ob-metaflow-stubs 6.0.10.2__py2.py3-none-any.whl → 6.0.10.3__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ob-metaflow-stubs might be problematic. Click here for more details.
- metaflow-stubs/__init__.pyi +994 -963
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +6 -6
- metaflow-stubs/client/filecache.pyi +3 -3
- metaflow-stubs/events.pyi +3 -3
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +4 -4
- metaflow-stubs/meta_files.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -2
- metaflow-stubs/metaflow_current.pyi +56 -56
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +10 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +5 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +43 -12
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/packaging_sys/__init__.pyi +5 -5
- metaflow-stubs/packaging_sys/backend.pyi +5 -5
- metaflow-stubs/packaging_sys/distribution_support.pyi +5 -5
- metaflow-stubs/packaging_sys/tar_backend.pyi +5 -5
- metaflow-stubs/packaging_sys/utils.pyi +2 -2
- metaflow-stubs/packaging_sys/v1.pyi +3 -3
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +13 -13
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/argo/exit_hooks.pyi +3 -3
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +4 -4
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
- metaflow-stubs/plugins/optuna/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +6 -6
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +3 -3
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +3 -3
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +3 -3
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +34 -34
- metaflow-stubs/runner/deployer_impl.pyi +3 -3
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +3 -3
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +6 -6
- metaflow-stubs/user_decorators/__init__.pyi +2 -2
- metaflow-stubs/user_decorators/common.pyi +2 -2
- metaflow-stubs/user_decorators/mutable_flow.pyi +5 -5
- metaflow-stubs/user_decorators/mutable_step.pyi +6 -6
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +5 -5
- metaflow-stubs/user_decorators/user_step_decorator.pyi +6 -6
- {ob_metaflow_stubs-6.0.10.2.dist-info → ob_metaflow_stubs-6.0.10.3.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.10.3.dist-info/RECORD +262 -0
- ob_metaflow_stubs-6.0.10.2.dist-info/RECORD +0 -262
- {ob_metaflow_stubs-6.0.10.2.dist-info → ob_metaflow_stubs-6.0.10.3.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.10.2.dist-info → ob_metaflow_stubs-6.0.10.3.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
|
-
# MF version: 2.18.5.1+obcheckpoint(0.2.
|
|
4
|
-
# Generated on 2025-09-
|
|
3
|
+
# MF version: 2.18.5.1+obcheckpoint(0.2.5);ob(v1) #
|
|
4
|
+
# Generated on 2025-09-16T18:01:26.529291 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
8
8
|
|
|
9
9
|
import typing
|
|
10
10
|
if typing.TYPE_CHECKING:
|
|
11
|
-
import datetime
|
|
12
11
|
import typing
|
|
12
|
+
import datetime
|
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
|
15
15
|
|
|
@@ -40,17 +40,17 @@ from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
42
|
from . import cards as cards
|
|
43
|
-
from . import tuple_util as tuple_util
|
|
44
|
-
from . import metaflow_git as metaflow_git
|
|
45
43
|
from . import events as events
|
|
44
|
+
from . import metaflow_git as metaflow_git
|
|
45
|
+
from . import tuple_util as tuple_util
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
51
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
52
|
-
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
53
52
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
53
|
+
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
54
54
|
from . import client as client
|
|
55
55
|
from .client.core import namespace as namespace
|
|
56
56
|
from .client.core import get_namespace as get_namespace
|
|
@@ -167,237 +167,167 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
167
167
|
"""
|
|
168
168
|
...
|
|
169
169
|
|
|
170
|
-
|
|
170
|
+
@typing.overload
|
|
171
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
171
172
|
"""
|
|
172
|
-
Specifies
|
|
173
|
+
Specifies the number of times the task corresponding
|
|
174
|
+
to a step needs to be retried.
|
|
175
|
+
|
|
176
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
177
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
178
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
179
|
+
|
|
180
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
181
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
182
|
+
ensuring that the flow execution can continue.
|
|
173
183
|
|
|
174
184
|
|
|
175
185
|
Parameters
|
|
176
186
|
----------
|
|
177
|
-
|
|
178
|
-
Number of
|
|
179
|
-
|
|
180
|
-
|
|
187
|
+
times : int, default 3
|
|
188
|
+
Number of times to retry this task.
|
|
189
|
+
minutes_between_retries : int, default 2
|
|
190
|
+
Number of minutes between retries.
|
|
181
191
|
"""
|
|
182
192
|
...
|
|
183
193
|
|
|
184
194
|
@typing.overload
|
|
185
|
-
def
|
|
195
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
196
|
+
...
|
|
197
|
+
|
|
198
|
+
@typing.overload
|
|
199
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
200
|
+
...
|
|
201
|
+
|
|
202
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
186
203
|
"""
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
> Examples
|
|
190
|
-
- Saving Models
|
|
191
|
-
```python
|
|
192
|
-
@model
|
|
193
|
-
@step
|
|
194
|
-
def train(self):
|
|
195
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
196
|
-
self.my_model = current.model.save(
|
|
197
|
-
path_to_my_model,
|
|
198
|
-
label="my_model",
|
|
199
|
-
metadata={
|
|
200
|
-
"epochs": 10,
|
|
201
|
-
"batch-size": 32,
|
|
202
|
-
"learning-rate": 0.001,
|
|
203
|
-
}
|
|
204
|
-
)
|
|
205
|
-
self.next(self.test)
|
|
204
|
+
Specifies the number of times the task corresponding
|
|
205
|
+
to a step needs to be retried.
|
|
206
206
|
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
211
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
212
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
213
|
-
self.next(self.end)
|
|
214
|
-
```
|
|
207
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
208
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
209
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
215
210
|
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
def train(self):
|
|
220
|
-
# current.model.load returns the path to the model loaded
|
|
221
|
-
checkpoint_path = current.model.load(
|
|
222
|
-
self.checkpoint_key,
|
|
223
|
-
)
|
|
224
|
-
model_path = current.model.load(
|
|
225
|
-
self.model,
|
|
226
|
-
)
|
|
227
|
-
self.next(self.test)
|
|
228
|
-
```
|
|
211
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
212
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
213
|
+
ensuring that the flow execution can continue.
|
|
229
214
|
|
|
230
215
|
|
|
231
216
|
Parameters
|
|
232
217
|
----------
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
238
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
239
|
-
|
|
240
|
-
temp_dir_root : str, default: None
|
|
241
|
-
The root directory under which `current.model.loaded` will store loaded models
|
|
218
|
+
times : int, default 3
|
|
219
|
+
Number of times to retry this task.
|
|
220
|
+
minutes_between_retries : int, default 2
|
|
221
|
+
Number of minutes between retries.
|
|
242
222
|
"""
|
|
243
223
|
...
|
|
244
224
|
|
|
245
|
-
|
|
246
|
-
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
247
|
-
...
|
|
248
|
-
|
|
249
|
-
@typing.overload
|
|
250
|
-
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
251
|
-
...
|
|
252
|
-
|
|
253
|
-
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
|
225
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
254
226
|
"""
|
|
255
|
-
|
|
227
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
256
228
|
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
264
|
-
self.my_model = current.model.save(
|
|
265
|
-
path_to_my_model,
|
|
266
|
-
label="my_model",
|
|
267
|
-
metadata={
|
|
268
|
-
"epochs": 10,
|
|
269
|
-
"batch-size": 32,
|
|
270
|
-
"learning-rate": 0.001,
|
|
271
|
-
}
|
|
272
|
-
)
|
|
273
|
-
self.next(self.test)
|
|
229
|
+
User code call
|
|
230
|
+
--------------
|
|
231
|
+
@vllm(
|
|
232
|
+
model="...",
|
|
233
|
+
...
|
|
234
|
+
)
|
|
274
235
|
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
279
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
280
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
281
|
-
self.next(self.end)
|
|
282
|
-
```
|
|
236
|
+
Valid backend options
|
|
237
|
+
---------------------
|
|
238
|
+
- 'local': Run as a separate process on the local task machine.
|
|
283
239
|
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
self.checkpoint_key,
|
|
291
|
-
)
|
|
292
|
-
model_path = current.model.load(
|
|
293
|
-
self.model,
|
|
294
|
-
)
|
|
295
|
-
self.next(self.test)
|
|
296
|
-
```
|
|
240
|
+
Valid model options
|
|
241
|
+
-------------------
|
|
242
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
243
|
+
|
|
244
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
245
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
297
246
|
|
|
298
247
|
|
|
299
248
|
Parameters
|
|
300
249
|
----------
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
|
|
309
|
-
|
|
250
|
+
model: str
|
|
251
|
+
HuggingFace model identifier to be served by vLLM.
|
|
252
|
+
backend: str
|
|
253
|
+
Determines where and how to run the vLLM process.
|
|
254
|
+
openai_api_server: bool
|
|
255
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
256
|
+
Default is False (uses native engine).
|
|
257
|
+
Set to True for backward compatibility with existing code.
|
|
258
|
+
debug: bool
|
|
259
|
+
Whether to turn on verbose debugging logs.
|
|
260
|
+
card_refresh_interval: int
|
|
261
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
262
|
+
Only used when openai_api_server=True.
|
|
263
|
+
max_retries: int
|
|
264
|
+
Maximum number of retries checking for vLLM server startup.
|
|
265
|
+
Only used when openai_api_server=True.
|
|
266
|
+
retry_alert_frequency: int
|
|
267
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
268
|
+
Only used when openai_api_server=True.
|
|
269
|
+
engine_args : dict
|
|
270
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
271
|
+
For example, `tensor_parallel_size=2`.
|
|
310
272
|
"""
|
|
311
273
|
...
|
|
312
274
|
|
|
313
275
|
@typing.overload
|
|
314
|
-
def
|
|
276
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
315
277
|
"""
|
|
316
|
-
|
|
317
|
-
to
|
|
278
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
279
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
280
|
+
a Neo Cloud like CoreWeave.
|
|
318
281
|
"""
|
|
319
282
|
...
|
|
320
283
|
|
|
321
284
|
@typing.overload
|
|
322
|
-
def
|
|
285
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
323
286
|
...
|
|
324
287
|
|
|
325
|
-
def
|
|
288
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
326
289
|
"""
|
|
327
|
-
|
|
328
|
-
to
|
|
290
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
291
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
292
|
+
a Neo Cloud like CoreWeave.
