ob-metaflow-stubs 6.0.10.19__py2.py3-none-any.whl → 6.0.10.20__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ob-metaflow-stubs might be problematic. Click here for more details.
- metaflow-stubs/__init__.pyi +1025 -1024
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +3 -2
- metaflow-stubs/client/core.pyi +39 -7
- metaflow-stubs/client/filecache.pyi +21 -5
- metaflow-stubs/events.pyi +3 -3
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +3 -3
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/meta_files.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +16 -2
- metaflow-stubs/metaflow_current.pyi +58 -58
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/hf_hub_card.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/packaging_sys/__init__.pyi +5 -5
- metaflow-stubs/packaging_sys/backend.pyi +4 -4
- metaflow-stubs/packaging_sys/distribution_support.pyi +4 -4
- metaflow-stubs/packaging_sys/tar_backend.pyi +6 -6
- metaflow-stubs/packaging_sys/utils.pyi +2 -5
- metaflow-stubs/packaging_sys/v1.pyi +3 -3
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +12 -12
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/argo/exit_hooks.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +5 -5
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +5 -5
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +4 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +4 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/json_viewer.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +3 -3
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +5 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +5 -5
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
- metaflow-stubs/plugins/optuna/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/parsers.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +4 -4
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +3 -3
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +4 -4
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +3 -3
- metaflow-stubs/plugins/timeout_decorator.pyi +3 -3
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +3 -3
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +32 -32
- metaflow-stubs/runner/deployer_impl.pyi +3 -3
- metaflow-stubs/runner/metaflow_runner.pyi +129 -16
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +3 -3
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_options.pyi +3 -3
- metaflow-stubs/user_configs/config_parameters.pyi +5 -5
- metaflow-stubs/user_decorators/__init__.pyi +2 -2
- metaflow-stubs/user_decorators/common.pyi +2 -2
- metaflow-stubs/user_decorators/mutable_flow.pyi +5 -5
- metaflow-stubs/user_decorators/mutable_step.pyi +4 -4
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +2 -2
- metaflow-stubs/user_decorators/user_step_decorator.pyi +14 -5
- {ob_metaflow_stubs-6.0.10.19.dist-info → ob_metaflow_stubs-6.0.10.20.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.10.20.dist-info/RECORD +266 -0
- ob_metaflow_stubs-6.0.10.19.dist-info/RECORD +0 -266
- {ob_metaflow_stubs-6.0.10.19.dist-info → ob_metaflow_stubs-6.0.10.20.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.10.19.dist-info → ob_metaflow_stubs-6.0.10.20.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
|
-
# MF version: 2.
|
|
4
|
-
# Generated on 2025-10-
|
|
3
|
+
# MF version: 2.19.3.1+obcheckpoint(0.2.8);ob(v1) #
|
|
4
|
+
# Generated on 2025-10-28T11:23:52.528703 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
@@ -39,19 +39,19 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
-
from . import events as events
|
|
43
42
|
from . import metaflow_git as metaflow_git
|
|
44
43
|
from . import cards as cards
|
|
44
|
+
from . import events as events
|
|
45
45
|
from . import tuple_util as tuple_util
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
|
-
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
52
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
53
51
|
from .plugins.parsers import yaml_parser as yaml_parser
|
|
54
52
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
53
|
+
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
54
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
55
55
|
from . import client as client
|
|
56
56
|
from .client.core import namespace as namespace
|
|
57
57
|
from .client.core import get_namespace as get_namespace
|
|
@@ -59,6 +59,7 @@ from .client.core import default_namespace as default_namespace
|
|
|
59
59
|
from .client.core import metadata as metadata
|
|
60
60
|
from .client.core import get_metadata as get_metadata
|
|
61
61
|
from .client.core import default_metadata as default_metadata
|
|
62
|
+
from .client.core import inspect_spin as inspect_spin
|
|
62
63
|
from .client.core import Metaflow as Metaflow
|
|
63
64
|
from .client.core import Flow as Flow
|
|
64
65
|
from .client.core import Run as Run
|
|
@@ -85,8 +86,8 @@ from .mf_extensions.outerbounds.plugins.checkpoint_datastores.nebius import nebi
|
|
|
85
86
|
from .mf_extensions.outerbounds.plugins.checkpoint_datastores.coreweave import coreweave_checkpoints as coreweave_checkpoints
|
|
86
87
|
from .mf_extensions.outerbounds.plugins.aws.assume_role_decorator import assume_role as assume_role
|
|
87
88
|
from .mf_extensions.outerbounds.plugins.apps.core.deployer import AppDeployer as AppDeployer
|
|
88
|
-
from . import system as system
|
|
89
89
|
from . import cli_components as cli_components
|
|
90
|
+
from . import system as system
|
|
90
91
|
from . import pylint_wrapper as pylint_wrapper
|
|
91
92
|
from . import cli as cli
|
|
92
93
|
from . import profilers as profilers
|
|
@@ -169,137 +170,6 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
169
170
|
"""
|
|
170
171
|
...
