ob-metaflow-stubs 6.0.10.3__py2.py3-none-any.whl → 6.0.10.5__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +1012 -996
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +6 -6
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +3 -3
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +5 -5
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +4 -4
- metaflow-stubs/meta_files.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -2
- metaflow-stubs/metaflow_current.pyi +117 -73
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +90 -6
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +5 -5
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/packaging_sys/__init__.pyi +5 -5
- metaflow-stubs/packaging_sys/backend.pyi +5 -5
- metaflow-stubs/packaging_sys/distribution_support.pyi +5 -5
- metaflow-stubs/packaging_sys/tar_backend.pyi +6 -6
- metaflow-stubs/packaging_sys/utils.pyi +2 -2
- metaflow-stubs/packaging_sys/v1.pyi +3 -3
- metaflow-stubs/parameters.pyi +4 -4
- metaflow-stubs/plugins/__init__.pyi +16 -16
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/argo/exit_hooks.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +5 -5
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +5 -5
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +3 -3
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +45 -4
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +5 -5
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
- metaflow-stubs/plugins/optuna/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +5 -5
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +3 -3
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +3 -3
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +5 -5
- metaflow-stubs/runner/deployer_impl.pyi +3 -3
- metaflow-stubs/runner/metaflow_runner.pyi +4 -4
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +4 -4
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +3 -3
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_options.pyi +3 -3
- metaflow-stubs/user_configs/config_parameters.pyi +7 -7
- metaflow-stubs/user_decorators/__init__.pyi +2 -2
- metaflow-stubs/user_decorators/common.pyi +2 -2
- metaflow-stubs/user_decorators/mutable_flow.pyi +5 -5
- metaflow-stubs/user_decorators/mutable_step.pyi +5 -5
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +3 -3
- metaflow-stubs/user_decorators/user_step_decorator.pyi +5 -5
- {ob_metaflow_stubs-6.0.10.3.dist-info → ob_metaflow_stubs-6.0.10.5.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.10.5.dist-info/RECORD +262 -0
- ob_metaflow_stubs-6.0.10.3.dist-info/RECORD +0 -262
- {ob_metaflow_stubs-6.0.10.3.dist-info → ob_metaflow_stubs-6.0.10.5.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.10.3.dist-info → ob_metaflow_stubs-6.0.10.5.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
|
-
# MF version: 2.18.
|
|
4
|
-
# Generated on 2025-09-
|
|
3
|
+
# MF version: 2.18.7.1+obcheckpoint(0.2.6);ob(v1) #
|
|
4
|
+
# Generated on 2025-09-19T08:41:35.349888 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
8
8
|
|
|
9
9
|
import typing
|
|
10
10
|
if typing.TYPE_CHECKING:
|
|
11
|
-
import typing
|
|
12
11
|
import datetime
|
|
12
|
+
import typing
|
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
|
15
15
|
|
|
@@ -39,10 +39,10 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
+
from . import tuple_util as tuple_util
|
|
42
43
|
from . import cards as cards
|
|
43
|
-
from . import events as events
|
|
44
44
|
from . import metaflow_git as metaflow_git
|
|
45
|
-
from . import
|
|
45
|
+
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
@@ -168,57 +168,131 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
168
168
|
...
|
|
169
169
|
|
|
170
170
|
@typing.overload
|
|
171
|
-
def
|
|
171
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
172
172
|
"""
|
|
173
|
-
|
|
174
|
-
to a step needs to be retried.
|
|
173
|
+
Enables loading / saving of models within a step.
|
|
175
174
|
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
175
|
+
> Examples
|
|
176
|
+
- Saving Models
|
|
177
|
+
```python
|
|
178
|
+
@model
|
|
179
|
+
@step
|
|
180
|
+
def train(self):
|
|
181
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
182
|
+
self.my_model = current.model.save(
|
|
183
|
+
path_to_my_model,
|
|
184
|
+
label="my_model",
|
|
185
|
+
metadata={
|
|
186
|
+
"epochs": 10,
|
|
187
|
+
"batch-size": 32,
|
|
188
|
+
"learning-rate": 0.001,
|
|
189
|
+
}
|
|
190
|
+
)
|
|
191
|
+
self.next(self.test)
|
|
179
192
|
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
193
|
+
@model(load="my_model")
|
|
194
|
+
@step
|
|
195
|
+
def test(self):
|
|
196
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
197
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
198
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
199
|
+
self.next(self.end)
|
|
200
|
+
```
|
|
201
|
+
|
|
202
|
+
- Loading models
|
|
203
|
+
```python
|
|
204
|
+
@step
|
|
205
|
+
def train(self):
|
|
206
|
+
# current.model.load returns the path to the model loaded
|
|
207
|
+
checkpoint_path = current.model.load(
|
|
208
|
+
self.checkpoint_key,
|
|
209
|
+
)
|
|
210
|
+
model_path = current.model.load(
|
|
211
|
+
self.model,
|
|
212
|
+
)
|
|
213
|
+
self.next(self.test)
|
|
214
|
+
```
|
|
183
215
|
|
|
184
216
|
|
|
185
217
|
Parameters
|
|
186
218
|
----------
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
219
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
220
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
221
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
222
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
223
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
224
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
225
|
+
|
|
226
|
+
temp_dir_root : str, default: None
|
|
227
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
191
228
|
"""
|
|
192
229
|
...
|
|
193
230
|
|
|
194
231
|
@typing.overload
|
|
195
|
-
def
|
|
232
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
196
233
|
...
|
|
197
234
|
|
|
198
235
|
@typing.overload
|
|
199
|
-
def
|
|
236
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
200
237
|
...
|
|
201
238
|
|
|
202
|
-
def
|
|
239
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
|
203
240
|
"""
|
|
204
|
-
|
|
205
|
-
to a step needs to be retried.
|
|
241
|
+
Enables loading / saving of models within a step.
|
|
206
242
|
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
243
|
+
> Examples
|
|
244
|
+
- Saving Models
|
|
245
|
+
```python
|
|
246
|
+
@model
|
|
247
|
+
@step
|
|
248
|
+
def train(self):
|
|
249
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
250
|
+
self.my_model = current.model.save(
|
|
251
|
+
path_to_my_model,
|
|
252
|
+
label="my_model",
|
|
253
|
+
metadata={
|
|
254
|
+
"epochs": 10,
|
|
255
|
+
"batch-size": 32,
|
|
256
|
+
"learning-rate": 0.001,
|
|
257
|
+
}
|
|
258
|
+
)
|
|
259
|
+
self.next(self.test)
|
|
210
260
|
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
261
|
+
@model(load="my_model")
|
|
262
|
+
@step
|
|
263
|
+
def test(self):
|
|
264
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
265
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
266
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
267
|
+
self.next(self.end)
|
|
268
|
+
```
|
|
269
|
+
|
|
270
|
+
- Loading models
|
|
271
|
+
```python
|
|
272
|
+
@step
|
|
273
|
+
def train(self):
|
|
274
|
+
# current.model.load returns the path to the model loaded
|
|
275
|
+
checkpoint_path = current.model.load(
|
|
276
|
+
self.checkpoint_key,
|
|
277
|
+
)
|
|
278
|
+
model_path = current.model.load(
|
|
279
|
+
self.model,
|
|
280
|
+
)
|
|
281
|
+
self.next(self.test)
|
|
282
|
+
```
|
|
214
283
|
|
|
215
284
|
|
|
216
285
|
Parameters
|
|
217
286
|
----------
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
287
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
288
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
289
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
290
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
291
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
292
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
293
|
+
|
|
294
|
+
temp_dir_root : str, default: None
|
|
295
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
222
296
|
"""
|
|
223
297
|
...
|
|
224
298
|
|
|
@@ -273,120 +347,356 @@ def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card
|
|
|
273
347
|
...
|
|
274
348
|
|
|
275
349
|
@typing.overload
|
|
276
|
-
def
|
|
350
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
277
351
|
"""
|
|
278
|
-
|
|
352
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
279
353
|
It exists to make it easier for users to know that this decorator should only be used with
|
|
280
|
-
a Neo Cloud like
|
|
354
|
+
a Neo Cloud like Nebius.
|
|
281
355
|
"""
|
|
282
356
|
...
|
|
283
357
|
|
|
284
358
|
@typing.overload
|
|
285
|
-
def
|
|
359
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
286
360
|
...
|
|
287
361
|
|
|
288
|
-
def
|
|
362
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
289
363
|
"""
|
|
290
|
-
|
|
364
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
291
365
|
It exists to make it easier for users to know that this decorator should only be used with
|
|
292
|
-
a Neo Cloud like
|
|
366
|
+
a Neo Cloud like Nebius.
|
|
293
367
|
"""
|
|
294
368
|
...
|
|
295
369
|
|
|
296
370
|
@typing.overload
|
|
297
|
-
def
|
|
371
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
298
372
|
"""
|
|
299
|
-
|
|
300
|
-
|
|
373
|
+
Specifies the PyPI packages for the step.
|
|
374
|
+
|
|
375
|
+
Information in this decorator will augment any
|
|
376
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
377
|
+
you can use `@pypi_base` to set packages required by all
|
|
378
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
379
|
+
|
|
380
|
+
|
|
381
|
+
Parameters
|
|
382
|
+
----------
|
|
383
|
+
packages : Dict[str, str], default: {}
|
|
384
|
+
Packages to use for this step. The key is the name of the package
|
|
385
|
+
and the value is the version to use.
|
|
386
|
+
python : str, optional, default: None
|
|
387
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
388
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
301
389
|
"""
|
|
302
390
|
...
|
|
303
391
|
|
|
304
392
|
@typing.overload
|
|
305
|
-
def
|
|
393
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
306
394
|
...
|
|
307
395
|
|
|
308
|
-
|
|
396
|
+
@typing.overload
|
|
397
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
398
|
+
...
|
|
399
|
+
|
|
400
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
309
401
|
"""
|
|
310
|
-
|
|
311
|
-
|
|
402
|
+
Specifies the PyPI packages for the step.
|
|
403
|
+
|
|
404
|
+
Information in this decorator will augment any
|
|
405
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
406
|
+
you can use `@pypi_base` to set packages required by all
|
|
407
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
408
|
+
|
|
409
|
+
|
|
410
|
+
Parameters
|
|
411
|
+
----------
|
|
412
|
+
packages : Dict[str, str], default: {}
|
|
413
|
+
Packages to use for this step. The key is the name of the package
|
|
414
|
+
and the value is the version to use.
