ob-metaflow-stubs 6.0.10.1__py2.py3-none-any.whl → 6.0.10.2rc0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ob-metaflow-stubs might be problematic. Click here for more details.
- metaflow-stubs/__init__.pyi +897 -896
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +4 -4
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/meta_files.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +61 -61
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +9 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +2 -1
- metaflow-stubs/packaging_sys/__init__.pyi +5 -5
- metaflow-stubs/packaging_sys/backend.pyi +1 -1
- metaflow-stubs/packaging_sys/distribution_support.pyi +4 -4
- metaflow-stubs/packaging_sys/tar_backend.pyi +4 -4
- metaflow-stubs/packaging_sys/utils.pyi +1 -1
- metaflow-stubs/packaging_sys/v1.pyi +3 -3
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +11 -11
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/argo/exit_hooks.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +1 -1
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/__init__.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/optuna/__init__.pyi +1 -1
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +3 -3
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +1 -1
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_func.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +1 -1
- metaflow-stubs/plugins/secrets/utils.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +1 -1
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +1 -1
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +34 -34
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +2 -2
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +3 -3
- metaflow-stubs/user_decorators/__init__.pyi +1 -1
- metaflow-stubs/user_decorators/common.pyi +1 -1
- metaflow-stubs/user_decorators/mutable_flow.pyi +3 -3
- metaflow-stubs/user_decorators/mutable_step.pyi +4 -4
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +4 -4
- metaflow-stubs/user_decorators/user_step_decorator.pyi +5 -5
- {ob_metaflow_stubs-6.0.10.1.dist-info → ob_metaflow_stubs-6.0.10.2rc0.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.10.2rc0.dist-info/RECORD +262 -0
- ob_metaflow_stubs-6.0.10.1.dist-info/RECORD +0 -262
- {ob_metaflow_stubs-6.0.10.1.dist-info → ob_metaflow_stubs-6.0.10.2rc0.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.10.1.dist-info → ob_metaflow_stubs-6.0.10.2rc0.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
3
|
# MF version: 2.18.3.2+obcheckpoint(0.2.4);ob(v1) #
|
|
4
|
-
# Generated on 2025-09-
|
|
4
|
+
# Generated on 2025-09-09T23:55:12.839647 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
8
8
|
|
|
9
9
|
import typing
|
|
10
10
|
if typing.TYPE_CHECKING:
|
|
11
|
-
import typing
|
|
12
11
|
import datetime
|
|
12
|
+
import typing
|
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
|
15
15
|
|
|
@@ -39,8 +39,8 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
-
from . import cards as cards
|
|
43
42
|
from . import tuple_util as tuple_util
|
|
43
|
+
from . import cards as cards
|
|
44
44
|
from . import metaflow_git as metaflow_git
|
|
45
45
|
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
@@ -48,9 +48,9 @@ from . import plugins as plugins
|
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
|
+
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
51
52
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
52
53
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
53
|
-
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
54
54
|
from . import client as client
|
|
55
55
|
from .client.core import namespace as namespace
|
|
56
56
|
from .client.core import get_namespace as get_namespace
|
|
@@ -83,6 +83,7 @@ from .mf_extensions.outerbounds.plugins.checkpoint_datastores.nebius import nebi
|
|
|
83
83
|
from .mf_extensions.outerbounds.plugins.checkpoint_datastores.coreweave import coreweave_checkpoints as coreweave_checkpoints
|
|
84
84
|
from .mf_extensions.outerbounds.plugins.aws.assume_role_decorator import assume_role as assume_role
|
|
85
85
|
from .mf_extensions.outerbounds.plugins.apps.core.deployer import AppDeployer as AppDeployer
|
|
86
|
+
from .mf_extensions.outerbounds.plugins.apps.core.deployer import DeployedApp as DeployedApp
|
|
86
87
|
from . import system as system
|
|
87
88
|
from . import cli_components as cli_components
|
|
88
89
|
from . import pylint_wrapper as pylint_wrapper
|
|
@@ -167,104 +168,36 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
167
168
|
"""
|
|
168
169
|
...
|
|
169
170
|
|
|
170
|
-
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
171
|
-
"""
|
|
172
|
-
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
173
|
-
|
|
174
|
-
User code call
|
|
175
|
-
--------------
|
|
176
|
-
@vllm(
|
|
177
|
-
model="...",
|
|
178
|
-
...
|
|
179
|
-
)
|
|
180
|
-
|
|
181
|
-
Valid backend options
|
|
182
|
-
---------------------
|
|
183
|
-
- 'local': Run as a separate process on the local task machine.
|
|
184
|
-
|
|
185
|
-
Valid model options
|
|
186
|
-
-------------------
|
|
187
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
188
|
-
|
|
189
|
-
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
190
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
Parameters
|
|
194
|
-
----------
|
|
195
|
-
model: str
|
|
196
|
-
HuggingFace model identifier to be served by vLLM.
|
|
197
|
-
backend: str
|
|
198
|
-
Determines where and how to run the vLLM process.
|
|
199
|
-
openai_api_server: bool
|
|
200
|
-
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
201
|
-
Default is False (uses native engine).
|
|
202
|
-
Set to True for backward compatibility with existing code.
|
|
203
|
-
debug: bool
|
|
204
|
-
Whether to turn on verbose debugging logs.
|
|
205
|
-
card_refresh_interval: int
|
|
206
|
-
Interval in seconds for refreshing the vLLM status card.
|
|
207
|
-
Only used when openai_api_server=True.
|
|
208
|
-
max_retries: int
|
|
209
|
-
Maximum number of retries checking for vLLM server startup.
|
|
210
|
-
Only used when openai_api_server=True.
|
|
211
|
-
retry_alert_frequency: int
|
|
212
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
213
|
-
Only used when openai_api_server=True.
|
|
214
|
-
engine_args : dict
|
|
215
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
216
|
-
For example, `tensor_parallel_size=2`.
|
|
217
|
-
"""
|
|
218
|
-
...
|
|
219
|
-
|
|
220
171
|
@typing.overload
|
|
221
|
-
def
|
|
172
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
222
173
|
"""
|
|
223
|
-
Specifies
|
|
224
|
-
|
|
225
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
226
|
-
contains the exception raised. You can use it to detect the presence
|
|
227
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
228
|
-
are missing.
|
|
174
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
229
175
|
|
|
230
176
|
|
|
231
177
|
Parameters
|
|
232
178
|
----------
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
If not specified, the exception is not stored.
|
|
236
|
-
print_exception : bool, default True
|
|
237
|
-
Determines whether or not the exception is printed to
|
|
238
|
-
stdout when caught.
|
|
179
|
+
vars : Dict[str, str], default {}
|
|
180
|
+
Dictionary of environment variables to set.
|
|
239
181
|
"""
|
|
240
182
|
...
|
|
241
183
|
|
|
242
184
|
@typing.overload
|
|
243
|
-
def
|
|
185
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
244
186
|
...
|
|
245
187
|
|
|
246
188
|
@typing.overload
|
|
247
|
-
def
|
|
189
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
248
190
|
...
|
|
249
191
|
|
|
250
|
-
def
|
|
192
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
251
193
|
"""
|
|
252
|
-
Specifies
|
|
253
|
-
|
|
254
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
255
|
-
contains the exception raised. You can use it to detect the presence
|
|
256
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
257
|
-
are missing.
|
|
194
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
258
195
|
|
|
259
196
|
|
|
260
197
|
Parameters
|
|
261
198
|
----------
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
If not specified, the exception is not stored.
|
|
265
|
-
print_exception : bool, default True
|
|
266
|
-
Determines whether or not the exception is printed to
|
|
267
|
-
stdout when caught.
|
|
199
|
+
vars : Dict[str, str], default {}
|
|
200
|
+
Dictionary of environment variables to set.
|
|
268
201
|
"""
|
|
269
202
|
...
|
|
270
203
|
|
|
@@ -284,306 +217,40 @@ def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[t
|
|
|
284
217
|
"""
|
|
285
218
|
...
|
|
286
219
|
|
|
287
|
-
def
|
|
220
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
288
221
|
"""
|
|
289
|
-
Specifies that this step should execute on
|
|
222
|
+
Specifies that this step should execute on DGX cloud.
|
|
290
223
|
|
|
291
224
|
|
|
292
225
|
Parameters
|
|
293
226
|
----------
|
|
294
|
-
|
|
295
|
-
Number of
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
Memory size (in MB) required for this step. If
|
|
299
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
300
|
-
used.
|
|
301
|
-
disk : int, default 10240
|
|
302
|
-
Disk size (in MB) required for this step. If
|
|
303
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
304
|
-
used.
|
|
305
|
-
image : str, optional, default None
|
|
306
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
307
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
308
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
309
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
310
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
311
|
-
image_pull_secrets: List[str], default []
|
|
312
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
313
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
314
|
-
in Kubernetes.
|
|
315
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
316
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
317
|
-
secrets : List[str], optional, default None
|
|
318
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
319
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
320
|
-
in Metaflow configuration.
|
|
321
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
322
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
323
|
-
Can be passed in as a comma separated string of values e.g.
|
|
324
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
325
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
326
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
327
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
328
|
-
gpu : int, optional, default None
|
|
329
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
330
|
-
the scheduled node should not have GPUs.
|
|
331
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
332
|
-
The vendor of the GPUs to be used for this step.
