ob-metaflow-stubs 6.0.10.2rc0__py2.py3-none-any.whl → 6.0.10.3__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ob-metaflow-stubs might be problematic. Click here for more details.
- metaflow-stubs/__init__.pyi +1126 -1096
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +6 -6
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +5 -5
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +4 -4
- metaflow-stubs/meta_files.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +3 -3
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -2
- metaflow-stubs/metaflow_current.pyi +51 -51
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +11 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +5 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +42 -11
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +6 -12
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -3
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -3
- metaflow-stubs/packaging_sys/__init__.pyi +6 -6
- metaflow-stubs/packaging_sys/backend.pyi +4 -4
- metaflow-stubs/packaging_sys/distribution_support.pyi +4 -4
- metaflow-stubs/packaging_sys/tar_backend.pyi +6 -6
- metaflow-stubs/packaging_sys/utils.pyi +2 -2
- metaflow-stubs/packaging_sys/v1.pyi +4 -4
- metaflow-stubs/parameters.pyi +4 -4
- metaflow-stubs/plugins/__init__.pyi +14 -14
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +5 -5
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +4 -4
- metaflow-stubs/plugins/argo/exit_hooks.pyi +3 -3
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +4 -4
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +3 -3
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +4 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +5 -5
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +3 -3
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
- metaflow-stubs/plugins/optuna/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +3 -3
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +4 -4
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +3 -3
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +3 -3
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +34 -34
- metaflow-stubs/runner/deployer_impl.pyi +3 -3
- metaflow-stubs/runner/metaflow_runner.pyi +4 -4
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +3 -3
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_options.pyi +4 -4
- metaflow-stubs/user_configs/config_parameters.pyi +5 -5
- metaflow-stubs/user_decorators/__init__.pyi +2 -2
- metaflow-stubs/user_decorators/common.pyi +2 -2
- metaflow-stubs/user_decorators/mutable_flow.pyi +5 -5
- metaflow-stubs/user_decorators/mutable_step.pyi +5 -5
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +5 -5
- metaflow-stubs/user_decorators/user_step_decorator.pyi +7 -7
- {ob_metaflow_stubs-6.0.10.2rc0.dist-info → ob_metaflow_stubs-6.0.10.3.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.10.3.dist-info/RECORD +262 -0
- ob_metaflow_stubs-6.0.10.2rc0.dist-info/RECORD +0 -262
- {ob_metaflow_stubs-6.0.10.2rc0.dist-info → ob_metaflow_stubs-6.0.10.3.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.10.2rc0.dist-info → ob_metaflow_stubs-6.0.10.3.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
|
-
# MF version: 2.18.
|
|
4
|
-
# Generated on 2025-09-
|
|
3
|
+
# MF version: 2.18.5.1+obcheckpoint(0.2.5);ob(v1) #
|
|
4
|
+
# Generated on 2025-09-16T18:01:26.529291 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
8
8
|
|
|
9
9
|
import typing
|
|
10
10
|
if typing.TYPE_CHECKING:
|
|
11
|
-
import datetime
|
|
12
11
|
import typing
|
|
12
|
+
import datetime
|
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
|
15
15
|
|
|
@@ -39,18 +39,18 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
-
from . import tuple_util as tuple_util
|
|
43
42
|
from . import cards as cards
|
|
44
|
-
from . import metaflow_git as metaflow_git
|
|
45
43
|
from . import events as events
|
|
44
|
+
from . import metaflow_git as metaflow_git
|
|
45
|
+
from . import tuple_util as tuple_util
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
|
-
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
52
|
-
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
53
51
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
52
|
+
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
53
|
+
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
54
54
|
from . import client as client
|
|
55
55
|
from .client.core import namespace as namespace
|
|
56
56
|
from .client.core import get_namespace as get_namespace
|
|
@@ -83,7 +83,6 @@ from .mf_extensions.outerbounds.plugins.checkpoint_datastores.nebius import nebi
|
|
|
83
83
|
from .mf_extensions.outerbounds.plugins.checkpoint_datastores.coreweave import coreweave_checkpoints as coreweave_checkpoints
|
|
84
84
|
from .mf_extensions.outerbounds.plugins.aws.assume_role_decorator import assume_role as assume_role
|
|
85
85
|
from .mf_extensions.outerbounds.plugins.apps.core.deployer import AppDeployer as AppDeployer
|
|
86
|
-
from .mf_extensions.outerbounds.plugins.apps.core.deployer import DeployedApp as DeployedApp
|
|
87
86
|
from . import system as system
|
|
88
87
|
from . import cli_components as cli_components
|
|
89
88
|
from . import pylint_wrapper as pylint_wrapper
|
|
@@ -169,104 +168,166 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
169
168
|
...
|
|
170
169
|
|
|
171
170
|
@typing.overload
|
|
172
|
-
def
|
|
171
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
173
172
|
"""
|
|
174
|
-
Specifies
|
|
173
|
+
Specifies the number of times the task corresponding
|
|
174
|
+
to a step needs to be retried.
|
|
175
|
+
|
|
176
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
177
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
178
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
179
|
+
|
|
180
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
181
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
182
|
+
ensuring that the flow execution can continue.
|
|
175
183
|
|
|
176
184
|
|
|
177
185
|
Parameters
|
|
178
186
|
----------
|
|
179
|
-
|
|
180
|
-
|
|
187
|
+
times : int, default 3
|
|
188
|
+
Number of times to retry this task.
|
|
189
|
+
minutes_between_retries : int, default 2
|
|
190
|
+
Number of minutes between retries.
|
|
181
191
|
"""
|
|
182
192
|
...
|
|
183
193
|
|
|
184
194
|
@typing.overload
|
|
185
|
-
def
|
|
195
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
186
196
|
...
|
|
187
197
|
|
|
188
198
|
@typing.overload
|
|
189
|
-
def
|
|
199
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
190
200
|
...
|
|
191
201
|
|
|
192
|
-
def
|
|
202
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
193
203
|
"""
|
|
194
|
-
Specifies
|
|
204
|
+
Specifies the number of times the task corresponding
|
|
205
|
+
to a step needs to be retried.
|
|
206
|
+
|
|
207
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
208
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
209
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
210
|
+
|
|
211
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
212
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
213
|
+
ensuring that the flow execution can continue.
|
|
195
214
|
|
|
196
215
|
|
|
197
216
|
Parameters
|
|
198
217
|
----------
|
|
199
|
-
|
|
200
|
-
|
|
218
|
+
times : int, default 3
|
|
219
|
+
Number of times to retry this task.
|
|
220
|
+
minutes_between_retries : int, default 2
|
|
221
|
+
Number of minutes between retries.
|
|
201
222
|
"""
|
|
202
223
|
...
|
|
203
224
|
|
|
204
|
-
def
|
|
225
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
205
226
|
"""
|
|
206
|
-
|
|
227
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
228
|
+
|
|
229
|
+
User code call
|
|
230
|
+
--------------
|
|
231
|
+
@vllm(
|
|
232
|
+
model="...",
|
|
233
|
+
...
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
Valid backend options
|
|
237
|
+
---------------------
|
|
238
|
+
- 'local': Run as a separate process on the local task machine.
|
|
239
|
+
|
|
240
|
+
Valid model options
|
|
241
|
+
-------------------
|
|
242
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
243
|
+
|
|
244
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
245
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
207
246
|
|
|
208
247
|
|
|
209
248
|
Parameters
|
|
210
249
|
----------
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
250
|
+
model: str
|
|
251
|
+
HuggingFace model identifier to be served by vLLM.
|
|
252
|
+
backend: str
|
|
253
|
+
Determines where and how to run the vLLM process.
|
|
254
|
+
openai_api_server: bool
|
|
255
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
256
|
+
Default is False (uses native engine).
|
|
257
|
+
Set to True for backward compatibility with existing code.
|
|
258
|
+
debug: bool
|
|
259
|
+
Whether to turn on verbose debugging logs.
|
|
260
|
+
card_refresh_interval: int
|
|
261
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
262
|
+
Only used when openai_api_server=True.
|
|
263
|
+
max_retries: int
|
|
264
|
+
Maximum number of retries checking for vLLM server startup.
|
|
265
|
+
Only used when openai_api_server=True.
|
|
266
|
+
retry_alert_frequency: int
|
|
267
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
268
|
+
Only used when openai_api_server=True.
|
|
269
|
+
engine_args : dict
|
|
270
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
271
|
+
For example, `tensor_parallel_size=2`.
|
|
217
272
|
"""
|
|
218
273
|
...
|
|
219
274
|
|
|
220
|
-
|
|
275
|
+
@typing.overload
|
|
276
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
221
277
|
"""
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
Parameters
|
|
226
|
-
----------
|
|
227
|
-
gpu : int
|
|
228
|
-
Number of GPUs to use.
|
|
229
|
-
gpu_type : str
|
|
230
|
-
Type of Nvidia GPU to use.
|
|
278
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
279
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
280
|
+
a Neo Cloud like CoreWeave.
|
|
231
281
|
"""
|
|
232
282
|
...
|
|
233
283
|
|
|
234
284
|
@typing.overload
|
|
235
|
-
def
|
|
285
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
286
|
+
...
|
|
287
|
+
|
|
288
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
236
289
|
"""
|
|
237
|
-
|
|
290
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
291
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
292
|
+
a Neo Cloud like CoreWeave.
|
|
238
293
|
"""
|
|
239
294
|
...
|
|
240
295
|
|
|
241
296
|
@typing.overload
|
|
242
|
-
def
|
|
297
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
298
|
+
"""
|
|
299
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
300
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
301
|
+
"""
|
|
243
302
|
...
|
|
244
303
|
|
|
245
|
-
|
|
304
|
+
@typing.overload
|
|
305
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
306
|
+
...
|
|
307
|
+
|
|
308
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
246
309
|
"""
|
|
247
|
-
|
|
310
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
311
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
248
312
|
"""
|
|
249
313
|
...
|
|
250
314
|
|
|
251
|
-
|
|
315
|
+
@typing.overload
|
|
316
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
252
317
|
"""
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
"origin" -> only write to the target S3 bucket
|
|
267
|
-
"cache" -> only write to the object storage service used for caching
|
|
268
|
-
debug : bool, optional
|
|
269
|
-
Enable debug logging for proxy operations.
|
|
318
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
319
|
+
to inject a card and render simple markdown content.
|
|
320
|
+
"""
|
|
321
|
+
...
|
|
322
|
+
|
|
323
|
+
@typing.overload
|
|
324
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
325
|
+
...
|
|
326
|
+
|
|
327
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
328
|
+
"""
|
|
329
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
330
|
+
to inject a card and render simple markdown content.
|
|
270
331
|
"""
|
|
271
332
|
...
|
|
272
333
|
|
|
@@ -329,143 +390,92 @@ def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
|
329
390
|
"""
|
|
330
391
|
...
|
|
331
392
|
|
|
332
|
-
|
|
333
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
334
|
-
"""
|
|
335
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
336
|
-
the execution of a step.