|
|
415
|
+
python : str, optional, default: None
|
|
416
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
417
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
312
418
|
"""
|
|
313
419
|
...
|
|
314
420
|
|
|
315
421
|
@typing.overload
|
|
316
|
-
def
|
|
422
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
317
423
|
"""
|
|
318
|
-
|
|
319
|
-
to
|
|
424
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
425
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
426
|
+
a Neo Cloud like CoreWeave.
|
|
320
427
|
"""
|
|
321
428
|
...
|
|
322
429
|
|
|
323
430
|
@typing.overload
|
|
324
|
-
def
|
|
431
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
325
432
|
...
|
|
326
433
|
|
|
327
|
-
def
|
|
434
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
328
435
|
"""
|
|
329
|
-
|
|
330
|
-
to
|
|
436
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
437
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
438
|
+
a Neo Cloud like CoreWeave.
|
|
331
439
|
"""
|
|
332
440
|
...
|
|
333
441
|
|
|
334
442
|
@typing.overload
|
|
335
|
-
def
|
|
443
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
336
444
|
"""
|
|
337
|
-
Specifies
|
|
338
|
-
|
|
339
|
-
This decorator is useful if this step may hang indefinitely.
|
|
445
|
+
Specifies the resources needed when executing this step.
|
|
340
446
|
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
447
|
+
Use `@resources` to specify the resource requirements
|
|
448
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
344
449
|
|
|
345
|
-
|
|
346
|
-
|
|
450
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
451
|
+
```
|
|
452
|
+
python myflow.py run --with batch
|
|
453
|
+
```
|
|
454
|
+
or
|
|
455
|
+
```
|
|
456
|
+
python myflow.py run --with kubernetes
|
|
457
|
+
```
|
|
458
|
+
which executes the flow on the desired system using the
|
|
459
|
+
requirements specified in `@resources`.
|
|
347
460
|
|
|
348
461
|
|
|
349
462
|
Parameters
|
|
350
463
|
----------
|
|
351
|
-
|
|
352
|
-
Number of
|
|
353
|
-
|
|
354
|
-
Number of
|
|
355
|
-
|
|
356
|
-
|
|
464
|
+
cpu : int, default 1
|
|
465
|
+
Number of CPUs required for this step.
|
|
466
|
+
gpu : int, optional, default None
|
|
467
|
+
Number of GPUs required for this step.
|
|
468
|
+
disk : int, optional, default None
|
|
469
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
470
|
+
memory : int, default 4096
|
|
471
|
+
Memory size (in MB) required for this step.
|
|
472
|
+
shared_memory : int, optional, default None
|
|
473
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
474
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
357
475
|
"""
|
|
358
476
|
...
|
|
359
477
|
|
|
360
478
|
@typing.overload
|
|
361
|
-
def
|
|
479
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
362
480
|
...
|
|
363
481
|
|
|
364
482
|
@typing.overload
|
|
365
|
-
def
|
|
483
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
366
484
|
...
|
|
367
485
|
|
|
368
|
-
def
|
|
486
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
369
487
|
"""
|
|
370
|
-
Specifies
|
|
488
|
+
Specifies the resources needed when executing this step.
|
|
371
489
|
|
|
372
|
-
|
|
490
|
+
Use `@resources` to specify the resource requirements
|
|
491
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
373
492
|
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
493
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
494
|
+
```
|
|
495
|
+
python myflow.py run --with batch
|
|
496
|
+
```
|
|
497
|
+
or
|
|
498
|
+
```
|
|
499
|
+
python myflow.py run --with kubernetes
|
|
500
|
+
```
|
|
501
|
+
which executes the flow on the desired system using the
|
|
502
|
+
requirements specified in `@resources`.
|
|
377
503
|
|
|
378
|
-
|
|
379
|
-
|
|
504
|
+
|
|
505
|
+
Parameters
|
|
506
|
+
----------
|
|
507
|
+
cpu : int, default 1
|
|
508
|
+
Number of CPUs required for this step.
|
|
509
|
+
gpu : int, optional, default None
|
|
510
|
+
Number of GPUs required for this step.
|
|
511
|
+
disk : int, optional, default None
|
|
512
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
513
|
+
memory : int, default 4096
|
|
514
|
+
Memory size (in MB) required for this step.
|
|
515
|
+
shared_memory : int, optional, default None
|
|
516
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
517
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
518
|
+
"""
|
|
519
|
+
...
|
|
520
|
+
|
|
521
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
522
|
+
"""
|
|
523
|
+
Decorator that helps cache, version, and store models/datasets from the Hugging Face Hub.
|
|
524
|
+
|
|
525
|
+
> Examples
|
|
526
|
+
|
|
527
|
+
**Usage: creating references to models from the Hugging Face Hub that may be loaded in downstream steps**
|
|
528
|
+
```python
|
|
529
|
+
@huggingface_hub
|
|
530
|
+
@step
|
|
531
|
+
def pull_model_from_huggingface(self):
|
|
532
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
533
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
534
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
535
|
+
# value of the function is a reference to the model in the backend storage.
|
|
536
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
537
|
+
|
|
538
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
539
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
540
|
+
repo_id=self.model_id,
|
|
541
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
542
|
+
)
|
|
543
|
+
self.next(self.train)
|
|
544
|
+
```
|
|
545
|
+
|
|
546
|
+
**Usage: explicitly loading models at runtime from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
547
|
+
```python
|
|
548
|
+
@huggingface_hub
|
|
549
|
+
@step
|
|
550
|
+
def run_training(self):
|
|
551
|
+
# Temporary directory (auto-cleaned on exit)
|
|
552
|
+
with current.huggingface_hub.load(
|
|
553
|
+
repo_id="google-bert/bert-base-uncased",
|
|
554
|
+
allow_patterns=["*.bin"],
|
|
555
|
+
) as local_path:
|
|
556
|
+
# Use files under local_path
|
|
557
|
+
train_model(local_path)
|
|
558
|
+
...
|
|
559
|
+
|
|
560
|
+
```
|
|
561
|
+
|
|
562
|
+
**Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
563
|
+
```python
|
|
564
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
565
|
+
@step
|
|
566
|
+
def pull_model_from_huggingface(self):
|
|
567
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
568
|
+
```
|
|
569
|
+
|
|
570
|
+
```python
|
|
571
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora", "/my-lora-directory")])
|
|
572
|
+
@step
|
|
573
|
+
def finetune_model(self):
|
|
574
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
575
|
+
# path_to_model will be /my-directory
|
|
576
|
+
```
|
|
577
|
+
|
|
578
|
+
```python
|
|
579
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
580
|
+
# except for `local_dir`
|
|
581
|
+
@huggingface_hub(load=[
|
|
582
|
+
{
|
|
583
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
584
|
+
},
|
|
585
|
+
{
|
|
586
|
+
"repo_id": "myorg/mistral-lora",
|
|
587
|
+
"repo_type": "model",
|
|
588
|
+
},
|
|
589
|
+
])
|
|
590
|
+
@step
|
|
591
|
+
def finetune_model(self):
|
|
592
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
593
|
+
# path_to_model will be /my-directory
|
|
594
|
+
```
|
|
380
595
|
|
|
381
596
|
|
|
382
597
|
Parameters
|
|
383
598
|
----------
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
599
|
+
temp_dir_root : str, optional
|
|
600
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
601
|
+
|
|
602
|
+
cache_scope : str, optional
|
|
603
|
+
The scope of the cache. Can be `checkpoint` / `flow` / `global`.
|
|
604
|
+
|
|
605
|
+
- `checkpoint` (default): All repos are stored like objects saved by `@checkpoint`.
|
|
606
|
+
i.e., the cached path is derived from the namespace, flow, step, and Metaflow foreach iteration.
|
|
607
|
+
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
608
|
+
|
|
609
|
+
- `flow`: All repos are cached under the flow, regardless of namespace.
|
|
610
|
+
i.e., the cached path is derived solely from the flow name.
|
|
611
|
+
When to use this mode:
|
|
612
|
+
- Multiple users are executing the same flow and want shared access to the repos cached by the decorator.
|
|
613
|
+
- Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
614
|
+
|
|
615
|
+
- `global`: All repos are cached under a globally static path.
|
|
616
|
+
i.e., the base path of the cache is static and all repos are stored under it.
|
|
617
|
+
When to use this mode:
|
|
618
|
+
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
619
|
+
|
|
620
|
+
Each caching scope comes with its own trade-offs:
|
|
621
|
+
- `checkpoint`:
|
|
622
|
+
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
623
|
+
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
624
|
+
- `flow`:
|
|
625
|
+
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
626
|
+
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
627
|
+
- It doesn't promote cache reuse across flows.
|
|
628
|
+
- `global`:
|
|
629
|
+
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
630
|
+
- It promotes cache reuse across flows.
|
|
631
|
+
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
632
|
+
|
|
633
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
634
|
+
The list of repos (models/datasets) to load.
|
|
635
|
+
|
|
636
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
637
|
+
|
|
638
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
639
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
640
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
641
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
642
|
+
|
|
643
|
+
- If repo is found in the datastore:
|
|
644
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
645
|
+
"""
|
|
646
|
+
...
|
|
647
|
+
|
|
648
|
+
@typing.overload
|
|
649
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
650
|
+
"""
|
|
651
|
+
Specifies the number of times the task corresponding
|
|
652
|
+
to a step needs to be retried.
|
|
653
|
+
|
|
654
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
655
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
656
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
657
|
+
|
|
658
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
659
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
660
|
+
ensuring that the flow execution can continue.
|
|
661
|
+
|
|
662
|
+
|
|
663
|
+
Parameters
|
|
664
|
+
----------
|
|
665
|
+
times : int, default 3
|
|
666
|
+
Number of times to retry this task.
|
|
667
|
+
minutes_between_retries : int, default 2
|
|
668
|
+
Number of minutes between retries.
|
|
669
|
+
"""
|
|
670
|
+
...
|
|
671
|
+
|
|
672
|
+
@typing.overload
|
|
673
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
674
|
+
...
|
|
675
|
+
|
|
676
|
+
@typing.overload
|
|
677
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
678
|
+
...
|
|
679
|
+
|
|
680
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
681
|
+
"""
|
|
682
|
+
Specifies the number of times the task corresponding
|
|
683
|
+
to a step needs to be retried.
|
|
684
|
+
|
|
685
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
686
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
687
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
688
|
+
|
|
689
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
690
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
691
|
+
ensuring that the flow execution can continue.
|
|
692
|
+
|
|
693
|
+
|
|
694
|
+
Parameters
|
|
695
|
+
----------
|
|
696
|
+
times : int, default 3
|
|
697
|
+
Number of times to retry this task.