|
|
333
|
-
tolerations : List[Dict[str,str]], default []
|
|
334
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
335
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
336
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
337
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
338
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
339
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
340
|
-
use_tmpfs : bool, default False
|
|
341
|
-
This enables an explicit tmpfs mount for this step.
|
|
342
|
-
tmpfs_tempdir : bool, default True
|
|
343
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
344
|
-
tmpfs_size : int, optional, default: None
|
|
345
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
346
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
347
|
-
memory allocated for this step.
|
|
348
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
349
|
-
Path to tmpfs mount for this step.
|
|
350
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
351
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
352
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
353
|
-
shared_memory: int, optional
|
|
354
|
-
Shared memory size (in MiB) required for this step
|
|
355
|
-
port: int, optional
|
|
356
|
-
Port number to specify in the Kubernetes job object
|
|
357
|
-
compute_pool : str, optional, default None
|
|
358
|
-
Compute pool to be used for for this step.
|
|
359
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
360
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
361
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
362
|
-
Only applicable when @parallel is used.
|
|
363
|
-
qos: str, default: Burstable
|
|
364
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
365
|
-
|
|
366
|
-
security_context: Dict[str, Any], optional, default None
|
|
367
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
368
|
-
- privileged: bool, optional, default None
|
|
369
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
370
|
-
- run_as_user: int, optional, default None
|
|
371
|
-
- run_as_group: int, optional, default None
|
|
372
|
-
- run_as_non_root: bool, optional, default None
|
|
227
|
+
gpu : int
|
|
228
|
+
Number of GPUs to use.
|
|
229
|
+
gpu_type : str
|
|
230
|
+
Type of Nvidia GPU to use.
|
|
373
231
|
"""
|
|
374
232
|
...
|
|
375
233
|
|
|
376
234
|
@typing.overload
|
|
377
|
-
def
|
|
235
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
378
236
|
"""
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
> Examples
|
|
382
|
-
- Saving Models
|
|
383
|
-
```python
|
|
384
|
-
@model
|
|
385
|
-
@step
|
|
386
|
-
def train(self):
|
|
387
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
388
|
-
self.my_model = current.model.save(
|
|
389
|
-
path_to_my_model,
|
|
390
|
-
label="my_model",
|
|
391
|
-
metadata={
|
|
392
|
-
"epochs": 10,
|
|
393
|
-
"batch-size": 32,
|
|
394
|
-
"learning-rate": 0.001,
|
|
395
|
-
}
|
|
396
|
-
)
|
|
397
|
-
self.next(self.test)
|
|
398
|
-
|
|
399
|
-
@model(load="my_model")
|
|
400
|
-
@step
|
|
401
|
-
def test(self):
|
|
402
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
403
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
404
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
405
|
-
self.next(self.end)
|
|
406
|
-
```
|
|
407
|
-
|
|
408
|
-
- Loading models
|
|
409
|
-
```python
|
|
410
|
-
@step
|
|
411
|
-
def train(self):
|
|
412
|
-
# current.model.load returns the path to the model loaded
|
|
413
|
-
checkpoint_path = current.model.load(
|
|
414
|
-
self.checkpoint_key,
|
|
415
|
-
)
|
|
416
|
-
model_path = current.model.load(
|
|
417
|
-
self.model,
|
|
418
|
-
)
|
|
419
|
-
self.next(self.test)
|
|
420
|
-
```
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
Parameters
|
|
424
|
-
----------
|
|
425
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
426
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
427
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
428
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
429
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
430
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
431
|
-
|
|
432
|
-
temp_dir_root : str, default: None
|
|
433
|
-
The root directory under which `current.model.loaded` will store loaded models
|
|
237
|
+
Internal decorator to support Fast bakery
|
|
434
238
|
"""
|
|
435
239
|
...
|
|
436
240
|
|
|
437
241
|
@typing.overload
|
|
438
|
-
def
|
|
242
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
439
243
|
...
|
|
440
244
|
|
|
441
|
-
|
|
442
|
-
|
|
245
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
246
|
+
"""
|
|
247
|
+
Internal decorator to support Fast bakery
|
|
248
|
+
"""
|
|
443
249
|
...
|
|
444
250
|
|
|
445
|
-
def
|
|
251
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
446
252
|
"""
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
> Examples
|
|
450
|
-
- Saving Models
|
|
451
|
-
```python
|
|
452
|
-
@model
|
|
453
|
-
@step
|
|
454
|
-
def train(self):
|
|
455
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
456
|
-
self.my_model = current.model.save(
|
|
457
|
-
path_to_my_model,
|
|
458
|
-
label="my_model",
|
|
459
|
-
metadata={
|
|
460
|
-
"epochs": 10,
|
|
461
|
-
"batch-size": 32,
|
|
462
|
-
"learning-rate": 0.001,
|
|
463
|
-
}
|
|
464
|
-
)
|
|
465
|
-
self.next(self.test)
|
|
466
|
-
|
|
467
|
-
@model(load="my_model")
|
|
468
|
-
@step
|
|
469
|
-
def test(self):
|
|
470
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
471
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
472
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
473
|
-
self.next(self.end)
|
|
474
|
-
```
|
|
475
|
-
|
|
476
|
-
- Loading models
|
|
477
|
-
```python
|
|
478
|
-
@step
|
|
479
|
-
def train(self):
|
|
480
|
-
# current.model.load returns the path to the model loaded
|
|
481
|
-
checkpoint_path = current.model.load(
|
|
482
|
-
self.checkpoint_key,
|
|
483
|
-
)
|
|
484
|
-
model_path = current.model.load(
|
|
485
|
-
self.model,
|
|
486
|
-
)
|
|
487
|
-
self.next(self.test)
|
|
488
|
-
```
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
Parameters
|
|
492
|
-
----------
|
|
493
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
494
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
495
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
496
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
497
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
498
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
499
|
-
|
|
500
|
-
temp_dir_root : str, default: None
|
|
501
|
-
The root directory under which `current.model.loaded` will store loaded models
|
|
502
|
-
"""
|
|
503
|
-
...
|
|
504
|
-
|
|
505
|
-
@typing.overload
|
|
506
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
507
|
-
"""
|
|
508
|
-
Specifies the resources needed when executing this step.
|
|
509
|
-
|
|
510
|
-
Use `@resources` to specify the resource requirements
|
|
511
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
512
|
-
|
|
513
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
514
|
-
```
|
|
515
|
-
python myflow.py run --with batch
|
|
516
|
-
```
|
|
517
|
-
or
|
|
518
|
-
```
|
|
519
|
-
python myflow.py run --with kubernetes
|
|
520
|
-
```
|
|
521
|
-
which executes the flow on the desired system using the
|
|
522
|
-
requirements specified in `@resources`.
|
|
523
|
-
|
|
524
|
-
|
|
525
|
-
Parameters
|
|
526
|
-
----------
|
|
527
|
-
cpu : int, default 1
|
|
528
|
-
Number of CPUs required for this step.
|
|
529
|
-
gpu : int, optional, default None
|
|
530
|
-
Number of GPUs required for this step.
|
|
531
|
-
disk : int, optional, default None
|
|
532
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
533
|
-
memory : int, default 4096
|
|
534
|
-
Memory size (in MB) required for this step.
|
|
535
|
-
shared_memory : int, optional, default None
|
|
536
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
537
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
538
|
-
"""
|
|
539
|
-
...
|
|
540
|
-
|
|
541
|
-
@typing.overload
|
|
542
|
-
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
543
|
-
...
|
|
544
|
-
|
|
545
|
-
@typing.overload
|
|
546
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
547
|
-
...
|
|
548
|
-
|
|
549
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
550
|
-
"""
|
|
551
|
-
Specifies the resources needed when executing this step.
|
|
552
|
-
|
|
553
|
-
Use `@resources` to specify the resource requirements
|
|
554
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
555
|
-
|
|
556
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
557
|
-
```
|
|
558
|
-
python myflow.py run --with batch
|
|
559
|
-
```
|
|
560
|
-
or
|
|
561
|
-
```
|
|
562
|
-
python myflow.py run --with kubernetes
|
|
563
|
-
```
|
|
564
|
-
which executes the flow on the desired system using the
|
|
565
|
-
requirements specified in `@resources`.
|
|
566
|
-
|
|
567
|
-
|
|
568
|
-
Parameters
|
|
569
|
-
----------
|
|
570
|
-
cpu : int, default 1
|
|
571
|
-
Number of CPUs required for this step.
|
|
572
|
-
gpu : int, optional, default None
|
|
573
|
-
Number of GPUs required for this step.
|
|
574
|
-
disk : int, optional, default None
|
|
575
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
576
|
-
memory : int, default 4096
|
|
577
|
-
Memory size (in MB) required for this step.
|
|
578
|
-
shared_memory : int, optional, default None
|
|
579
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
580
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
581
|
-
"""
|
|
582
|
-
...
|
|
583
|
-
|
|
584
|
-
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
585
|
-
"""
|
|
586
|
-
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
253
|
+
S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
587
254
|
|
|
588
255
|
|
|
589
256
|
Parameters
|
|
@@ -663,86 +330,41 @@ def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
|
663
330
|
...
|
|
664
331
|
|
|
665
332
|
@typing.overload
|
|
666
|
-
def
|
|
667
|
-
"""
|
|
668
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
669
|
-
|
|
670
|
-
|
|
671
|
-
Parameters
|
|
672
|
-
----------
|
|
673
|
-
vars : Dict[str, str], default {}
|
|
674
|
-
Dictionary of environment variables to set.
