1556
|
-
},
|
|
1557
|
-
}):
|
|
1558
|
-
with Checkpoint() as cp:
|
|
1559
|
-
latest = cp.list(
|
|
1560
|
-
task=run["start"].task
|
|
1561
|
-
)[0]
|
|
1562
|
-
print(latest)
|
|
1563
|
-
cp.load(
|
|
1564
|
-
latest,
|
|
1565
|
-
"test-checkpoints"
|
|
1566
|
-
)
|
|
1497
|
+
Use `@pypi_base` to set common packages required by all
|
|
1498
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1567
1499
|
|
|
1568
|
-
|
|
1569
|
-
with artifact_store_from(run=run, config={
|
|
1570
|
-
"client_params": {
|
|
1571
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1572
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1573
|
-
},
|
|
1574
|
-
}):
|
|
1575
|
-
load_model(
|
|
1576
|
-
task.data.model_ref,
|
|
1577
|
-
"test-models"
|
|
1578
|
-
)
|
|
1579
|
-
```
|
|
1580
|
-
Parameters:
|
|
1500
|
+
Parameters
|
|
1581
1501
|
----------
|
|
1502
|
+
packages : Dict[str, str], default: {}
|
|
1503
|
+
Packages to use for this flow. The key is the name of the package
|
|
1504
|
+
and the value is the version to use.
|
|
1505
|
+
python : str, optional, default: None
|
|
1506
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1507
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1508
|
+
"""
|
|
1509
|
+
...
|
|
1510
|
+
|
|
1511
|
+
@typing.overload
|
|
1512
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1513
|
+
...
|
|
1514
|
+
|
|
1515
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1516
|
+
"""
|
|
1517
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1582
1518
|
|
|
1583
|
-
|
|
1584
|
-
|
|
1519
|
+
Use `@pypi_base` to set common packages required by all
|
|
1520
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1585
1521
|
|
|
1586
|
-
|
|
1587
|
-
|
|
1588
|
-
|
|
1589
|
-
|
|
1590
|
-
|
|
1591
|
-
|
|
1592
|
-
|
|
1593
|
-
|
|
1594
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
|
1522
|
+
Parameters
|
|
1523
|
+
----------
|
|
1524
|
+
packages : Dict[str, str], default: {}
|
|
1525
|
+
Packages to use for this flow. The key is the name of the package
|
|
1526
|
+
and the value is the version to use.
|
|
1527
|
+
python : str, optional, default: None
|
|
1528
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1529
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1595
1530
|
"""
|
|
1596
1531
|
...
|
|
1597
1532
|
|
|
@@ -1696,13 +1631,10 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
|
1696
1631
|
"""
|
|
1697
1632
|
...
|
|
1698
1633
|
|
|
1699
|
-
def
|
|
1634
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1700
1635
|
"""
|
|
1701
|
-
The `@
|
|
1702
|
-
|
|
1703
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1704
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1705
|
-
starts only after all sensors finish.
|
|
1636
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
1637
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1706
1638
|
|
|
1707
1639
|
|
|
1708
1640
|
Parameters
|
|
@@ -1724,102 +1656,170 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
|
1724
1656
|
Name of the sensor on Airflow
|
|
1725
1657
|
description : str
|
|
1726
1658
|
Description of sensor in the Airflow UI
|
|
1727
|
-
|
|
1728
|
-
The
|
|
1729
|
-
|
|
1730
|
-
|
|
1731
|
-
|
|
1732
|
-
|
|
1733
|
-
|
|
1734
|
-
|
|
1735
|
-
|
|
1736
|
-
|
|
1737
|
-
|
|
1738
|
-
|
|
1659
|
+
external_dag_id : str
|
|
1660
|
+
The dag_id that contains the task you want to wait for.
|
|
1661
|
+
external_task_ids : List[str]
|
|
1662
|
+
The list of task_ids that you want to wait for.