|
|
329
293
|
"""
|
|
330
294
|
...
|
|
331
295
|
|
|
332
296
|
@typing.overload
|
|
333
|
-
def
|
|
297
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
334
298
|
"""
|
|
335
|
-
|
|
336
|
-
|
|
337
|
-
a Neo Cloud like Nebius.
|
|
299
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
300
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
338
301
|
"""
|
|
339
302
|
...
|
|
340
303
|
|
|
341
304
|
@typing.overload
|
|
342
|
-
def
|
|
305
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
343
306
|
...
|
|
344
307
|
|
|
345
|
-
def
|
|
308
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
346
309
|
"""
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
a Neo Cloud like Nebius.
|
|
310
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
311
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
350
312
|
"""
|
|
351
313
|
...
|
|
352
314
|
|
|
353
315
|
@typing.overload
|
|
354
|
-
def
|
|
316
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
355
317
|
"""
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
Information in this decorator will augment any
|
|
359
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
360
|
-
you can use `@pypi_base` to set packages required by all
|
|
361
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
Parameters
|
|
365
|
-
----------
|
|
366
|
-
packages : Dict[str, str], default: {}
|
|
367
|
-
Packages to use for this step. The key is the name of the package
|
|
368
|
-
and the value is the version to use.
|
|
369
|
-
python : str, optional, default: None
|
|
370
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
371
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
318
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
319
|
+
to inject a card and render simple markdown content.
|
|
372
320
|
"""
|
|
373
321
|
...
|
|
374
322
|
|
|
375
323
|
@typing.overload
|
|
376
|
-
def
|
|
377
|
-
...
|
|
378
|
-
|
|
379
|
-
@typing.overload
|
|
380
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
324
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
381
325
|
...
|
|
382
326
|
|
|
383
|
-
def
|
|
327
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
384
328
|
"""
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
Information in this decorator will augment any
|
|
388
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
389
|
-
you can use `@pypi_base` to set packages required by all
|
|
390
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
Parameters
|
|
394
|
-
----------
|
|
395
|
-
packages : Dict[str, str], default: {}
|
|
396
|
-
Packages to use for this step. The key is the name of the package
|
|
397
|
-
and the value is the version to use.
|
|
398
|
-
python : str, optional, default: None
|
|
399
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
400
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
329
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
330
|
+
to inject a card and render simple markdown content.
|
|
401
331
|
"""
|
|
402
332
|
...
|
|
403
333
|
|
|
@@ -460,186 +390,163 @@ def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
|
460
390
|
"""
|
|
461
391
|
...
|
|
462
392
|
|
|
463
|
-
def
|
|
393
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
464
394
|
"""
|
|
465
|
-
|
|
466
|
-
|
|
467
|
-
User code call
|
|
468
|
-
--------------
|
|
469
|
-
@ollama(
|
|
470
|
-
models=[...],
|
|
471
|
-
...
|
|
472
|
-
)
|
|
473
|
-
|
|
474
|
-
Valid backend options
|
|
475
|
-
---------------------
|
|
476
|
-
- 'local': Run as a separate process on the local task machine.
|
|
477
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
478
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
479
|
-
|
|
480
|
-
Valid model options
|
|
481
|
-
-------------------
|
|
482
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
395
|
+
Specifies that this step should execute on Kubernetes.
|
|
483
396
|
|
|
484
397
|
|
|
485
398
|
Parameters
|
|
486
399
|
----------
|
|
487
|
-
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
|
|
494
|
-
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
|
|
498
|
-
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
400
|
+
cpu : int, default 1
|
|
401
|
+
Number of CPUs required for this step. If `@resources` is
|
|
402
|
+
also present, the maximum value from all decorators is used.
|
|
403
|
+
memory : int, default 4096
|
|
404
|
+
Memory size (in MB) required for this step. If
|
|
405
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
406
|
+
used.
|
|
407
|
+
disk : int, default 10240
|
|
408
|
+
Disk size (in MB) required for this step. If
|
|
409
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
410
|
+
used.
|
|
411
|
+
image : str, optional, default None
|
|
412
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
413
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
414
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
415
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
416
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
417
|
+
image_pull_secrets: List[str], default []
|
|
418
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
419
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
420
|
+
in Kubernetes.
|
|
421
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
422
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
423
|
+
secrets : List[str], optional, default None
|
|
424
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
425
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
426
|
+
in Metaflow configuration.
|
|
427
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
428
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
429
|
+
Can be passed in as a comma separated string of values e.g.
|
|
430
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
431
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
432
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
433
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
434
|
+
gpu : int, optional, default None
|
|
435
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
436
|
+
the scheduled node should not have GPUs.
|
|
437
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
438
|
+
The vendor of the GPUs to be used for this step.
|
|
439
|
+
tolerations : List[Dict[str,str]], default []
|
|
440
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
441
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
442
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
443
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
444
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
445
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
446
|
+
use_tmpfs : bool, default False
|
|
447
|
+
This enables an explicit tmpfs mount for this step.
|
|
448
|
+
tmpfs_tempdir : bool, default True
|
|
449
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
450
|
+
tmpfs_size : int, optional, default: None
|
|
451
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
452
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
453
|
+
memory allocated for this step.
|
|
454
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
455
|
+
Path to tmpfs mount for this step.
|
|
456
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
457
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
458
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
459
|
+
shared_memory: int, optional
|
|
460
|
+
Shared memory size (in MiB) required for this step
|
|
461
|
+
port: int, optional
|
|
462
|
+
Port number to specify in the Kubernetes job object
|
|
463
|
+
compute_pool : str, optional, default None
|
|
464
|
+
Compute pool to be used for for this step.
|
|
465
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
466
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
467
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
468
|
+
Only applicable when @parallel is used.
|
|
469
|
+
qos: str, default: Burstable
|
|
470
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
471
|
+
|
|
472
|
+
security_context: Dict[str, Any], optional, default None
|
|
473
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
474
|
+
- privileged: bool, optional, default None
|
|
475
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
476
|
+
- run_as_user: int, optional, default None
|
|
477
|
+
- run_as_group: int, optional, default None
|
|
478
|
+
- run_as_non_root: bool, optional, default None
|
|
503
479
|
"""
|
|
504
480
|
...
|
|
505
481
|
|
|
506
|
-
|
|
482
|
+
@typing.overload
|
|
483
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
507
484
|
"""
|
|
508
|
-
|
|
509
|
-
|
|
510
|
-
> Examples
|
|
511
|
-
|
|
512
|
-
**Usage: creating references of models from huggingface that may be loaded in downstream steps**
|
|
513
|
-
```python
|
|
514
|
-
@huggingface_hub
|
|
515
|
-
@step
|
|
516
|
-
def pull_model_from_huggingface(self):
|
|
517
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
518
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
519
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
520
|
-
# value of the function is a reference to the model in the backend storage.
|
|
521
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
522
|
-
|
|
523
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
524
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
525
|
-
repo_id=self.model_id,
|
|
526
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
527
|
-
)
|
|
528
|
-
self.next(self.train)
|
|
529
|
-
```
|
|
530
|
-
|
|
531
|
-
**Usage: loading models directly from huggingface hub or from cache (from metaflow's datastore)**
|
|
532
|
-
```python
|
|
533
|
-
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
534
|
-
@step
|
|
535
|
-
def pull_model_from_huggingface(self):
|
|
536
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
537
|
-
```
|
|
538
|
-
|
|
539
|
-
```python
|
|
540
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora, "/my-lora-directory")])
|
|
541
|
-
@step
|
|
542
|
-
def finetune_model(self):
|
|
543
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
544
|
-
# path_to_model will be /my-directory
|
|
545
|
-
```
|
|
485
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
546
486
|
|
|
547
|
-
|
|
548
|
-
# Takes all the arguments passed to `snapshot_download`
|
|
549
|
-
# except for `local_dir`
|
|
550
|
-
@huggingface_hub(load=[
|
|
551
|
-
{
|
|
552
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
553
|
-
},
|
|
554
|
-
{
|
|
555
|
-
"repo_id": "myorg/mistral-lora",
|
|
556
|
-
"repo_type": "model",
|
|
557
|
-
},
|
|
558
|
-
])
|
|
559
|
-
@step
|
|
560
|
-
def finetune_model(self):
|
|
561
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
562
|
-
# path_to_model will be /my-directory
|
|
563
|
-
```
|
|
487
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
564
488
|
|
|
565
489
|
|
|
566
490
|
Parameters
|
|
567
491
|
----------
|
|
568
|
-
|
|
569
|
-
|
|
570
|
-
|
|
571
|
-
|
|
572
|
-
|
|
573
|
-
|
|
574
|
-
|
|
575
|
-
|
|
576
|
-
- If repo (model/dataset) is not found in the datastore:
|
|
577
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
578
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
579
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
580
|
-
|
|
581
|
-
- If repo is found in the datastore:
|
|
582
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
492
|
+
type : str, default 'default'
|
|
493
|
+
Card type.
|
|
494
|
+
id : str, optional, default None
|
|
495
|
+
If multiple cards are present, use this id to identify this card.
|
|
496
|
+
options : Dict[str, Any], default {}
|
|
497
|
+
Options passed to the card. The contents depend on the card type.
|
|
498
|
+
timeout : int, default 45
|
|
499
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
583
500
|
"""
|
|
584
501
|
...
|
|
585
502
|
|
|
586
503
|
@typing.overload
|
|
587
|
-
def
|
|
504
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
505
|
+
...
|
|
506
|
+
|
|
507
|
+
@typing.overload
|
|
508
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
509
|
+
...
|
|
510
|
+
|
|
511
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
588
512
|
"""
|
|
589
|
-
|
|
513
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
514
|
+
|
|
515
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
590
516
|
|
|
591
517
|
|
|
592
518
|
Parameters
|
|
593
519
|
----------
|
|
594
|
-
|
|
595
|
-
|
|
520
|
+
type : str, default 'default'
|
|
521
|
+
Card type.
|
|
522
|
+
id : str, optional, default None
|
|
523
|
+
If multiple cards are present, use this id to identify this card.
|
|
524
|
+
options : Dict[str, Any], default {}
|
|
525
|
+
Options passed to the card. The contents depend on the card type.