|
|
675
|
-
"""
|
|
676
|
-
...
|
|
677
|
-
|
|
678
|
-
@typing.overload
|
|
679
|
-
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
680
|
-
...
|
|
681
|
-
|
|
682
|
-
@typing.overload
|
|
683
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
684
|
-
...
|
|
685
|
-
|
|
686
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
687
|
-
"""
|
|
688
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
689
|
-
|
|
690
|
-
|
|
691
|
-
Parameters
|
|
692
|
-
----------
|
|
693
|
-
vars : Dict[str, str], default {}
|
|
694
|
-
Dictionary of environment variables to set.
|
|
695
|
-
"""
|
|
696
|
-
...
|
|
697
|
-
|
|
698
|
-
@typing.overload
|
|
699
|
-
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
333
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
700
334
|
"""
|
|
701
|
-
Specifies
|
|
702
|
-
|
|
703
|
-
Information in this decorator will augment any
|
|
704
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
705
|
-
you can use `@pypi_base` to set packages required by all
|
|
706
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
335
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
336
|
+
the execution of a step.
|
|
707
337
|
|
|
708
338
|
|
|
709
339
|
Parameters
|
|
710
340
|
----------
|
|
711
|
-
|
|
712
|
-
|
|
713
|
-
|
|
714
|
-
|
|
715
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
716
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
341
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
342
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
343
|
+
role : str, optional, default: None
|
|
344
|
+
Role to use for fetching secrets
|
|
717
345
|
"""
|
|
718
346
|
...
|
|
719
347
|
|
|
720
348
|
@typing.overload
|
|
721
|
-
def
|
|
349
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
722
350
|
...
|
|
723
351
|
|
|
724
352
|
@typing.overload
|
|
725
|
-
def
|
|
353
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
726
354
|
...
|
|
727
355
|
|
|
728
|
-
def
|
|
356
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
729
357
|
"""
|
|
730
|
-
Specifies
|
|
731
|
-
|
|
732
|
-
Information in this decorator will augment any
|
|
733
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
734
|
-
you can use `@pypi_base` to set packages required by all
|
|
735
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
358
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
359
|
+
the execution of a step.
|
|
736
360
|
|
|
737
361
|
|
|
738
362
|
Parameters
|
|
739
363
|
----------
|
|
740
|
-
|
|
741
|
-
|
|
742
|
-
|
|
743
|
-
|
|
744
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
745
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
364
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
365
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
366
|
+
role : str, optional, default: None
|
|
367
|
+
Role to use for fetching secrets
|
|
746
368
|
"""
|
|
747
369
|
...
|
|
748
370
|
|
|
@@ -827,168 +449,251 @@ def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.
|
|
|
827
449
|
...
|
|
828
450
|
|
|
829
451
|
@typing.overload
|
|
830
|
-
def
|
|
452
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
831
453
|
"""
|
|
832
|
-
|
|
454
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
455
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
456
|
+
a Neo Cloud like CoreWeave.
|
|
457
|
+
"""
|
|
458
|
+
...
|
|
459
|
+
|
|
460
|
+
@typing.overload
|
|
461
|
+
def coreweave_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
462
|
+
...
|
|
463
|
+
|
|
464
|
+
def coreweave_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
465
|
+
"""
|
|
466
|
+
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
467
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
468
|
+
a Neo Cloud like CoreWeave.
|
|
469
|
+
"""
|
|
470
|
+
...
|
|
471
|
+
|
|
472
|
+
@typing.overload
|
|
473
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
474
|
+
"""
|
|
475
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
833
476
|
|
|
834
|
-
|
|
477
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
835
478
|
|
|
836
|
-
- Saving Checkpoints
|
|
837
479
|
|
|
838
|
-
|
|
839
|
-
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
|
|
843
|
-
|
|
844
|
-
|
|
845
|
-
|
|
846
|
-
|
|
847
|
-
|
|
848
|
-
|
|
849
|
-
|
|
850
|
-
|
|
851
|
-
|
|
852
|
-
|
|
853
|
-
|
|
854
|
-
|
|
855
|
-
|
|
856
|
-
|
|
857
|
-
|
|
858
|
-
|
|
859
|
-
|
|
480
|
+
Parameters
|
|
481
|
+
----------
|
|
482
|
+
type : str, default 'default'
|
|
483
|
+
Card type.
|
|
484
|
+
id : str, optional, default None
|
|
485
|
+
If multiple cards are present, use this id to identify this card.
|
|
486
|
+
options : Dict[str, Any], default {}
|
|
487
|
+
Options passed to the card. The contents depend on the card type.
|
|
488
|
+
timeout : int, default 45
|
|
489
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
490
|
+
"""
|
|
491
|
+
...
|
|
492
|
+
|
|
493
|
+
@typing.overload
|
|
494
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
495
|
+
...
|
|
496
|
+
|
|
497
|
+
@typing.overload
|
|
498
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
499
|
+
...
|
|
500
|
+
|
|
501
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
502
|
+
"""
|
|
503
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
504
|
+
|
|
505
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
860
506
|
|
|
861
|
-
- Using Loaded Checkpoints
|
|
862
507
|
|
|
508
|
+
Parameters
|
|
509
|
+
----------
|
|
510
|
+
type : str, default 'default'
|
|
511
|
+
Card type.
|
|
512
|
+
id : str, optional, default None
|
|
513
|
+
If multiple cards are present, use this id to identify this card.
|
|
514
|
+
options : Dict[str, Any], default {}
|
|
515
|
+
Options passed to the card. The contents depend on the card type.
|
|
516
|
+
timeout : int, default 45
|
|
517
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
518
|
+
"""
|
|
519
|
+
...
|
|
520
|
+
|
|
521
|
+
@typing.overload
|
|
522
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
523
|
+
"""
|
|
524
|
+
Enables loading / saving of models within a step.
|
|
525
|
+
|
|
526
|
+
> Examples
|
|
527
|
+
- Saving Models
|
|
863
528
|
```python
|
|
864
|
-
@
|
|
865
|
-
@checkpoint
|
|
529
|
+
@model
|
|
866
530
|
@step
|
|
867
531
|
def train(self):
|
|
868
|
-
#
|
|
869
|
-
|
|
870
|
-
|
|
871
|
-
|
|
872
|
-
|
|
873
|
-
|
|
532
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
533
|
+
self.my_model = current.model.save(
|
|
534
|
+
path_to_my_model,
|
|
535
|
+
label="my_model",
|
|
536
|
+
metadata={
|
|
537
|
+
"epochs": 10,
|
|
538
|
+
"batch-size": 32,
|
|
539
|
+
"learning-rate": 0.001,
|
|
540
|
+
}
|
|
541
|
+
)
|
|
542
|
+
self.next(self.test)
|
|
874
543
|
|
|
875
|
-
|
|
876
|
-
|
|
877
|
-
|
|
544
|
+
@model(load="my_model")
|
|
545
|
+
@step
|
|
546
|
+
def test(self):
|
|
547
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
548
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
549
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
550
|
+
self.next(self.end)
|
|
551
|
+
```
|
|
552
|
+
|
|
553
|
+
- Loading models
|
|
554
|
+
```python
|
|
555
|
+
@step
|
|
556
|
+
def train(self):
|
|
557
|
+
# current.model.load returns the path to the model loaded
|
|
558
|
+
checkpoint_path = current.model.load(
|
|
559
|
+
self.checkpoint_key,
|
|
560
|
+
)
|
|
561
|
+
model_path = current.model.load(
|
|
562
|
+
self.model,
|
|
563
|
+
)
|
|
564
|
+
self.next(self.test)
|
|
878
565
|
```
|
|
879
566
|
|
|
880
567
|
|
|
881
568
|
Parameters
|
|
882
569
|
----------
|
|
883
|
-
|
|
884
|
-
|
|
885
|
-
|
|
886
|
-
|
|
887
|
-
|
|
888
|
-
|
|
889
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
890
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
891
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
892
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
570
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
571
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
572
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
573
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
574
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
575
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
893
576
|
|
|
894
577
|
temp_dir_root : str, default: None
|
|
895
|
-
The root directory under which `current.
|
|
578
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
896
579
|
"""
|
|
897
580
|
...
|
|
898
581
|
|
|
899
582
|
@typing.overload
|
|
900
|
-
def
|
|
583
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
901
584
|
...
|
|
902
585
|
|
|
903
586
|
@typing.overload
|
|
904
|
-
def
|
|
587
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
905
588
|
...
|
|
906
589
|
|
|
907
|
-
def
|
|
590
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
|
908
591
|
"""
|
|
909
|
-
Enables
|
|
592
|
+
Enables loading / saving of models within a step.