|
|
1663
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1664
|
+
allowed_states : List[str]
|
|
1665
|
+
Iterable of allowed states, (Default: ['success'])
|
|
1666
|
+
failed_states : List[str]
|
|
1667
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
|
1668
|
+
execution_delta : datetime.timedelta
|
|
1669
|
+
time difference with the previous execution to look at,
|
|
1670
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1671
|
+
check_existence: bool
|
|
1672
|
+
Set to True to check if the external task exists or check if
|
|
1673
|
+
the DAG to wait for exists. (Default: True)
|
|
1739
1674
|
"""
|
|
1740
1675
|
...
|
|
1741
1676
|
|
|
1742
|
-
|
|
1743
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1677
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
|
1744
1678
|
"""
|
|
1745
|
-
|
|
1679
|
+
Allows setting external datastores to save data for the
|
|
1680
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
|
1746
1681
|
|
|
1747
|
-
|
|
1748
|
-
|
|
1682
|
+
This decorator is useful when users wish to save data to a different datastore
|
|
1683
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
|
1749
1684
|
|
|
1750
|
-
|
|
1685
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
|
1686
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
|
1687
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
|
1688
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
|
1689
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
|
1690
|
+
|
|
1691
|
+
Usage:
|
|
1751
1692
|
----------
|
|
1752
|
-
packages : Dict[str, str], default: {}
|
|
1753
|
-
Packages to use for this flow. The key is the name of the package
|
|
1754
|
-
and the value is the version to use.
|
|
1755
|
-
python : str, optional, default: None
|
|
1756
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1757
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1758
|
-
"""
|
|
1759
|
-
...
|
|
1760
|
-
|
|
1761
|
-
@typing.overload
|
|
1762
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1763
|
-
...
|
|
1764
|
-
|
|
1765
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1766
|
-
"""
|
|
1767
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1768
1693
|
|
|
1769
|
-
|
|
1770
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1694
|
+
- Using a custom IAM role to access the datastore.
|
|
1771
1695
|
|
|
1772
|
-
|
|
1696
|
+
```python
|
|
1697
|
+
@with_artifact_store(
|
|
1698
|
+
type="s3",
|
|
1699
|
+
config=lambda: {
|
|
1700
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
|
1701
|
+
"role_arn": ROLE,
|
|
1702
|
+
},
|
|
1703
|
+
)
|
|
1704
|
+
class MyFlow(FlowSpec):
|
|
1705
|
+
|
|
1706
|
+
@checkpoint
|
|
1707
|
+
@step
|
|
1708
|
+
def start(self):
|
|
1709
|
+
with open("my_file.txt", "w") as f:
|
|
1710
|
+
f.write("Hello, World!")
|
|
1711
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
|
1712
|
+
self.next(self.end)
|
|
1713
|
+
|
|
1714
|
+
```
|
|
1715
|
+
|
|
1716
|
+
- Using credentials to access the s3-compatible datastore.
|
|
1717
|
+
|
|
1718
|
+
```python
|
|
1719
|
+
@with_artifact_store(
|
|
1720
|
+
type="s3",
|
|
1721
|
+
config=lambda: {
|
|
1722
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
|
1723
|
+
"client_params": {
|
|
1724
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1725
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1726
|
+
},
|
|
1727
|
+
},
|
|
1728
|
+
)
|
|
1729
|
+
class MyFlow(FlowSpec):
|
|
1730
|
+
|
|
1731
|
+
@checkpoint
|
|
1732
|
+
@step
|
|
1733
|
+
def start(self):
|
|
1734
|
+
with open("my_file.txt", "w") as f:
|
|
1735
|
+
f.write("Hello, World!")
|
|
1736
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
|
1737
|
+
self.next(self.end)
|
|
1738
|
+
|
|
1739
|
+
```
|
|
1740
|
+
|
|
1741
|
+
- Accessing objects stored in external datastores after task execution.