|
|
526
|
+
timeout : int, default 45
|
|
527
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
596
528
|
"""
|
|
597
529
|
...
|
|
598
530
|
|
|
599
531
|
@typing.overload
|
|
600
|
-
def
|
|
532
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
533
|
+
"""
|
|
534
|
+
Internal decorator to support Fast bakery
|
|
535
|
+
"""
|
|
601
536
|
...
|
|
602
537
|
|
|
603
538
|
@typing.overload
|
|
604
|
-
def
|
|
539
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
605
540
|
...
|
|
606
541
|
|
|
607
|
-
def
|
|
542
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
608
543
|
"""
|
|
609
|
-
|
|
610
|
-
|
|
611
|
-
|
|
612
|
-
Parameters
|
|
613
|
-
----------
|
|
614
|
-
vars : Dict[str, str], default {}
|
|
615
|
-
Dictionary of environment variables to set.
|
|
544
|
+
Internal decorator to support Fast bakery
|
|
616
545
|
"""
|
|
617
546
|
...
|
|
618
547
|
|
|
619
|
-
|
|
620
|
-
|
|
621
|
-
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
622
|
-
|
|
623
|
-
|
|
624
|
-
Parameters
|
|
625
|
-
----------
|
|
626
|
-
integration_name : str, optional
|
|
627
|
-
Name of the S3 proxy integration. If not specified, will use the only
|
|
628
|
-
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
629
|
-
write_mode : str, optional
|
|
630
|
-
The desired behavior during write operations to target (origin) S3 bucket.
|
|
631
|
-
allowed options are:
|
|
632
|
-
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
633
|
-
storage
|
|
634
|
-
"origin" -> only write to the target S3 bucket
|
|
635
|
-
"cache" -> only write to the object storage service used for caching
|
|
636
|
-
debug : bool, optional
|
|
637
|
-
Enable debug logging for proxy operations.
|
|
638
|
-
"""
|
|
639
|
-
...
|
|
640
|
-
|
|
641
|
-
@typing.overload
|
|
642
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
548
|
+
@typing.overload
|
|
549
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
643
550
|
"""
|
|
644
551
|
Specifies that the step will success under all circumstances.
|
|
645
552
|
|
|
@@ -690,343 +597,481 @@ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
690
597
|
...
|
|
691
598
|
|
|
692
599
|
@typing.overload
|
|
693
|
-
def
|
|
600
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
694
601
|
"""
|
|
695
|
-
|
|
696
|
-
|
|
697
|
-
> Examples
|
|
698
|
-
|
|
699
|
-
- Saving Checkpoints
|
|
700
|
-
|
|
701
|
-
```python
|
|
702
|
-
@checkpoint
|
|
703
|
-
@step
|
|
704
|
-
def train(self):
|
|
705
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
706
|
-
for i in range(self.epochs):
|
|
707
|
-
# some training logic
|
|
708
|
-
loss = model.train(self.dataset)
|
|
709
|
-
if i % 10 == 0:
|
|
710
|
-
model.save(
|
|
711
|
-
current.checkpoint.directory,
|
|
712
|
-
)
|
|
713
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
714
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
715
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
716
|
-
name="epoch_checkpoint",
|
|
717
|
-
metadata={
|
|
718
|
-
"epoch": i,
|
|
719
|
-
"loss": loss,
|
|
720
|
-
}
|
|
721
|
-
)
|
|
722
|
-
```
|
|
723
|
-
|
|
724
|
-
- Using Loaded Checkpoints
|
|
725
|
-
|
|
726
|
-
```python
|
|
727
|
-
@retry(times=3)
|
|
728
|
-
@checkpoint
|
|
729
|
-
@step
|
|
730
|
-
def train(self):
|
|
731
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
732
|
-
# saved a checkpoint
|
|
733
|
-
checkpoint_path = None
|
|
734
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
735
|
-
print("Loaded checkpoint from the previous attempt")
|
|
736
|
-
checkpoint_path = current.checkpoint.directory
|
|
602
|
+
Specifies the PyPI packages for the step.
|
|
737
603
|
|
|
738
|
-
|
|
739
|
-
|
|
740
|
-
|
|
741
|
-
|
|
604
|
+
Information in this decorator will augment any
|
|
605
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
606
|
+
you can use `@pypi_base` to set packages required by all
|
|
607
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
742
608
|
|
|
743
609
|
|
|
744
610
|
Parameters
|
|
745
611
|
----------
|
|
746
|
-
|
|
747
|
-
|
|
748
|
-
|
|
749
|
-
|
|
750
|
-
|
|
751
|
-
|
|
752
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
753
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
754
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
755
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
756
|
-
|
|
757
|
-
temp_dir_root : str, default: None
|
|
758
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
612
|
+
packages : Dict[str, str], default: {}
|
|
613
|
+
Packages to use for this step. The key is the name of the package
|
|
614
|
+
and the value is the version to use.
|
|
615
|
+
python : str, optional, default: None
|
|
616
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
617
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
759
618
|
"""
|
|
760
619
|
...
|
|
761
620
|
|
|
762
621
|
@typing.overload
|
|
763
|
-
def
|
|
622
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
764
623
|
...
|
|
765
624
|
|
|
766
625
|
@typing.overload
|
|
767
|
-
def
|
|
626
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
768
627
|
...
|
|
769
628
|
|
|
770
|
-
def
|
|
629
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
771
630
|
"""
|
|
772
|
-
|
|
631
|
+
Specifies the PyPI packages for the step.
|
|
773
632
|
|
|
774
|
-
|
|
633
|
+
Information in this decorator will augment any
|
|
634
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
635
|
+
you can use `@pypi_base` to set packages required by all
|
|
636
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
775
637
|
|
|
776
|
-
- Saving Checkpoints
|
|
777
638
|
|
|
639
|
+
Parameters
|
|
640
|
+
----------
|
|
641
|
+
packages : Dict[str, str], default: {}
|
|
642
|
+
Packages to use for this step. The key is the name of the package
|
|
643
|
+
and the value is the version to use.
|
|
644
|
+
python : str, optional, default: None
|
|
645
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
646
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
647
|
+
"""
|
|
648
|
+
...
|
|
649
|
+
|
|
650
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
651
|
+
"""
|
|
652
|
+
Decorator that helps cache, version, and store models/datasets from the Hugging Face Hub.
|
|
653
|
+
|
|
654
|
+
> Examples
|
|
655
|
+
|
|
656
|
+
**Usage: creating references to models from the Hugging Face Hub that may be loaded in downstream steps**
|
|
778
657
|
```python
|
|
779
|
-
|
|
780
|
-
|
|
781
|
-
|
|
782
|
-
|
|
783
|
-
|
|
784
|
-
#
|
|
785
|
-
|
|
786
|
-
|
|
787
|
-
|
|
788
|
-
|
|
789
|
-
|
|
790
|
-
|
|
791
|
-
|
|
792
|
-
|
|
793
|
-
|
|
794
|
-
metadata={
|
|
795
|
-
"epoch": i,
|
|
796
|
-
"loss": loss,
|
|
797
|
-
}
|
|
798
|
-
)
|
|
658
|
+
@huggingface_hub
|
|
659
|
+
@step
|
|
660
|
+
def pull_model_from_huggingface(self):
|
|
661
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
662
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
663
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
664
|
+
# value of the function is a reference to the model in the backend storage.
|
|
665
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
666
|
+
|
|
667
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
668
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
669
|
+
repo_id=self.model_id,
|
|
670
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
671
|
+
)
|
|
672
|
+
self.next(self.train)
|
|
799
673
|
```
|
|
800
674
|
|
|
801
|
-
|
|
675
|
+
**Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
676
|
+
```python
|
|
677
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
678
|
+
@step
|
|
679
|
+
def pull_model_from_huggingface(self):
|
|
680
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
681
|
+
```
|
|
802
682
|
|
|
803
683
|
```python
|
|
804
|
-
|
|
805
|
-
|
|
806
|
-
|
|
807
|
-
|
|
808
|
-
|
|
809
|
-
|
|
810
|
-
checkpoint_path = None
|
|
811
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
812
|
-
print("Loaded checkpoint from the previous attempt")
|
|
813
|
-
checkpoint_path = current.checkpoint.directory
|
|
684
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora", "/my-lora-directory")])
|
|
685
|
+
@step
|
|
686
|
+
def finetune_model(self):
|
|
687
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
688
|
+
# path_to_model will be /my-directory
|
|
689
|
+
```
|
|
814
690
|
|
|
815
|
-
|
|
816
|
-
|
|
817
|
-
|
|
691
|
+
```python
|
|
692
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
693
|
+
# except for `local_dir`
|
|
694
|
+
@huggingface_hub(load=[
|
|
695
|
+
{
|
|
696
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
697
|
+
},
|
|
698
|
+
{
|
|
699
|
+
"repo_id": "myorg/mistral-lora",
|
|
700
|
+
"repo_type": "model",
|
|
701
|
+
},
|
|
702
|
+
])
|
|
703
|
+
@step
|
|
704
|
+
def finetune_model(self):
|
|
705
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
706
|
+
# path_to_model will be /my-directory
|
|
818
707
|
```
|
|
819
708
|
|
|
820
709
|
|
|
821
710
|
Parameters
|
|
822
711
|
----------
|
|
823
|
-
|
|
824
|
-
The
|
|
825
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
826
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
827
|
-
will be loaded at the start of the task.
|
|
828
|
-
- "none": Do not load any checkpoint
|
|
829
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
830
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
831
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
832
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
712
|
+
temp_dir_root : str, optional
|
|
713
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
833
714
|
|
|
834
|
-
|
|
835
|
-
The
|
|
715
|
+
cache_scope : str, optional
|
|
716
|
+
The scope of the cache. Can be `checkpoint` / `flow` / `global`.
|
|
717
|
+
|
|
718
|
+
- `checkpoint` (default): All repos are stored like objects saved by `@checkpoint`.
|
|
719
|
+
i.e., the cached path is derived from the namespace, flow, step, and Metaflow foreach iteration.
|
|
720
|
+
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
721
|
+
|
|
722
|
+
- `flow`: All repos are cached under the flow, regardless of namespace.
|
|
723
|
+
i.e., the cached path is derived solely from the flow name.
|
|
724
|
+
When to use this mode:
|
|
725
|
+
- Multiple users are executing the same flow and want shared access to the repos cached by the decorator.