|
|
171
172
|
|
|
172
|
-
@typing.overload
|
|
173
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
174
|
-
"""
|
|
175
|
-
Specifies the resources needed when executing this step.
|
|
176
|
-
|
|
177
|
-
Use `@resources` to specify the resource requirements
|
|
178
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
179
|
-
|
|
180
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
181
|
-
```
|
|
182
|
-
python myflow.py run --with batch
|
|
183
|
-
```
|
|
184
|
-
or
|
|
185
|
-
```
|
|
186
|
-
python myflow.py run --with kubernetes
|
|
187
|
-
```
|
|
188
|
-
which executes the flow on the desired system using the
|
|
189
|
-
requirements specified in `@resources`.
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
Parameters
|
|
193
|
-
----------
|
|
194
|
-
cpu : int, default 1
|
|
195
|
-
Number of CPUs required for this step.
|
|
196
|
-
gpu : int, optional, default None
|
|
197
|
-
Number of GPUs required for this step.
|
|
198
|
-
disk : int, optional, default None
|
|
199
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
200
|
-
memory : int, default 4096
|
|
201
|
-
Memory size (in MB) required for this step.
|
|
202
|
-
shared_memory : int, optional, default None
|
|
203
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
204
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
205
|
-
"""
|
|
206
|
-
...
|
|
207
|
-
|
|
208
|
-
@typing.overload
|
|
209
|
-
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
210
|
-
...
|
|
211
|
-
|
|
212
|
-
@typing.overload
|
|
213
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
214
|
-
...
|
|
215
|
-
|
|
216
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
217
|
-
"""
|
|
218
|
-
Specifies the resources needed when executing this step.
|
|
219
|
-
|
|
220
|
-
Use `@resources` to specify the resource requirements
|
|
221
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
222
|
-
|
|
223
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
224
|
-
```
|
|
225
|
-
python myflow.py run --with batch
|
|
226
|
-
```
|
|
227
|
-
or
|
|
228
|
-
```
|
|
229
|
-
python myflow.py run --with kubernetes
|
|
230
|
-
```
|
|
231
|
-
which executes the flow on the desired system using the
|
|
232
|
-
requirements specified in `@resources`.
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
Parameters
|
|
236
|
-
----------
|
|
237
|
-
cpu : int, default 1
|
|
238
|
-
Number of CPUs required for this step.
|
|
239
|
-
gpu : int, optional, default None
|
|
240
|
-
Number of GPUs required for this step.
|
|
241
|
-
disk : int, optional, default None
|
|
242
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
243
|
-
memory : int, default 4096
|
|
244
|
-
Memory size (in MB) required for this step.
|
|
245
|
-
shared_memory : int, optional, default None
|
|
246
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
247
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
248
|
-
"""
|
|
249
|
-
...
|
|
250
|
-
|
|
251
|
-
@typing.overload
|
|
252
|
-
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
253
|
-
"""
|
|
254
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
Parameters
|
|
258
|
-
----------
|
|
259
|
-
vars : Dict[str, str], default {}
|
|
260
|
-
Dictionary of environment variables to set.
|
|
261
|
-
"""
|
|
262
|
-
...
|
|
263
|
-
|
|
264
|
-
@typing.overload
|
|
265
|
-
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
266
|
-
...
|
|
267
|
-
|
|
268
|
-
@typing.overload
|
|
269
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
270
|
-
...
|
|
271
|
-
|
|
272
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
273
|
-
"""
|
|
274
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
Parameters
|
|
278
|
-
----------
|
|
279
|
-
vars : Dict[str, str], default {}
|
|
280
|
-
Dictionary of environment variables to set.
|
|
281
|
-
"""
|
|
282
|
-
...
|
|
283
|
-
|
|
284
|
-
@typing.overload
|
|
285
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
286
|
-
"""
|
|
287
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
288
|
-
to inject a card and render simple markdown content.
|
|
289
|
-
"""
|
|
290
|
-
...
|
|
291
|
-
|
|
292
|
-
@typing.overload
|
|
293
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
294
|
-
...
|
|
295
|
-
|
|
296
|
-
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
297
|
-
"""
|
|
298
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
299
|
-
to inject a card and render simple markdown content.