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
Parameters
|
|
340
|
-
----------
|
|
341
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
342
|
-
List of secret specs, defining how the secrets are to be retrieved
|
|
343
|
-
role : str, optional, default: None
|
|
344
|
-
Role to use for fetching secrets
|
|
345
|
-
"""
|
|
346
|
-
...
|
|
347
|
-
|
|
348
|
-
@typing.overload
|
|
349
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
350
|
-
...
|
|
351
|
-
|
|
352
|
-
@typing.overload
|
|
353
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
354
|
-
...
|
|
355
|
-
|
|
356
|
-
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
393
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
357
394
|
"""
|
|
358
|
-
Specifies
|
|
359
|
-
the execution of a step.
|
|
395
|
+
Specifies that this step should execute on Kubernetes.
|
|
360
396
|
|
|
361
397
|
|
|
362
398
|
Parameters
|
|
363
399
|
----------
|
|
364
|
-
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
|
|
398
|
-
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
|
|
412
|
-
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
|
|
424
|
-
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
|
|
428
|
-
|
|
429
|
-
|
|
430
|
-
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
|
|
434
|
-
|
|
435
|
-
|
|
436
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
437
|
-
The list of repos (models/datasets) to load.
|
|
438
|
-
|
|
439
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
440
|
-
|
|
441
|
-
- If repo (model/dataset) is not found in the datastore:
|
|
442
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
443
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
444
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
400
|
+
cpu : int, default 1
|
|
401
|
+
Number of CPUs required for this step. If `@resources` is
|
|
402
|
+
also present, the maximum value from all decorators is used.
|
|
403
|
+
memory : int, default 4096
|
|
404
|
+
Memory size (in MB) required for this step. If
|
|
405
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
406
|
+
used.
|
|
407
|
+
disk : int, default 10240
|
|
408
|
+
Disk size (in MB) required for this step. If
|
|
409
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
410
|
+
used.
|
|
411
|
+
image : str, optional, default None
|
|
412
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
413
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
414
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
415
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
416
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
417
|
+
image_pull_secrets: List[str], default []
|
|
418
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
419
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
420
|
+
in Kubernetes.
|
|
421
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
422
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
423
|
+
secrets : List[str], optional, default None
|
|
424
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
425
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
426
|
+
in Metaflow configuration.
|
|
427
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
428
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
429
|
+
Can be passed in as a comma separated string of values e.g.
|
|
430
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
431
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
432
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
433
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
434
|
+
gpu : int, optional, default None
|
|
435
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
436
|
+
the scheduled node should not have GPUs.
|
|
437
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
438
|
+
The vendor of the GPUs to be used for this step.
|
|
439
|
+
tolerations : List[Dict[str,str]], default []
|
|
440
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
441
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
442
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
443
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
444
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
445
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
446
|
+
use_tmpfs : bool, default False
|
|
447
|
+
This enables an explicit tmpfs mount for this step.
|
|
448
|
+
tmpfs_tempdir : bool, default True
|
|
449
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
450
|
+
tmpfs_size : int, optional, default: None
|
|
451
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
452
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
453
|
+
memory allocated for this step.
|
|
454
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
455
|
+
Path to tmpfs mount for this step.
|
|
456
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
457
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
458
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
459
|
+
shared_memory: int, optional
|
|
460
|
+
Shared memory size (in MiB) required for this step
|
|
461
|
+
port: int, optional
|
|
462
|
+
Port number to specify in the Kubernetes job object
|
|
463
|
+
compute_pool : str, optional, default None
|
|
464
|
+
Compute pool to be used for for this step.
|
|
465
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
466
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
467
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
468
|
+
Only applicable when @parallel is used.
|
|
469
|
+
qos: str, default: Burstable
|
|
470
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
445
471
|
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
"""
|
|
454
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
455
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
456
|
-
a Neo Cloud like CoreWeave.
|
|
457
|
-
"""
|
|
458
|
-
...
|
|
459
|
-
|
|
460
|
-
@typing.overload
|
|
461
|
-
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
462
|
-
...
|
|
463
|
-
|
|
464
|
-
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
465
|
-
"""
|
|
466
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
467
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
468
|
-
a Neo Cloud like CoreWeave.
|
|
472
|
+
security_context: Dict[str, Any], optional, default None
|
|
473
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
474
|
+
- privileged: bool, optional, default None
|
|
475
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
476
|
+
- run_as_user: int, optional, default None
|
|
477
|
+
- run_as_group: int, optional, default None
|
|
478
|
+
- run_as_non_root: bool, optional, default None
|
|
469
479
|
"""
|
|
470
480
|
...
|
|
471
481
|
|
|
@@ -519,348 +529,70 @@ def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
|
519
529
|
...
|
|
520
530
|
|
|
521
531
|
@typing.overload
|
|
522
|
-
def
|
|
532
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
523
533
|
"""
|
|
524
|
-
|
|
525
|
-
|
|
526
|
-
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
|
|
530
|
-
|
|
531
|
-
|
|
532
|
-
|
|
533
|
-
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
|
|
537
|
-
|
|
538
|
-
|
|
539
|
-
|
|
540
|
-
|
|
541
|
-
|
|
542
|
-
self.next(self.test)
|
|
543
|
-
|
|
544
|
-
@model(load="my_model")
|
|
545
|
-
@step
|
|
546
|
-
def test(self):
|
|
547
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
548
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
549
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
550
|
-
self.next(self.end)
|
|
551
|
-
```
|
|
534
|
+
Internal decorator to support Fast bakery
|
|
535
|
+
"""
|
|
536
|
+
...
|
|
537
|
+
|
|
538
|
+
@typing.overload
|
|
539
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
540
|
+
...
|
|
541
|
+
|
|
542
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
543
|
+
"""
|
|
544
|
+
Internal decorator to support Fast bakery
|
|
545
|
+
"""
|
|
546
|
+
...
|
|
547
|
+
|
|
548
|
+
@typing.overload
|
|
549
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
550
|
+
"""
|
|
551
|
+
Specifies that the step will success under all circumstances.
|
|
552
552
|
|
|
553
|
-
|
|
554
|
-
|
|
555
|
-
|
|
556
|
-
|
|
557
|
-
# current.model.load returns the path to the model loaded
|
|
558
|
-
checkpoint_path = current.model.load(
|
|
559
|
-
self.checkpoint_key,
|
|
560
|
-
)
|
|
561
|
-
model_path = current.model.load(
|
|
562
|
-
self.model,
|
|
563
|
-
)
|
|
564
|
-
self.next(self.test)
|
|
565
|
-
```
|
|
553
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
554
|
+
contains the exception raised. You can use it to detect the presence
|
|
555
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
556
|
+
are missing.
|
|
566
557
|
|
|
567
558
|
|
|
568
559
|
Parameters
|
|
569
560
|
----------
|
|
570
|
-
|
|
571
|
-
|
|
572
|
-
|
|
573
|
-
|
|
574
|
-
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
temp_dir_root : str, default: None
|
|
578
|
-
The root directory under which `current.model.loaded` will store loaded models
|
|
561
|
+
var : str, optional, default None
|
|
562
|
+
Name of the artifact in which to store the caught exception.
|
|
563
|
+
If not specified, the exception is not stored.
|
|
564
|
+
print_exception : bool, default True
|
|
565
|
+
Determines whether or not the exception is printed to
|
|
566
|
+
stdout when caught.
|
|
579
567
|
"""
|
|
580
568
|
...
|
|
581
569
|
|
|
582
570
|
@typing.overload
|
|
583
|
-
def
|
|
571
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
584
572
|
...
|
|
585
573
|
|
|
586
574
|
@typing.overload
|
|
587
|
-
def
|
|
575
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
588
576
|
...
|
|
589
577
|
|
|
590
|
-
def
|
|
578
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
591
579
|
"""
|
|
592
|
-
|
|
593
|
-
|
|
594
|
-
> Examples
|
|
595
|
-
- Saving Models
|
|
596
|
-
```python
|
|
597
|
-
@model
|
|
598
|
-
@step
|
|
599
|
-
def train(self):
|
|
600
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
601
|
-
self.my_model = current.model.save(
|
|
602
|
-
path_to_my_model,
|
|
603
|
-
label="my_model",
|
|
604
|
-
metadata={
|
|
605
|
-
"epochs": 10,
|
|
606
|
-
"batch-size": 32,
|
|
607
|
-
"learning-rate": 0.001,
|
|
608
|
-
}
|
|
609
|
-
)
|
|
610
|
-
self.next(self.test)
|
|
611
|
-
|
|
612
|
-
@model(load="my_model")
|
|
613
|
-
@step
|
|
614
|
-
def test(self):
|
|
615
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
616
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
617
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
618
|
-
self.next(self.end)
|
|
619
|
-
```
|
|
580
|
+
Specifies that the step will success under all circumstances.
|
|
620
581
|
|
|
621
|
-
|
|
622
|
-
|
|
623
|
-
|
|
624
|
-
|
|
625
|
-
# current.model.load returns the path to the model loaded
|
|
626
|
-
checkpoint_path = current.model.load(
|
|
627
|
-
self.checkpoint_key,
|
|
628
|
-
)
|
|
629
|
-
model_path = current.model.load(
|
|
630
|
-
self.model,
|
|
631
|
-
)
|
|
632
|
-
self.next(self.test)
|
|
633
|
-
```
|
|
582
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
583
|
+
contains the exception raised. You can use it to detect the presence
|
|
584
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
585
|
+
are missing.
|
|
634
586
|
|
|
635
587
|
|
|
636
588
|
Parameters
|
|
637
589
|
----------
|
|
638
|
-
|
|
639
|
-
|
|
640
|
-
|
|
641
|
-
|
|
642
|
-
|
|
643
|
-
|
|
644
|
-
|
|
645
|
-
temp_dir_root : str, default: None
|
|
646
|
-
The root directory under which `current.model.loaded` will store loaded models
|
|
647
|
-
"""
|
|
648
|
-
...
|
|
649
|
-
|
|
650
|
-
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
651
|
-
"""
|
|
652
|
-
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
653
|
-
|
|
654
|
-
User code call
|
|
655
|
-
--------------
|
|
656
|
-
@vllm(
|
|
657
|
-
model="...",
|
|
658
|
-
...