|
|
726
|
+
- Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
727
|
+
|
|
728
|
+
- `global`: All repos are cached under a globally static path.
|
|
729
|
+
i.e., the base path of the cache is static and all repos are stored under it.
|
|
730
|
+
When to use this mode:
|
|
731
|
+
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
732
|
+
|
|
733
|
+
Each caching scope comes with its own trade-offs:
|
|
734
|
+
- `checkpoint`:
|
|
735
|
+
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
736
|
+
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
737
|
+
- `flow`:
|
|
738
|
+
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
739
|
+
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
740
|
+
- It doesn't promote cache reuse across flows.
|
|
741
|
+
- `global`:
|
|
742
|
+
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
743
|
+
- It promotes cache reuse across flows.
|
|
744
|
+
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
745
|
+
|
|
746
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
747
|
+
The list of repos (models/datasets) to load.
|
|
748
|
+
|
|
749
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
750
|
+
|
|
751
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
752
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
753
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
754
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
755
|
+
|
|
756
|
+
- If repo is found in the datastore:
|
|
757
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
836
758
|
"""
|
|
837
759
|
...
|
|
838
760
|
|
|
839
|
-
|
|
840
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
761
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
841
762
|
"""
|
|
842
|
-
Specifies
|
|
843
|
-
|
|
844
|
-
Use `@resources` to specify the resource requirements
|
|
845
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
846
|
-
|
|
847
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
848
|
-
```
|
|
849
|
-
python myflow.py run --with batch
|
|
850
|
-
```
|
|
851
|
-
or
|
|
852
|
-
```
|
|
853
|
-
python myflow.py run --with kubernetes
|
|
854
|
-
```
|
|
855
|
-
which executes the flow on the desired system using the
|
|
856
|
-
requirements specified in `@resources`.
|
|
763
|
+
Specifies that this step should execute on DGX cloud.
|
|
857
764
|
|
|
858
765
|
|
|
859
766
|
Parameters
|
|
860
767
|
----------
|
|
861
|
-
|
|
862
|
-
Number of
|
|
863
|
-
|
|
864
|
-
|
|
865
|
-
|
|
866
|
-
|
|
867
|
-
memory : int, default 4096
|
|
868
|
-
Memory size (in MB) required for this step.
|
|
869
|
-
shared_memory : int, optional, default None
|
|
870
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
871
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
768
|
+
gpu : int
|
|
769
|
+
Number of GPUs to use.
|
|
770
|
+
gpu_type : str
|
|
771
|
+
Type of Nvidia GPU to use.
|
|
772
|
+
queue_timeout : int
|
|
773
|
+
Time to keep the job in NVCF's queue.
|
|
872
774
|
"""
|
|
873
775
|
...
|
|
874
776
|
|
|
875
777
|
@typing.overload
|
|
876
|
-
def
|
|
778
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
779
|
+
"""
|
|
780
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
781
|
+
|
|
782
|
+
|
|
783
|
+
Parameters
|
|
784
|
+
----------
|
|
785
|
+
vars : Dict[str, str], default {}
|
|
786
|
+
Dictionary of environment variables to set.
|
|
787
|
+
"""
|
|
877
788
|
...
|
|
878
789
|
|
|
879
790
|
@typing.overload
|
|
880
|
-
def
|
|
791
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
881
792
|
...
|
|
882
793
|
|
|
883
|
-
|
|
794
|
+
@typing.overload
|
|
795
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
796
|
+
...
|
|
797
|
+
|
|
798
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
884
799
|
"""
|
|
885
|
-
Specifies
|
|
886
|
-
|
|
887
|
-
Use `@resources` to specify the resource requirements
|
|
888
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
889
|
-
|
|
890
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
891
|
-
```
|
|
892
|
-
python myflow.py run --with batch
|
|
893
|
-
```
|
|
894
|
-
or
|
|
895
|
-
```
|
|
896
|
-
python myflow.py run --with kubernetes
|
|
897
|
-
```
|
|
898
|
-
which executes the flow on the desired system using the
|
|
899
|
-
requirements specified in `@resources`.
|
|
800
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
900
801
|
|
|
901
802
|
|
|
902
803
|
Parameters
|
|
903
804
|
----------
|
|
904
|
-
|
|
905
|
-
|
|
906
|
-
gpu : int, optional, default None
|
|
907
|
-
Number of GPUs required for this step.
|
|
908
|
-
disk : int, optional, default None
|
|
909
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
910
|
-
memory : int, default 4096
|
|
911
|
-
Memory size (in MB) required for this step.
|
|
912
|
-
shared_memory : int, optional, default None
|
|
913
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
914
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
805
|
+
vars : Dict[str, str], default {}
|
|
806
|
+
Dictionary of environment variables to set.
|
|
915
807
|
"""
|
|
916
808
|
...
|
|
917
809
|
|
|
918
|
-
|
|
810
|
+
@typing.overload
|
|
811
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
919
812
|
"""
|
|
920
|
-
|
|
921
|
-
|
|
922
|
-
User code call
|
|
923
|
-
--------------
|
|
924
|
-
@vllm(
|
|
925
|
-
model="...",
|
|
926
|
-
...
|
|
927
|
-
)
|
|
813
|
+
Enables loading / saving of models within a step.
|
|
928
814
|
|
|
929
|
-
|
|
930
|
-
|
|
931
|
-
|
|
815
|
+
> Examples
|
|
816
|
+
- Saving Models
|
|
817
|
+
```python
|
|
818
|
+
@model
|
|
819
|
+
@step
|
|
820
|
+
def train(self):
|
|
821
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
822
|
+
self.my_model = current.model.save(
|
|
823
|
+
path_to_my_model,
|
|
824
|
+
label="my_model",
|
|
825
|
+
metadata={
|
|
826
|
+
"epochs": 10,
|
|
827
|
+
"batch-size": 32,
|
|
828
|
+
"learning-rate": 0.001,
|
|
829
|
+
}
|
|
830
|
+
)
|
|
831
|
+
self.next(self.test)
|
|
932
832
|
|
|
933
|
-
|
|
934
|
-
|
|
935
|
-
|
|
833
|
+
@model(load="my_model")
|
|
834
|
+
@step
|
|
835
|
+
def test(self):
|
|
836
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
837
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
838
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
839
|
+
self.next(self.end)
|
|
840
|
+
```
|
|
936
841
|
|
|
937
|
-
|
|
938
|
-
|
|
842
|
+
- Loading models
|
|
843
|
+
```python
|
|
844
|
+
@step
|
|
845
|
+
def train(self):
|
|
846
|
+
# current.model.load returns the path to the model loaded
|
|
847
|
+
checkpoint_path = current.model.load(
|
|
848
|
+
self.checkpoint_key,
|
|
849
|
+
)
|
|
850
|
+
model_path = current.model.load(
|
|
851
|
+
self.model,
|
|
852
|
+
)
|
|
853
|
+
self.next(self.test)
|
|
854
|
+
```
|
|
939
855
|
|
|
940
856
|
|
|
941
857
|
Parameters
|
|
942
858
|
----------
|
|
943
|
-
|
|
944
|
-
|
|
945
|
-
|
|
946
|
-
|
|
947
|
-
|
|
948
|
-
|
|
949
|
-
|
|
950
|
-
|
|
951
|
-
|
|
952
|
-
Whether to turn on verbose debugging logs.
|
|
953
|
-
card_refresh_interval: int
|
|
954
|
-
Interval in seconds for refreshing the vLLM status card.
|
|
955
|
-
Only used when openai_api_server=True.
|
|
956
|
-
max_retries: int
|
|
957
|
-
Maximum number of retries checking for vLLM server startup.
|
|
958
|
-
Only used when openai_api_server=True.
|
|
959
|
-
retry_alert_frequency: int
|
|
960
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
961
|
-
Only used when openai_api_server=True.
|
|
962
|
-
engine_args : dict
|
|
963
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
964
|
-
For example, `tensor_parallel_size=2`.
|
|
859
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
860
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
861
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
862
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
863
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
864
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
865
|
+
|
|
866
|
+
temp_dir_root : str, default: None
|
|
867
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
965
868
|
"""
|
|
966
869
|
...
|
|
967
870
|
|
|
968
871
|
@typing.overload
|
|
969
|
-
def
|
|
872
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
873
|
+
...
|
|
874
|
+
|
|
875
|
+
@typing.overload
|
|
876
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
877
|
+
...
|
|
878
|
+
|
|
879
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
|
970
880
|
"""
|
|
971
|
-
|
|
972
|
-
|
|
881
|
+
Enables loading / saving of models within a step.
|
|
882
|
+
|
|
883
|
+
> Examples
|
|
884
|
+
- Saving Models
|
|
885
|
+
```python
|
|
886
|
+
@model
|
|
887
|
+
@step
|
|
888
|
+
def train(self):
|
|
889
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
890
|
+
self.my_model = current.model.save(
|
|
891
|
+
path_to_my_model,
|
|
892
|
+
label="my_model",
|
|
893
|
+
metadata={
|
|
894
|
+
"epochs": 10,
|
|
895
|
+
"batch-size": 32,
|
|
896
|
+
"learning-rate": 0.001,
|
|
897
|
+
}
|
|
898
|
+
)
|
|
899
|
+
self.next(self.test)
|
|
900
|
+
|
|
901
|
+
@model(load="my_model")
|
|
902
|
+
@step
|
|
903
|
+
def test(self):
|
|
904
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
905
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
906
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
907
|
+
self.next(self.end)
|
|
908
|
+
```
|
|
909
|
+
|
|
910
|
+
- Loading models
|
|
911
|
+
```python
|
|
912
|
+
@step
|
|
913
|
+
def train(self):
|
|
914
|
+
# current.model.load returns the path to the model loaded
|
|
915
|
+
checkpoint_path = current.model.load(
|
|
916
|
+
self.checkpoint_key,
|
|
917
|
+
)
|
|
918
|
+
model_path = current.model.load(
|
|
919
|
+
self.model,
|
|
920
|
+
)
|
|
921
|
+
self.next(self.test)
|
|
922
|
+
```
|
|
973
923
|
|
|
974
924
|
|
|
975
925
|
Parameters
|
|
976
926
|
----------
|
|
977
|
-
|
|
978
|
-
|
|
979
|
-
|
|
980
|
-
|
|
927
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
928
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
929
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
930
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
931
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
932
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
933
|
+
|
|
934
|
+
temp_dir_root : str, default: None
|
|
935
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
981
936
|
"""
|
|
982
937
|
...