|
|
910
593
|
|
|
911
594
|
> Examples
|
|
912
|
-
|
|
913
|
-
- Saving Checkpoints
|
|
914
|
-
|
|
595
|
+
- Saving Models
|
|
915
596
|
```python
|
|
916
|
-
@
|
|
597
|
+
@model
|
|
917
598
|
@step
|
|
918
599
|
def train(self):
|
|
919
|
-
model
|
|
920
|
-
|
|
921
|
-
|
|
922
|
-
|
|
923
|
-
|
|
924
|
-
|
|
925
|
-
|
|
926
|
-
|
|
927
|
-
|
|
928
|
-
|
|
929
|
-
|
|
930
|
-
name="epoch_checkpoint",
|
|
931
|
-
metadata={
|
|
932
|
-
"epoch": i,
|
|
933
|
-
"loss": loss,
|
|
934
|
-
}
|
|
935
|
-
)
|
|
936
|
-
```
|
|
600
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
601
|
+
self.my_model = current.model.save(
|
|
602
|
+
path_to_my_model,
|
|
603
|
+
label="my_model",
|
|
604
|
+
metadata={
|
|
605
|
+
"epochs": 10,
|
|
606
|
+
"batch-size": 32,
|
|
607
|
+
"learning-rate": 0.001,
|
|
608
|
+
}
|
|
609
|
+
)
|
|
610
|
+
self.next(self.test)
|
|
937
611
|
|
|
938
|
-
|
|
612
|
+
@model(load="my_model")
|
|
613
|
+
@step
|
|
614
|
+
def test(self):
|
|
615
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
616
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
617
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
618
|
+
self.next(self.end)
|
|
619
|
+
```
|
|
939
620
|
|
|
621
|
+
- Loading models
|
|
940
622
|
```python
|
|
941
|
-
@retry(times=3)
|
|
942
|
-
@checkpoint
|
|
943
623
|
@step
|
|
944
624
|
def train(self):
|
|
945
|
-
#
|
|
946
|
-
|
|
947
|
-
|
|
948
|
-
|
|
949
|
-
|
|
950
|
-
|
|
951
|
-
|
|
952
|
-
|
|
953
|
-
for i in range(self.epochs):
|
|
954
|
-
...
|
|
625
|
+
# current.model.load returns the path to the model loaded
|
|
626
|
+
checkpoint_path = current.model.load(
|
|
627
|
+
self.checkpoint_key,
|
|
628
|
+
)
|
|
629
|
+
model_path = current.model.load(
|
|
630
|
+
self.model,
|
|
631
|
+
)
|
|
632
|
+
self.next(self.test)
|
|
955
633
|
```
|
|
956
634
|
|
|
957
635
|
|
|
958
636
|
Parameters
|
|
959
637
|
----------
|
|
960
|
-
|
|
961
|
-
|
|
962
|
-
|
|
963
|
-
|
|
964
|
-
|
|
965
|
-
|
|
966
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
967
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
968
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
969
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
638
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
639
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
640
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
641
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
642
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
643
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
970
644
|
|
|
971
645
|
temp_dir_root : str, default: None
|
|
972
|
-
The root directory under which `current.
|
|
973
|
-
"""
|
|
974
|
-
...
|
|
975
|
-
|
|
976
|
-
@typing.overload
|
|
977
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
978
|
-
"""
|
|
979
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
980
|
-
to inject a card and render simple markdown content.
|
|
646
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
981
647
|
"""
|
|
982
648
|
...
|
|
983
649
|
|
|
984
|
-
|
|
985
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
986
|
-
...
|
|
987
|
-
|
|
988
|
-
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
650
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
989
651
|
"""
|
|
990
|
-
|
|
991
|
-
|
|
652
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
653
|
+
|
|
654
|
+
User code call
|
|
655
|
+
--------------
|
|
656
|
+
@vllm(
|
|
657
|
+
model="...",
|
|
658
|
+
...
|
|
659
|
+
)
|
|
660
|
+
|
|
661
|
+
Valid backend options
|
|
662
|
+
---------------------
|
|
663
|
+
- 'local': Run as a separate process on the local task machine.
|
|
664
|
+
|
|
665
|
+
Valid model options
|
|
666
|
+
-------------------
|
|
667
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
668
|
+
|
|
669
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
670
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
671
|
+
|
|
672
|
+
|
|
673
|
+
Parameters
|
|
674
|
+
----------
|
|
675
|
+
model: str
|
|
676
|
+
HuggingFace model identifier to be served by vLLM.
|
|
677
|
+
backend: str
|
|
678
|
+
Determines where and how to run the vLLM process.
|
|
679
|
+
openai_api_server: bool
|
|
680
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
681
|
+
Default is False (uses native engine).
|
|
682
|
+
Set to True for backward compatibility with existing code.
|
|
683
|
+
debug: bool
|
|
684
|
+
Whether to turn on verbose debugging logs.
|
|
685
|
+
card_refresh_interval: int
|
|
686
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
687
|
+
Only used when openai_api_server=True.
|
|
688
|
+
max_retries: int
|
|
689
|
+
Maximum number of retries checking for vLLM server startup.
|
|
690
|
+
Only used when openai_api_server=True.
|
|
691
|
+
retry_alert_frequency: int
|
|
692
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
693
|
+
Only used when openai_api_server=True.
|
|
694
|
+
engine_args : dict
|
|
695
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
696
|
+
For example, `tensor_parallel_size=2`.
|
|
992
697
|
"""
|
|
993
698
|
...
|
|
994
699
|
|
|
@@ -1011,66 +716,202 @@ def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
|
1011
716
|
"""
|
|
1012
717
|
...
|
|
1013
718
|
|
|
719
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
720
|
+
"""
|
|
721
|
+
Specifies that this step should execute on Kubernetes.
|
|
722
|
+
|
|
723
|
+
|
|
724
|
+
Parameters
|
|
725
|
+
----------
|
|
726
|
+
cpu : int, default 1
|
|
727
|
+
Number of CPUs required for this step. If `@resources` is
|
|
728
|
+
also present, the maximum value from all decorators is used.
|
|
729
|
+
memory : int, default 4096
|
|
730
|
+
Memory size (in MB) required for this step. If
|
|
731
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
732
|
+
used.
|
|
733
|
+
disk : int, default 10240
|
|
734
|
+
Disk size (in MB) required for this step. If
|
|
735
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
736
|
+
used.
|
|
737
|
+
image : str, optional, default None
|
|
738
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
739
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
740
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
741
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
742
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
743
|
+
image_pull_secrets: List[str], default []
|
|
744
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
745
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
746
|
+
in Kubernetes.
|
|
747
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
748
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
749
|
+
secrets : List[str], optional, default None
|
|
750
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
751
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
752
|
+
in Metaflow configuration.
|
|
753
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
754
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
755
|
+
Can be passed in as a comma separated string of values e.g.
|
|
756
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
757
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
758
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
759
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
760
|
+
gpu : int, optional, default None
|
|
761
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
762
|
+
the scheduled node should not have GPUs.
|
|
763
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
764
|
+
The vendor of the GPUs to be used for this step.
|
|
765
|
+
tolerations : List[Dict[str,str]], default []
|
|
766
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
767
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
768
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
769
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
770
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
771
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
772
|
+
use_tmpfs : bool, default False
|
|
773
|
+
This enables an explicit tmpfs mount for this step.
|
|
774
|
+
tmpfs_tempdir : bool, default True
|
|
775
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
776
|
+
tmpfs_size : int, optional, default: None
|
|
777
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
778
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
779
|
+
memory allocated for this step.
|
|
780
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
781
|
+
Path to tmpfs mount for this step.
|
|
782
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
783
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
784
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
785
|
+
shared_memory: int, optional
|
|
786
|
+
Shared memory size (in MiB) required for this step
|
|
787
|
+
port: int, optional
|
|
788
|
+
Port number to specify in the Kubernetes job object
|
|
789
|
+
compute_pool : str, optional, default None
|
|
790
|
+
Compute pool to be used for for this step.
|
|
791
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
792
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
793
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
794
|
+
Only applicable when @parallel is used.
|
|
795
|
+
qos: str, default: Burstable
|
|
796
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
797
|
+
|
|
798
|
+
security_context: Dict[str, Any], optional, default None
|
|
799
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
800
|
+
- privileged: bool, optional, default None
|
|
801
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
802
|
+
- run_as_user: int, optional, default None
|
|
803
|
+
- run_as_group: int, optional, default None
|
|
804
|
+
- run_as_non_root: bool, optional, default None
|
|
805
|
+
"""
|
|
806
|
+
...
|
|
807
|
+
|
|
1014
808
|
@typing.overload
|
|
1015
|
-
def
|
|
809
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1016
810
|
"""
|
|
1017
|
-
|
|
811
|
+
Specifies the Conda environment for the step.
|
|
1018
812
|
|
|
1019
|
-
|
|
813
|
+
Information in this decorator will augment any
|
|
814
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
815
|
+
you can use `@conda_base` to set packages required by all
|
|
816
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
1020
817
|
|
|
1021
818
|
|
|
1022
819
|
Parameters
|
|
1023
820
|
----------
|
|
1024
|
-
|
|
1025
|
-
|
|
1026
|
-
|
|
1027
|
-
|
|
1028
|
-
|
|
1029
|
-
|
|
1030
|
-
|
|
1031
|
-
|
|
821
|
+
packages : Dict[str, str], default {}
|
|
822
|
+
Packages to use for this step. The key is the name of the package
|
|
823
|
+
and the value is the version to use.
|
|
824
|
+
libraries : Dict[str, str], default {}
|
|
825
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
826
|
+
python : str, optional, default None
|
|
827
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
828
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
829
|
+
disabled : bool, default False
|
|
830
|
+
If set to True, disables @conda.
|
|
1032
831
|
"""
|
|
1033
832
|
...
|
|
1034
833
|
|
|
1035
834
|
@typing.overload
|
|
1036
|
-
def
|
|
835
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1037
836
|
...
|
|
1038
837
|
|
|
1039
838
|
@typing.overload
|
|
1040
|
-
def
|
|
839
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1041
840
|
...
|
|
1042
841
|
|
|
1043
|
-
def
|
|
842
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1044
843
|
"""
|
|
1045
|
-
|
|
844
|
+
Specifies the Conda environment for the step.