|
|
698
|
+
minutes_between_retries : int, default 2
|
|
699
|
+
Number of minutes between retries.
|
|
390
700
|
"""
|
|
391
701
|
...
|
|
392
702
|
|
|
@@ -480,593 +790,408 @@ def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: ty
|
|
|
480
790
|
...
|
|
481
791
|
|
|
482
792
|
@typing.overload
|
|
483
|
-
def
|
|
793
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
484
794
|
"""
|
|
485
|
-
|
|
486
|
-
|
|
487
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
Parameters
|
|
491
|
-
----------
|
|
492
|
-
type : str, default 'default'
|
|
493
|
-
Card type.
|
|
494
|
-
id : str, optional, default None
|
|
495
|
-
If multiple cards are present, use this id to identify this card.
|
|
496
|
-
options : Dict[str, Any], default {}
|
|
497
|
-
Options passed to the card. The contents depend on the card type.
|
|
498
|
-
timeout : int, default 45
|
|
499
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
795
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
796
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
500
797
|
"""
|
|
501
798
|
...
|
|
502
799
|
|
|
503
800
|
@typing.overload
|
|
504
|
-
def
|
|
801
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
505
802
|
...
|
|
506
803
|
|
|
507
|
-
|
|
508
|
-
|
|
804
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
805
|
+
"""
|
|
806
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
807
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
808
|
+
"""
|
|
509
809
|
...
|
|
510
810
|
|
|
511
|
-
def
|
|
811
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
512
812
|
"""
|
|
513
|
-
|
|
514
|
-
|
|
515
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
813
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
516
814
|
|
|
517
815
|
|
|
518
816
|
Parameters
|
|
519
817
|
----------
|
|
520
|
-
|
|
521
|
-
|
|
522
|
-
|
|
523
|
-
|
|
524
|
-
|
|
525
|
-
|
|
526
|
-
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
|
|
530
|
-
|
|
531
|
-
|
|
532
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
818
|
+
integration_name : str, optional
|
|
819
|
+
Name of the S3 proxy integration. If not specified, will use the only
|
|
820
|
+
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
821
|
+
write_mode : str, optional
|
|
822
|
+
The desired behavior during write operations to target (origin) S3 bucket.
|
|
823
|
+
allowed options are:
|
|
824
|
+
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
825
|
+
storage
|
|
826
|
+
"origin" -> only write to the target S3 bucket
|
|
827
|
+
"cache" -> only write to the object storage service used for caching
|
|
828
|
+
debug : bool, optional
|
|
829
|
+
Enable debug logging for proxy operations.
|
|
533
830
|
"""
|
|
534
|
-
|
|
831
|
+
...
|
|
832
|
+
|
|
833
|
+
@typing.overload
|
|
834
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
835
|
+
"""
|
|
836
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
837
|
+
the execution of a step.
|
|
838
|
+
|
|
839
|
+
|
|
840
|
+
Parameters
|
|
841
|
+
----------
|
|
842
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
843
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
844
|
+
role : str, optional, default: None
|
|
845
|
+
Role to use for fetching secrets
|
|
535
846
|
"""
|
|
536
847
|
...
|
|
537
848
|
|
|
538
849
|
@typing.overload
|
|
539
|
-
def
|
|
850
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
540
851
|
...
|
|
541
852
|
|
|
542
|
-
|
|
853
|
+
@typing.overload
|
|
854
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
855
|
+
...
|
|
856
|
+
|
|
857
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
543
858
|
"""
|
|
544
|
-
|
|
859
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
860
|
+
the execution of a step.
|
|
861
|
+
|
|
862
|
+
|
|
863
|
+
Parameters
|
|
864
|
+
----------
|
|
865
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
866
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
867
|
+
role : str, optional, default: None
|
|
868
|
+
Role to use for fetching secrets
|
|
545
869
|
"""
|
|
546
870
|
...
|
|
547
871
|
|
|
548
872
|
@typing.overload
|
|
549
|
-
def
|
|
873
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
550
874
|
"""
|
|
551
|
-
Specifies
|
|
552
|
-
|
|
553
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
554
|
-
contains the exception raised. You can use it to detect the presence
|
|
555
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
556
|
-
are missing.
|
|
875
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
557
876
|
|
|
558
877
|
|
|
559
878
|
Parameters
|
|
560
879
|
----------
|
|
561
|
-
|
|
562
|
-
|
|
563
|
-
If not specified, the exception is not stored.
|
|
564
|
-
print_exception : bool, default True
|
|
565
|
-
Determines whether or not the exception is printed to
|
|
566
|
-
stdout when caught.
|
|
880
|
+
vars : Dict[str, str], default {}
|
|
881
|
+
Dictionary of environment variables to set.
|
|
567
882
|
"""
|
|
568
883
|
...
|
|
569
884
|
|
|
570
885
|
@typing.overload
|
|
571
|
-
def
|
|
886
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
572
887
|
...
|
|
573
888
|
|
|
574
889
|
@typing.overload
|
|
575
|
-
def
|
|
890
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
576
891
|
...
|
|
577
892
|
|
|
578
|
-
def
|
|
893
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
579
894
|
"""
|
|
580
|
-
Specifies
|
|
581
|
-
|
|
582
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
583
|
-
contains the exception raised. You can use it to detect the presence
|
|
584
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
585
|
-
are missing.
|
|
895
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
586
896
|
|
|
587
897
|
|
|
588
898
|
Parameters
|
|
589
899
|
----------
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
If not specified, the exception is not stored.
|
|
593
|
-
print_exception : bool, default True
|
|
594
|
-
Determines whether or not the exception is printed to
|
|
595
|
-
stdout when caught.
|
|
900
|
+
vars : Dict[str, str], default {}
|
|
901
|
+
Dictionary of environment variables to set.
|
|
596
902
|
"""
|
|
597
903
|
...
|
|
598
904
|
|
|
599
905
|
@typing.overload
|
|
600
|
-
def
|
|
906
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
601
907
|
"""
|
|
602
|
-
Specifies
|
|
908
|
+
Specifies a timeout for your step.
|
|
603
909
|
|
|
604
|
-
|
|
605
|
-
|
|
606
|
-
|
|
607
|
-
|
|
910
|
+
This decorator is useful if this step may hang indefinitely.
|
|
911
|
+
|
|
912
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
913
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
914
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
915
|
+
|
|
916
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
917
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
608
918
|
|
|
609
919
|
|
|
610
920
|
Parameters
|
|
611
921
|
----------
|
|
612
|
-
|
|
613
|
-
|
|
614
|
-
|
|
615
|
-
|
|
616
|
-
|
|
617
|
-
|
|
922
|
+
seconds : int, default 0
|
|
923
|
+
Number of seconds to wait prior to timing out.
|
|
924
|
+
minutes : int, default 0
|
|
925
|
+
Number of minutes to wait prior to timing out.
|
|
926
|
+
hours : int, default 0
|
|
927
|
+
Number of hours to wait prior to timing out.
|
|
618
928
|
"""
|
|
619
929
|
...
|
|
620
930
|
|
|
621
931
|
@typing.overload
|
|
622
|
-
def
|
|
932
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
623
933
|
...
|
|
624
934
|
|
|
625
935
|
@typing.overload
|
|
626
|
-
def
|
|
936
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
627
937
|
...
|
|
628
938
|
|
|
629
|
-
def
|
|
939
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
630
940
|
"""
|
|
631
|
-
Specifies
|
|
941
|
+
Specifies a timeout for your step.
|
|
632
942
|
|
|
633
|
-
|
|
634
|
-
|
|
635
|
-
|
|
636
|
-
|
|
943
|
+
This decorator is useful if this step may hang indefinitely.
|
|
944
|
+
|
|
945
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
946
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
947
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
948
|
+
|
|
949
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
950
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
637
951
|
|
|
638
952
|
|
|
639
953
|
Parameters
|
|
640
954
|
----------
|
|
641
|
-
|
|
642
|
-
|
|
643
|
-
|
|
644
|
-
|
|
645
|
-
|
|
646
|
-
|
|
955
|
+
seconds : int, default 0
|
|
956
|
+
Number of seconds to wait prior to timing out.
|
|
957
|
+
minutes : int, default 0
|
|
958
|
+
Number of minutes to wait prior to timing out.
|
|
959
|
+
hours : int, default 0
|
|
960
|
+
Number of hours to wait prior to timing out.
|
|
647
961
|
"""
|
|
648
962
|
...
|
|
649
963
|
|
|
650
|
-
|
|
964
|
+
@typing.overload
|
|
965
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
651
966
|
"""
|
|
652
|
-
|
|
967
|
+
Enables checkpointing for a step.
|
|
653
968
|
|
|
654
969
|
> Examples
|
|
655
970
|
|
|
656
|
-
|
|
657
|
-
```python
|
|
658
|
-
@huggingface_hub
|
|
659
|
-
@step
|
|
660
|
-
def pull_model_from_huggingface(self):
|
|
661
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
662
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
663
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
664
|
-
# value of the function is a reference to the model in the backend storage.
|
|
665
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
666
|
-
|
|
667
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
668
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
669
|
-
repo_id=self.model_id,
|
|
670
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
671
|
-
)
|
|
672
|
-
self.next(self.train)
|
|
673
|
-
```
|
|
971
|
+
- Saving Checkpoints
|
|
674
972
|
|
|
675
|
-
**Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
676
973
|
```python
|
|
677
|
-
|
|
678
|
-
|
|
679
|
-
|
|
680
|
-
|
|
974
|
+
@checkpoint
|
|
975
|
+
@step
|
|
976
|
+
def train(self):
|
|
977
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
978
|
+
for i in range(self.epochs):
|
|
979
|
+
# some training logic
|
|
980
|
+
loss = model.train(self.dataset)
|
|
981
|
+
if i % 10 == 0:
|
|
982
|
+
model.save(
|
|
983
|
+
current.checkpoint.directory,
|
|
984
|
+
)
|
|
985
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
986
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
987
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
988
|
+
name="epoch_checkpoint",
|
|
989
|
+
metadata={
|
|
990
|
+
"epoch": i,
|
|
991
|
+
"loss": loss,
|
|
992
|
+
}
|
|
993
|
+
)
|
|
681
994
|
```
|
|
682
995
|
|
|
683
|
-
|
|
684
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora", "/my-lora-directory")])
|
|
685
|
-
@step
|
|
686
|
-
def finetune_model(self):
|
|
687
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
688
|
-
# path_to_model will be /my-directory
|
|
689
|
-
```
|
|
996
|
+
- Using Loaded Checkpoints
|
|
690
997
|
|
|
691
998
|
```python
|
|
692
|
-
|
|
693
|
-
|
|
694
|
-
|
|
695
|
-
|
|
696
|
-
|
|
697
|
-
|
|
698
|
-
|
|
699
|
-
|
|
700
|
-
|
|
701
|
-
|
|
702
|
-
|
|
703
|
-
|
|
704
|
-
|
|
705
|
-
|
|
706
|
-
# path_to_model will be /my-directory
|
|
999
|
+
@retry(times=3)
|
|
1000
|
+
@checkpoint
|
|
1001
|
+
@step
|
|
1002
|
+
def train(self):
|
|
1003
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1004
|
+
# saved a checkpoint
|
|
1005
|
+
checkpoint_path = None
|
|
1006
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1007
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1008
|
+
checkpoint_path = current.checkpoint.directory
|
|
1009
|
+
|
|
1010
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1011
|
+
for i in range(self.epochs):
|
|
1012
|
+
...