|
|
983
938
|
|
|
984
|
-
|
|
985
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
986
|
-
...
|
|
987
|
-
|
|
988
|
-
@typing.overload
|
|
989
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
990
|
-
...
|
|
991
|
-
|
|
992
|
-
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
939
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
993
940
|
"""
|
|
994
|
-
|
|
995
|
-
the execution of a step.
|
|
941
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
996
942
|
|
|
997
943
|
|
|
998
944
|
Parameters
|
|
999
945
|
----------
|
|
1000
|
-
|
|
1001
|
-
|
|
1002
|
-
|
|
1003
|
-
|
|
946
|
+
integration_name : str, optional
|
|
947
|
+
Name of the S3 proxy integration. If not specified, will use the only
|
|
948
|
+
available S3 proxy integration in the namespace (fails if multiple exist).
|
|
949
|
+
write_mode : str, optional
|
|
950
|
+
The desired behavior during write operations to target (origin) S3 bucket.
|
|
951
|
+
allowed options are:
|
|
952
|
+
"origin-and-cache" -> write to both the target S3 bucket and local object
|
|
953
|
+
storage
|
|
954
|
+
"origin" -> only write to the target S3 bucket
|
|
955
|
+
"cache" -> only write to the object storage service used for caching
|
|
956
|
+
debug : bool, optional
|
|
957
|
+
Enable debug logging for proxy operations.
|
|
1004
958
|
"""
|
|
1005
959
|
...
|
|
1006
960
|
|
|
1007
961
|
@typing.overload
|
|
1008
|
-
def
|
|
962
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1009
963
|
"""
|
|
1010
|
-
|
|
1011
|
-
|
|
1012
|
-
a Neo Cloud like CoreWeave.
|
|
964
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
965
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1013
966
|
"""
|
|
1014
967
|
...
|
|
1015
968
|
|
|
1016
969
|
@typing.overload
|
|
1017
|
-
def
|
|
970
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1018
971
|
...
|
|
1019
972
|
|
|
1020
|
-
def
|
|
973
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1021
974
|
"""
|
|
1022
|
-
|
|
1023
|
-
|
|
1024
|
-
a Neo Cloud like CoreWeave.
|
|
975
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
976
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1025
977
|
"""
|
|
1026
978
|
...
|
|
1027
979
|
|
|
1028
980
|
@typing.overload
|
|
1029
|
-
def
|
|
981
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
982
|
+
"""
|
|
983
|
+
Specifies the resources needed when executing this step.
|
|
984
|
+
|
|
985
|
+
Use `@resources` to specify the resource requirements
|
|
986
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
987
|
+
|
|
988
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
989
|
+
```
|
|
990
|
+
python myflow.py run --with batch
|
|
991
|
+
```
|
|
992
|
+
or
|
|
993
|
+
```
|
|
994
|
+
python myflow.py run --with kubernetes
|
|
995
|
+
```
|
|
996
|
+
which executes the flow on the desired system using the
|
|
997
|
+
requirements specified in `@resources`.
|
|
998
|
+
|
|
999
|
+
|
|
1000
|
+
Parameters
|
|
1001
|
+
----------
|
|
1002
|
+
cpu : int, default 1
|
|
1003
|
+
Number of CPUs required for this step.
|
|
1004
|
+
gpu : int, optional, default None
|
|
1005
|
+
Number of GPUs required for this step.
|
|
1006
|
+
disk : int, optional, default None
|
|
1007
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1008
|
+
memory : int, default 4096
|
|
1009
|
+
Memory size (in MB) required for this step.
|
|
1010
|
+
shared_memory : int, optional, default None
|
|
1011
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1012
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1013
|
+
"""
|
|
1014
|
+
...
|
|
1015
|
+
|
|
1016
|
+
@typing.overload
|
|
1017
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1018
|
+
...
|
|
1019
|
+
|
|
1020
|
+
@typing.overload
|
|
1021
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1022
|
+
...
|
|
1023
|
+
|
|
1024
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
1025
|
+
"""
|
|
1026
|
+
Specifies the resources needed when executing this step.
|
|
1027
|
+
|
|
1028
|
+
Use `@resources` to specify the resource requirements
|
|
1029
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1030
|
+
|
|
1031
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1032
|
+
```
|
|
1033
|
+
python myflow.py run --with batch
|
|
1034
|
+
```
|
|
1035
|
+
or
|
|
1036
|
+
```
|
|
1037
|
+
python myflow.py run --with kubernetes
|
|
1038
|
+
```
|
|
1039
|
+
which executes the flow on the desired system using the
|
|
1040
|
+
requirements specified in `@resources`.
|
|
1041
|
+
|
|
1042
|
+
|
|
1043
|
+
Parameters
|
|
1044
|
+
----------
|
|
1045
|
+
cpu : int, default 1
|
|
1046
|
+
Number of CPUs required for this step.
|
|
1047
|
+
gpu : int, optional, default None
|
|
1048
|
+
Number of GPUs required for this step.
|
|
1049
|
+
disk : int, optional, default None
|
|
1050
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1051
|
+
memory : int, default 4096
|
|
1052
|
+
Memory size (in MB) required for this step.
|
|
1053
|
+
shared_memory : int, optional, default None
|
|
1054
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1055
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1056
|
+
"""
|
|
1057
|
+
...
|
|
1058
|
+
|
|
1059
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1060
|
+
"""
|
|
1061
|
+
Specifies that this step should execute on DGX cloud.
|
|
1062
|
+
|
|
1063
|
+
|
|
1064
|
+
Parameters
|
|
1065
|
+
----------
|
|
1066
|
+
gpu : int
|
|
1067
|
+
Number of GPUs to use.
|
|
1068
|
+
gpu_type : str
|
|
1069
|
+
Type of Nvidia GPU to use.
|
|
1070
|
+
"""
|
|
1071
|
+
...
|
|
1072
|
+
|
|
1073
|
+
@typing.overload
|
|
1074
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1030
1075
|
"""
|
|
1031
1076
|
Specifies the Conda environment for the step.
|
|
1032
1077
|
|
|
@@ -1084,406 +1129,478 @@ def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
1084
1129
|
"""
|
|
1085
1130
|
...
|
|
1086
1131
|
|
|
1087
|
-
|
|
1132
|
+
@typing.overload
|
|
1133
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1088
1134
|
"""
|
|
1089
|
-
|
|
1090
|
-
|
|
1091
|
-
|
|
1092
|
-
Parameters
|
|
1093
|
-
----------
|
|
1094
|
-
gpu : int
|
|
1095
|
-
Number of GPUs to use.
|
|
1096
|
-
gpu_type : str
|
|
1097
|
-
Type of Nvidia GPU to use.
|
|
1098
|
-
queue_timeout : int
|
|
1099
|
-
Time to keep the job in NVCF's queue.
|
|
1135
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1136
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1137
|
+
a Neo Cloud like Nebius.
|
|
1100
1138
|
"""
|
|
1101
1139
|
...
|
|
1102
1140
|
|
|
1103
|
-
|
|
1141
|
+
@typing.overload
|
|
1142
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1143
|
+
...
|
|
1144
|
+
|
|
1145
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1104
1146
|
"""
|
|
1105
|
-
|
|
1147
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1148
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1149
|
+
a Neo Cloud like Nebius.
|
|
1150
|
+
"""
|
|
1151
|
+
...
|
|
1152
|
+
|
|
1153
|
+
@typing.overload
|
|
1154
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1155
|
+
"""
|
|
1156
|
+
Enables checkpointing for a step.
|
|
1157
|
+
|
|
1158
|
+
> Examples
|
|
1159
|
+
|
|
1160
|
+
- Saving Checkpoints
|
|
1161
|
+
|
|
1162
|
+
```python
|
|
1163
|
+
@checkpoint
|
|
1164
|
+
@step
|
|
1165
|
+
def train(self):
|
|
1166
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
1167
|
+
for i in range(self.epochs):
|
|
1168
|
+
# some training logic
|
|
1169
|
+
loss = model.train(self.dataset)
|
|
1170
|
+
if i % 10 == 0:
|
|
1171
|
+
model.save(
|
|
1172
|
+
current.checkpoint.directory,
|
|
1173
|
+
)
|
|
1174
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1175
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1176
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
1177
|
+
name="epoch_checkpoint",
|
|
1178
|
+
metadata={
|
|
1179
|
+
"epoch": i,
|
|
1180
|
+
"loss": loss,
|
|
1181
|
+
}
|
|
1182
|
+
)
|
|
1183
|
+
```
|
|
1184
|
+
|
|
1185
|
+
- Using Loaded Checkpoints
|
|
1186
|
+
|
|
1187
|
+
```python
|
|
1188
|
+
@retry(times=3)
|
|
1189
|
+
@checkpoint
|
|
1190
|
+
@step
|
|
1191
|
+
def train(self):
|
|
1192
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1193
|
+
# saved a checkpoint
|
|
1194
|
+
checkpoint_path = None
|
|
1195
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1196
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1197
|
+
checkpoint_path = current.checkpoint.directory
|
|
1198
|
+
|
|
1199
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1200
|
+
for i in range(self.epochs):
|
|
1201
|
+
...
|
|
1202
|
+
```
|
|
1106
1203
|
|
|
1107
1204
|
|
|
1108
1205
|
Parameters
|
|
1109
1206
|
----------
|
|
1110
|
-
|
|
1111
|
-
|
|
1112
|
-
|
|
1113
|
-
|
|
1114
|
-
|
|
1115
|
-
|
|
1116
|
-
|
|
1117
|
-
|
|
1118
|
-
|
|
1119
|
-
|
|
1120
|
-
used.
|
|
1121
|
-
image : str, optional, default None
|
|
1122
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
1123
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
1124
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
1125
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
1126
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
1127
|
-
image_pull_secrets: List[str], default []
|
|
1128
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
1129
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
1130
|
-
in Kubernetes.
|
|
1131
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
1132
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
1133
|
-
secrets : List[str], optional, default None
|
|
1134
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
1135
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
1136
|
-
in Metaflow configuration.