|
|
1046
845
|
|
|
1047
|
-
|
|
846
|
+
Information in this decorator will augment any
|
|
847
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
848
|
+
you can use `@conda_base` to set packages required by all
|
|
849
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
1048
850
|
|
|
1049
851
|
|
|
1050
852
|
Parameters
|
|
1051
853
|
----------
|
|
1052
|
-
|
|
1053
|
-
|
|
1054
|
-
|
|
1055
|
-
|
|
1056
|
-
|
|
1057
|
-
|
|
1058
|
-
|
|
1059
|
-
|
|
854
|
+
packages : Dict[str, str], default {}
|
|
855
|
+
Packages to use for this step. The key is the name of the package
|
|
856
|
+
and the value is the version to use.
|
|
857
|
+
libraries : Dict[str, str], default {}
|
|
858
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
859
|
+
python : str, optional, default None
|
|
860
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
861
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
862
|
+
disabled : bool, default False
|
|
863
|
+
If set to True, disables @conda.
|
|
1060
864
|
"""
|
|
1061
865
|
...
|
|
1062
866
|
|
|
1063
|
-
|
|
867
|
+
@typing.overload
|
|
868
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1064
869
|
"""
|
|
1065
|
-
Specifies
|
|
870
|
+
Specifies the PyPI packages for the step.
|
|
871
|
+
|
|
872
|
+
Information in this decorator will augment any
|
|
873
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
874
|
+
you can use `@pypi_base` to set packages required by all
|
|
875
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1066
876
|
|
|
1067
877
|
|
|
1068
878
|
Parameters
|
|
1069
879
|
----------
|
|
1070
|
-
|
|
1071
|
-
|
|
1072
|
-
|
|
1073
|
-
|
|
880
|
+
packages : Dict[str, str], default: {}
|
|
881
|
+
Packages to use for this step. The key is the name of the package
|
|
882
|
+
and the value is the version to use.
|
|
883
|
+
python : str, optional, default: None
|
|
884
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
885
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
886
|
+
"""
|
|
887
|
+
...
|
|
888
|
+
|
|
889
|
+
@typing.overload
|
|
890
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
891
|
+
...
|
|
892
|
+
|
|
893
|
+
@typing.overload
|
|
894
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
895
|
+
...
|
|
896
|
+
|
|
897
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
898
|
+
"""
|
|
899
|
+
Specifies the PyPI packages for the step.
|
|
900
|
+
|
|
901
|
+
Information in this decorator will augment any
|
|
902
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
903
|
+
you can use `@pypi_base` to set packages required by all
|
|
904
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
905
|
+
|
|
906
|
+
|
|
907
|
+
Parameters
|
|
908
|
+
----------
|
|
909
|
+
packages : Dict[str, str], default: {}
|
|
910
|
+
Packages to use for this step. The key is the name of the package
|
|
911
|
+
and the value is the version to use.
|
|
912
|
+
python : str, optional, default: None
|
|
913
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
914
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1074
915
|
"""
|
|
1075
916
|
...
|
|
1076
917
|
|
|
@@ -1094,23 +935,149 @@ def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
|
1094
935
|
...
|
|
1095
936
|
|
|
1096
937
|
@typing.overload
|
|
1097
|
-
def
|
|
1098
|
-
"""
|
|
1099
|
-
|
|
1100
|
-
|
|
1101
|
-
|
|
1102
|
-
|
|
938
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
939
|
+
"""
|
|
940
|
+
Enables checkpointing for a step.
|
|
941
|
+
|
|
942
|
+
> Examples
|
|
943
|
+
|
|
944
|
+
- Saving Checkpoints
|
|
945
|
+
|
|
946
|
+
```python
|
|
947
|
+
@checkpoint
|
|
948
|
+
@step
|
|
949
|
+
def train(self):
|
|
950
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
951
|
+
for i in range(self.epochs):
|
|
952
|
+
# some training logic
|
|
953
|
+
loss = model.train(self.dataset)
|
|
954
|
+
if i % 10 == 0:
|
|
955
|
+
model.save(
|
|
956
|
+
current.checkpoint.directory,
|
|
957
|
+
)
|
|
958
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
959
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
960
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
961
|
+
name="epoch_checkpoint",
|
|
962
|
+
metadata={
|
|
963
|
+
"epoch": i,
|
|
964
|
+
"loss": loss,
|
|
965
|
+
}
|
|
966
|
+
)
|
|
967
|
+
```
|
|
968
|
+
|
|
969
|
+
- Using Loaded Checkpoints
|
|
970
|
+
|
|
971
|
+
```python
|
|
972
|
+
@retry(times=3)
|
|
973
|
+
@checkpoint
|
|
974
|
+
@step
|
|
975
|
+
def train(self):
|
|
976
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
977
|
+
# saved a checkpoint
|
|
978
|
+
checkpoint_path = None
|
|
979
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
980
|
+
print("Loaded checkpoint from the previous attempt")
|
|
981
|
+
checkpoint_path = current.checkpoint.directory
|
|
982
|
+
|
|
983
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
984
|
+
for i in range(self.epochs):
|
|
985
|
+
...
|
|
986
|
+
```
|
|
987
|
+
|
|
988
|
+
|
|
989
|
+
Parameters
|
|
990
|
+
----------
|
|
991
|
+
load_policy : str, default: "fresh"
|
|
992
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
993
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
994
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
995
|
+
will be loaded at the start of the task.
|
|
996
|
+
- "none": Do not load any checkpoint
|
|
997
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
998
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
999
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1000
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1001
|
+
|
|
1002
|
+
temp_dir_root : str, default: None
|
|
1003
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1004
|
+
"""
|
|
1005
|
+
...
|
|
1006
|
+
|
|
1007
|
+
@typing.overload
|
|
1008
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1103
1009
|
...
|
|
1104
1010
|
|
|
1105
1011
|
@typing.overload
|
|
1106
|
-
def
|
|
1012
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1107
1013
|
...
|
|
1108
1014
|
|
|
1109
|
-
def
|
|
1015
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
1110
1016
|
"""
|
|
1111
|
-
|
|
1112
|
-
|
|
1113
|
-
|
|
1017
|
+
Enables checkpointing for a step.
|
|
1018
|
+
|
|
1019
|
+
> Examples
|
|
1020
|
+
|
|
1021
|
+
- Saving Checkpoints
|
|
1022
|
+
|
|
1023
|
+
```python
|
|
1024
|
+
@checkpoint
|
|
1025
|
+
@step
|
|
1026
|
+
def train(self):
|
|
1027
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
1028
|
+
for i in range(self.epochs):
|
|
1029
|
+
# some training logic
|
|
1030
|
+
loss = model.train(self.dataset)
|
|
1031
|
+
if i % 10 == 0:
|
|
1032
|
+
model.save(
|
|
1033
|
+
current.checkpoint.directory,
|
|
1034
|
+
)
|
|
1035
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1036
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1037
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
1038
|
+
name="epoch_checkpoint",
|
|
1039
|
+
metadata={
|
|
1040
|
+
"epoch": i,
|
|
1041
|
+
"loss": loss,
|
|
1042
|
+
}
|
|
1043
|
+
)
|
|
1044
|
+
```
|
|
1045
|
+
|
|
1046
|
+
- Using Loaded Checkpoints
|
|
1047
|
+
|
|
1048
|
+
```python
|
|
1049
|
+
@retry(times=3)
|
|
1050
|
+
@checkpoint
|
|
1051
|
+
@step
|
|
1052
|
+
def train(self):
|
|
1053
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1054
|
+
# saved a checkpoint
|
|
1055
|
+
checkpoint_path = None
|
|
1056
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1057
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1058
|
+
checkpoint_path = current.checkpoint.directory
|
|
1059
|
+
|
|
1060
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1061
|
+
for i in range(self.epochs):
|
|
1062
|
+
...
|
|
1063
|
+
```
|
|
1064
|
+
|
|
1065
|
+
|
|
1066
|
+
Parameters
|
|
1067
|
+
----------
|
|
1068
|
+
load_policy : str, default: "fresh"
|
|
1069
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1070
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1071
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1072
|
+
will be loaded at the start of the task.
|
|
1073
|
+
- "none": Do not load any checkpoint
|
|
1074
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1075
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1076
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1077
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1078
|
+
|
|
1079
|
+
temp_dir_root : str, default: None
|
|
1080
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1114
1081
|
"""
|
|
1115
1082
|
...
|
|
1116
1083
|
|
|
@@ -1158,138 +1125,172 @@ def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy:
|
|
|
1158
1125
|
...
|
|
1159
1126
|
|
|
1160
1127
|
@typing.overload
|
|
1161
|
-
def
|
|
1128
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1162
1129
|
"""
|
|
1163
|
-
|
|
1164
|
-
|
|
1165
|
-
Information in this decorator will augment any
|
|
1166
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1167
|
-
you can use `@conda_base` to set packages required by all
|
|
1168
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
1169
|
-
|
|
1170
|
-
|
|
1171
|
-
Parameters
|
|
1172
|
-
----------
|
|
1173
|
-
packages : Dict[str, str], default {}
|
|
1174
|
-
Packages to use for this step. The key is the name of the package
|
|
1175
|
-
and the value is the version to use.
|
|
1176
|
-
libraries : Dict[str, str], default {}
|
|
1177
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1178
|
-
python : str, optional, default None
|
|
1179
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1180
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1181
|
-
disabled : bool, default False
|
|
1182
|
-
If set to True, disables @conda.