|
|
300
|
-
"""
|
|
301
|
-
...
|
|
302
|
-
|
|
303
173
|
@typing.overload
|
|
304
174
|
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
305
175
|
"""
|
|
@@ -359,63 +229,109 @@ def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
359
229
|
"""
|
|
360
230
|
...
|
|
361
231
|
|
|
362
|
-
|
|
363
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
232
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
364
233
|
"""
|
|
365
|
-
|
|
366
|
-
to a step needs to be retried.
|
|
234
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
367
235
|
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
236
|
+
User code call
|
|
237
|
+
--------------
|
|
238
|
+
@vllm(
|
|
239
|
+
model="...",
|
|
240
|
+
...
|
|
241
|
+
)
|
|
371
242
|
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
243
|
+
Valid backend options
|
|
244
|
+
---------------------
|
|
245
|
+
- 'local': Run as a separate process on the local task machine.
|
|
246
|
+
|
|
247
|
+
Valid model options
|
|
248
|
+
-------------------
|
|
249
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
250
|
+
|
|
251
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
252
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
375
253
|
|
|
376
254
|
|
|
377
255
|
Parameters
|
|
378
256
|
----------
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
257
|
+
model: str
|
|
258
|
+
HuggingFace model identifier to be served by vLLM.
|
|
259
|
+
backend: str
|
|
260
|
+
Determines where and how to run the vLLM process.
|
|
261
|
+
openai_api_server: bool
|
|
262
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
263
|
+
Default is False (uses native engine).
|
|
264
|
+
Set to True for backward compatibility with existing code.
|
|
265
|
+
debug: bool
|
|
266
|
+
Whether to turn on verbose debugging logs.
|
|
267
|
+
card_refresh_interval: int
|
|
268
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
269
|
+
Only used when openai_api_server=True.
|
|
270
|
+
max_retries: int
|
|
271
|
+
Maximum number of retries checking for vLLM server startup.
|
|
272
|
+
Only used when openai_api_server=True.
|
|
273
|
+
retry_alert_frequency: int
|
|
274
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
275
|
+
Only used when openai_api_server=True.
|
|
276
|
+
engine_args : dict
|
|
277
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
278
|
+
For example, `tensor_parallel_size=2`.
|
|
383
279
|
"""
|
|
384
280
|
...
|
|
385
281
|
|
|
386
282
|
@typing.overload
|
|
387
|
-
def
|
|
283
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
284
|
+
"""
|
|
285
|
+
Specifies the PyPI packages for the step.
|
|
286
|
+
|
|
287
|
+
Information in this decorator will augment any
|
|
288
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
289
|
+
you can use `@pypi_base` to set packages required by all
|
|
290
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
Parameters
|
|
294
|
+
----------
|
|
295
|
+
packages : Dict[str, str], default: {}
|
|
296
|
+
Packages to use for this step. The key is the name of the package
|
|
297
|
+
and the value is the version to use.
|
|
298
|
+
python : str, optional, default: None
|
|
299
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
300
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
301
|
+
"""
|
|
388
302
|
...
|
|
389
303
|
|
|
390
304
|
@typing.overload
|
|
391
|
-
def
|
|
305
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
392
306
|
...
|
|
393
307
|
|
|
394
|
-
|
|
308
|
+
@typing.overload
|
|
309
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
310
|
+
...
|
|
311
|
+
|
|
312
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
395
313
|
"""
|
|
396
|
-
Specifies the
|
|
397
|
-
to a step needs to be retried.
|
|
398
|
-
|
|
399
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
|
400
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
401
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
314
|
+
Specifies the PyPI packages for the step.
|
|
402
315
|
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
|
|
316
|
+
Information in this decorator will augment any
|
|
317
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
318
|
+
you can use `@pypi_base` to set packages required by all
|
|
319
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
406
320
|
|
|
407
321
|
|
|
408
322
|
Parameters
|
|
409
323
|
----------
|
|
410
|
-
|
|
411
|
-
|
|
412
|
-
|
|
413
|
-
|
|
324
|
+
packages : Dict[str, str], default: {}
|
|
325
|
+
Packages to use for this step. The key is the name of the package
|
|
326
|
+
and the value is the version to use.
|
|
327
|
+
python : str, optional, default: None
|
|
328
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
329
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
414
330
|
"""
|
|
415
331
|
...
|
|
416
332
|
|
|
417
333
|
@typing.overload
|
|
418
|
-
def
|
|
334
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
419
335
|
"""
|
|
420
336
|
Decorator prototype for all step decorators. This function gets specialized
|
|
421
337
|
and imported for all decorators types by _import_plugin_decorators().