|
|
1137
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
1138
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
1139
|
-
Can be passed in as a comma separated string of values e.g.
|
|
1140
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
1141
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
1142
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
1143
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
1144
|
-
gpu : int, optional, default None
|
|
1145
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
1146
|
-
the scheduled node should not have GPUs.
|
|
1147
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
1148
|
-
The vendor of the GPUs to be used for this step.
|
|
1149
|
-
tolerations : List[Dict[str,str]], default []
|
|
1150
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
1151
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
1152
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
1153
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
1154
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
1155
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
1156
|
-
use_tmpfs : bool, default False
|
|
1157
|
-
This enables an explicit tmpfs mount for this step.
|
|
1158
|
-
tmpfs_tempdir : bool, default True
|
|
1159
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
1160
|
-
tmpfs_size : int, optional, default: None
|
|
1161
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
1162
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
1163
|
-
memory allocated for this step.
|
|
1164
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
1165
|
-
Path to tmpfs mount for this step.
|
|
1166
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
1167
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
1168
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
1169
|
-
shared_memory: int, optional
|
|
1170
|
-
Shared memory size (in MiB) required for this step
|
|
1171
|
-
port: int, optional
|
|
1172
|
-
Port number to specify in the Kubernetes job object
|
|
1173
|
-
compute_pool : str, optional, default None
|
|
1174
|
-
Compute pool to be used for for this step.
|
|
1175
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
1176
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
1177
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
1178
|
-
Only applicable when @parallel is used.
|
|
1179
|
-
qos: str, default: Burstable
|
|
1180
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
1207
|
+
load_policy : str, default: "fresh"
|
|
1208
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1209
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1210
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1211
|
+
will be loaded at the start of the task.
|
|
1212
|
+
- "none": Do not load any checkpoint
|
|
1213
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1214
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1215
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1216
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1181
1217
|
|
|
1182
|
-
|
|
1183
|
-
|
|
1184
|
-
- privileged: bool, optional, default None
|
|
1185
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
1186
|
-
- run_as_user: int, optional, default None
|
|
1187
|
-
- run_as_group: int, optional, default None
|
|
1188
|
-
- run_as_non_root: bool, optional, default None
|
|
1218
|
+
temp_dir_root : str, default: None
|
|
1219
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1189
1220
|
"""
|
|
1190
1221
|
...
|
|
1191
1222
|
|
|
1192
1223
|
@typing.overload
|
|
1193
|
-
def
|
|
1194
|
-
"""
|
|
1195
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
1196
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
1197
|
-
"""
|
|
1224
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1198
1225
|
...
|
|
1199
1226
|
|
|
1200
1227
|
@typing.overload
|
|
1201
|
-
def
|
|
1228
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1202
1229
|
...
|
|
1203
1230
|
|
|
1204
|
-
def
|
|
1231
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
1205
1232
|
"""
|
|
1206
|
-
|
|
1207
|
-
|
|
1233
|
+
Enables checkpointing for a step.
|
|
1234
|
+
|
|
1235
|
+
> Examples
|
|
1236
|
+
|
|
1237
|
+
- Saving Checkpoints
|
|
1238
|
+
|
|
1239
|
+
```python
|
|
1240
|
+
@checkpoint
|
|
1241
|
+
@step
|
|
1242
|
+
def train(self):
|
|
1243
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
1244
|
+
for i in range(self.epochs):
|
|
1245
|
+
# some training logic
|
|
1246
|
+
loss = model.train(self.dataset)
|
|
1247
|
+
if i % 10 == 0:
|
|
1248
|
+
model.save(
|
|
1249
|
+
current.checkpoint.directory,
|
|
1250
|
+
)
|
|
1251
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1252
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1253
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
1254
|
+
name="epoch_checkpoint",
|
|
1255
|
+
metadata={
|
|
1256
|
+
"epoch": i,
|
|
1257
|
+
"loss": loss,
|
|
1258
|
+
}
|
|
1259
|
+
)
|
|
1260
|
+
```
|
|
1261
|
+
|
|
1262
|
+
- Using Loaded Checkpoints
|
|
1263
|
+
|
|
1264
|
+
```python
|
|
1265
|
+
@retry(times=3)
|
|
1266
|
+
@checkpoint
|
|
1267
|
+
@step
|
|
1268
|
+
def train(self):
|
|
1269
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1270
|
+
# saved a checkpoint
|
|
1271
|
+
checkpoint_path = None
|
|
1272
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1273
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1274
|
+
checkpoint_path = current.checkpoint.directory
|
|
1275
|
+
|
|
1276
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1277
|
+
for i in range(self.epochs):
|
|
1278
|
+
...
|
|
1279
|
+
```
|
|
1280
|
+
|
|
1281
|
+
|
|
1282
|
+
Parameters
|
|
1283
|
+
----------
|
|
1284
|
+
load_policy : str, default: "fresh"
|
|
1285
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1286
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1287
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1288
|
+
will be loaded at the start of the task.
|
|
1289
|
+
- "none": Do not load any checkpoint
|
|
1290
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1291
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1292
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1293
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1294
|
+
|
|
1295
|
+
temp_dir_root : str, default: None
|
|
1296
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1297
|
+
"""
|
|
1298
|
+
...
|
|
1299
|
+
|
|
1300
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1301
|
+
"""
|
|
1302
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
1303
|
+
|
|
1304
|
+
User code call
|
|
1305
|
+
--------------
|
|
1306
|
+
@ollama(
|
|
1307
|
+
models=[...],
|
|
1308
|
+
...
|
|
1309
|
+
)
|
|
1310
|
+
|
|
1311
|
+
Valid backend options
|
|
1312
|
+
---------------------
|
|
1313
|
+
- 'local': Run as a separate process on the local task machine.
|
|
1314
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
1315
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
1316
|
+
|
|
1317
|
+
Valid model options
|
|
1318
|
+
-------------------
|
|
1319
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
1320
|
+
|
|
1321
|
+
|
|
1322
|
+
Parameters
|
|
1323
|
+
----------
|
|
1324
|
+
models: list[str]
|
|
1325
|
+
List of Ollama containers running models in sidecars.
|
|
1326
|
+
backend: str
|
|
1327
|
+
Determines where and how to run the Ollama process.
|
|
1328
|
+
force_pull: bool
|
|
1329
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
1330
|
+
cache_update_policy: str
|
|
1331
|
+
Cache update policy: "auto", "force", or "never".
|
|
1332
|
+
force_cache_update: bool
|
|
1333
|
+
Simple override for "force" cache update policy.
|
|
1334
|
+
debug: bool
|
|
1335
|
+
Whether to turn on verbose debugging logs.
|
|
1336
|
+
circuit_breaker_config: dict
|
|
1337
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
1338
|
+
timeout_config: dict
|
|
1339
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
1208
1340
|
"""
|
|
1209
1341
|
...
|
|
1210
1342
|
|
|
1211
1343
|
@typing.overload
|
|
1212
|
-
def
|
|
1344
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1213
1345
|
"""
|
|
1214
|
-
|
|
1215
|
-
|
|
1216
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1346
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
1347
|
+
the execution of a step.
|
|
1217
1348
|
|
|
1218
1349
|
|
|
1219
1350
|
Parameters
|
|
1220
1351
|
----------
|
|
1221
|
-
|
|
1222
|
-
|
|
1223
|
-
|
|
1224
|
-
|
|
1225
|
-
options : Dict[str, Any], default {}
|
|
1226
|
-
Options passed to the card. The contents depend on the card type.
|
|
1227
|
-
timeout : int, default 45
|
|
1228
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
1352
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1353
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
1354
|
+
role : str, optional, default: None
|
|
1355
|
+
Role to use for fetching secrets
|
|
1229
1356
|
"""
|
|
1230
1357
|
...
|
|
1231
1358
|
|
|
1232
1359
|
@typing.overload
|
|
1233
|
-
def
|
|
1360
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1234
1361
|
...
|
|
1235
1362
|
|
|
1236
1363
|
@typing.overload
|
|
1237
|
-
def
|
|
1364
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1238
1365
|
...
|
|
1239
1366
|
|
|
1240
|
-
def
|
|
1367
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
1241
1368
|
"""
|
|
1242
|
-
|
|
1243
|
-
|
|
1244
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1369
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
1370
|
+
the execution of a step.
|
|
1245
1371
|
|
|
1246
1372
|
|
|
1247
1373
|
Parameters
|
|
1248
1374
|
----------
|
|
1249
|
-
|
|
1250
|
-
|
|
1251
|
-
|
|
1252
|
-
|
|
1253
|
-
options : Dict[str, Any], default {}
|
|
1254
|
-
Options passed to the card. The contents depend on the card type.
|
|
1255
|
-
timeout : int, default 45
|
|
1256
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
1257
|
-
"""
|
|
1258
|
-
...
|
|
1259
|
-
|
|
1260
|
-
@typing.overload
|
|
1261
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1262
|
-
"""
|
|
1263
|
-
Internal decorator to support Fast bakery
|
|
1375
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1376
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
1377
|
+
role : str, optional, default: None
|
|
1378
|
+
Role to use for fetching secrets
|
|
1264
1379
|
"""
|
|
1265
1380
|
...
|
|
1266
1381
|
|
|
1267
|
-
|
|
1268
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1269
|
-
...
|
|
1270
|
-
|
|
1271
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1382
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1272
1383
|
"""
|
|
1273
|
-
|
|
1384
|
+
Specifies what flows belong to the same project.
|
|
1385
|
+
|
|
1386
|
+
A project-specific namespace is created for all flows that
|
|
1387
|
+
use the same `@project(name)`.
|
|
1388
|
+
|
|
1389
|
+
|
|
1390
|
+
Parameters
|
|
1391
|
+
----------
|
|
1392
|
+
name : str
|
|
1393
|
+
Project name. Make sure that the name is unique amongst all
|
|
1394
|
+
projects that use the same production scheduler. The name may
|
|
1395
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
1396
|
+
|
|
1397
|
+
branch : Optional[str], default None
|
|
1398
|
+
The branch to use. If not specified, the branch is set to
|
|
1399
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
1400
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
1401
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
1402
|
+
|
|
1403
|
+
production : bool, default False
|
|
1404
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
1405
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
1406
|
+
`production` in the decorator and on the command line.