|
|
659
|
-
)
|
|
660
|
-
|
|
661
|
-
Valid backend options
|
|
662
|
-
---------------------
|
|
663
|
-
- 'local': Run as a separate process on the local task machine.
|
|
664
|
-
|
|
665
|
-
Valid model options
|
|
666
|
-
-------------------
|
|
667
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
668
|
-
|
|
669
|
-
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
670
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
|
671
|
-
|
|
672
|
-
|
|
673
|
-
Parameters
|
|
674
|
-
----------
|
|
675
|
-
model: str
|
|
676
|
-
HuggingFace model identifier to be served by vLLM.
|
|
677
|
-
backend: str
|
|
678
|
-
Determines where and how to run the vLLM process.
|
|
679
|
-
openai_api_server: bool
|
|
680
|
-
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
681
|
-
Default is False (uses native engine).
|
|
682
|
-
Set to True for backward compatibility with existing code.
|
|
683
|
-
debug: bool
|
|
684
|
-
Whether to turn on verbose debugging logs.
|
|
685
|
-
card_refresh_interval: int
|
|
686
|
-
Interval in seconds for refreshing the vLLM status card.
|
|
687
|
-
Only used when openai_api_server=True.
|
|
688
|
-
max_retries: int
|
|
689
|
-
Maximum number of retries checking for vLLM server startup.
|
|
690
|
-
Only used when openai_api_server=True.
|
|
691
|
-
retry_alert_frequency: int
|
|
692
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
693
|
-
Only used when openai_api_server=True.
|
|
694
|
-
engine_args : dict
|
|
695
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
696
|
-
For example, `tensor_parallel_size=2`.
|
|
697
|
-
"""
|
|
698
|
-
...
|
|
699
|
-
|
|
700
|
-
@typing.overload
|
|
701
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
702
|
-
"""
|
|
703
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
704
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
705
|
-
"""
|
|
706
|
-
...
|
|
707
|
-
|
|
708
|
-
@typing.overload
|
|
709
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
710
|
-
...
|
|
711
|
-
|
|
712
|
-
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
713
|
-
"""
|
|
714
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
715
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
716
|
-
"""
|
|
717
|
-
...
|
|
718
|
-
|
|
719
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
720
|
-
"""
|
|
721
|
-
Specifies that this step should execute on Kubernetes.
|
|
722
|
-
|
|
723
|
-
|
|
724
|
-
Parameters
|
|
725
|
-
----------
|
|
726
|
-
cpu : int, default 1
|
|
727
|
-
Number of CPUs required for this step. If `@resources` is
|
|
728
|
-
also present, the maximum value from all decorators is used.
|
|
729
|
-
memory : int, default 4096
|
|
730
|
-
Memory size (in MB) required for this step. If
|
|
731
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
732
|
-
used.
|
|
733
|
-
disk : int, default 10240
|
|
734
|
-
Disk size (in MB) required for this step. If
|
|
735
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
736
|
-
used.
|
|
737
|
-
image : str, optional, default None
|
|
738
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
739
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
740
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
741
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
742
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
743
|
-
image_pull_secrets: List[str], default []
|
|
744
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
745
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
746
|
-
in Kubernetes.
|
|
747
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
748
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
749
|
-
secrets : List[str], optional, default None
|
|
750
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
751
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
752
|
-
in Metaflow configuration.
|
|
753
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
754
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
755
|
-
Can be passed in as a comma separated string of values e.g.
|
|
756
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
757
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
758
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
759
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
760
|
-
gpu : int, optional, default None
|
|
761
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
762
|
-
the scheduled node should not have GPUs.
|
|
763
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
764
|
-
The vendor of the GPUs to be used for this step.
|
|
765
|
-
tolerations : List[Dict[str,str]], default []
|
|
766
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
767
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
768
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
769
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
770
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
771
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
772
|
-
use_tmpfs : bool, default False
|
|
773
|
-
This enables an explicit tmpfs mount for this step.
|
|
774
|
-
tmpfs_tempdir : bool, default True
|
|
775
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
776
|
-
tmpfs_size : int, optional, default: None
|
|
777
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
778
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
779
|
-
memory allocated for this step.
|
|
780
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
781
|
-
Path to tmpfs mount for this step.
|
|
782
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
783
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
784
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
785
|
-
shared_memory: int, optional
|
|
786
|
-
Shared memory size (in MiB) required for this step
|
|
787
|
-
port: int, optional
|
|
788
|
-
Port number to specify in the Kubernetes job object
|
|
789
|
-
compute_pool : str, optional, default None
|
|
790
|
-
Compute pool to be used for for this step.
|
|
791
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
792
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
793
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
794
|
-
Only applicable when @parallel is used.
|
|
795
|
-
qos: str, default: Burstable
|
|
796
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
797
|
-
|
|
798
|
-
security_context: Dict[str, Any], optional, default None
|
|
799
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
800
|
-
- privileged: bool, optional, default None
|
|
801
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
802
|
-
- run_as_user: int, optional, default None
|
|
803
|
-
- run_as_group: int, optional, default None
|
|
804
|
-
- run_as_non_root: bool, optional, default None
|
|
805
|
-
"""
|
|
806
|
-
...
|
|
807
|
-
|
|
808
|
-
@typing.overload
|
|
809
|
-
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
810
|
-
"""
|
|
811
|
-
Specifies the Conda environment for the step.
|
|
812
|
-
|
|
813
|
-
Information in this decorator will augment any
|
|
814
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
815
|
-
you can use `@conda_base` to set packages required by all
|
|
816
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
817
|
-
|
|
818
|
-
|
|
819
|
-
Parameters
|
|
820
|
-
----------
|
|
821
|
-
packages : Dict[str, str], default {}
|
|
822
|
-
Packages to use for this step. The key is the name of the package
|
|
823
|
-
and the value is the version to use.
|
|
824
|
-
libraries : Dict[str, str], default {}
|
|
825
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
826
|
-
python : str, optional, default None
|
|
827
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
828
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
829
|
-
disabled : bool, default False
|
|
830
|
-
If set to True, disables @conda.
|
|
831
|
-
"""
|
|
832
|
-
...
|
|
833
|
-
|
|
834
|
-
@typing.overload
|
|
835
|
-
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
836
|
-
...
|
|
837
|
-
|
|
838
|
-
@typing.overload
|
|
839
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
840
|
-
...
|
|
841
|
-
|
|
842
|
-
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
843
|
-
"""
|
|
844
|
-
Specifies the Conda environment for the step.
|
|
845
|
-
|
|
846
|
-
Information in this decorator will augment any
|
|
847
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
848
|
-
you can use `@conda_base` to set packages required by all
|
|
849
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
850
|
-
|
|
851
|
-
|
|
852
|
-
Parameters
|
|
853
|
-
----------
|
|
854
|
-
packages : Dict[str, str], default {}
|
|
855
|
-
Packages to use for this step. The key is the name of the package
|
|
856
|
-
and the value is the version to use.
|
|
857
|
-
libraries : Dict[str, str], default {}
|
|
858
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
859
|
-
python : str, optional, default None
|
|
860
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
861
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
862
|
-
disabled : bool, default False
|
|
863
|
-
If set to True, disables @conda.
|
|
590
|
+
var : str, optional, default None
|
|
591
|
+
Name of the artifact in which to store the caught exception.
|
|
592
|
+
If not specified, the exception is not stored.
|
|
593
|
+
print_exception : bool, default True
|
|
594
|
+
Determines whether or not the exception is printed to
|
|
595
|
+
stdout when caught.
|
|
864
596
|
"""
|
|
865
597
|
...
|
|
866
598
|
|
|
@@ -915,34 +647,518 @@ def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
|
915
647
|
"""
|
|
916
648
|
...
|
|
917
649
|
|
|
918
|
-
|
|
919
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
920
|
-
"""
|
|
921
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
922
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
923
|
-
"""
|
|
924
|
-
...
|
|
925
|
-
|
|
926
|
-
@typing.overload
|
|
927
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
928
|
-
...
|
|
929
|
-
|
|
930
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
931
|
-
"""
|
|
932
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
933
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
650
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
934
651
|
"""
|
|
935
|
-
|
|
936
|
-
|
|
937
|
-
@typing.overload
|
|
938
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
939
|
-
"""
|
|
940
|
-
Enables checkpointing for a step.
|
|
652
|
+
Decorator that helps cache, version, and store models/datasets from the Hugging Face Hub.
|
|
941
653
|
|
|
942
654
|
> Examples
|
|
943
655
|
|
|
944
|
-
|
|
945
|
-
|
|
656
|
+
**Usage: creating references to models from the Hugging Face Hub that may be loaded in downstream steps**
|
|
657
|
+
```python
|
|
658
|
+
@huggingface_hub
|
|
659
|
+
@step
|
|
660
|
+
def pull_model_from_huggingface(self):
|
|
661
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
662
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
663
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
664
|
+
# value of the function is a reference to the model in the backend storage.
|
|
665
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
666
|
+
|
|
667
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
668
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
669
|
+
repo_id=self.model_id,
|
|
670
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
671
|
+
)
|
|
672
|
+
self.next(self.train)
|
|
673
|
+
```
|
|
674
|
+
|
|
675
|
+
**Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
676
|
+
```python
|
|
677
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
678
|
+
@step
|
|
679
|
+
def pull_model_from_huggingface(self):
|
|
680
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
681
|
+
```
|
|
682
|
+
|
|
683
|
+
```python
|
|
684
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora", "/my-lora-directory")])
|
|
685
|
+
@step
|
|
686
|
+
def finetune_model(self):
|
|
687
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
688
|
+
# path_to_model will be /my-directory
|
|
689
|
+
```
|
|
690
|
+
|
|
691
|
+
```python
|
|
692
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
693
|
+
# except for `local_dir`
|
|
694
|
+
@huggingface_hub(load=[
|
|
695
|
+
{
|
|
696
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
697
|
+
},
|
|
698
|
+
{
|
|
699
|
+
"repo_id": "myorg/mistral-lora",
|
|
700
|
+
"repo_type": "model",
|
|
701
|
+
},
|
|
702
|
+
])
|
|
703
|
+
@step
|
|
704
|
+
def finetune_model(self):
|
|
705
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
706
|
+
# path_to_model will be /my-directory
|
|
707
|
+
```
|
|
708
|
+
|
|
709
|
+
|
|
710
|
+
Parameters
|
|
711
|
+
----------
|
|
712
|
+
temp_dir_root : str, optional
|
|
713
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
714
|
+
|
|
715
|
+
cache_scope : str, optional
|
|
716
|
+
The scope of the cache. Can be `checkpoint` / `flow` / `global`.