|
|
1130
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1131
|
+
to inject a card and render simple markdown content.
|
|
1183
1132
|
"""
|
|
1184
1133
|
...
|
|
1185
1134
|
|
|
1186
1135
|
@typing.overload
|
|
1187
|
-
def
|
|
1136
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1137
|
+
...
|
|
1138
|
+
|
|
1139
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1140
|
+
"""
|
|
1141
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1142
|
+
to inject a card and render simple markdown content.
|
|
1143
|
+
"""
|
|
1188
1144
|
...
|
|
1189
1145
|
|
|
1190
1146
|
@typing.overload
|
|
1191
|
-
def
|
|
1147
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1148
|
+
"""
|
|
1149
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1150
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1151
|
+
a Neo Cloud like Nebius.
|
|
1152
|
+
"""
|
|
1192
1153
|
...
|
|
1193
1154
|
|
|
1194
|
-
|
|
1155
|
+
@typing.overload
|
|
1156
|
+
def nebius_s3_proxy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1157
|
+
...
|
|
1158
|
+
|
|
1159
|
+
def nebius_s3_proxy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1195
1160
|
"""
|
|
1196
|
-
|
|
1197
|
-
|
|
1198
|
-
|
|
1199
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1200
|
-
you can use `@conda_base` to set packages required by all
|
|
1201
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
1202
|
-
|
|
1203
|
-
|
|
1204
|
-
Parameters
|
|
1205
|
-
----------
|
|
1206
|
-
packages : Dict[str, str], default {}
|
|
1207
|
-
Packages to use for this step. The key is the name of the package
|
|
1208
|
-
and the value is the version to use.
|
|
1209
|
-
libraries : Dict[str, str], default {}
|
|
1210
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1211
|
-
python : str, optional, default None
|
|
1212
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1213
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1214
|
-
disabled : bool, default False
|
|
1215
|
-
If set to True, disables @conda.
|
|
1161
|
+
Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1162
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1163
|
+
a Neo Cloud like Nebius.
|
|
1216
1164
|
"""
|
|
1217
1165
|
...
|
|
1218
1166
|
|
|
1219
1167
|
@typing.overload
|
|
1220
|
-
def
|
|
1168
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1221
1169
|
"""
|
|
1222
|
-
Specifies
|
|
1223
|
-
|
|
1170
|
+
Specifies the resources needed when executing this step.
|
|
1171
|
+
|
|
1172
|
+
Use `@resources` to specify the resource requirements
|
|
1173
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1174
|
+
|
|
1175
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1176
|
+
```
|
|
1177
|
+
python myflow.py run --with batch
|
|
1178
|
+
```
|
|
1179
|
+
or
|
|
1180
|
+
```
|
|
1181
|
+
python myflow.py run --with kubernetes
|
|
1182
|
+
```
|
|
1183
|
+
which executes the flow on the desired system using the
|
|
1184
|
+
requirements specified in `@resources`.
|
|
1224
1185
|
|
|
1225
1186
|
|
|
1226
1187
|
Parameters
|
|
1227
1188
|
----------
|
|
1228
|
-
|
|
1229
|
-
|
|
1230
|
-
|
|
1231
|
-
|
|
1189
|
+
cpu : int, default 1
|
|
1190
|
+
Number of CPUs required for this step.
|
|
1191
|
+
gpu : int, optional, default None
|
|
1192
|
+
Number of GPUs required for this step.
|
|
1193
|
+
disk : int, optional, default None
|
|
1194
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1195
|
+
memory : int, default 4096
|
|
1196
|
+
Memory size (in MB) required for this step.
|
|
1197
|
+
shared_memory : int, optional, default None
|
|
1198
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1199
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1232
1200
|
"""
|
|
1233
1201
|
...
|
|
1234
1202
|
|
|
1235
1203
|
@typing.overload
|
|
1236
|
-
def
|
|
1204
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1237
1205
|
...
|
|
1238
1206
|
|
|
1239
1207
|
@typing.overload
|
|
1240
|
-
def
|
|
1208
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1241
1209
|
...
|
|
1242
1210
|
|
|
1243
|
-
def
|
|
1211
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
1244
1212
|
"""
|
|
1245
|
-
Specifies
|
|
1246
|
-
|
|
1213
|
+
Specifies the resources needed when executing this step.
|
|
1214
|
+
|
|
1215
|
+
Use `@resources` to specify the resource requirements
|
|
1216
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1217
|
+
|
|
1218
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1219
|
+
```
|
|
1220
|
+
python myflow.py run --with batch
|
|
1221
|
+
```
|
|
1222
|
+
or
|
|
1223
|
+
```
|
|
1224
|
+
python myflow.py run --with kubernetes
|
|
1225
|
+
```
|
|
1226
|
+
which executes the flow on the desired system using the
|
|
1227
|
+
requirements specified in `@resources`.
|
|
1247
1228
|
|
|
1248
1229
|
|
|
1249
1230
|
Parameters
|
|
1250
1231
|
----------
|
|
1251
|
-
|
|
1252
|
-
|
|
1253
|
-
|
|
1254
|
-
|
|
1255
|
-
|
|
1256
|
-
|
|
1257
|
-
|
|
1258
|
-
|
|
1259
|
-
|
|
1260
|
-
|
|
1261
|
-
|
|
1232
|
+
cpu : int, default 1
|
|
1233
|
+
Number of CPUs required for this step.
|
|
1234
|
+
gpu : int, optional, default None
|
|
1235
|
+
Number of GPUs required for this step.
|
|
1236
|
+
disk : int, optional, default None
|
|
1237
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1238
|
+
memory : int, default 4096
|
|
1239
|
+
Memory size (in MB) required for this step.
|
|
1240
|
+
shared_memory : int, optional, default None
|
|
1241
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1242
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1262
1243
|
"""
|
|
1263
1244
|
...
|
|
1264
1245
|
|
|
1265
1246
|
@typing.overload
|
|
1266
|
-
def
|
|
1267
|
-
...
|
|
1268
|
-
|
|
1269
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1247
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1270
1248
|
"""
|
|
1271
|
-
|
|
1249
|
+
Specifies that the step will success under all circumstances.
|
|
1250
|
+
|
|
1251
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
1252
|
+
contains the exception raised. You can use it to detect the presence
|
|
1253
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
1254
|
+
are missing.
|
|
1255
|
+
|
|
1256
|
+
|
|
1257
|
+
Parameters
|
|
1258
|
+
----------
|
|
1259
|
+
var : str, optional, default None
|
|
1260
|
+
Name of the artifact in which to store the caught exception.
|
|
1261
|
+
If not specified, the exception is not stored.
|
|
1262
|
+
print_exception : bool, default True
|
|
1263
|
+
Determines whether or not the exception is printed to
|
|
1264
|
+
stdout when caught.
|
|
1272
1265
|
"""
|
|
1273
1266
|
...
|
|
1274
1267
|
|
|
1275
1268
|
@typing.overload
|
|
1276
|
-
def
|
|
1277
|
-
"""
|
|
1278
|
-
CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1279
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1280
|
-
a Neo Cloud like CoreWeave.
|
|
1281
|
-
"""
|
|
1269
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1282
1270
|
...
|
|
1283
1271
|
|
|
1284
1272
|
@typing.overload
|
|
1285
|
-
def
|
|
1273
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1286
1274
|
...
|
|
1287
1275
|
|
|
1288
|
-
def
|
|
1276
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
1289
1277
|
"""
|
|
1290
|
-
|
|
1291
|
-
|
|
1292
|
-
|
|
1278
|
+
Specifies that the step will success under all circumstances.
|
|
1279
|
+
|
|
1280
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
1281
|
+
contains the exception raised. You can use it to detect the presence
|
|
1282
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
1283
|
+
are missing.
|
|
1284
|
+
|
|
1285
|
+
|
|
1286
|
+
Parameters
|
|
1287
|
+
----------
|
|
1288
|
+
var : str, optional, default None
|
|
1289
|
+
Name of the artifact in which to store the caught exception.
|
|
1290
|
+
If not specified, the exception is not stored.
|
|
1291
|
+
print_exception : bool, default True
|
|
1292
|
+
Determines whether or not the exception is printed to
|
|
1293
|
+
stdout when caught.
|
|
1293
1294
|
"""
|
|
1294
1295
|
...
|
|
1295
1296
|
|
|
@@ -1390,136 +1391,106 @@ def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packag
|
|
|
1390
1391
|
...
|
|
1391
1392
|
|
|
1392
1393
|
@typing.overload
|
|
1393
|
-
def
|
|
1394
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1394
1395
|
"""
|
|
1395
|
-
Specifies the
|
|
1396
|
-
|
|
1396
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1397
|
+
|
|
1398
|
+
Use `@conda_base` to set common libraries required by all
|
|
1399
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1397
1400
|
|
|
1398
1401
|
|
|
1399
1402
|
Parameters
|
|
1400
1403
|
----------
|
|
1401
|
-
|
|
1402
|
-
|
|
1403
|
-
|
|
1404
|
-
|
|
1405
|
-
|
|
1406
|
-
|
|
1407
|
-
|
|
1408
|
-
|
|
1409
|
-
|
|
1410
|
-
|
|
1411
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1412
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1404
|
+
packages : Dict[str, str], default {}
|
|
1405
|
+
Packages to use for this flow. The key is the name of the package
|
|
1406
|
+
and the value is the version to use.