|
|
1407
|
+
The project branch name will be:
|
|
1408
|
+
- if `branch` is specified:
|
|
1409
|
+
- if `production` is True: `prod.<branch>`
|
|
1410
|
+
- if `production` is False: `test.<branch>`
|
|
1411
|
+
- if `branch` is not specified:
|
|
1412
|
+
- if `production` is True: `prod`
|
|
1413
|
+
- if `production` is False: `user.<username>`
|
|
1274
1414
|
"""
|
|
1275
1415
|
...
|
|
1276
1416
|
|
|
1277
1417
|
@typing.overload
|
|
1278
|
-
def
|
|
1418
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1279
1419
|
"""
|
|
1280
|
-
Specifies the
|
|
1281
|
-
|
|
1282
|
-
|
|
1283
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
|
1284
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
1285
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
1286
|
-
|
|
1287
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
1288
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
|
1289
|
-
ensuring that the flow execution can continue.
|
|
1420
|
+
Specifies the times when the flow should be run when running on a
|
|
1421
|
+
production scheduler.
|
|
1290
1422
|
|
|
1291
1423
|
|
|
1292
1424
|
Parameters
|
|
1293
1425
|
----------
|
|
1294
|
-
|
|
1295
|
-
|
|
1296
|
-
|
|
1297
|
-
|
|
1426
|
+
hourly : bool, default False
|
|
1427
|
+
Run the workflow hourly.
|
|
1428
|
+
daily : bool, default True
|
|
1429
|
+
Run the workflow daily.
|
|
1430
|
+
weekly : bool, default False
|
|
1431
|
+
Run the workflow weekly.
|
|
1432
|
+
cron : str, optional, default None
|
|
1433
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1434
|
+
specified by this expression.
|
|
1435
|
+
timezone : str, optional, default None
|
|
1436
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1437
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1298
1438
|
"""
|
|
1299
1439
|
...
|
|
1300
1440
|
|
|
1301
1441
|
@typing.overload
|
|
1302
|
-
def
|
|
1303
|
-
...
|
|
1304
|
-
|
|
1305
|
-
@typing.overload
|
|
1306
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1442
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1307
1443
|
...
|
|
1308
1444
|
|
|
1309
|
-
def
|
|
1445
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1310
1446
|
"""
|
|
1311
|
-
Specifies the
|
|
1312
|
-
|
|
1313
|
-
|
|
1314
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
|
1315
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
1316
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
1317
|
-
|
|
1318
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
1319
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
|
1320
|
-
ensuring that the flow execution can continue.
|
|
1447
|
+
Specifies the times when the flow should be run when running on a
|
|
1448
|
+
production scheduler.
|
|
1321
1449
|
|
|
1322
1450
|
|
|
1323
1451
|
Parameters
|
|
1324
1452
|
----------
|
|
1325
|
-
|
|
1326
|
-
|
|
1327
|
-
|
|
1328
|
-
|
|
1329
|
-
|
|
1330
|
-
|
|
1331
|
-
|
|
1332
|
-
|
|
1333
|
-
|
|
1334
|
-
|
|
1335
|
-
|
|
1336
|
-
|
|
1453
|
+
hourly : bool, default False
|
|
1454
|
+
Run the workflow hourly.
|
|
1455
|
+
daily : bool, default True
|
|
1456
|
+
Run the workflow daily.
|
|
1457
|
+
weekly : bool, default False
|
|
1458
|
+
Run the workflow weekly.
|
|
1459
|
+
cron : str, optional, default None
|
|
1460
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1461
|
+
specified by this expression.
|
|
1462
|
+
timezone : str, optional, default None
|
|
1463
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1464
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1337
1465
|
"""
|
|
1338
1466
|
...
|
|
1339
1467
|
|
|
1340
|
-
|
|
1341
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1342
|
-
...
|
|
1343
|
-
|
|
1344
|
-
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1468
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1345
1469
|
"""
|
|
1346
|
-
|
|
1347
|
-
|
|
1470
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1471
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1472
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1473
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1474
|
+
starts only after all sensors finish.
|
|
1475
|
+
|
|
1476
|
+
|
|
1477
|
+
Parameters
|
|
1478
|
+
----------
|
|
1479
|
+
timeout : int
|
|
1480
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1481
|
+
poke_interval : int
|
|
1482
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1483
|
+
mode : str
|
|
1484
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1485
|
+
exponential_backoff : bool
|
|
1486
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1487
|
+
pool : str
|
|
1488
|
+
the slot pool this task should run in,
|
|
1489
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1490
|
+
soft_fail : bool
|
|
1491
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1492
|
+
name : str
|
|
1493
|
+
Name of the sensor on Airflow
|
|
1494
|
+
description : str
|
|
1495
|
+
Description of sensor in the Airflow UI
|
|
1496
|
+
bucket_key : Union[str, List[str]]
|
|
1497
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1498
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1499
|
+
bucket_name : str
|
|
1500
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1501
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1502
|
+
wildcard_match : bool
|
|
1503
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1504
|
+
aws_conn_id : str
|
|
1505
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1506
|
+
verify : bool
|
|
1507
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1348
1508
|
"""
|
|
1349
1509
|
...
|
|
1350
1510
|
|
|
1351
1511
|
@typing.overload
|
|
1352
|
-
def
|
|
1512
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1353
1513
|
"""
|
|
1354
|
-
Specifies the
|
|
1514
|
+
Specifies the event(s) that this flow depends on.
|
|
1355
1515
|
|
|
1356
1516
|
```
|
|
1357
|
-
@
|
|
1517
|
+
@trigger(event='foo')
|
|
1358
1518
|
```
|
|
1359
1519
|
or
|
|
1360
1520
|
```
|
|
1361
|
-
@
|
|
1521
|
+
@trigger(events=['foo', 'bar'])
|
|
1362
1522
|
```
|
|
1363
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1364
|
-
when upstream runs within the same namespace complete successfully
|
|
1365
1523
|
|
|
1366
|
-
Additionally, you can specify
|
|
1367
|
-
|
|
1524
|
+
Additionally, you can specify the parameter mappings
|
|
1525
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1368
1526
|
```
|
|
1369
|
-
@
|
|
1527
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1370
1528
|
```
|
|
1371
1529
|
or
|
|
1372
1530
|
```
|
|
1373
|
-
@
|
|
1531
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1532
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1374
1533
|
```
|
|
1375
1534
|
|
|
1376
|
-
|
|
1377
|
-
inferred from the current project or project branch):
|
|
1535
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1378
1536
|
```
|
|
1379
|
-
@
|
|
1537
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1538
|
+
```
|
|
1539
|
+
This is equivalent to:
|
|
1540
|
+
```
|
|
1541
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1380
1542
|
```
|
|
1381
|
-
|
|
1382
|
-
Note that `branch` is typically one of:
|
|
1383
|
-
- `prod`
|
|
1384
|
-
- `user.bob`
|
|
1385
|
-
- `test.my_experiment`
|
|
1386
|
-
- `prod.staging`
|
|
1387
1543
|
|
|
1388
1544
|
|
|
1389
1545
|
Parameters
|
|
1390
1546
|
----------
|
|
1391
|
-
|
|
1392
|
-
|
|
1393
|
-
|
|
1394
|
-
|
|
1547
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1548
|
+
Event dependency for this flow.
|
|
1549
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1550
|
+
Events dependency for this flow.
|
|
1395
1551
|
options : Dict[str, Any], default {}
|
|
1396
1552
|
Backend-specific configuration for tuning eventing behavior.
|
|
1397
1553
|
"""
|
|
1398
1554
|
...
|
|
1399
1555
|
|
|
1400
1556
|
@typing.overload
|
|
1401
|
-
def
|
|
1557
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1402
1558
|
...
|
|
1403
1559
|
|
|
1404
|
-
def
|
|
1560
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1405
1561
|
"""
|
|
1406
|
-
Specifies the
|
|
1562
|
+
Specifies the event(s) that this flow depends on.
|
|
1407
1563
|
|
|
1408
1564
|
```
|
|
1409
|
-
@
|
|
1565
|
+
@trigger(event='foo')
|
|
1410
1566
|
```
|
|
1411
1567
|
or
|
|
1412
1568
|
```
|
|
1413
|
-
@
|
|
1569
|
+
@trigger(events=['foo', 'bar'])
|
|
1414
1570
|
```
|
|
1415
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1416
|
-
when upstream runs within the same namespace complete successfully
|
|
1417
1571
|
|
|
1418
|
-
Additionally, you can specify
|
|
1419
|
-
|
|
1572
|
+
Additionally, you can specify the parameter mappings
|
|
1573
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1420
1574
|
```
|
|
1421
|
-
@
|
|
1575
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1422
1576
|
```
|
|
1423
1577
|
or
|
|
1424
1578
|
```
|
|
1425
|
-
@
|
|
1579
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1580
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1426
1581
|
```
|
|
1427
1582
|
|
|
1428
|
-
|
|
1429
|
-
inferred from the current project or project branch):
|
|
1583
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1430
1584
|
```
|
|
1431
|
-
@
|
|
1585
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1586
|
+
```
|
|
1587
|
+
This is equivalent to:
|
|
1588
|
+
```
|
|
1589
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1432
1590
|
```
|
|
1433
|
-
|
|
1434
|
-
Note that `branch` is typically one of:
|
|
1435
|
-
- `prod`
|
|
1436
|
-
- `user.bob`
|
|
1437
|
-
- `test.my_experiment`
|
|
1438
|
-
- `prod.staging`
|
|
1439
1591
|
|
|
1440
1592
|
|
|
1441
1593
|
Parameters
|
|
1442
1594
|
----------
|
|
1443
|
-
|
|
1444
|
-
|
|
1445
|
-
|
|
1446
|
-
|
|
1595
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1596
|
+
Event dependency for this flow.
|
|
1597
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1598
|
+
Events dependency for this flow.
|
|
1447
1599
|
options : Dict[str, Any], default {}
|
|
1448
1600
|
Backend-specific configuration for tuning eventing behavior.
|
|
1449
1601
|
"""
|
|
1450
1602
|
...
|
|
1451
1603
|
|
|
1452
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1453
|
-
"""
|
|
1454
|
-
Specifies what flows belong to the same project.