|
|
707
1013
|
```
|
|
708
1014
|
|
|
709
1015
|
|
|
710
1016
|
Parameters
|
|
711
1017
|
----------
|
|
712
|
-
|
|
713
|
-
The
|
|
714
|
-
|
|
715
|
-
|
|
716
|
-
|
|
717
|
-
|
|
718
|
-
|
|
719
|
-
|
|
720
|
-
|
|
1018
|
+
load_policy : str, default: "fresh"
|
|
1019
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1020
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1021
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1022
|
+
will be loaded at the start of the task.
|
|
1023
|
+
- "none": Do not load any checkpoint
|
|
1024
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1025
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1026
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1027
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
721
1028
|
|
|
722
|
-
|
|
723
|
-
|
|
724
|
-
When to use this mode:
|
|
725
|
-
- Multiple users are executing the same flow and want shared access to the repos cached by the decorator.
|
|
726
|
-
- Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
727
|
-
|
|
728
|
-
- `global`: All repos are cached under a globally static path.
|
|
729
|
-
i.e., the base path of the cache is static and all repos are stored under it.
|
|
730
|
-
When to use this mode:
|
|
731
|
-
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
732
|
-
|
|
733
|
-
Each caching scope comes with its own trade-offs:
|
|
734
|
-
- `checkpoint`:
|
|
735
|
-
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
736
|
-
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
737
|
-
- `flow`:
|
|
738
|
-
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
739
|
-
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
740
|
-
- It doesn't promote cache reuse across flows.
|
|
741
|
-
- `global`:
|
|
742
|
-
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
743
|
-
- It promotes cache reuse across flows.
|
|
744
|
-
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
745
|
-
|
|
746
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
747
|
-
The list of repos (models/datasets) to load.
|
|
748
|
-
|
|
749
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
750
|
-
|
|
751
|
-
- If repo (model/dataset) is not found in the datastore:
|
|
752
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
753
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
754
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
755
|
-
|
|
756
|
-
- If repo is found in the datastore:
|
|
757
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
758
|
-
"""
|
|
759
|
-
...
|
|
760
|
-
|
|
761
|
-
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
762
|
-
"""
|
|
763
|
-
Specifies that this step should execute on DGX cloud.
|
|
764
|
-
|
|
765
|
-
|
|
766
|
-
Parameters
|
|
767
|
-
----------
|
|
768
|
-
gpu : int
|
|
769
|
-
Number of GPUs to use.
|
|
770
|
-
gpu_type : str
|
|
771
|
-
Type of Nvidia GPU to use.
|
|
772
|
-
queue_timeout : int
|
|
773
|
-
Time to keep the job in NVCF's queue.
|
|
774
|
-
"""
|
|
775
|
-
...
|
|
776
|
-
|
|
777
|
-
@typing.overload
|
|
778
|
-
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
779
|
-
"""
|
|
780
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
781
|
-
|
|
782
|
-
|
|
783
|
-
Parameters
|
|
784
|
-
----------
|
|
785
|
-
vars : Dict[str, str], default {}
|
|
786
|
-
Dictionary of environment variables to set.
|
|
1029
|
+
temp_dir_root : str, default: None
|
|
1030
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
787
1031
|
"""
|
|
788
1032
|
...
|
|
789
1033
|
|
|
790
1034
|
@typing.overload
|
|
791
|
-
def
|
|
1035
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
792
1036
|
...
|
|
793
1037
|
|
|
794
1038
|
@typing.overload
|
|
795
|
-
def
|
|
1039
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
796
1040
|
...
|
|
797
1041
|
|
|
798
|
-
def
|
|
1042
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
799
1043
|
"""
|
|
800
|
-
|
|
1044
|
+
Enables checkpointing for a step.
|
|
801
1045
|
|
|
1046
|
+
> Examples
|
|
802
1047
|
|
|
803
|
-
|
|
804
|
-
----------
|
|
805
|
-
vars : Dict[str, str], default {}
|
|
806
|
-
Dictionary of environment variables to set.
|
|
807
|
-
"""
|
|
808
|
-
...
|
|
809
|
-
|
|
810
|
-
@typing.overload
|
|
811
|
-
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
812
|
-
"""
|
|
813
|
-
Enables loading / saving of models within a step.
|
|
1048
|
+
- Saving Checkpoints
|
|
814
1049
|
|
|
815
|
-
> Examples
|
|
816
|
-
- Saving Models
|
|
817
1050
|
```python
|
|
818
|
-
@
|
|
1051
|
+
@checkpoint
|
|
819
1052
|
@step
|
|
820
1053
|
def train(self):
|
|
821
|
-
|
|
822
|
-
|
|
823
|
-
|
|
824
|
-
|
|
825
|
-
|
|
826
|
-
|
|
827
|
-
|
|
828
|
-
|
|
829
|
-
|
|
830
|
-
|
|
831
|
-
|
|
832
|
-
|
|
833
|
-
|
|
834
|
-
|
|
835
|
-
|
|
836
|
-
|
|
837
|
-
|
|
838
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
839
|
-
self.next(self.end)
|
|
1054
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
1055
|
+
for i in range(self.epochs):
|
|
1056
|
+
# some training logic
|
|
1057
|
+
loss = model.train(self.dataset)
|
|
1058
|
+
if i % 10 == 0:
|
|
1059
|
+
model.save(
|
|
1060
|
+
current.checkpoint.directory,
|
|
1061
|
+
)
|
|
1062
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1063
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1064
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
1065
|
+
name="epoch_checkpoint",
|
|
1066
|
+
metadata={
|
|
1067
|
+
"epoch": i,
|
|
1068
|
+
"loss": loss,
|
|
1069
|
+
}
|
|
1070
|
+
)
|
|
840
1071
|
```
|
|
841
1072
|
|
|
842
|
-
-
|
|
1073
|
+
- Using Loaded Checkpoints
|
|
1074
|
+
|
|
843
1075
|
```python
|
|
1076
|
+
@retry(times=3)
|
|
1077
|
+
@checkpoint
|
|
844
1078
|
@step
|
|
845
1079
|
def train(self):
|
|
846
|
-
#
|
|
847
|
-
|
|
848
|
-
|
|
849
|
-
|
|
850
|
-
|
|
851
|
-
|
|
852
|
-
|
|
853
|
-
|
|
1080
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1081
|
+
# saved a checkpoint
|
|
1082
|
+
checkpoint_path = None
|
|
1083
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1084
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1085
|
+
checkpoint_path = current.checkpoint.directory
|
|
1086
|
+
|
|
1087
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1088
|
+
for i in range(self.epochs):
|
|
1089
|
+
...
|
|
854
1090
|
```
|
|
855
1091
|
|
|
856
1092
|
|
|
857
1093
|
Parameters
|
|
858
1094
|
----------
|
|
859
|
-
|
|
860
|
-
|
|
861
|
-
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
|
|
1095
|
+
load_policy : str, default: "fresh"
|
|
1096
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1097
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1098
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1099
|
+
will be loaded at the start of the task.
|
|
1100
|
+
- "none": Do not load any checkpoint
|
|
1101
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1102
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1103
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1104
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
865
1105
|
|
|
866
1106
|
temp_dir_root : str, default: None
|
|
867
|
-
The root directory under which `current.
|
|
1107
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
868
1108
|
"""
|
|
869
1109
|
...
|
|
870
1110
|
|
|
871
1111
|
@typing.overload
|
|
872
|
-
def
|
|
873
|
-
...
|
|
874
|
-
|
|
875
|
-
@typing.overload
|
|
876
|
-
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
877
|
-
...
|
|
878
|
-
|
|
879
|
-
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
|
1112
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
880
1113
|
"""
|
|
881
|
-
|
|
882
|
-
|
|
883
|
-
> Examples
|
|
884
|
-
- Saving Models
|
|
885
|
-
```python
|
|
886
|
-
@model
|
|
887
|
-
@step
|
|
888
|
-
def train(self):
|
|
889
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
890
|
-
self.my_model = current.model.save(
|
|
891
|
-
path_to_my_model,
|
|
892
|
-
label="my_model",
|
|
893
|
-
metadata={
|
|
894
|
-
"epochs": 10,
|
|
895
|
-
"batch-size": 32,
|
|
896
|
-
"learning-rate": 0.001,
|
|
897
|
-
}
|
|
898
|
-
)
|
|
899
|
-
self.next(self.test)
|
|
900
|
-
|
|
901
|
-
@model(load="my_model")
|
|
902
|
-
@step
|
|
903
|
-
def test(self):
|
|
904
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
905
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
906
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
907
|
-
self.next(self.end)
|
|
908
|
-
```
|
|
1114
|
+
Specifies that the step will success under all circumstances.
|
|
909
1115
|
|
|
910
|
-
|
|
911
|
-
|
|
912
|
-
|
|
913
|
-
|
|
914
|
-
# current.model.load returns the path to the model loaded
|
|
915
|
-
checkpoint_path = current.model.load(
|
|
916
|
-
self.checkpoint_key,
|
|
917
|
-
)
|
|
918
|
-
model_path = current.model.load(
|
|
919
|
-
self.model,
|
|
920
|
-
)
|
|
921
|
-
self.next(self.test)
|
|
922
|
-
```
|
|
1116
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
1117
|
+
contains the exception raised. You can use it to detect the presence
|
|
1118
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
1119
|
+
are missing.