|
|
717
|
+
|
|
718
|
+
- `checkpoint` (default): All repos are stored like objects saved by `@checkpoint`.
|
|
719
|
+
i.e., the cached path is derived from the namespace, flow, step, and Metaflow foreach iteration.
|
|
720
|
+
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
721
|
+
|
|
722
|
+
- `flow`: All repos are cached under the flow, regardless of namespace.
|
|
723
|
+
i.e., the cached path is derived solely from the flow name.
|
|
724
|
+
When to use this mode:
|
|
725
|
+
- Multiple users are executing the same flow and want shared access to the repos cached by the decorator.
|
|
726
|
+
- Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
727
|
+
|
|
728
|
+
- `global`: All repos are cached under a globally static path.
|
|
729
|
+
i.e., the base path of the cache is static and all repos are stored under it.
|
|
730
|
+
When to use this mode:
|
|
731
|
+
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
732
|
+
|
|
733
|
+
Each caching scope comes with its own trade-offs:
|
|
734
|
+
- `checkpoint`:
|
|
735
|
+
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
736
|
+
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
737
|
+
- `flow`:
|
|
738
|
+
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
739
|
+
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
740
|
+
- It doesn't promote cache reuse across flows.
|
|
741
|
+
- `global`:
|
|
742
|
+
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
743
|
+
- It promotes cache reuse across flows.
|
|
744
|
+
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
745
|
+
|
|
746
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
747
|
+
The list of repos (models/datasets) to load.
|
|
748
|
+
|
|
749
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
750
|
+
|
|
751
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
752
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
753
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
754
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
755
|
+
|
|
756
|
+
- If repo is found in the datastore:
|
|
757
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
758
|
+
"""
|
|
759
|
+
...
|
|
760
|
+
|
|
761
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
762
|
+
"""
|
|
763
|
+
Specifies that this step should execute on DGX cloud.
|
|
764
|
+
|
|
765
|
+
|
|
766
|
+
Parameters
|
|
767
|
+
----------
|
|
768
|
+
gpu : int
|
|
769
|
+
Number of GPUs to use.
|
|
770
|
+
gpu_type : str
|
|
771
|
+
Type of Nvidia GPU to use.
|
|
772
|
+
queue_timeout : int
|
|
773
|
+
Time to keep the job in NVCF's queue.
|
|
774
|
+
"""
|
|
775
|
+
...
|
|
776
|
+
|
|
777
|
+
@typing.overload
|
|
778
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
779
|
+
"""
|
|
780
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
781
|
+
|
|
782
|
+
|
|
783
|
+
Parameters
|
|
784
|
+
----------
|
|
785
|
+
vars : Dict[str, str], default {}
|
|
786
|
+
Dictionary of environment variables to set.
|
|
787
|
+
"""
|
|
788
|
+
...
|
|
789
|
+
|
|
790
|
+
@typing.overload
|
|
791
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
792
|
+
...
|
|
793
|
+
|
|
794
|
+
@typing.overload
|
|
795
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
796
|
+
...
|
|
797
|
+
|
|
798
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
799
|
+
"""
|
|
800
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
801
|
+
|
|
802
|
+
|
|
803
|
+
Parameters
|
|
804
|
+
----------
|
|
805
|
+
vars : Dict[str, str], default {}
|
|
806
|
+
Dictionary of environment variables to set.
|
|
807
|
+
"""
|
|
808
|
+
...
|
|
809
|
+
|
|
810
|
+
@typing.overload
|
|
811
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
812
|
+
"""
|
|
813
|
+
Enables loading / saving of models within a step.
|
|
814
|
+
|
|
815
|
+
> Examples
|
|
816
|
+
- Saving Models
|
|
817
|
+
```python
|
|
818
|
+
@model
|
|
819
|
+
@step
|
|
820
|
+
def train(self):
|
|
821
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
822
|
+
self.my_model = current.model.save(
|
|
823
|
+
path_to_my_model,
|
|
824
|
+
label="my_model",
|
|
825
|
+
metadata={
|
|
826
|
+
"epochs": 10,
|
|
827
|
+
"batch-size": 32,
|
|
828
|
+
"learning-rate": 0.001,
|
|
829
|
+
}
|
|
830
|
+
)
|
|
831
|
+
self.next(self.test)
|
|
832
|
+
|
|
833
|
+
@model(load="my_model")
|
|
834
|
+
@step
|
|
835
|
+
def test(self):
|
|
836
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
837
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
838
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
839
|
+
self.next(self.end)
|
|
840
|
+
```
|
|
841
|
+
|
|
842
|
+
- Loading models
|
|
843
|
+
```python
|
|
844
|
+
@step
|
|
845
|
+
def train(self):
|
|
846
|
+
# current.model.load returns the path to the model loaded
|
|
847
|
+
checkpoint_path = current.model.load(
|
|
848
|
+
self.checkpoint_key,
|
|
849
|
+
)
|
|
850
|
+
model_path = current.model.load(
|
|
851
|
+
self.model,
|
|
852
|
+
)
|
|
853
|
+
self.next(self.test)
|
|
854
|
+
```
|
|
855
|
+
|
|
856
|
+
|
|
857
|
+
Parameters
|
|
858
|
+
----------
|
|
859
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
860
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
861
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
862
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
863
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
864
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
865
|
+
|
|
866
|
+
temp_dir_root : str, default: None
|
|
867
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
868
|
+
"""
|
|
869
|
+
...
|
|
870
|
+
|
|
871
|
+
@typing.overload
|
|
872
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
873
|
+
...
|
|
874
|
+
|
|
875
|
+
@typing.overload
|
|
876
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
877
|
+
...
|
|
878
|
+
|
|
879
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
|
880
|
+
"""
|
|
881
|
+
Enables loading / saving of models within a step.
|
|
882
|
+
|
|
883
|
+
> Examples
|
|
884
|
+
- Saving Models
|
|
885
|
+
```python
|
|
886
|
+
@model
|
|
887
|
+
@step
|
|
888
|
+
def train(self):
|
|
889
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
890
|
+
self.my_model = current.model.save(
|
|
891
|
+
path_to_my_model,
|
|
892
|
+
label="my_model",
|
|
893
|
+
metadata={
|
|
894
|
+
"epochs": 10,
|
|
895
|
+
"batch-size": 32,
|
|
896
|
+
"learning-rate": 0.001,
|
|
897
|
+
}
|
|
898
|
+
)
|
|
899
|
+
self.next(self.test)
|
|
900
|
+
|
|
901
|
+
@model(load="my_model")
|
|
902
|
+
@step
|
|
903
|
+
def test(self):
|
|
904
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
905
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
906
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
907
|
+
self.next(self.end)
|
|
908
|
+
```
|
|
909
|
+
|
|
910
|
+
- Loading models
|
|
911
|
+
```python
|
|
912
|
+
@step
|
|
913
|
+
def train(self):
|
|
914
|
+
# current.model.load returns the path to the model loaded
|
|
915
|
+
checkpoint_path = current.model.load(
|
|
916
|
+
self.checkpoint_key,
|
|
917
|
+
)
|
|
918
|
+
model_path = current.model.load(
|
|
919
|
+
self.model,
|
|
920
|
+
)
|
|
921
|
+
self.next(self.test)
|
|
922
|
+
```
|
|
923
|
+
|
|
924
|
+
|
|
925
|
+
Parameters
|
|
926
|
+
----------
|
|
927
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
928
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
929
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
930
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
931
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
932
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
933
|
+
|
|
934
|
+
temp_dir_root : str, default: None
|
|
935
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
936
|
+
"""
|
|
937
|
+
...
|
|
938
|
+
|
|
939
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
940
|
+
"""
|
|
941
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
942
|
+
|
|
943
|
+
|
|
944
|
+
Parameters
|
|
945
|
+
----------
|
|
946
|
+
integration_name : str, optional
|
|
947
|
+
Name of the S3 proxy integration. If not specified, will use the only
|
|
948
|
+
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
949
|
+
write_mode : str, optional
|
|
950
|
+
The desired behavior during write operations to target (origin) S3 bucket.
|
|
951
|
+
allowed options are:
|
|
952
|
+
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
953
|
+
storage
|
|
954
|
+
"origin" -> only write to the target S3 bucket
|
|
955
|
+
"cache" -> only write to the object storage service used for caching
|
|
956
|
+
debug : bool, optional
|
|
957
|
+
Enable debug logging for proxy operations.
|
|
958
|
+
"""
|
|
959
|
+
...
|
|
960
|
+
|
|
961
|
+
@typing.overload
|
|
962
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
963
|
+
"""
|
|
964
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
965
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
966
|
+
"""
|
|
967
|
+
...
|
|
968
|
+
|
|
969
|
+
@typing.overload
|
|
970
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
971
|
+
...
|
|
972
|
+
|
|
973
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
974
|
+
"""
|
|
975
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
976
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
977
|
+
"""
|
|
978
|
+
...
|
|
979
|
+
|
|
980
|
+
@typing.overload
|
|
981
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
982
|
+
"""
|
|
983
|
+
Specifies the resources needed when executing this step.
|
|
984
|
+
|
|
985
|
+
Use `@resources` to specify the resource requirements
|
|
986
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
987
|
+
|
|
988
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
989
|
+
```
|
|
990
|
+
python myflow.py run --with batch
|
|
991
|
+
```
|
|
992
|
+
or
|
|
993
|
+
```
|
|
994
|
+
python myflow.py run --with kubernetes
|
|
995
|
+
```
|
|
996
|
+
which executes the flow on the desired system using the
|
|
997
|
+
requirements specified in `@resources`.
|
|
998
|
+
|
|
999
|
+
|
|
1000
|
+
Parameters
|
|
1001
|
+
----------
|
|
1002
|
+
cpu : int, default 1
|
|
1003
|
+
Number of CPUs required for this step.
|
|
1004
|
+
gpu : int, optional, default None
|
|
1005
|
+
Number of GPUs required for this step.
|
|
1006
|
+
disk : int, optional, default None
|
|
1007
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1008
|
+
memory : int, default 4096
|
|
1009
|
+
Memory size (in MB) required for this step.
|
|
1010
|
+
shared_memory : int, optional, default None
|
|
1011
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1012
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1013
|
+
"""
|
|
1014
|
+
...
|
|
1015
|
+
|
|
1016
|
+
@typing.overload
|
|
1017
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1018
|
+
...
|
|
1019
|
+
|
|
1020
|
+
@typing.overload
|
|
1021
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1022
|
+
...