|
|
1407
|
+
libraries : Dict[str, str], default {}
|
|
1408
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1409
|
+
python : str, optional, default None
|
|
1410
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1411
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1412
|
+
disabled : bool, default False
|
|
1413
|
+
If set to True, disables Conda.
|
|
1413
1414
|
"""
|
|
1414
1415
|
...
|
|
1415
1416
|
|
|
1416
1417
|
@typing.overload
|
|
1417
|
-
def
|
|
1418
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1418
1419
|
...
|
|
1419
1420
|
|
|
1420
|
-
def
|
|
1421
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1421
1422
|
"""
|
|
1422
|
-
Specifies the
|
|
1423
|
-
|
|
1423
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1424
|
+
|
|
1425
|
+
Use `@conda_base` to set common libraries required by all
|
|
1426
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1424
1427
|
|
|
1425
1428
|
|
|
1426
1429
|
Parameters
|
|
1427
1430
|
----------
|
|
1428
|
-
|
|
1429
|
-
|
|
1430
|
-
|
|
1431
|
-
|
|
1432
|
-
|
|
1433
|
-
|
|
1434
|
-
|
|
1435
|
-
|
|
1436
|
-
|
|
1437
|
-
|
|
1438
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1439
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1431
|
+
packages : Dict[str, str], default {}
|
|
1432
|
+
Packages to use for this flow. The key is the name of the package
|
|
1433
|
+
and the value is the version to use.
|
|
1434
|
+
libraries : Dict[str, str], default {}
|
|
1435
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1436
|
+
python : str, optional, default None
|
|
1437
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1438
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1439
|
+
disabled : bool, default False
|
|
1440
|
+
If set to True, disables Conda.
|
|
1440
1441
|
"""
|
|
1441
1442
|
...
|
|
1442
1443
|
|
|
1443
|
-
|
|
1444
|
+
@typing.overload
|
|
1445
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1444
1446
|
"""
|
|
1445
|
-
Specifies
|
|
1446
|
-
|
|
1447
|
-
A project-specific namespace is created for all flows that
|
|
1448
|
-
use the same `@project(name)`.
|
|
1449
|
-
|
|
1447
|
+
Specifies the event(s) that this flow depends on.
|
|
1450
1448
|
|
|
1451
|
-
|
|
1452
|
-
|
|
1453
|
-
|
|
1454
|
-
|
|
1455
|
-
|
|
1456
|
-
|
|
1449
|
+
```
|
|
1450
|
+
@trigger(event='foo')
|
|
1451
|
+
```
|
|
1452
|
+
or
|
|
1453
|
+
```
|
|
1454
|
+
@trigger(events=['foo', 'bar'])
|
|
1455
|
+
```
|
|
1457
1456
|
|
|
1458
|
-
|
|
1459
|
-
|
|
1460
|
-
|
|
1461
|
-
|
|
1462
|
-
|
|
1457
|
+
Additionally, you can specify the parameter mappings
|
|
1458
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1459
|
+
```
|
|
1460
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1461
|
+
```
|
|
1462
|
+
or
|
|
1463
|
+
```
|
|
1464
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1465
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1466
|
+
```
|
|
1463
1467
|
|
|
1464
|
-
|
|
1465
|
-
|
|
1466
|
-
|
|
1467
|
-
|
|
1468
|
-
|
|
1469
|
-
|
|
1470
|
-
|
|
1471
|
-
|
|
1472
|
-
- if `branch` is not specified:
|
|
1473
|
-
- if `production` is True: `prod`
|
|
1474
|
-
- if `production` is False: `user.<username>`
|
|
1475
|
-
"""
|
|
1476
|
-
...
|
|
1477
|
-
|
|
1478
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1479
|
-
"""
|
|
1480
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1481
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1482
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1483
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1484
|
-
starts only after all sensors finish.
|
|
1468
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1469
|
+
```
|
|
1470
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1471
|
+
```
|
|
1472
|
+
This is equivalent to:
|
|
1473
|
+
```
|
|
1474
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1475
|
+
```
|
|
1485
1476
|
|
|
1486
1477
|
|
|
1487
1478
|
Parameters
|
|
1488
1479
|
----------
|
|
1489
|
-
|
|
1490
|
-
|
|
1491
|
-
|
|
1492
|
-
|
|
1493
|
-
|
|
1494
|
-
|
|
1495
|
-
exponential_backoff : bool
|
|
1496
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1497
|
-
pool : str
|
|
1498
|
-
the slot pool this task should run in,
|
|
1499
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1500
|
-
soft_fail : bool
|
|
1501
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1502
|
-
name : str
|
|
1503
|
-
Name of the sensor on Airflow
|
|
1504
|
-
description : str
|
|
1505
|
-
Description of sensor in the Airflow UI
|
|
1506
|
-
bucket_key : Union[str, List[str]]
|
|
1507
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1508
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1509
|
-
bucket_name : str
|
|
1510
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1511
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1512
|
-
wildcard_match : bool
|
|
1513
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1514
|
-
aws_conn_id : str
|
|
1515
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
|
1516
|
-
verify : bool
|
|
1517
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1480
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1481
|
+
Event dependency for this flow.
|
|
1482
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1483
|
+
Events dependency for this flow.
|
|
1484
|
+
options : Dict[str, Any], default {}
|
|
1485
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1518
1486
|
"""
|
|
1519
1487
|
...
|
|
1520
1488
|
|
|
1521
1489
|
@typing.overload
|
|
1522
|
-
def trigger(
|
|
1490
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1491
|
+
...
|
|
1492
|
+
|
|
1493
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1523
1494
|
"""
|
|
1524
1495
|
Specifies the event(s) that this flow depends on.
|
|
1525
1496
|
|
|
@@ -1564,48 +1535,101 @@ def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = No
|
|
|
1564
1535
|
...
|
|
1565
1536
|
|
|
1566
1537
|
@typing.overload
|
|
1567
|
-
def
|
|
1538
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1539
|
+
"""
|
|
1540
|
+
Specifies the flow(s) that this flow depends on.
|
|
1541
|
+
|
|
1542
|
+
```
|
|
1543
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1544
|
+
```
|
|
1545
|
+
or
|
|
1546
|
+
```
|
|
1547
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1548
|
+
```
|
|
1549
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1550
|
+
when upstream runs within the same namespace complete successfully
|
|
1551
|
+
|
|
1552
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1553
|
+
by specifying the fully qualified project_flow_name.
|
|
1554
|
+
```
|
|
1555
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1556
|
+
```
|
|
1557
|
+
or
|
|
1558
|
+
```
|
|
1559
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1560
|
+
```
|
|
1561
|
+
|
|
1562
|
+
You can also specify just the project or project branch (other values will be
|
|
1563
|
+
inferred from the current project or project branch):
|
|
1564
|
+
```
|
|
1565
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1566
|
+
```
|
|
1567
|
+
|
|
1568
|
+
Note that `branch` is typically one of:
|
|
1569
|
+
- `prod`
|
|
1570
|
+
- `user.bob`
|
|
1571
|
+
- `test.my_experiment`
|
|
1572
|
+
- `prod.staging`
|
|
1573
|
+
|
|
1574
|
+
|
|
1575
|
+
Parameters
|
|
1576
|
+
----------
|
|
1577
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1578
|
+
Upstream flow dependency for this flow.
|
|
1579
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1580
|
+
Upstream flow dependencies for this flow.
|
|
1581
|
+
options : Dict[str, Any], default {}
|
|
1582
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1583
|
+
"""
|
|
1584
|
+
...
|
|
1585
|
+
|
|
1586
|
+
@typing.overload
|
|
1587
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1568
1588
|
...
|
|
1569
1589
|
|
|
1570
|
-
def
|
|
1590
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1571
1591
|
"""
|
|
1572
|
-
Specifies the
|
|
1592
|
+
Specifies the flow(s) that this flow depends on.
|
|
1573
1593
|
|
|
1574
1594
|
```
|
|
1575
|
-
@
|
|
1595
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1576
1596
|
```
|
|
1577
1597
|
or
|
|
1578
1598
|
```
|
|
1579
|
-
@
|
|
1599
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1580
1600
|
```
|
|
1601
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1602
|
+
when upstream runs within the same namespace complete successfully
|
|
1581
1603
|
|
|
1582
|
-
Additionally, you can specify
|
|
1583
|
-
|
|
1604
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1605
|
+
by specifying the fully qualified project_flow_name.
|
|
1584
1606
|
```
|
|
1585
|
-
@
|
|
1607
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1586
1608
|
```
|
|
1587
1609
|
or
|
|
1588
1610
|
```
|
|
1589
|
-
@
|
|
1590
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1611
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1591
1612
|
```
|
|
1592
1613
|
|
|
1593
|
-
|
|
1594
|
-
|
|
1595
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1596
|
-
```
|
|
1597
|
-
This is equivalent to:
|
|
1614
|
+
You can also specify just the project or project branch (other values will be
|
|
1615
|
+
inferred from the current project or project branch):
|
|
1598
1616
|
```
|
|
1599
|
-
@
|
|
1617
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1600
1618
|
```
|
|
1601
1619
|
|
|
1620
|
+
Note that `branch` is typically one of:
|
|
1621
|
+
- `prod`
|
|
1622
|
+
- `user.bob`
|
|
1623
|
+
- `test.my_experiment`
|
|
1624
|
+
- `prod.staging`
|
|
1625
|
+
|
|
1602
1626
|
|
|
1603
1627
|
Parameters
|
|
1604
1628
|
----------
|
|
1605
|
-
|
|
1606
|
-
|
|
1607
|
-
|
|
1608
|
-
|
|
1629
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1630
|
+
Upstream flow dependency for this flow.