|
|
923
1120
|
|
|
924
1121
|
|
|
925
1122
|
Parameters
|
|
926
1123
|
----------
|
|
927
|
-
|
|
928
|
-
|
|
929
|
-
|
|
930
|
-
|
|
931
|
-
|
|
932
|
-
|
|
933
|
-
|
|
934
|
-
temp_dir_root : str, default: None
|
|
935
|
-
The root directory under which `current.model.loaded` will store loaded models
|
|
1124
|
+
var : str, optional, default None
|
|
1125
|
+
Name of the artifact in which to store the caught exception.
|
|
1126
|
+
If not specified, the exception is not stored.
|
|
1127
|
+
print_exception : bool, default True
|
|
1128
|
+
Determines whether or not the exception is printed to
|
|
1129
|
+
stdout when caught.
|
|
936
1130
|
"""
|
|
937
1131
|
...
|
|
938
1132
|
|
|
939
|
-
|
|
1133
|
+
@typing.overload
|
|
1134
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1135
|
+
...
|
|
1136
|
+
|
|
1137
|
+
@typing.overload
|
|
1138
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1139
|
+
...
|
|
1140
|
+
|
|
1141
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
940
1142
|
"""
|
|
941
|
-
|
|
1143
|
+
Specifies that the step will success under all circumstances.
|
|
1144
|
+
|
|
1145
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
1146
|
+
contains the exception raised. You can use it to detect the presence
|
|
1147
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
1148
|
+
are missing.
|
|
942
1149
|
|
|
943
1150
|
|
|
944
1151
|
Parameters
|
|
945
1152
|
----------
|
|
946
|
-
|
|
947
|
-
Name of the
|
|
948
|
-
|
|
949
|
-
|
|
950
|
-
|
|
951
|
-
|
|
952
|
-
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
953
|
-
storage
|
|
954
|
-
"origin" -> only write to the target S3 bucket
|
|
955
|
-
"cache" -> only write to the object storage service used for caching
|
|
956
|
-
debug : bool, optional
|
|
957
|
-
Enable debug logging for proxy operations.
|
|
1153
|
+
var : str, optional, default None
|
|
1154
|
+
Name of the artifact in which to store the caught exception.
|
|
1155
|
+
If not specified, the exception is not stored.
|
|
1156
|
+
print_exception : bool, default True
|
|
1157
|
+
Determines whether or not the exception is printed to
|
|
1158
|
+
stdout when caught.
|
|
958
1159
|
"""
|
|
959
1160
|
...
|
|
960
1161
|
|
|
961
1162
|
@typing.overload
|
|
962
|
-
def
|
|
1163
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
963
1164
|
"""
|
|
964
|
-
|
|
965
|
-
|
|
1165
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1166
|
+
to inject a card and render simple markdown content.
|
|
966
1167
|
"""
|
|
967
1168
|
...
|
|
968
1169
|
|
|
969
1170
|
@typing.overload
|
|
970
|
-
def
|
|
1171
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
971
1172
|
...
|
|
972
1173
|
|
|
973
|
-
def
|
|
1174
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
974
1175
|
"""
|
|
975
|
-
|
|
976
|
-
|
|
1176
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1177
|
+
to inject a card and render simple markdown content.
|
|
977
1178
|
"""
|
|
978
1179
|
...
|
|
979
1180
|
|
|
980
1181
|
@typing.overload
|
|
981
|
-
def
|
|
1182
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
982
1183
|
"""
|
|
983
|
-
|
|
984
|
-
|
|
985
|
-
Use `@resources` to specify the resource requirements
|
|
986
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
987
|
-
|
|
988
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
989
|
-
```
|
|
990
|
-
python myflow.py run --with batch
|
|
991
|
-
```
|
|
992
|
-
or
|
|
993
|
-
```
|
|
994
|
-
python myflow.py run --with kubernetes
|
|
995
|
-
```
|
|
996
|
-
which executes the flow on the desired system using the
|
|
997
|
-
requirements specified in `@resources`.
|
|
998
|
-
|
|
999
|
-
|
|
1000
|
-
Parameters
|
|
1001
|
-
----------
|
|
1002
|
-
cpu : int, default 1
|
|
1003
|
-
Number of CPUs required for this step.
|
|
1004
|
-
gpu : int, optional, default None
|
|
1005
|
-
Number of GPUs required for this step.
|
|
1006
|
-
disk : int, optional, default None
|
|
1007
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1008
|
-
memory : int, default 4096
|
|
1009
|
-
Memory size (in MB) required for this step.
|
|
1010
|
-
shared_memory : int, optional, default None
|
|
1011
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1012
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
1184
|
+
Internal decorator to support Fast bakery
|
|
1013
1185
|
"""
|
|
1014
1186
|
...
|
|
1015
1187
|
|
|
1016
1188
|
@typing.overload
|
|
1017
|
-
def
|
|
1018
|
-
...
|
|
1019
|
-
|
|
1020
|
-
@typing.overload
|
|
1021
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1022
|
-
...
|
|
1023
|
-
|
|
1024
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
1025
|
-
"""
|
|
1026
|
-
Specifies the resources needed when executing this step.
|
|
1027
|
-
|
|
1028
|
-
Use `@resources` to specify the resource requirements
|
|
1029
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1030
|
-
|
|
1031
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
1032
|
-
```
|
|
1033
|
-
python myflow.py run --with batch
|
|
1034
|
-
```
|
|
1035
|
-
or
|
|
1036
|
-
```
|
|
1037
|
-
python myflow.py run --with kubernetes
|
|
1038
|
-
```
|
|
1039
|
-
which executes the flow on the desired system using the
|
|
1040
|
-
requirements specified in `@resources`.
|
|
1041
|
-
|
|
1042
|
-
|
|
1043
|
-
Parameters
|
|
1044
|
-
----------
|
|
1045
|
-
cpu : int, default 1
|
|
1046
|
-
Number of CPUs required for this step.
|
|
1047
|
-
gpu : int, optional, default None
|
|
1048
|
-
Number of GPUs required for this step.
|
|
1049
|
-
disk : int, optional, default None
|
|
1050
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1051
|
-
memory : int, default 4096
|
|
1052
|
-
Memory size (in MB) required for this step.
|
|
1053
|
-
shared_memory : int, optional, default None
|
|
1054
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1055
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
1056
|
-
"""
|
|
1189
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1057
1190
|
...
|
|
1058
1191
|
|
|
1059
|
-
def
|
|
1192
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1060
1193
|
"""
|
|
1061
|
-
|
|
1062
|
-
|
|
1063
|
-
|
|
1064
|
-
Parameters
|
|
1065
|
-
----------
|
|
1066
|
-
gpu : int
|
|
1067
|
-
Number of GPUs to use.
|
|
1068
|
-
gpu_type : str
|
|
1069
|
-
Type of Nvidia GPU to use.
|
|
1194
|
+
Internal decorator to support Fast bakery
|
|
1070
1195
|
"""
|
|
1071
1196
|
...
|
|
1072
1197
|
|
|
@@ -1111,189 +1236,100 @@ def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
1111
1236
|
Information in this decorator will augment any
|
|
1112
1237
|
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1113
1238
|
you can use `@conda_base` to set packages required by all
|
|
1114
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
1115
|
-
|
|
1116
|
-
|
|
1117
|
-
Parameters
|
|
1118
|
-
----------
|
|
1119
|
-
packages : Dict[str, str], default {}
|
|
1120
|
-
Packages to use for this step. The key is the name of the package
|
|
1121
|
-
and the value is the version to use.
|
|
1122
|
-
libraries : Dict[str, str], default {}
|
|
1123
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1124
|
-
python : str, optional, default None
|
|
1125
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1126
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1127
|
-
disabled : bool, default False
|
|
1128
|
-
If set to True, disables @conda.
|
|
1129
|
-
"""
|
|
1130
|
-
...
|
|
1131
|
-
|
|
1132
|
-
@typing.overload
|
|
1133
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1134
|
-
"""
|
|
1135
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1136
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1137
|
-
a Neo Cloud like Nebius.
|
|
1138
|
-
"""
|
|
1139
|
-
...
|
|
1140
|
-
|
|
1141
|
-
@typing.overload
|
|
1142
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1143
|
-
...
|
|
1144
|
-
|
|
1145
|
-
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1146
|
-
"""
|
|
1147
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1148
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1149
|
-
a Neo Cloud like Nebius.
|
|
1150
|
-
"""
|
|
1151
|
-
...
|
|
1152
|
-
|
|
1153
|
-
@typing.overload
|
|
1154
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1155
|
-
"""
|
|
1156
|
-
Enables checkpointing for a step.
|
|
1157
|
-
|
|
1158
|
-
> Examples
|
|
1159
|
-
|
|
1160
|
-
- Saving Checkpoints
|
|
1161
|
-
|
|
1162
|
-
```python
|
|
1163
|
-
@checkpoint
|
|
1164
|
-
@step
|
|
1165
|
-
def train(self):
|
|
1166
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
1167
|
-
for i in range(self.epochs):
|
|
1168
|
-
# some training logic
|
|
1169
|
-
loss = model.train(self.dataset)
|
|
1170
|
-
if i % 10 == 0:
|
|
1171
|
-
model.save(
|
|
1172
|
-
current.checkpoint.directory,
|
|
1173
|
-
)
|
|
1174
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1175
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1176
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
1177
|
-
name="epoch_checkpoint",
|
|
1178
|
-
metadata={
|
|
1179
|
-
"epoch": i,
|
|
1180
|
-
"loss": loss,
|
|
1181
|
-
}
|
|
1182
|
-
)
|
|
1183
|
-
```
|
|
1184
|
-
|
|
1185
|
-
- Using Loaded Checkpoints
|
|
1186
|
-
|
|
1187
|
-
```python
|
|
1188
|
-
@retry(times=3)
|
|
1189
|
-
@checkpoint
|
|
1190
|
-
@step
|
|
1191
|
-
def train(self):
|
|
1192
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
1193
|
-
# saved a checkpoint
|
|
1194
|
-
checkpoint_path = None
|
|
1195
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1196
|
-
print("Loaded checkpoint from the previous attempt")
|
|
1197
|
-
checkpoint_path = current.checkpoint.directory
|
|
1198
|
-
|
|
1199
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1200
|
-
for i in range(self.epochs):
|
|
1201
|
-
...