|
|
1742
|
+
|
|
1743
|
+
```python
|
|
1744
|
+
run = Run("CheckpointsTestsFlow/8992")
|
|
1745
|
+
with artifact_store_from(run=run, config={
|
|
1746
|
+
"client_params": {
|
|
1747
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1748
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1749
|
+
},
|
|
1750
|
+
}):
|
|
1751
|
+
with Checkpoint() as cp:
|
|
1752
|
+
latest = cp.list(
|
|
1753
|
+
task=run["start"].task
|
|
1754
|
+
)[0]
|
|
1755
|
+
print(latest)
|
|
1756
|
+
cp.load(
|
|
1757
|
+
latest,
|
|
1758
|
+
"test-checkpoints"
|
|
1759
|
+
)
|
|
1760
|
+
|
|
1761
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
|
1762
|
+
with artifact_store_from(run=run, config={
|
|
1763
|
+
"client_params": {
|
|
1764
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1765
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1766
|
+
},
|
|
1767
|
+
}):
|
|
1768
|
+
load_model(
|
|
1769
|
+
task.data.model_ref,
|
|
1770
|
+
"test-models"
|
|
1771
|
+
)
|
|
1772
|
+
```
|
|
1773
|
+
Parameters:
|
|
1773
1774
|
----------
|
|
1774
|
-
|
|
1775
|
-
|
|
1776
|
-
|
|
1777
|
-
|
|
1778
|
-
|
|
1779
|
-
|
|
1775
|
+
|
|
1776
|
+
type: str
|
|
1777
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
|
1778
|
+
|
|
1779
|
+
config: dict or Callable
|
|
1780
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
|
1781
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
|
1782
|
+
- example: 's3://bucket-name/path/to/root'
|
|
1783
|
+
- example: 'gs://bucket-name/path/to/root'
|
|
1784
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
|
1785
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
|
1786
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
|
1787
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
|
1780
1788
|
"""
|
|
1781
1789
|
...
|
|
1782
1790
|
|
|
1783
|
-
def
|
|
1791
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1784
1792
|
"""
|
|
1785
|
-
|
|
1786
|
-
|
|
1793
|
+
Specifies what flows belong to the same project.
|
|
1794
|
+
|
|
1795
|
+
A project-specific namespace is created for all flows that
|
|
1796
|
+
use the same `@project(name)`.
|
|
1787
1797
|
|
|
1788
1798
|
|
|
1789
1799
|
Parameters
|
|
1790
1800
|
----------
|
|
1791
|
-
timeout : int
|
|
1792
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1793
|
-
poke_interval : int
|
|
1794
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1795
|
-
mode : str
|
|
1796
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1797
|
-
exponential_backoff : bool
|
|
1798
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1799
|
-
pool : str
|
|
1800
|
-
the slot pool this task should run in,
|
|
1801
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1802
|
-
soft_fail : bool
|
|
1803
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1804
1801
|
name : str
|
|
1805
|
-
|
|
1806
|
-
|
|
1807
|
-
|
|
1808
|
-
|
|
1809
|
-
|
|
1810
|
-
|
|
1811
|
-
|
|
1812
|
-
|
|
1813
|
-
|
|
1814
|
-
|
|
1815
|
-
|
|
1816
|
-
|
|
1817
|
-
|
|
1818
|
-
|
|
1819
|
-
|
|
1820
|
-
|
|
1821
|
-
|
|
1822
|
-
|
|
1802
|
+
Project name. Make sure that the name is unique amongst all
|
|
1803
|
+
projects that use the same production scheduler. The name may
|
|
1804
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
1805
|
+
|
|
1806
|
+
branch : Optional[str], default None
|
|
1807
|
+
The branch to use. If not specified, the branch is set to
|
|
1808
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
1809
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
1810
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
1811
|
+
|
|
1812
|
+
production : bool, default False
|
|
1813
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
1814
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
1815
|
+
`production` in the decorator and on the command line.
|
|
1816
|
+
The project branch name will be:
|
|
1817
|
+
- if `branch` is specified:
|
|
1818
|
+
- if `production` is True: `prod.<branch>`
|
|
1819
|
+
- if `production` is False: `test.<branch>`
|
|
1820
|
+
- if `branch` is not specified:
|
|
1821
|
+
- if `production` is True: `prod`
|
|
1822
|
+
- if `production` is False: `user.<username>`
|
|
1823
1823
|
"""
|
|
1824
1824
|
...
|
|
1825
1825
|
|