|
|
1455
|
-
|
|
1456
|
-
A project-specific namespace is created for all flows that
|
|
1457
|
-
use the same `@project(name)`.
|
|
1458
|
-
|
|
1459
|
-
|
|
1460
|
-
Parameters
|
|
1461
|
-
----------
|
|
1462
|
-
name : str
|
|
1463
|
-
Project name. Make sure that the name is unique amongst all
|
|
1464
|
-
projects that use the same production scheduler. The name may
|
|
1465
|
-
contain only lowercase alphanumeric characters and underscores.
|
|
1466
|
-
|
|
1467
|
-
branch : Optional[str], default None
|
|
1468
|
-
The branch to use. If not specified, the branch is set to
|
|
1469
|
-
`user.<username>` unless `production` is set to `True`. This can
|
|
1470
|
-
also be set on the command line using `--branch` as a top-level option.
|
|
1471
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
|
1472
|
-
|
|
1473
|
-
production : bool, default False
|
|
1474
|
-
Whether or not the branch is the production branch. This can also be set on the
|
|
1475
|
-
command line using `--production` as a top-level option. It is an error to specify
|
|
1476
|
-
`production` in the decorator and on the command line.
|
|
1477
|
-
The project branch name will be:
|
|
1478
|
-
- if `branch` is specified:
|
|
1479
|
-
- if `production` is True: `prod.<branch>`
|
|
1480
|
-
- if `production` is False: `test.<branch>`
|
|
1481
|
-
- if `branch` is not specified:
|
|
1482
|
-
- if `production` is True: `prod`
|
|
1483
|
-
- if `production` is False: `user.<username>`
|
|
1484
|
-
"""
|
|
1485
|
-
...
|
|
1486
|
-
|
|
1487
1604
|
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
|
1488
1605
|
"""
|
|
1489
1606
|
Allows setting external datastores to save data for the
|
|
@@ -1598,100 +1715,6 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1598
1715
|
"""
|
|
1599
1716
|
...
|
|
1600
1717
|
|
|
1601
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1602
|
-
"""
|
|
1603
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1604
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1605
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1606
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1607
|
-
starts only after all sensors finish.
|
|
1608
|
-
|
|
1609
|
-
|
|
1610
|
-
Parameters
|
|
1611
|
-
----------
|
|
1612
|
-
timeout : int
|
|
1613
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1614
|
-
poke_interval : int
|
|
1615
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1616
|
-
mode : str
|
|
1617
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1618
|
-
exponential_backoff : bool
|
|
1619
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1620
|
-
pool : str
|
|
1621
|
-
the slot pool this task should run in,
|
|
1622
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1623
|
-
soft_fail : bool
|
|
1624
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1625
|
-
name : str
|
|
1626
|
-
Name of the sensor on Airflow
|
|
1627
|
-
description : str
|
|
1628
|
-
Description of sensor in the Airflow UI
|
|
1629
|
-
bucket_key : Union[str, List[str]]
|
|
1630
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1631
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1632
|
-
bucket_name : str
|
|
1633
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1634
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1635
|
-
wildcard_match : bool
|
|
1636
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1637
|
-
aws_conn_id : str
|
|
1638
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
|
1639
|
-
verify : bool
|
|
1640
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1641
|
-
"""
|
|
1642
|
-
...
|
|
1643
|
-
|
|
1644
|
-
@typing.overload
|
|
1645
|
-
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1646
|
-
"""
|
|
1647
|
-
Specifies the times when the flow should be run when running on a
|
|
1648
|
-
production scheduler.
|
|
1649
|
-
|
|
1650
|
-
|
|
1651
|
-
Parameters
|
|
1652
|
-
----------
|
|
1653
|
-
hourly : bool, default False
|
|
1654
|
-
Run the workflow hourly.
|
|
1655
|
-
daily : bool, default True
|
|
1656
|
-
Run the workflow daily.
|
|
1657
|
-
weekly : bool, default False
|
|
1658
|
-
Run the workflow weekly.
|
|
1659
|
-
cron : str, optional, default None
|
|
1660
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1661
|
-
specified by this expression.
|
|
1662
|
-
timezone : str, optional, default None
|
|
1663
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1664
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1665
|
-
"""
|
|
1666
|
-
...
|
|
1667
|
-
|
|
1668
|
-
@typing.overload
|
|
1669
|
-
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1670
|
-
...
|
|
1671
|
-
|
|
1672
|
-
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1673
|
-
"""
|
|
1674
|
-
Specifies the times when the flow should be run when running on a
|
|
1675
|
-
production scheduler.
|
|
1676
|
-
|
|
1677
|
-
|
|
1678
|
-
Parameters
|
|
1679
|
-
----------
|
|
1680
|
-
hourly : bool, default False
|
|
1681
|
-
Run the workflow hourly.
|
|
1682
|
-
daily : bool, default True
|
|
1683
|
-
Run the workflow daily.
|
|
1684
|
-
weekly : bool, default False
|
|
1685
|
-
Run the workflow weekly.
|
|
1686
|
-
cron : str, optional, default None
|
|
1687
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1688
|
-
specified by this expression.
|
|
1689
|
-
timezone : str, optional, default None
|
|
1690
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1691
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1692
|
-
"""
|
|
1693
|
-
...
|
|
1694
|
-
|
|
1695
1718
|
@typing.overload
|
|
1696
1719
|
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1697
1720
|
"""
|
|
@@ -1744,93 +1767,101 @@ def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packa
|
|
|
1744
1767
|
...
|
|
1745
1768
|
|
|
1746
1769
|
@typing.overload
|
|
1747
|
-
def
|
|
1770
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1748
1771
|
"""
|
|
1749
|
-
Specifies the
|
|
1772
|
+
Specifies the flow(s) that this flow depends on.
|
|
1750
1773
|
|
|
1751
1774
|
```
|
|
1752
|
-
@
|
|
1775
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1753
1776
|
```
|
|
1754
1777
|
or
|
|
1755
1778
|
```
|
|
1756
|
-
@
|
|
1779
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1757
1780
|
```
|
|
1781
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1782
|
+
when upstream runs within the same namespace complete successfully
|
|
1758
1783
|
|
|
1759
|
-
Additionally, you can specify
|
|
1760
|
-
|
|
1784
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1785
|
+
by specifying the fully qualified project_flow_name.
|
|
1761
1786
|
```
|
|
1762
|
-
@
|
|
1787
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1763
1788
|
```
|
|
1764
1789
|
or
|
|
1765
1790
|
```
|
|
1766
|
-
@
|
|
1767
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1791
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1768
1792
|
```
|
|
1769
1793
|
|
|
1770
|
-
|
|
1771
|
-
|
|
1772
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1773
|
-
```
|
|
1774
|
-
This is equivalent to:
|
|
1794
|
+
You can also specify just the project or project branch (other values will be
|
|
1795
|
+
inferred from the current project or project branch):
|
|
1775
1796
|
```
|
|
1776
|
-
@
|
|
1797
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1777
1798
|
```
|
|
1778
1799
|
|
|
1800
|
+
Note that `branch` is typically one of:
|
|
1801
|
+
- `prod`
|
|
1802
|
+
- `user.bob`
|
|
1803
|
+
- `test.my_experiment`
|
|
1804
|
+
- `prod.staging`
|
|
1805
|
+
|
|
1779
1806
|
|
|
1780
1807
|
Parameters
|
|
1781
1808
|
----------
|
|
1782
|
-
|
|
1783
|
-
|
|
1784
|
-
|
|
1785
|
-
|
|
1809
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1810
|
+
Upstream flow dependency for this flow.
|
|
1811
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1812
|
+
Upstream flow dependencies for this flow.
|
|
1786
1813
|
options : Dict[str, Any], default {}
|
|
1787
1814
|
Backend-specific configuration for tuning eventing behavior.
|
|
1788
1815
|
"""
|
|
1789
1816
|
...
|
|
1790
1817
|
|
|
1791
1818
|
@typing.overload
|
|
1792
|
-
def
|
|
1819
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1793
1820
|
...
|
|
1794
1821
|
|
|
1795
|
-
def
|
|
1822
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1796
1823
|
"""
|
|
1797
|
-
Specifies the
|
|
1824
|
+
Specifies the flow(s) that this flow depends on.
|
|
1798
1825
|
|
|
1799
1826
|
```
|
|
1800
|
-
@
|
|
1827
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1801
1828
|
```
|
|
1802
1829
|
or
|
|
1803
1830
|
```
|
|
1804
|
-
@
|
|
1831
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1805
1832
|
```
|
|
1833
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1834
|
+
when upstream runs within the same namespace complete successfully
|
|
1806
1835
|
|
|
1807
|
-
Additionally, you can specify
|
|
1808
|
-
|
|
1836
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1837
|
+
by specifying the fully qualified project_flow_name.
|
|
1809
1838
|
```
|
|
1810
|
-
@
|
|
1839
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1811
1840
|
```
|
|
1812
1841
|
or
|
|
1813
1842
|
```
|
|
1814
|
-
@
|
|
1815
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1843
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1816
1844
|
```
|
|
1817
1845
|
|
|
1818
|
-
|
|
1819
|
-
|
|
1820
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1821
|
-
```
|
|
1822
|
-
This is equivalent to:
|
|
1846
|
+
You can also specify just the project or project branch (other values will be
|
|
1847
|
+
inferred from the current project or project branch):
|
|
1823
1848
|
```
|
|
1824
|
-
@
|
|
1849
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1825
1850
|
```
|
|
1826
1851
|
|
|
1852
|
+
Note that `branch` is typically one of:
|
|
1853
|
+
- `prod`
|
|
1854
|
+
- `user.bob`
|
|
1855
|
+
- `test.my_experiment`
|
|
1856
|
+
- `prod.staging`
|
|
1857
|
+
|
|
1827
1858
|
|
|
1828
1859
|
Parameters
|
|
1829
1860
|
----------
|
|
1830
|
-
|
|
1831
|
-
|
|
1832
|
-
|
|
1833
|
-
|
|
1861
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1862
|
+
Upstream flow dependency for this flow.
|
|
1863
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1864
|
+
Upstream flow dependencies for this flow.
|
|
1834
1865
|
options : Dict[str, Any], default {}
|
|
1835
1866
|
Backend-specific configuration for tuning eventing behavior.
|
|
1836
1867
|
"""
|