|
|
1631
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1632
|
+
Upstream flow dependencies for this flow.
|
|
1609
1633
|
options : Dict[str, Any], default {}
|
|
1610
1634
|
Backend-specific configuration for tuning eventing behavior.
|
|
1611
1635
|
"""
|
|
@@ -1655,53 +1679,53 @@ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str,
|
|
|
1655
1679
|
...
|
|
1656
1680
|
|
|
1657
1681
|
@typing.overload
|
|
1658
|
-
def
|
|
1682
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1659
1683
|
"""
|
|
1660
|
-
Specifies the
|
|
1661
|
-
|
|
1662
|
-
Use `@conda_base` to set common libraries required by all
|
|
1663
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1684
|
+
Specifies the times when the flow should be run when running on a
|
|
1685
|
+
production scheduler.
|
|
1664
1686
|
|
|
1665
1687
|
|
|
1666
1688
|
Parameters
|
|
1667
1689
|
----------
|
|
1668
|
-
|
|
1669
|
-
|
|
1670
|
-
|
|
1671
|
-
|
|
1672
|
-
|
|
1673
|
-
|
|
1674
|
-
|
|
1675
|
-
|
|
1676
|
-
|
|
1677
|
-
|
|
1690
|
+
hourly : bool, default False
|
|
1691
|
+
Run the workflow hourly.
|
|
1692
|
+
daily : bool, default True
|
|
1693
|
+
Run the workflow daily.
|
|
1694
|
+
weekly : bool, default False
|
|
1695
|
+
Run the workflow weekly.
|
|
1696
|
+
cron : str, optional, default None
|
|
1697
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1698
|
+
specified by this expression.
|
|
1699
|
+
timezone : str, optional, default None
|
|
1700
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1701
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1678
1702
|
"""
|
|
1679
1703
|
...
|
|
1680
1704
|
|
|
1681
1705
|
@typing.overload
|
|
1682
|
-
def
|
|
1706
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1683
1707
|
...
|
|
1684
1708
|
|
|
1685
|
-
def
|
|
1709
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1686
1710
|
"""
|
|
1687
|
-
Specifies the
|
|
1688
|
-
|
|
1689
|
-
Use `@conda_base` to set common libraries required by all
|
|
1690
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1711
|
+
Specifies the times when the flow should be run when running on a
|
|
1712
|
+
production scheduler.
|
|
1691
1713
|
|
|
1692
1714
|
|
|
1693
1715
|
Parameters
|
|
1694
1716
|
----------
|
|
1695
|
-
|
|
1696
|
-
|
|
1697
|
-
|
|
1698
|
-
|
|
1699
|
-
|
|
1700
|
-
|
|
1701
|
-
|
|
1702
|
-
|
|
1703
|
-
|
|
1704
|
-
|
|
1717
|
+
hourly : bool, default False
|
|
1718
|
+
Run the workflow hourly.
|
|
1719
|
+
daily : bool, default True
|
|
1720
|
+
Run the workflow daily.
|
|
1721
|
+
weekly : bool, default False
|
|
1722
|
+
Run the workflow weekly.
|
|
1723
|
+
cron : str, optional, default None
|
|
1724
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1725
|
+
specified by this expression.
|
|
1726
|
+
timezone : str, optional, default None
|
|
1727
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1728
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1705
1729
|
"""
|
|
1706
1730
|
...
|
|
1707
1731
|
|
|
@@ -1819,104 +1843,81 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1819
1843
|
"""
|
|
1820
1844
|
...
|
|
1821
1845
|
|
|
1822
|
-
|
|
1823
|
-
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1846
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1824
1847
|
"""
|
|
1825
|
-
|
|
1826
|
-
|
|
1827
|
-
|
|
1828
|
-
|
|
1829
|
-
|
|
1830
|
-
or
|
|
1831
|
-
```
|
|
1832
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1833
|
-
```
|
|
1834
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1835
|
-
when upstream runs within the same namespace complete successfully
|
|
1836
|
-
|
|
1837
|
-
Additionally, you can specify project aware upstream flow dependencies
|
|
1838
|
-
by specifying the fully qualified project_flow_name.
|
|
1839
|
-
```
|
|
1840
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1841
|
-
```
|
|
1842
|
-
or
|
|
1843
|
-
```
|
|
1844
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1845
|
-
```
|
|
1846
|
-
|
|
1847
|
-
You can also specify just the project or project branch (other values will be
|
|
1848
|
-
inferred from the current project or project branch):
|
|
1849
|
-
```
|
|
1850
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1851
|
-
```
|
|
1852
|
-
|
|
1853
|
-
Note that `branch` is typically one of:
|
|
1854
|
-
- `prod`
|
|
1855
|
-
- `user.bob`
|
|
1856
|
-
- `test.my_experiment`
|
|
1857
|
-
- `prod.staging`
|
|
1848
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1849
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1850
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1851
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1852
|
+
starts only after all sensors finish.
|
|
1858
1853
|
|
|
1859
1854
|
|
|
1860
1855
|
Parameters
|
|
1861
1856
|
----------
|
|
1862
|
-
|
|
1863
|
-
|
|
1864
|
-
|
|
1865
|
-
|
|
1866
|
-
|
|
1867
|
-
|
|
1857
|
+
timeout : int
|
|
1858
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1859
|
+
poke_interval : int
|
|
1860
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1861
|
+
mode : str
|
|
1862
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1863
|
+
exponential_backoff : bool
|
|
1864
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1865
|
+
pool : str
|
|
1866
|
+
the slot pool this task should run in,
|
|
1867
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1868
|
+
soft_fail : bool
|
|
1869
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1870
|
+
name : str
|
|
1871
|
+
Name of the sensor on Airflow
|
|
1872
|
+
description : str
|
|
1873
|
+
Description of sensor in the Airflow UI
|
|
1874
|
+
bucket_key : Union[str, List[str]]
|
|
1875
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1876
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1877
|
+
bucket_name : str
|
|
1878
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1879
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1880
|
+
wildcard_match : bool
|
|
1881
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1882
|
+
aws_conn_id : str
|
|
1883
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1884
|
+
verify : bool
|
|
1885
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1868
1886
|
"""
|
|
1869
1887
|
...
|
|
1870
1888
|
|
|
1871
|
-
|
|
1872
|
-
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1873
|
-
...
|
|
1874
|
-
|
|
1875
|
-
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1889
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1876
1890
|
"""
|
|
1877
|
-
Specifies
|
|
1878
|
-
|
|
1879
|
-
```
|
|
1880
|
-
@trigger_on_finish(flow='FooFlow')
|
|
1881
|
-
```
|
|
1882
|
-
or
|
|
1883
|
-
```
|
|
1884
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1885
|
-
```
|
|
1886
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1887
|
-
when upstream runs within the same namespace complete successfully
|
|
1888
|
-
|
|
1889
|
-
Additionally, you can specify project aware upstream flow dependencies
|
|
1890
|
-
by specifying the fully qualified project_flow_name.
|
|
1891
|
-
```
|
|
1892
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1893
|
-
```
|
|
1894
|
-
or
|
|
1895
|
-
```
|
|
1896
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1897
|
-
```
|
|
1898
|
-
|
|
1899
|
-
You can also specify just the project or project branch (other values will be
|
|
1900
|
-
inferred from the current project or project branch):
|
|
1901
|
-
```
|
|
1902
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1903
|
-
```
|
|
1891
|
+
Specifies what flows belong to the same project.
|
|
1904
1892
|
|
|
1905
|
-
|
|
1906
|
-
|
|
1907
|
-
- `user.bob`
|
|
1908
|
-
- `test.my_experiment`
|
|
1909
|
-
- `prod.staging`
|
|
1893
|
+
A project-specific namespace is created for all flows that
|
|
1894
|
+
use the same `@project(name)`.
|
|
1910
1895
|
|
|
1911
1896
|
|
|
1912
1897
|
Parameters
|
|
1913
1898
|
----------
|
|
1914
|
-
|
|
1915
|
-
|
|
1916
|
-
|
|
1917
|
-
|
|
1918
|
-
|
|
1919
|
-
|
|
1899
|
+
name : str
|
|
1900
|
+
Project name. Make sure that the name is unique amongst all
|
|
1901
|
+
projects that use the same production scheduler. The name may
|
|
1902
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
1903
|
+
|
|
1904
|
+
branch : Optional[str], default None
|
|
1905
|
+
The branch to use. If not specified, the branch is set to
|
|
1906
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
1907
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
1908
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
1909
|
+
|
|
1910
|
+
production : bool, default False
|
|
1911
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
1912
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
1913
|
+
`production` in the decorator and on the command line.
|
|
1914
|
+
The project branch name will be:
|
|
1915
|
+
- if `branch` is specified:
|
|
1916
|
+
- if `production` is True: `prod.<branch>`
|
|
1917
|
+
- if `production` is False: `test.<branch>`
|
|
1918
|
+
- if `branch` is not specified:
|
|
1919
|
+
- if `production` is True: `prod`
|
|
1920
|
+
- if `production` is False: `user.<username>`
|
|
1920
1921
|
"""
|
|
1921
1922
|
...
|
|
1922
1923
|
|