|
|
1202
|
-
```
|
|
1239
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
1203
1240
|
|
|
1204
1241
|
|
|
1205
1242
|
Parameters
|
|
1206
1243
|
----------
|
|
1207
|
-
|
|
1208
|
-
|
|
1209
|
-
|
|
1210
|
-
|
|
1211
|
-
|
|
1212
|
-
|
|
1213
|
-
|
|
1214
|
-
|
|
1215
|
-
|
|
1216
|
-
|
|
1244
|
+
packages : Dict[str, str], default {}
|
|
1245
|
+
Packages to use for this step. The key is the name of the package
|
|
1246
|
+
and the value is the version to use.
|
|
1247
|
+
libraries : Dict[str, str], default {}
|
|
1248
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1249
|
+
python : str, optional, default None
|
|
1250
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1251
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1252
|
+
disabled : bool, default False
|
|
1253
|
+
If set to True, disables @conda.
|
|
1254
|
+
"""
|
|
1255
|
+
...
|
|
1256
|
+
|
|
1257
|
+
@typing.overload
|
|
1258
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1259
|
+
"""
|
|
1260
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1217
1261
|
|
|
1218
|
-
|
|
1219
|
-
|
|
1262
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1263
|
+
|
|
1264
|
+
|
|
1265
|
+
Parameters
|
|
1266
|
+
----------
|
|
1267
|
+
type : str, default 'default'
|
|
1268
|
+
Card type.
|
|
1269
|
+
id : str, optional, default None
|
|
1270
|
+
If multiple cards are present, use this id to identify this card.
|
|
1271
|
+
options : Dict[str, Any], default {}
|
|
1272
|
+
Options passed to the card. The contents depend on the card type.
|
|
1273
|
+
timeout : int, default 45
|
|
1274
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1220
1275
|
"""
|
|
1221
1276
|
...
|
|
1222
1277
|
|
|
1223
1278
|
@typing.overload
|
|
1224
|
-
def
|
|
1279
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1225
1280
|
...
|
|
1226
1281
|
|
|
1227
1282
|
@typing.overload
|
|
1228
|
-
def
|
|
1283
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1229
1284
|
...
|
|
1230
1285
|
|
|
1231
|
-
def
|
|
1286
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
1232
1287
|
"""
|
|
1233
|
-
|
|
1234
|
-
|
|
1235
|
-
> Examples
|
|
1288
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1236
1289
|
|
|
1237
|
-
|
|
1290
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1238
1291
|
|
|
1239
|
-
```python
|
|
1240
|
-
@checkpoint
|
|
1241
|
-
@step
|
|
1242
|
-
def train(self):
|
|
1243
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
1244
|
-
for i in range(self.epochs):
|
|
1245
|
-
# some training logic
|
|
1246
|
-
loss = model.train(self.dataset)
|
|
1247
|
-
if i % 10 == 0:
|
|
1248
|
-
model.save(
|
|
1249
|
-
current.checkpoint.directory,
|
|
1250
|
-
)
|
|
1251
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1252
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1253
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
1254
|
-
name="epoch_checkpoint",
|
|
1255
|
-
metadata={
|
|
1256
|
-
"epoch": i,
|
|
1257
|
-
"loss": loss,
|
|
1258
|
-
}
|
|
1259
|
-
)
|
|
1260
|
-
```
|
|
1261
1292
|
|
|
1262
|
-
|
|
1293
|
+
Parameters
|
|
1294
|
+
----------
|
|
1295
|
+
type : str, default 'default'
|
|
1296
|
+
Card type.
|
|
1297
|
+
id : str, optional, default None
|
|
1298
|
+
If multiple cards are present, use this id to identify this card.
|
|
1299
|
+
options : Dict[str, Any], default {}
|
|
1300
|
+
Options passed to the card. The contents depend on the card type.
|
|
1301
|
+
timeout : int, default 45
|
|
1302
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1303
|
+
"""
|
|
1304
|
+
...
|
|
1305
|
+
|
|
1306
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1307
|
+
"""
|
|
1308
|
+
Specifies that this step should execute on DGX cloud.
|
|
1263
1309
|
|
|
1264
|
-
```python
|
|
1265
|
-
@retry(times=3)
|
|
1266
|
-
@checkpoint
|
|
1267
|
-
@step
|
|
1268
|
-
def train(self):
|
|
1269
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
1270
|
-
# saved a checkpoint
|
|
1271
|
-
checkpoint_path = None
|
|
1272
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1273
|
-
print("Loaded checkpoint from the previous attempt")
|
|
1274
|
-
checkpoint_path = current.checkpoint.directory
|
|
1275
1310
|
|
|
1276
|
-
|
|
1277
|
-
|
|
1278
|
-
|
|
1279
|
-
|
|
1311
|
+
Parameters
|
|
1312
|
+
----------
|
|
1313
|
+
gpu : int
|
|
1314
|
+
Number of GPUs to use.
|
|
1315
|
+
gpu_type : str
|
|
1316
|
+
Type of Nvidia GPU to use.
|
|
1317
|
+
"""
|
|
1318
|
+
...
|
|
1319
|
+
|
|
1320
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1321
|
+
"""
|
|
1322
|
+
Specifies that this step should execute on DGX cloud.
|
|
1280
1323
|
|
|
1281
1324
|
|
|
1282
1325
|
Parameters
|
|
1283
1326
|
----------
|
|
1284
|
-
|
|
1285
|
-
|
|
1286
|
-
|
|
1287
|
-
|
|
1288
|
-
|
|
1289
|
-
|
|
1290
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1291
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1292
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1293
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
1294
|
-
|
|
1295
|
-
temp_dir_root : str, default: None
|
|
1296
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
1327
|
+
gpu : int
|
|
1328
|
+
Number of GPUs to use.
|
|
1329
|
+
gpu_type : str
|
|
1330
|
+
Type of Nvidia GPU to use.
|
|
1331
|
+
queue_timeout : int
|
|
1332
|
+
Time to keep the job in NVCF's queue.
|
|
1297
1333
|
"""
|
|
1298
1334
|
...
|
|
1299
1335
|
|
|
@@ -1340,77 +1376,207 @@ def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy:
|
|
|
1340
1376
|
"""
|
|
1341
1377
|
...
|
|
1342
1378
|
|
|
1343
|
-
@typing.overload
|
|
1344
|
-
def
|
|
1379
|
+
@typing.overload
|
|
1380
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1381
|
+
"""
|
|
1382
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
1383
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1384
|
+
"""
|
|
1385
|
+
...
|
|
1386
|
+
|
|
1387
|
+
@typing.overload
|
|
1388
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1389
|
+
...
|
|
1390
|
+
|
|
1391
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1392
|
+
"""
|
|
1393
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
1394
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1395
|
+
"""
|
|
1396
|
+
...
|
|
1397
|
+
|
|
1398
|
+
@typing.overload
|
|
1399
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1400
|
+
"""
|
|
1401
|
+
Specifies the flow(s) that this flow depends on.
|
|
1402
|
+
|
|
1403
|
+
```
|
|
1404
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1405
|
+
```
|
|
1406
|
+
or
|
|
1407
|
+
```
|
|
1408
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1409
|
+
```
|
|
1410
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1411
|
+
when upstream runs within the same namespace complete successfully
|
|
1412
|
+
|
|
1413
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1414
|
+
by specifying the fully qualified project_flow_name.
|
|
1415
|
+
```
|
|
1416
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1417
|
+
```
|
|
1418
|
+
or
|
|
1419
|
+
```
|
|
1420
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1421
|
+
```
|
|
1422
|
+
|
|
1423
|
+
You can also specify just the project or project branch (other values will be
|
|
1424
|
+
inferred from the current project or project branch):
|
|
1425
|
+
```
|
|
1426
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1427
|
+
```
|
|
1428
|
+
|
|
1429
|
+
Note that `branch` is typically one of:
|
|
1430
|
+
- `prod`
|
|
1431
|
+
- `user.bob`
|
|
1432
|
+
- `test.my_experiment`
|
|
1433
|
+
- `prod.staging`
|
|
1434
|
+
|
|
1435
|
+
|
|
1436
|
+
Parameters
|
|
1437
|
+
----------
|
|
1438
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1439
|
+
Upstream flow dependency for this flow.
|
|
1440
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1441
|
+
Upstream flow dependencies for this flow.
|
|
1442
|
+
options : Dict[str, Any], default {}
|
|
1443
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1444
|
+
"""
|
|
1445
|
+
...
|
|
1446
|
+
|
|
1447
|
+
@typing.overload
|
|
1448
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1449
|
+
...
|
|
1450
|
+
|
|
1451
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1452
|
+
"""
|
|
1453
|
+
Specifies the flow(s) that this flow depends on.
|
|
1454
|
+
|
|
1455
|
+
```
|
|
1456
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1457
|
+
```
|
|
1458
|
+
or
|
|
1459
|
+
```
|
|
1460
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1461
|
+
```
|
|
1462
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1463
|
+
when upstream runs within the same namespace complete successfully
|
|
1464
|
+
|
|
1465
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1466
|
+
by specifying the fully qualified project_flow_name.
|
|
1467
|
+
```
|
|
1468
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1469
|
+
```
|
|
1470
|
+
or
|
|
1471
|
+
```
|
|
1472
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1473
|
+
```
|
|
1474
|
+
|
|
1475
|
+
You can also specify just the project or project branch (other values will be
|
|
1476
|
+
inferred from the current project or project branch):
|
|
1477
|
+
```
|
|
1478
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1479
|
+
```
|
|
1480
|
+
|
|
1481
|
+
Note that `branch` is typically one of:
|
|
1482
|
+
- `prod`
|
|
1483
|
+
- `user.bob`
|
|
1484
|
+
- `test.my_experiment`
|
|
1485
|
+
- `prod.staging`
|
|
1486
|
+
|
|
1487
|
+
|
|
1488
|
+
Parameters
|
|
1489
|
+
----------
|
|
1490
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1491
|
+
Upstream flow dependency for this flow.
|
|
1492
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1493
|
+
Upstream flow dependencies for this flow.
|
|
1494
|
+
options : Dict[str, Any], default {}
|
|
1495
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1496
|
+
"""
|
|
1497
|
+
...
|
|
1498
|
+
|
|
1499
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1345
1500
|
"""
|
|
1346
|
-
|
|
1347
|
-
|
|
1501
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
1502
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1348
1503
|
|
|
1349
1504
|
|
|
1350
1505
|
Parameters
|
|
1351
1506
|
----------
|
|
1352
|
-
|
|
1353
|
-
|
|
1354
|
-
|
|
1355
|
-
|
|
1507
|
+
timeout : int
|
|
1508
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1509
|
+
poke_interval : int
|
|
1510
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1511
|
+
mode : str
|
|
1512
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1513
|
+
exponential_backoff : bool
|
|
1514
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1515
|
+
pool : str
|
|
1516
|
+
the slot pool this task should run in,
|
|
1517
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1518
|
+
soft_fail : bool
|
|
1519
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1520
|
+
name : str
|
|
1521
|
+
Name of the sensor on Airflow
|
|
1522
|
+
description : str
|
|
1523
|
+
Description of sensor in the Airflow UI
|
|
1524
|
+
external_dag_id : str
|
|
1525
|
+
The dag_id that contains the task you want to wait for.