|
|
1023
|
+
|
|
1024
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
1025
|
+
"""
|
|
1026
|
+
Specifies the resources needed when executing this step.
|
|
1027
|
+
|
|
1028
|
+
Use `@resources` to specify the resource requirements
|
|
1029
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1030
|
+
|
|
1031
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1032
|
+
```
|
|
1033
|
+
python myflow.py run --with batch
|
|
1034
|
+
```
|
|
1035
|
+
or
|
|
1036
|
+
```
|
|
1037
|
+
python myflow.py run --with kubernetes
|
|
1038
|
+
```
|
|
1039
|
+
which executes the flow on the desired system using the
|
|
1040
|
+
requirements specified in `@resources`.
|
|
1041
|
+
|
|
1042
|
+
|
|
1043
|
+
Parameters
|
|
1044
|
+
----------
|
|
1045
|
+
cpu : int, default 1
|
|
1046
|
+
Number of CPUs required for this step.
|
|
1047
|
+
gpu : int, optional, default None
|
|
1048
|
+
Number of GPUs required for this step.
|
|
1049
|
+
disk : int, optional, default None
|
|
1050
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1051
|
+
memory : int, default 4096
|
|
1052
|
+
Memory size (in MB) required for this step.
|
|
1053
|
+
shared_memory : int, optional, default None
|
|
1054
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1055
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1056
|
+
"""
|
|
1057
|
+
...
|
|
1058
|
+
|
|
1059
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1060
|
+
"""
|
|
1061
|
+
Specifies that this step should execute on DGX cloud.
|
|
1062
|
+
|
|
1063
|
+
|
|
1064
|
+
Parameters
|
|
1065
|
+
----------
|
|
1066
|
+
gpu : int
|
|
1067
|
+
Number of GPUs to use.
|
|
1068
|
+
gpu_type : str
|
|
1069
|
+
Type of Nvidia GPU to use.
|
|
1070
|
+
"""
|
|
1071
|
+
...
|
|
1072
|
+
|
|
1073
|
+
@typing.overload
|
|
1074
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1075
|
+
"""
|
|
1076
|
+
Specifies the Conda environment for the step.
|
|
1077
|
+
|
|
1078
|
+
Information in this decorator will augment any
|
|
1079
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1080
|
+
you can use `@conda_base` to set packages required by all
|
|
1081
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
1082
|
+
|
|
1083
|
+
|
|
1084
|
+
Parameters
|
|
1085
|
+
----------
|
|
1086
|
+
packages : Dict[str, str], default {}
|
|
1087
|
+
Packages to use for this step. The key is the name of the package
|
|
1088
|
+
and the value is the version to use.
|
|
1089
|
+
libraries : Dict[str, str], default {}
|
|
1090
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1091
|
+
python : str, optional, default None
|
|
1092
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1093
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1094
|
+
disabled : bool, default False
|
|
1095
|
+
If set to True, disables @conda.
|
|
1096
|
+
"""
|
|
1097
|
+
...
|
|
1098
|
+
|
|
1099
|
+
@typing.overload
|
|
1100
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1101
|
+
...
|
|
1102
|
+
|
|
1103
|
+
@typing.overload
|
|
1104
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1105
|
+
...
|
|
1106
|
+
|
|
1107
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1108
|
+
"""
|
|
1109
|
+
Specifies the Conda environment for the step.
|
|
1110
|
+
|
|
1111
|
+
Information in this decorator will augment any
|
|
1112
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1113
|
+
you can use `@conda_base` to set packages required by all
|
|
1114
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
1115
|
+
|
|
1116
|
+
|
|
1117
|
+
Parameters
|
|
1118
|
+
----------
|
|
1119
|
+
packages : Dict[str, str], default {}
|
|
1120
|
+
Packages to use for this step. The key is the name of the package
|
|
1121
|
+
and the value is the version to use.
|
|
1122
|
+
libraries : Dict[str, str], default {}
|
|
1123
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1124
|
+
python : str, optional, default None
|
|
1125
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1126
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1127
|
+
disabled : bool, default False
|
|
1128
|
+
If set to True, disables @conda.
|
|
1129
|
+
"""
|
|
1130
|
+
...
|
|
1131
|
+
|
|
1132
|
+
@typing.overload
|
|
1133
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1134
|
+
"""
|
|
1135
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1136
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1137
|
+
a Neo Cloud like Nebius.
|
|
1138
|
+
"""
|
|
1139
|
+
...
|
|
1140
|
+
|
|
1141
|
+
@typing.overload
|
|
1142
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1143
|
+
...
|
|
1144
|
+
|
|
1145
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1146
|
+
"""
|
|
1147
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1148
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1149
|
+
a Neo Cloud like Nebius.
|
|
1150
|
+
"""
|
|
1151
|
+
...
|
|
1152
|
+
|
|
1153
|
+
@typing.overload
|
|
1154
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1155
|
+
"""
|
|
1156
|
+
Enables checkpointing for a step.
|
|
1157
|
+
|
|
1158
|
+
> Examples
|
|
1159
|
+
|
|
1160
|
+
- Saving Checkpoints
|
|
1161
|
+
|
|
946
1162
|
```python
|
|
947
1163
|
@checkpoint
|
|
948
1164
|
@step
|
|
@@ -1054,390 +1270,241 @@ def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
|
1054
1270
|
# saved a checkpoint
|
|
1055
1271
|
checkpoint_path = None
|
|
1056
1272
|
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1057
|
-
print("Loaded checkpoint from the previous attempt")
|
|
1058
|
-
checkpoint_path = current.checkpoint.directory
|
|
1059
|
-
|
|
1060
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1061
|
-
for i in range(self.epochs):
|
|
1062
|
-
...
|
|
1063
|
-
```
|
|
1064
|
-
|
|
1065
|
-
|
|
1066
|
-
Parameters
|
|
1067
|
-
----------
|
|
1068
|
-
load_policy : str, default: "fresh"
|
|
1069
|
-
The policy for loading the checkpoint. The following policies are supported:
|
|
1070
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1071
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1072
|
-
will be loaded at the start of the task.
|
|
1073
|
-
- "none": Do not load any checkpoint
|
|
1074
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1075
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1076
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1077
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
1078
|
-
|
|
1079
|
-
temp_dir_root : str, default: None
|
|
1080
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
1081
|
-
"""
|
|
1082
|
-
...
|
|
1083
|
-
|
|
1084
|
-
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1085
|
-
"""
|
|
1086
|
-
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
1087
|
-
|
|
1088
|
-
User code call
|
|
1089
|
-
--------------
|
|
1090
|
-
@ollama(
|
|
1091
|
-
models=[...],
|
|
1092
|
-
...
|
|
1093
|
-
)
|
|
1094
|
-
|
|
1095
|
-
Valid backend options
|
|
1096
|
-
---------------------
|
|
1097
|
-
- 'local': Run as a separate process on the local task machine.
|
|
1098
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
1099
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
1100
|
-
|
|
1101
|
-
Valid model options
|
|
1102
|
-
-------------------
|
|
1103
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
1104
|
-
|
|
1105
|
-
|
|
1106
|
-
Parameters
|
|
1107
|
-
----------
|
|
1108
|
-
models: list[str]
|
|
1109
|
-
List of Ollama containers running models in sidecars.
|
|
1110
|
-
backend: str
|
|
1111
|
-
Determines where and how to run the Ollama process.
|
|
1112
|
-
force_pull: bool
|
|
1113
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
1114
|
-
cache_update_policy: str
|
|
1115
|
-
Cache update policy: "auto", "force", or "never".
|
|
1116
|
-
force_cache_update: bool
|
|
1117
|
-
Simple override for "force" cache update policy.
|
|
1118
|
-
debug: bool
|
|
1119
|
-
Whether to turn on verbose debugging logs.
|
|
1120
|
-
circuit_breaker_config: dict
|
|
1121
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
1122
|
-
timeout_config: dict
|
|
1123
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
1124
|
-
"""
|
|
1125
|
-
...
|
|
1126
|
-
|
|
1127
|
-
@typing.overload
|
|
1128
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1129
|
-
"""
|
|
1130
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1131
|
-
to inject a card and render simple markdown content.
|
|
1132
|
-
"""
|
|
1133
|
-
...
|
|
1134
|
-
|
|
1135
|
-
@typing.overload
|
|
1136
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1137
|
-
...
|
|
1138
|
-
|
|
1139
|
-
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1140
|
-
"""
|
|
1141
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1142
|
-
to inject a card and render simple markdown content.
|
|
1143
|
-
"""
|
|
1144
|
-
...
|
|
1145
|
-
|
|
1146
|
-
@typing.overload
|
|
1147
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1148
|
-
"""
|
|
1149
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1150
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1151
|
-
a Neo Cloud like Nebius.
|
|
1152
|
-
"""
|
|
1153
|
-
...
|
|
1154
|
-
|
|
1155
|
-
@typing.overload
|
|
1156
|
-
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1157
|
-
...
|
|
1158
|
-
|
|
1159
|
-
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1160
|
-
"""
|
|
1161
|
-
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1162
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1163
|
-
a Neo Cloud like Nebius.
|
|
1164
|
-
"""
|
|
1165
|
-
...
|
|
1166
|
-
|
|
1167
|
-
@typing.overload
|
|
1168
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1169
|
-
"""
|
|
1170
|
-
Specifies the resources needed when executing this step.
|
|
1171
|
-
|
|
1172
|
-
Use `@resources` to specify the resource requirements
|
|
1173
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1174
|
-
|
|
1175
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
1176
|
-
```
|
|
1177
|
-
python myflow.py run --with batch
|
|
1178
|
-
```
|
|
1179
|
-
or
|
|
1180
|
-
```
|
|
1181
|
-
python myflow.py run --with kubernetes
|
|
1182
|
-
```
|
|
1183
|
-
which executes the flow on the desired system using the
|
|
1184
|
-
requirements specified in `@resources`.
|
|
1185
|
-
|
|
1186
|
-
|
|
1187
|
-
Parameters
|
|
1188
|
-
----------
|
|
1189
|
-
cpu : int, default 1
|
|
1190
|
-
Number of CPUs required for this step.
|
|
1191
|
-
gpu : int, optional, default None
|
|
1192
|
-
Number of GPUs required for this step.
|
|
1193
|
-
disk : int, optional, default None
|
|
1194
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1195
|
-
memory : int, default 4096
|
|
1196
|
-
Memory size (in MB) required for this step.
|
|
1197
|
-
shared_memory : int, optional, default None
|
|
1198
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1199
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
1200
|
-
"""
|
|
1201
|
-
...