|
|
1526
|
+
external_task_ids : List[str]
|
|
1527
|
+
The list of task_ids that you want to wait for.
|
|
1528
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1529
|
+
allowed_states : List[str]
|
|
1530
|
+
Iterable of allowed states, (Default: ['success'])
|
|
1531
|
+
failed_states : List[str]
|
|
1532
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
|
1533
|
+
execution_delta : datetime.timedelta
|
|
1534
|
+
time difference with the previous execution to look at,
|
|
1535
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1536
|
+
check_existence: bool
|
|
1537
|
+
Set to True to check if the external task exists or check if
|
|
1538
|
+
the DAG to wait for exists. (Default: True)
|
|
1356
1539
|
"""
|
|
1357
1540
|
...
|
|
1358
1541
|
|
|
1359
1542
|
@typing.overload
|
|
1360
|
-
def
|
|
1361
|
-
...
|
|
1362
|
-
|
|
1363
|
-
@typing.overload
|
|
1364
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1365
|
-
...
|
|
1366
|
-
|
|
1367
|
-
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
1543
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1368
1544
|
"""
|
|
1369
|
-
Specifies
|
|
1370
|
-
the execution of a step.
|
|
1545
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1371
1546
|
|
|
1547
|
+
Use `@pypi_base` to set common packages required by all
|
|
1548
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1372
1549
|
|
|
1373
1550
|
Parameters
|
|
1374
1551
|
----------
|
|
1375
|
-
|
|
1376
|
-
|
|
1377
|
-
|
|
1378
|
-
|
|
1552
|
+
packages : Dict[str, str], default: {}
|
|
1553
|
+
Packages to use for this flow. The key is the name of the package
|
|
1554
|
+
and the value is the version to use.
|
|
1555
|
+
python : str, optional, default: None
|
|
1556
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1557
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1379
1558
|
"""
|
|
1380
1559
|
...
|
|
1381
1560
|
|
|
1382
|
-
|
|
1561
|
+
@typing.overload
|
|
1562
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1563
|
+
...
|
|
1564
|
+
|
|
1565
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1383
1566
|
"""
|
|
1384
|
-
Specifies
|
|
1385
|
-
|
|
1386
|
-
A project-specific namespace is created for all flows that
|
|
1387
|
-
use the same `@project(name)`.
|
|
1567
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1388
1568
|
|
|
1569
|
+
Use `@pypi_base` to set common packages required by all
|
|
1570
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1389
1571
|
|
|
1390
1572
|
Parameters
|
|
1391
1573
|
----------
|
|
1392
|
-
|
|
1393
|
-
|
|
1394
|
-
|
|
1395
|
-
|
|
1396
|
-
|
|
1397
|
-
|
|
1398
|
-
The branch to use. If not specified, the branch is set to
|
|
1399
|
-
`user.<username>` unless `production` is set to `True`. This can
|
|
1400
|
-
also be set on the command line using `--branch` as a top-level option.
|
|
1401
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
|
1402
|
-
|
|
1403
|
-
production : bool, default False
|
|
1404
|
-
Whether or not the branch is the production branch. This can also be set on the
|
|
1405
|
-
command line using `--production` as a top-level option. It is an error to specify
|
|
1406
|
-
`production` in the decorator and on the command line.
|
|
1407
|
-
The project branch name will be:
|
|
1408
|
-
- if `branch` is specified:
|
|
1409
|
-
- if `production` is True: `prod.<branch>`
|
|
1410
|
-
- if `production` is False: `test.<branch>`
|
|
1411
|
-
- if `branch` is not specified:
|
|
1412
|
-
- if `production` is True: `prod`
|
|
1413
|
-
- if `production` is False: `user.<username>`
|
|
1574
|
+
packages : Dict[str, str], default: {}
|
|
1575
|
+
Packages to use for this flow. The key is the name of the package
|
|
1576
|
+
and the value is the version to use.
|
|
1577
|
+
python : str, optional, default: None
|
|
1578
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1579
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1414
1580
|
"""
|
|
1415
1581
|
...
|
|
1416
1582
|
|
|
@@ -1454,150 +1620,14 @@ def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly:
|
|
|
1454
1620
|
Run the workflow hourly.
|
|
1455
1621
|
daily : bool, default True
|
|
1456
1622
|
Run the workflow daily.
|
|
1457
|
-
weekly : bool, default False
|
|
1458
|
-
Run the workflow weekly.
|
|
1459
|
-
cron : str, optional, default None
|
|
1460
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1461
|
-
specified by this expression.
|
|
1462
|
-
timezone : str, optional, default None
|
|
1463
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1464
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1465
|
-
"""
|
|
1466
|
-
...
|
|
1467
|
-
|
|
1468
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1469
|
-
"""
|
|
1470
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1471
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1472
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1473
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1474
|
-
starts only after all sensors finish.
|
|
1475
|
-
|
|
1476
|
-
|
|
1477
|
-
Parameters
|
|
1478
|
-
----------
|
|
1479
|
-
timeout : int
|
|
1480
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1481
|
-
poke_interval : int
|
|
1482
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1483
|
-
mode : str
|
|
1484
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1485
|
-
exponential_backoff : bool
|
|
1486
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1487
|
-
pool : str
|
|
1488
|
-
the slot pool this task should run in,
|
|
1489
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1490
|
-
soft_fail : bool
|
|
1491
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1492
|
-
name : str
|
|
1493
|
-
Name of the sensor on Airflow
|
|
1494
|
-
description : str
|
|
1495
|
-
Description of sensor in the Airflow UI
|
|
1496
|
-
bucket_key : Union[str, List[str]]
|
|
1497
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1498
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1499
|
-
bucket_name : str
|
|
1500
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1501
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1502
|
-
wildcard_match : bool
|
|
1503
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1504
|
-
aws_conn_id : str
|
|
1505
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
|
1506
|
-
verify : bool
|
|
1507
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1508
|
-
"""
|
|
1509
|
-
...
|
|
1510
|
-
|
|
1511
|
-
@typing.overload
|
|
1512
|
-
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1513
|
-
"""
|
|
1514
|
-
Specifies the event(s) that this flow depends on.
|
|
1515
|
-
|
|
1516
|
-
```
|
|
1517
|
-
@trigger(event='foo')
|
|
1518
|
-
```
|
|
1519
|
-
or
|
|
1520
|
-
```
|
|
1521
|
-
@trigger(events=['foo', 'bar'])
|
|
1522
|
-
```
|
|
1523
|
-
|
|
1524
|
-
Additionally, you can specify the parameter mappings
|
|
1525
|
-
to map event payload to Metaflow parameters for the flow.
|
|
1526
|
-
```
|
|
1527
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1528
|
-
```
|
|
1529
|
-
or
|
|
1530
|
-
```
|
|
1531
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1532
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1533
|
-
```
|
|
1534
|
-
|
|
1535
|
-
'parameters' can also be a list of strings and tuples like so:
|
|
1536
|
-
```
|
|
1537
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1538
|
-
```
|
|
1539
|
-
This is equivalent to:
|
|
1540
|
-
```
|
|
1541
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1542
|
-
```
|
|
1543
|
-
|
|
1544
|
-
|
|
1545
|
-
Parameters
|
|
1546
|
-
----------
|
|
1547
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
|
1548
|
-
Event dependency for this flow.
|
|
1549
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
|
1550
|
-
Events dependency for this flow.
|
|
1551
|
-
options : Dict[str, Any], default {}
|
|
1552
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
1553
|
-
"""
|
|
1554
|
-
...
|
|
1555
|
-
|
|
1556
|
-
@typing.overload
|
|
1557
|
-
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1558
|
-
...
|
|
1559
|
-
|
|
1560
|
-
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1561
|
-
"""
|
|
1562
|
-
Specifies the event(s) that this flow depends on.
|
|
1563
|
-
|
|
1564
|
-
```
|
|
1565
|
-
@trigger(event='foo')
|
|
1566
|
-
```
|
|
1567
|
-
or
|
|
1568
|
-
```
|
|
1569
|
-
@trigger(events=['foo', 'bar'])
|
|
1570
|
-
```
|
|
1571
|
-
|
|
1572
|
-
Additionally, you can specify the parameter mappings
|
|
1573
|
-
to map event payload to Metaflow parameters for the flow.
|
|
1574
|
-
```
|
|
1575
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1576
|
-
```
|
|
1577
|
-
or
|
|
1578
|
-
```
|
|
1579
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1580
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1581
|
-
```
|
|
1582
|
-
|
|
1583
|
-
'parameters' can also be a list of strings and tuples like so:
|
|
1584
|
-
```
|
|
1585
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1586
|
-
```
|
|
1587
|
-
This is equivalent to:
|
|
1588
|
-
```
|
|
1589
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1590
|
-
```
|
|
1591
|
-
|
|
1592
|
-
|
|
1593
|
-
Parameters
|
|
1594
|
-
----------
|
|
1595
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
|
1596
|
-
Event dependency for this flow.
|
|
1597
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
|
1598
|
-
Events dependency for this flow.
|
|
1599
|
-
options : Dict[str, Any], default {}
|
|
1600
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
1623
|
+
weekly : bool, default False
|
|
1624
|
+
Run the workflow weekly.
|
|
1625
|
+
cron : str, optional, default None
|
|
1626
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1627
|
+
specified by this expression.
|
|
1628
|
+
timezone : str, optional, default None
|
|
1629
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1630
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1601
1631
|
"""
|
|
1602
1632
|
...
|
|
1603
1633
|
|
|
@@ -1766,190 +1796,176 @@ def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packa
|
|
|
1766
1796
|
"""
|
|
1767
1797
|
...
|
|
1768
1798
|
|
|
1799
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1800
|
+
"""
|
|
1801
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1802
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1803
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1804
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1805
|
+
starts only after all sensors finish.