|
|
1202
|
-
|
|
1203
|
-
@typing.overload
|
|
1204
|
-
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1205
|
-
...
|
|
1206
|
-
|
|
1207
|
-
@typing.overload
|
|
1208
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1209
|
-
...
|
|
1210
|
-
|
|
1211
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
1212
|
-
"""
|
|
1213
|
-
Specifies the resources needed when executing this step.
|
|
1214
|
-
|
|
1215
|
-
Use `@resources` to specify the resource requirements
|
|
1216
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1217
|
-
|
|
1218
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
1219
|
-
```
|
|
1220
|
-
python myflow.py run --with batch
|
|
1221
|
-
```
|
|
1222
|
-
or
|
|
1223
|
-
```
|
|
1224
|
-
python myflow.py run --with kubernetes
|
|
1273
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1274
|
+
checkpoint_path = current.checkpoint.directory
|
|
1275
|
+
|
|
1276
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1277
|
+
for i in range(self.epochs):
|
|
1278
|
+
...
|
|
1225
1279
|
```
|
|
1226
|
-
which executes the flow on the desired system using the
|
|
1227
|
-
requirements specified in `@resources`.
|
|
1228
1280
|
|
|
1229
1281
|
|
|
1230
1282
|
Parameters
|
|
1231
1283
|
----------
|
|
1232
|
-
|
|
1233
|
-
|
|
1234
|
-
|
|
1235
|
-
|
|
1236
|
-
|
|
1237
|
-
|
|
1238
|
-
|
|
1239
|
-
|
|
1240
|
-
|
|
1241
|
-
|
|
1242
|
-
|
|
1284
|
+
load_policy : str, default: "fresh"
|
|
1285
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1286
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1287
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1288
|
+
will be loaded at the start of the task.
|
|
1289
|
+
- "none": Do not load any checkpoint
|
|
1290
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1291
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1292
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1293
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1294
|
+
|
|
1295
|
+
temp_dir_root : str, default: None
|
|
1296
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1243
1297
|
"""
|
|
1244
1298
|
...
|
|
1245
1299
|
|
|
1246
|
-
|
|
1247
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1300
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1248
1301
|
"""
|
|
1249
|
-
|
|
1250
|
-
|
|
1251
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
1252
|
-
contains the exception raised. You can use it to detect the presence
|
|
1253
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
1254
|
-
are missing.
|
|
1302
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
1255
1303
|
|
|
1304
|
+
User code call
|
|
1305
|
+
--------------
|
|
1306
|
+
@ollama(
|
|
1307
|
+
models=[...],
|
|
1308
|
+
...
|
|
1309
|
+
)
|
|
1256
1310
|
|
|
1257
|
-
|
|
1258
|
-
|
|
1259
|
-
|
|
1260
|
-
|
|
1261
|
-
|
|
1262
|
-
print_exception : bool, default True
|
|
1263
|
-
Determines whether or not the exception is printed to
|
|
1264
|
-
stdout when caught.
|
|
1265
|
-
"""
|
|
1266
|
-
...
|
|
1267
|
-
|
|
1268
|
-
@typing.overload
|
|
1269
|
-
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1270
|
-
...
|
|
1271
|
-
|
|
1272
|
-
@typing.overload
|
|
1273
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1274
|
-
...
|
|
1275
|
-
|
|
1276
|
-
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
1277
|
-
"""
|
|
1278
|
-
Specifies that the step will success under all circumstances.
|
|
1311
|
+
Valid backend options
|
|
1312
|
+
---------------------
|
|
1313
|
+
- 'local': Run as a separate process on the local task machine.
|
|
1314
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
1315
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
1279
1316
|
|
|
1280
|
-
|
|
1281
|
-
|
|
1282
|
-
|
|
1283
|
-
are missing.
|
|
1317
|
+
Valid model options
|
|
1318
|
+
-------------------
|
|
1319
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
1284
1320
|
|
|
1285
1321
|
|
|
1286
1322
|
Parameters
|
|
1287
1323
|
----------
|
|
1288
|
-
|
|
1289
|
-
|
|
1290
|
-
|
|
1291
|
-
|
|
1292
|
-
|
|
1293
|
-
|
|
1324
|
+
models: list[str]
|
|
1325
|
+
List of Ollama containers running models in sidecars.
|
|
1326
|
+
backend: str
|
|
1327
|
+
Determines where and how to run the Ollama process.
|
|
1328
|
+
force_pull: bool
|
|
1329
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
1330
|
+
cache_update_policy: str
|
|
1331
|
+
Cache update policy: "auto", "force", or "never".
|
|
1332
|
+
force_cache_update: bool
|
|
1333
|
+
Simple override for "force" cache update policy.
|
|
1334
|
+
debug: bool
|
|
1335
|
+
Whether to turn on verbose debugging logs.
|
|
1336
|
+
circuit_breaker_config: dict
|
|
1337
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
1338
|
+
timeout_config: dict
|
|
1339
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
1294
1340
|
"""
|
|
1295
1341
|
...
|
|
1296
1342
|
|
|
1297
1343
|
@typing.overload
|
|
1298
|
-
def
|
|
1344
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1299
1345
|
"""
|
|
1300
|
-
Specifies
|
|
1301
|
-
|
|
1302
|
-
|
|
1303
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
|
1304
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
1305
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
1306
|
-
|
|
1307
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
1308
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
|
1309
|
-
ensuring that the flow execution can continue.
|
|
1346
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
1347
|
+
the execution of a step.
|
|
1310
1348
|
|
|
1311
1349
|
|
|
1312
1350
|
Parameters
|
|
1313
1351
|
----------
|
|
1314
|
-
|
|
1315
|
-
|
|
1316
|
-
|
|
1317
|
-
|
|
1352
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1353
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
1354
|
+
role : str, optional, default: None
|
|
1355
|
+
Role to use for fetching secrets
|
|
1318
1356
|
"""
|
|
1319
1357
|
...
|
|
1320
1358
|
|
|
1321
1359
|
@typing.overload
|
|
1322
|
-
def
|
|
1360
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1323
1361
|
...
|
|
1324
1362
|
|
|
1325
1363
|
@typing.overload
|
|
1326
|
-
def
|
|
1364
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1327
1365
|
...
|
|
1328
1366
|
|
|
1329
|
-
def
|
|
1367
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
1330
1368
|
"""
|
|
1331
|
-
Specifies
|
|
1332
|
-
|
|
1333
|
-
|
|
1334
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
|
1335
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
1336
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
1337
|
-
|
|
1338
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
1339
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
|
1340
|
-
ensuring that the flow execution can continue.
|
|
1369
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
1370
|
+
the execution of a step.
|
|
1341
1371
|
|
|
1342
1372
|
|
|
1343
1373
|
Parameters
|
|
1344
1374
|
----------
|
|
1345
|
-
|
|
1346
|
-
|
|
1347
|
-
|
|
1348
|
-
|
|
1375
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1376
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
1377
|
+
role : str, optional, default: None
|
|
1378
|
+
Role to use for fetching secrets
|
|
1349
1379
|
"""
|
|
1350
1380
|
...
|
|
1351
1381
|
|
|
1352
|
-
|
|
1353
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1382
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1354
1383
|
"""
|
|
1355
|
-
Specifies
|
|
1384
|
+
Specifies what flows belong to the same project.
|
|
1385
|
+
|
|
1386
|
+
A project-specific namespace is created for all flows that
|
|
1387
|
+
use the same `@project(name)`.
|
|
1356
1388
|
|
|
1357
|
-
Use `@pypi_base` to set common packages required by all
|
|
1358
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1359
1389
|
|
|
1360
1390
|
Parameters
|
|
1361
1391
|
----------
|
|
1362
|
-
|
|
1363
|
-
|
|
1364
|
-
|
|
1365
|
-
|
|
1366
|
-
|
|
1367
|
-
|
|
1392
|
+
name : str
|
|
1393
|
+
Project name. Make sure that the name is unique amongst all
|
|
1394
|
+
projects that use the same production scheduler. The name may
|
|
1395
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
1396
|
+
|
|
1397
|
+
branch : Optional[str], default None
|
|
1398
|
+
The branch to use. If not specified, the branch is set to
|
|
1399
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
1400
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
1401
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
1402
|
+
|
|
1403
|
+
production : bool, default False
|
|
1404
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
1405
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
1406
|
+
`production` in the decorator and on the command line.
|
|
1407
|
+
The project branch name will be:
|
|
1408
|
+
- if `branch` is specified:
|
|
1409
|
+
- if `production` is True: `prod.<branch>`
|
|
1410
|
+
- if `production` is False: `test.<branch>`
|
|
1411
|
+
- if `branch` is not specified:
|
|
1412
|
+
- if `production` is True: `prod`
|
|
1413
|
+
- if `production` is False: `user.<username>`
|
|
1368
1414
|
"""
|
|
1369
1415
|
...
|
|
1370
1416
|
|
|
1371
1417
|
@typing.overload
|
|
1372
|
-
def
|
|
1373
|
-
...
|
|
1374
|
-
|
|
1375
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1418
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1376
1419
|
"""
|
|
1377
|
-
Specifies the
|
|
1420
|
+
Specifies the times when the flow should be run when running on a
|
|
1421
|
+
production scheduler.
|
|
1378
1422
|
|
|
1379
|
-
Use `@pypi_base` to set common packages required by all
|
|
1380
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1381
1423
|
|
|
1382
1424
|
Parameters
|
|
1383
1425
|
----------
|
|
1384
|
-
|
|
1385
|
-
|
|
1386
|
-
|
|
1387
|
-
|
|
1388
|
-
|
|
1389
|
-
|
|
1426
|
+
hourly : bool, default False
|
|
1427
|
+
Run the workflow hourly.
|
|
1428
|
+
daily : bool, default True
|
|
1429
|
+
Run the workflow daily.
|
|
1430
|
+
weekly : bool, default False
|
|
1431
|
+
Run the workflow weekly.
|
|
1432
|
+
cron : str, optional, default None
|
|
1433
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1434
|
+
specified by this expression.
|
|
1435
|
+
timezone : str, optional, default None
|
|
1436
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1437
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1390
1438
|
"""
|
|
1391
1439
|
...
|
|
1392
1440
|
|
|
1393
1441
|
@typing.overload
|
|
1394
|
-
def
|
|
1442
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1443
|
+
...
|
|
1444
|
+
|
|
1445
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1395
1446
|
"""
|
|
1396
|
-
Specifies the
|
|
1397
|
-
|
|
1398
|
-
Use `@conda_base` to set common libraries required by all
|
|
1399
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1447
|
+
Specifies the times when the flow should be run when running on a
|
|
1448
|
+
production scheduler.
|
|
1400
1449
|
|
|
1401
1450
|
|
|
1402
1451
|
Parameters
|
|
1403
1452
|
----------
|
|
1404
|
-
|
|
1405
|
-
|
|
1406
|
-
|
|
1407
|
-
|
|
1408
|
-
|
|
1409
|
-
|
|
1410
|
-
|
|
1411
|
-
|
|
1412
|
-
|
|
1413
|
-
|
|
1414
|
-
|
|
1415
|
-
|
|
1416
|
-
|
|
1417
|
-
@typing.overload
|
|
1418
|
-
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1453
|
+
hourly : bool, default False
|
|
1454
|
+
Run the workflow hourly.
|
|
1455
|
+
daily : bool, default True
|
|
1456
|
+
Run the workflow daily.
|
|
1457
|
+
weekly : bool, default False
|
|
1458
|
+
Run the workflow weekly.
|
|
1459
|
+
cron : str, optional, default None
|
|
1460
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1461
|
+
specified by this expression.
|
|
1462
|
+
timezone : str, optional, default None
|
|
1463
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1464
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1465
|
+
"""
|
|
1419
1466
|
...
|
|
1420
1467
|
|
|
1421
|
-
def
|
|
1468
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1422
1469
|
"""
|
|
1423
|
-
|
|
1424
|
-
|
|
1425
|
-
|
|
1426
|
-
|
|
1470
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1471
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1472
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1473
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1474
|
+
starts only after all sensors finish.
|
|
1427
1475
|
|
|
1428
1476
|
|
|
1429
1477
|
Parameters
|
|
1430
1478
|
----------
|
|
1431
|
-
|
|
1432
|
-
|
|
1433
|
-
|
|
1434
|
-
|
|
1435
|
-
|
|
1436
|
-
|
|
1437
|
-
|
|
1438
|
-
|
|
1439
|
-
|
|
1440
|
-
|
|
1479
|
+
timeout : int
|
|
1480
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1481
|
+
poke_interval : int
|
|
1482
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1483
|
+
mode : str
|
|
1484
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1485
|
+
exponential_backoff : bool
|
|
1486
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1487
|
+
pool : str
|
|
1488
|
+
the slot pool this task should run in,
|
|
1489
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1490
|
+
soft_fail : bool
|
|
1491
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1492
|
+
name : str
|
|
1493
|
+
Name of the sensor on Airflow
|
|
1494
|
+
description : str
|
|
1495
|
+
Description of sensor in the Airflow UI
|
|
1496
|
+
bucket_key : Union[str, List[str]]
|
|
1497
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1498
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1499
|
+
bucket_name : str
|
|
1500
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1501
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1502
|
+
wildcard_match : bool
|
|
1503
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1504
|
+
aws_conn_id : str
|
|
1505
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1506
|
+
verify : bool
|
|
1507
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1441
1508
|
"""
|
|
1442
1509
|
...
|
|
1443
1510
|
|
|
@@ -1534,6 +1601,171 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
|
1534
1601
|
"""
|
|
1535
1602
|
...
|
|
1536
1603
|
|
|
1604
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
|
1605
|
+
"""
|
|
1606
|
+
Allows setting external datastores to save data for the
|
|
1607
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
|
1608
|
+
|
|
1609
|
+
This decorator is useful when users wish to save data to a different datastore
|
|
1610
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
|
1611
|
+
|
|
1612
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
|
1613
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
|
1614
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
|
1615
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
|
1616
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
|
1617
|
+
|
|
1618
|
+
Usage:
|
|
1619
|
+
----------
|
|
1620
|
+
|
|
1621
|
+
- Using a custom IAM role to access the datastore.
|
|
1622
|
+
|
|
1623
|
+
```python
|
|
1624
|
+
@with_artifact_store(
|
|
1625
|
+
type="s3",
|
|
1626
|
+
config=lambda: {
|
|
1627
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
|
1628
|
+
"role_arn": ROLE,
|
|
1629
|
+
},
|
|
1630
|
+
)
|
|
1631
|
+
class MyFlow(FlowSpec):
|
|
1632
|
+
|
|
1633
|
+
@checkpoint
|
|
1634
|
+
@step
|
|
1635
|
+
def start(self):
|
|
1636
|
+
with open("my_file.txt", "w") as f:
|
|
1637
|
+
f.write("Hello, World!")
|
|
1638
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
|
1639
|
+
self.next(self.end)
|
|
1640
|
+
|
|
1641
|
+
```
|
|
1642
|
+
|
|
1643
|
+
- Using credentials to access the s3-compatible datastore.
|
|
1644
|
+
|
|
1645
|
+
```python
|
|
1646
|
+
@with_artifact_store(
|
|
1647
|
+
type="s3",
|
|
1648
|
+
config=lambda: {
|
|
1649
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
|
1650
|
+
"client_params": {
|
|
1651
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1652
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1653
|
+
},
|
|
1654
|
+
},
|
|
1655
|
+
)
|
|
1656
|
+
class MyFlow(FlowSpec):
|
|
1657
|
+
|
|
1658
|
+
@checkpoint
|
|
1659
|
+
@step
|
|
1660
|
+
def start(self):
|
|
1661
|
+
with open("my_file.txt", "w") as f:
|
|
1662
|
+
f.write("Hello, World!")
|
|
1663
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
|
1664
|
+
self.next(self.end)
|
|
1665
|
+
|
|
1666
|
+
```
|
|
1667
|
+
|
|
1668
|
+
- Accessing objects stored in external datastores after task execution.
|
|
1669
|
+
|
|
1670
|
+
```python
|
|
1671
|
+
run = Run("CheckpointsTestsFlow/8992")
|
|
1672
|
+
with artifact_store_from(run=run, config={
|
|
1673
|
+
"client_params": {
|
|
1674
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1675
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1676
|
+
},
|
|
1677
|
+
}):
|
|
1678
|
+
with Checkpoint() as cp:
|
|
1679
|
+
latest = cp.list(
|
|
1680
|
+
task=run["start"].task
|
|
1681
|
+
)[0]
|
|
1682
|
+
print(latest)
|
|
1683
|
+
cp.load(
|
|
1684
|
+
latest,
|
|
1685
|
+
"test-checkpoints"
|
|
1686
|
+
)
|
|
1687
|
+
|
|
1688
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
|
1689
|
+
with artifact_store_from(run=run, config={
|
|
1690
|
+
"client_params": {
|
|
1691
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1692
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1693
|
+
},
|
|
1694
|
+
}):
|
|
1695
|
+
load_model(
|
|
1696
|
+
task.data.model_ref,
|
|
1697
|
+
"test-models"
|
|
1698
|
+
)
|
|
1699
|
+
```
|
|
1700
|
+
Parameters:
|
|
1701
|
+
----------
|
|
1702
|
+
|
|
1703
|
+
type: str
|
|
1704
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
|
1705
|
+
|
|
1706
|
+
config: dict or Callable
|
|
1707
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
|
1708
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
|
1709
|
+
- example: 's3://bucket-name/path/to/root'
|
|
1710
|
+
- example: 'gs://bucket-name/path/to/root'
|
|
1711
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
|
1712
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
|
1713
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
|
1714
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
|
1715
|
+
"""
|
|
1716
|
+
...
|
|
1717
|
+
|
|
1718
|
+
@typing.overload
|
|
1719
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1720
|
+
"""
|
|
1721
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1722
|
+
|
|
1723
|
+
Use `@conda_base` to set common libraries required by all
|
|
1724
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1725
|
+
|
|
1726
|
+
|
|
1727
|
+
Parameters
|
|
1728
|
+
----------
|
|
1729
|
+
packages : Dict[str, str], default {}
|
|
1730
|
+
Packages to use for this flow. The key is the name of the package
|
|
1731
|
+
and the value is the version to use.
|
|
1732
|
+
libraries : Dict[str, str], default {}
|
|
1733
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1734
|
+
python : str, optional, default None
|
|
1735
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1736
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1737
|
+
disabled : bool, default False
|
|
1738
|
+
If set to True, disables Conda.
|
|
1739
|
+
"""
|
|
1740
|
+
...
|
|
1741
|
+
|
|
1742
|
+
@typing.overload
|
|
1743
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1744
|
+
...
|
|
1745
|
+
|
|
1746
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1747
|
+
"""
|
|
1748
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1749
|
+
|
|
1750
|
+
Use `@conda_base` to set common libraries required by all
|
|
1751
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1752
|
+
|
|
1753
|
+
|
|
1754
|
+
Parameters
|
|
1755
|
+
----------
|
|
1756
|
+
packages : Dict[str, str], default {}
|
|
1757
|
+
Packages to use for this flow. The key is the name of the package
|
|
1758
|
+
and the value is the version to use.
|
|
1759
|
+
libraries : Dict[str, str], default {}
|
|
1760
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1761
|
+
python : str, optional, default None
|
|
1762
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1763
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1764
|
+
disabled : bool, default False
|
|
1765
|
+
If set to True, disables Conda.
|
|
1766
|
+
"""
|
|
1767
|
+
...
|
|
1768
|
+
|
|
1537
1769
|
@typing.overload
|
|
1538
1770
|
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1539
1771
|
"""
|
|
@@ -1626,12 +1858,53 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
|
1626
1858
|
|
|
1627
1859
|
Parameters
|
|
1628
1860
|
----------
|
|
1629
|
-
flow : Union[str, Dict[str, str]], optional, default None
|
|
1630
|
-
Upstream flow dependency for this flow.
|
|
1631
|
-
flows : List[Union[str, Dict[str, str]]], default []
|
|
1632
|
-
Upstream flow dependencies for this flow.
|
|
1633
|
-
options : Dict[str, Any], default {}
|
|
1634
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
1861
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1862
|
+
Upstream flow dependency for this flow.
|
|
1863
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1864
|
+
Upstream flow dependencies for this flow.
|
|
1865
|
+
options : Dict[str, Any], default {}
|
|
1866
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1867
|
+
"""
|
|
1868
|
+
...
|
|
1869
|
+
|
|
1870
|
+
@typing.overload
|
|
1871
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1872
|
+
"""
|
|
1873
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1874
|
+
|
|
1875
|
+
Use `@pypi_base` to set common packages required by all
|
|
1876
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1877
|
+
|
|
1878
|
+
Parameters
|
|
1879
|
+
----------
|
|
1880
|
+
packages : Dict[str, str], default: {}
|
|
1881
|
+
Packages to use for this flow. The key is the name of the package
|
|
1882
|
+
and the value is the version to use.