|
|
1806
|
+
|
|
1807
|
+
|
|
1808
|
+
Parameters
|
|
1809
|
+
----------
|
|
1810
|
+
timeout : int
|
|
1811
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1812
|
+
poke_interval : int
|
|
1813
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1814
|
+
mode : str
|
|
1815
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1816
|
+
exponential_backoff : bool
|
|
1817
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1818
|
+
pool : str
|
|
1819
|
+
the slot pool this task should run in,
|
|
1820
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1821
|
+
soft_fail : bool
|
|
1822
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1823
|
+
name : str
|
|
1824
|
+
Name of the sensor on Airflow
|
|
1825
|
+
description : str
|
|
1826
|
+
Description of sensor in the Airflow UI
|
|
1827
|
+
bucket_key : Union[str, List[str]]
|
|
1828
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1829
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1830
|
+
bucket_name : str
|
|
1831
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1832
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1833
|
+
wildcard_match : bool
|
|
1834
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1835
|
+
aws_conn_id : str
|
|
1836
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1837
|
+
verify : bool
|
|
1838
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1839
|
+
"""
|
|
1840
|
+
...
|
|
1841
|
+
|
|
1842
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1843
|
+
"""
|
|
1844
|
+
Specifies what flows belong to the same project.
|
|
1845
|
+
|
|
1846
|
+
A project-specific namespace is created for all flows that
|
|
1847
|
+
use the same `@project(name)`.
|
|
1848
|
+
|
|
1849
|
+
|
|
1850
|
+
Parameters
|
|
1851
|
+
----------
|
|
1852
|
+
name : str
|
|
1853
|
+
Project name. Make sure that the name is unique amongst all
|
|
1854
|
+
projects that use the same production scheduler. The name may
|
|
1855
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
1856
|
+
|
|
1857
|
+
branch : Optional[str], default None
|
|
1858
|
+
The branch to use. If not specified, the branch is set to
|
|
1859
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
1860
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
1861
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
1862
|
+
|
|
1863
|
+
production : bool, default False
|
|
1864
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
1865
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
1866
|
+
`production` in the decorator and on the command line.
|
|
1867
|
+
The project branch name will be:
|
|
1868
|
+
- if `branch` is specified:
|
|
1869
|
+
- if `production` is True: `prod.<branch>`
|
|
1870
|
+
- if `production` is False: `test.<branch>`
|
|
1871
|
+
- if `branch` is not specified:
|
|
1872
|
+
- if `production` is True: `prod`
|
|
1873
|
+
- if `production` is False: `user.<username>`
|
|
1874
|
+
"""
|
|
1875
|
+
...
|
|
1876
|
+
|
|
1769
1877
|
@typing.overload
|
|
1770
|
-
def
|
|
1878
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1771
1879
|
"""
|
|
1772
|
-
Specifies the
|
|
1880
|
+
Specifies the event(s) that this flow depends on.
|
|
1773
1881
|
|
|
1774
1882
|
```
|
|
1775
|
-
@
|
|
1883
|
+
@trigger(event='foo')
|
|
1776
1884
|
```
|
|
1777
1885
|
or
|
|
1778
1886
|
```
|
|
1779
|
-
@
|
|
1887
|
+
@trigger(events=['foo', 'bar'])
|
|
1780
1888
|
```
|
|
1781
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1782
|
-
when upstream runs within the same namespace complete successfully
|
|
1783
1889
|
|
|
1784
|
-
Additionally, you can specify
|
|
1785
|
-
|
|
1890
|
+
Additionally, you can specify the parameter mappings
|
|
1891
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1786
1892
|
```
|
|
1787
|
-
@
|
|
1893
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1788
1894
|
```
|
|
1789
1895
|
or
|
|
1790
1896
|
```
|
|
1791
|
-
@
|
|
1897
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1898
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1792
1899
|
```
|
|
1793
1900
|
|
|
1794
|
-
|
|
1795
|
-
inferred from the current project or project branch):
|
|
1901
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1796
1902
|
```
|
|
1797
|
-
@
|
|
1903
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1904
|
+
```
|
|
1905
|
+
This is equivalent to:
|
|
1906
|
+
```
|
|
1907
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1798
1908
|
```
|
|
1799
|
-
|
|
1800
|
-
Note that `branch` is typically one of:
|
|
1801
|
-
- `prod`
|
|
1802
|
-
- `user.bob`
|
|
1803
|
-
- `test.my_experiment`
|
|
1804
|
-
- `prod.staging`
|
|
1805
1909
|
|
|
1806
1910
|
|
|
1807
1911
|
Parameters
|
|
1808
1912
|
----------
|
|
1809
|
-
|
|
1810
|
-
|
|
1811
|
-
|
|
1812
|
-
|
|
1913
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1914
|
+
Event dependency for this flow.
|
|
1915
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1916
|
+
Events dependency for this flow.
|
|
1813
1917
|
options : Dict[str, Any], default {}
|
|
1814
1918
|
Backend-specific configuration for tuning eventing behavior.
|
|
1815
1919
|
"""
|
|
1816
1920
|
...
|
|
1817
1921
|
|
|
1818
1922
|
@typing.overload
|
|
1819
|
-
def
|
|
1923
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1820
1924
|
...
|
|
1821
1925
|
|
|
1822
|
-
def
|
|
1926
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1823
1927
|
"""
|
|
1824
|
-
Specifies the
|
|
1928
|
+
Specifies the event(s) that this flow depends on.
|
|
1825
1929
|
|
|
1826
1930
|
```
|
|
1827
|
-
@
|
|
1931
|
+
@trigger(event='foo')
|
|
1828
1932
|
```
|
|
1829
1933
|
or
|
|
1830
1934
|
```
|
|
1831
|
-
@
|
|
1935
|
+
@trigger(events=['foo', 'bar'])
|
|
1832
1936
|
```
|
|
1833
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1834
|
-
when upstream runs within the same namespace complete successfully
|
|
1835
1937
|
|
|
1836
|
-
Additionally, you can specify
|
|
1837
|
-
|
|
1938
|
+
Additionally, you can specify the parameter mappings
|
|
1939
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1838
1940
|
```
|
|
1839
|
-
@
|
|
1941
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1840
1942
|
```
|
|
1841
1943
|
or
|
|
1842
1944
|
```
|
|
1843
|
-
@
|
|
1945
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1946
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1844
1947
|
```
|
|
1845
1948
|
|
|
1846
|
-
|
|
1847
|
-
inferred from the current project or project branch):
|
|
1949
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1848
1950
|
```
|
|
1849
|
-
@
|
|
1951
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1952
|
+
```
|
|
1953
|
+
This is equivalent to:
|
|
1954
|
+
```
|
|
1955
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1850
1956
|
```
|
|
1851
|
-
|
|
1852
|
-
Note that `branch` is typically one of:
|
|
1853
|
-
- `prod`
|
|
1854
|
-
- `user.bob`
|
|
1855
|
-
- `test.my_experiment`
|
|
1856
|
-
- `prod.staging`
|
|
1857
1957
|
|
|
1858
1958
|
|
|
1859
1959
|
Parameters
|
|
1860
1960
|
----------
|
|
1861
|
-
|
|
1862
|
-
|
|
1863
|
-
|
|
1864
|
-
|
|
1961
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1962
|
+
Event dependency for this flow.
|
|
1963
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1964
|
+
Events dependency for this flow.
|
|
1865
1965
|
options : Dict[str, Any], default {}
|
|
1866
1966
|
Backend-specific configuration for tuning eventing behavior.
|
|
1867
1967
|
"""
|
|
1868
1968
|
...
|
|
1869
1969
|
|
|
1870
|
-
@typing.overload
|
|
1871
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1872
|
-
"""
|
|
1873
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1874
|
-
|
|
1875
|
-
Use `@pypi_base` to set common packages required by all
|
|
1876
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1877
|
-
|
|
1878
|
-
Parameters
|
|
1879
|
-
----------
|
|
1880
|
-
packages : Dict[str, str], default: {}
|
|
1881
|
-
Packages to use for this flow. The key is the name of the package
|
|
1882
|
-
and the value is the version to use.
|
|
1883
|
-
python : str, optional, default: None
|
|
1884
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1885
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1886
|
-
"""
|
|
1887
|
-
...
|
|
1888
|
-
|
|
1889
|
-
@typing.overload
|
|
1890
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1891
|
-
...
|
|
1892
|
-
|
|
1893
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1894
|
-
"""
|
|
1895
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1896
|
-
|
|
1897
|
-
Use `@pypi_base` to set common packages required by all
|
|
1898
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1899
|
-
|
|
1900
|
-
Parameters
|
|
1901
|
-
----------
|
|
1902
|
-
packages : Dict[str, str], default: {}
|
|
1903
|
-
Packages to use for this flow. The key is the name of the package
|
|
1904
|
-
and the value is the version to use.
|
|
1905
|
-
python : str, optional, default: None
|
|
1906
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1907
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1908
|
-
"""
|
|
1909
|
-
...
|
|
1910
|
-
|
|
1911
|
-
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1912
|
-
"""
|
|
1913
|
-
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
1914
|
-
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1915
|
-
|
|
1916
|
-
|
|
1917
|
-
Parameters
|
|
1918
|
-
----------
|
|
1919
|
-
timeout : int
|
|
1920
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1921
|
-
poke_interval : int
|
|
1922
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1923
|
-
mode : str
|
|
1924
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1925
|
-
exponential_backoff : bool
|
|
1926
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1927
|
-
pool : str
|
|
1928
|
-
the slot pool this task should run in,
|
|
1929
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1930
|
-
soft_fail : bool
|
|
1931
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1932
|
-
name : str
|
|
1933
|
-
Name of the sensor on Airflow
|
|
1934
|
-
description : str
|
|
1935
|
-
Description of sensor in the Airflow UI
|
|
1936
|
-
external_dag_id : str
|
|
1937
|
-
The dag_id that contains the task you want to wait for.
|
|
1938
|
-
external_task_ids : List[str]
|
|
1939
|
-
The list of task_ids that you want to wait for.
|
|
1940
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1941
|
-
allowed_states : List[str]
|
|
1942
|
-
Iterable of allowed states, (Default: ['success'])
|
|
1943
|
-
failed_states : List[str]
|
|
1944
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
|
1945
|
-
execution_delta : datetime.timedelta
|
|
1946
|
-
time difference with the previous execution to look at,
|
|
1947
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1948
|
-
check_existence: bool
|
|
1949
|
-
Set to True to check if the external task exists or check if
|
|
1950
|
-
the DAG to wait for exists. (Default: True)
|
|
1951
|
-
"""
|
|
1952
|
-
...
|
|
1953
|
-
|
|
1954
1970
|
pkg_name: str
|
|
1955
1971
|
|