|
|
1883
|
+
python : str, optional, default: None
|
|
1884
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1885
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1886
|
+
"""
|
|
1887
|
+
...
|
|
1888
|
+
|
|
1889
|
+
@typing.overload
|
|
1890
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1891
|
+
...
|
|
1892
|
+
|
|
1893
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1894
|
+
"""
|
|
1895
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1896
|
+
|
|
1897
|
+
Use `@pypi_base` to set common packages required by all
|
|
1898
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1899
|
+
|
|
1900
|
+
Parameters
|
|
1901
|
+
----------
|
|
1902
|
+
packages : Dict[str, str], default: {}
|
|
1903
|
+
Packages to use for this flow. The key is the name of the package
|
|
1904
|
+
and the value is the version to use.
|
|
1905
|
+
python : str, optional, default: None
|
|
1906
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1907
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1635
1908
|
"""
|
|
1636
1909
|
...
|
|
1637
1910
|
|
|
@@ -1678,248 +1951,5 @@ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str,
|
|
|
1678
1951
|
"""
|
|
1679
1952
|
...
|
|
1680
1953
|
|
|
1681
|
-
@typing.overload
|
|
1682
|
-
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1683
|
-
"""
|
|
1684
|
-
Specifies the times when the flow should be run when running on a
|
|
1685
|
-
production scheduler.
|
|
1686
|
-
|
|
1687
|
-
|
|
1688
|
-
Parameters
|
|
1689
|
-
----------
|
|
1690
|
-
hourly : bool, default False
|
|
1691
|
-
Run the workflow hourly.
|
|
1692
|
-
daily : bool, default True
|
|
1693
|
-
Run the workflow daily.
|
|
1694
|
-
weekly : bool, default False
|
|
1695
|
-
Run the workflow weekly.
|
|
1696
|
-
cron : str, optional, default None
|
|
1697
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1698
|
-
specified by this expression.
|
|
1699
|
-
timezone : str, optional, default None
|
|
1700
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1701
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1702
|
-
"""
|
|
1703
|
-
...
|
|
1704
|
-
|
|
1705
|
-
@typing.overload
|
|
1706
|
-
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1707
|
-
...
|
|
1708
|
-
|
|
1709
|
-
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1710
|
-
"""
|
|
1711
|
-
Specifies the times when the flow should be run when running on a
|
|
1712
|
-
production scheduler.
|
|
1713
|
-
|
|
1714
|
-
|
|
1715
|
-
Parameters
|
|
1716
|
-
----------
|
|
1717
|
-
hourly : bool, default False
|
|
1718
|
-
Run the workflow hourly.
|
|
1719
|
-
daily : bool, default True
|
|
1720
|
-
Run the workflow daily.
|
|
1721
|
-
weekly : bool, default False
|
|
1722
|
-
Run the workflow weekly.
|
|
1723
|
-
cron : str, optional, default None
|
|
1724
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1725
|
-
specified by this expression.
|
|
1726
|
-
timezone : str, optional, default None
|
|
1727
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1728
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1729
|
-
"""
|
|
1730
|
-
...
|
|
1731
|
-
|
|
1732
|
-
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
|
1733
|
-
"""
|
|
1734
|
-
Allows setting external datastores to save data for the
|
|
1735
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
|
1736
|
-
|
|
1737
|
-
This decorator is useful when users wish to save data to a different datastore
|
|
1738
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
|
1739
|
-
|
|
1740
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
|
1741
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
|
1742
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
|
1743
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
|
1744
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
|
1745
|
-
|
|
1746
|
-
Usage:
|
|
1747
|
-
----------
|
|
1748
|
-
|
|
1749
|
-
- Using a custom IAM role to access the datastore.
|
|
1750
|
-
|
|
1751
|
-
```python
|
|
1752
|
-
@with_artifact_store(
|
|
1753
|
-
type="s3",
|
|
1754
|
-
config=lambda: {
|
|
1755
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
|
1756
|
-
"role_arn": ROLE,
|
|
1757
|
-
},
|
|
1758
|
-
)
|
|
1759
|
-
class MyFlow(FlowSpec):
|
|
1760
|
-
|
|
1761
|
-
@checkpoint
|
|
1762
|
-
@step
|
|
1763
|
-
def start(self):
|
|
1764
|
-
with open("my_file.txt", "w") as f:
|
|
1765
|
-
f.write("Hello, World!")
|
|
1766
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
|
1767
|
-
self.next(self.end)
|
|
1768
|
-
|
|
1769
|
-
```
|
|
1770
|
-
|
|
1771
|
-
- Using credentials to access the s3-compatible datastore.
|
|
1772
|
-
|
|
1773
|
-
```python
|
|
1774
|
-
@with_artifact_store(
|
|
1775
|
-
type="s3",
|
|
1776
|
-
config=lambda: {
|
|
1777
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
|
1778
|
-
"client_params": {
|
|
1779
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1780
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1781
|
-
},
|
|
1782
|
-
},
|
|
1783
|
-
)
|
|
1784
|
-
class MyFlow(FlowSpec):
|
|
1785
|
-
|
|
1786
|
-
@checkpoint
|
|
1787
|
-
@step
|
|
1788
|
-
def start(self):
|
|
1789
|
-
with open("my_file.txt", "w") as f:
|
|
1790
|
-
f.write("Hello, World!")
|
|
1791
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
|
1792
|
-
self.next(self.end)
|
|
1793
|
-
|
|
1794
|
-
```
|
|
1795
|
-
|
|
1796
|
-
- Accessing objects stored in external datastores after task execution.
|
|
1797
|
-
|
|
1798
|
-
```python
|
|
1799
|
-
run = Run("CheckpointsTestsFlow/8992")
|
|
1800
|
-
with artifact_store_from(run=run, config={
|
|
1801
|
-
"client_params": {
|
|
1802
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1803
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1804
|
-
},
|
|
1805
|
-
}):
|
|
1806
|
-
with Checkpoint() as cp:
|
|
1807
|
-
latest = cp.list(
|
|
1808
|
-
task=run["start"].task
|
|
1809
|
-
)[0]
|
|
1810
|
-
print(latest)
|
|
1811
|
-
cp.load(
|
|
1812
|
-
latest,
|
|
1813
|
-
"test-checkpoints"
|
|
1814
|
-
)
|
|
1815
|
-
|
|
1816
|
-
task = Task("TorchTuneFlow/8484/train/53673")
|
|
1817
|
-
with artifact_store_from(run=run, config={
|
|
1818
|
-
"client_params": {
|
|
1819
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1820
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1821
|
-
},
|
|
1822
|
-
}):
|
|
1823
|
-
load_model(
|
|
1824
|
-
task.data.model_ref,
|
|
1825
|
-
"test-models"
|
|
1826
|
-
)
|
|
1827
|
-
```
|
|
1828
|
-
Parameters:
|
|
1829
|
-
----------
|
|
1830
|
-
|
|
1831
|
-
type: str
|
|
1832
|
-
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
|
1833
|
-
|
|
1834
|
-
config: dict or Callable
|
|
1835
|
-
Dictionary of configuration options for the datastore. The following keys are required:
|
|
1836
|
-
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
|
1837
|
-
- example: 's3://bucket-name/path/to/root'
|
|
1838
|
-
- example: 'gs://bucket-name/path/to/root'
|
|
1839
|
-
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
|
1840
|
-
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
|
1841
|
-
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
|
1842
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
|
1843
|
-
"""
|
|
1844
|
-
...
|
|
1845
|
-
|
|
1846
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1847
|
-
"""
|
|
1848
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1849
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1850
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1851
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1852
|
-
starts only after all sensors finish.
|
|
1853
|
-
|
|
1854
|
-
|
|
1855
|
-
Parameters
|
|
1856
|
-
----------
|
|
1857
|
-
timeout : int
|
|
1858
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1859
|
-
poke_interval : int
|
|
1860
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1861
|
-
mode : str
|
|
1862
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1863
|
-
exponential_backoff : bool
|
|
1864
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1865
|
-
pool : str
|
|
1866
|
-
the slot pool this task should run in,
|
|
1867
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1868
|
-
soft_fail : bool
|
|
1869
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1870
|
-
name : str
|
|
1871
|
-
Name of the sensor on Airflow
|
|
1872
|
-
description : str
|
|
1873
|
-
Description of sensor in the Airflow UI
|
|
1874
|
-
bucket_key : Union[str, List[str]]
|
|
1875
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1876
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1877
|
-
bucket_name : str
|
|
1878
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1879
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1880
|
-
wildcard_match : bool
|
|
1881
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1882
|
-
aws_conn_id : str
|
|
1883
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
|
1884
|
-
verify : bool
|
|
1885
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1886
|
-
"""
|
|
1887
|
-
...
|
|
1888
|
-
|
|
1889
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1890
|
-
"""
|
|
1891
|
-
Specifies what flows belong to the same project.
|
|
1892
|
-
|
|
1893
|
-
A project-specific namespace is created for all flows that
|
|
1894
|
-
use the same `@project(name)`.
|
|
1895
|
-
|
|
1896
|
-
|
|
1897
|
-
Parameters
|
|
1898
|
-
----------
|
|
1899
|
-
name : str
|
|
1900
|
-
Project name. Make sure that the name is unique amongst all
|
|
1901
|
-
projects that use the same production scheduler. The name may
|
|
1902
|
-
contain only lowercase alphanumeric characters and underscores.
|
|
1903
|
-
|
|
1904
|
-
branch : Optional[str], default None
|
|
1905
|
-
The branch to use. If not specified, the branch is set to
|
|
1906
|
-
`user.<username>` unless `production` is set to `True`. This can
|
|
1907
|
-
also be set on the command line using `--branch` as a top-level option.
|
|
1908
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
|
1909
|
-
|
|
1910
|
-
production : bool, default False
|
|
1911
|
-
Whether or not the branch is the production branch. This can also be set on the
|
|
1912
|
-
command line using `--production` as a top-level option. It is an error to specify
|
|
1913
|
-
`production` in the decorator and on the command line.
|
|
1914
|
-
The project branch name will be:
|
|
1915
|
-
- if `branch` is specified:
|
|
1916
|
-
- if `production` is True: `prod.<branch>`
|
|
1917
|
-
- if `production` is False: `test.<branch>`
|
|
1918
|
-
- if `branch` is not specified:
|
|
1919
|
-
- if `production` is True: `prod`
|
|
1920
|
-
- if `production` is False: `user.<username>`
|
|
1921
|
-
"""
|
|
1922
|
-
...
|
|
1923
|
-
|
|
1924
1954
|
pkg_name: str
|
|
1925
1955
|
|