|
|
@@ -423,68 +339,19 @@ def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.
|
|
|
423
339
|
...
|
|
424
340
|
|
|
425
341
|
@typing.overload
|
|
426
|
-
def
|
|
342
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
427
343
|
...
|
|
428
344
|
|
|
429
|
-
def
|
|
345
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
430
346
|
"""
|
|
431
347
|
Decorator prototype for all step decorators. This function gets specialized
|
|
432
348
|
and imported for all decorators types by _import_plugin_decorators().
|
|
433
349
|
"""
|
|
434
350
|
...
|
|
435
351
|
|
|
436
|
-
|
|
437
|
-
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
352
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
438
353
|
"""
|
|
439
|
-
|
|
440
|
-
|
|
441
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
Parameters
|
|
445
|
-
----------
|
|
446
|
-
type : str, default 'default'
|
|
447
|
-
Card type.
|
|
448
|
-
id : str, optional, default None
|
|
449
|
-
If multiple cards are present, use this id to identify this card.
|
|
450
|
-
options : Dict[str, Any], default {}
|
|
451
|
-
Options passed to the card. The contents depend on the card type.
|
|
452
|
-
timeout : int, default 45
|
|
453
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
454
|
-
"""
|
|
455
|
-
...
|
|
456
|
-
|
|
457
|
-
@typing.overload
|
|
458
|
-
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
459
|
-
...
|
|
460
|
-
|
|
461
|
-
@typing.overload
|
|
462
|
-
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
463
|
-
...
|
|
464
|
-
|
|
465
|
-
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
466
|
-
"""
|
|
467
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
468
|
-
|
|
469
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
Parameters
|
|
473
|
-
----------
|
|
474
|
-
type : str, default 'default'
|
|
475
|
-
Card type.
|
|
476
|
-
id : str, optional, default None
|
|
477
|
-
If multiple cards are present, use this id to identify this card.
|
|
478
|
-
options : Dict[str, Any], default {}
|
|
479
|
-
Options passed to the card. The contents depend on the card type.
|
|
480
|
-
timeout : int, default 45
|
|
481
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
482
|
-
"""
|
|
483
|
-
...
|
|
484
|
-
|
|
485
|
-
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
486
|
-
"""
|
|
487
|
-
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
354
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
488
355
|
|
|
489
356
|
User code call
|
|
490
357
|
--------------
|
|
@@ -526,279 +393,103 @@ def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy:
|
|
|
526
393
|
...
|
|
527
394
|
|
|
528
395
|
@typing.overload
|
|
529
|
-
def
|
|
396
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
530
397
|
"""
|
|
531
|
-
|
|
532
|
-
|
|
533
|
-
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
|
|
537
|
-
|
|
538
|
-
|
|
539
|
-
|
|
540
|
-
|
|
541
|
-
|
|
542
|
-
|
|
543
|
-
|
|
544
|
-
|
|
545
|
-
|
|
546
|
-
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
|
|
550
|
-
|
|
551
|
-
|
|
552
|
-
name="epoch_checkpoint",
|
|
553
|
-
metadata={
|
|
554
|
-
"epoch": i,
|
|
555
|
-
"loss": loss,
|
|
556
|
-
}
|
|
557
|
-
)
|
|
558
|
-
```
|
|
559
|
-
|
|
560
|
-
- Using Loaded Checkpoints
|
|
398
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
399
|
+
to inject a card and render simple markdown content.
|
|
400
|
+
"""
|
|
401
|
+
...
|
|
402
|
+
|
|
403
|
+
@typing.overload
|
|
404
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
405
|
+
...
|
|
406
|
+
|
|
407
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
408
|
+
"""
|
|
409
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
410
|
+
to inject a card and render simple markdown content.
|
|
411
|
+
"""
|
|
412
|
+
...
|
|
413
|
+
|
|
414
|
+
@typing.overload
|
|
415
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
416
|
+
"""
|
|
417
|
+
Specifies the number of times the task corresponding
|
|
418
|
+
to a step needs to be retried.
|
|
561
419
|
|
|
562
|
-
|
|
563
|
-
|
|
564
|
-
|
|
565
|
-
@step
|
|
566
|
-
def train(self):
|
|
567
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
568
|
-
# saved a checkpoint
|
|
569
|
-
checkpoint_path = None
|
|
570
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
571
|
-
print("Loaded checkpoint from the previous attempt")
|
|
572
|
-
checkpoint_path = current.checkpoint.directory
|
|
420
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
421
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
422
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
573
423
|
|
|
574
|
-
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
```
|
|
424
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
425
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
426
|
+
ensuring that the flow execution can continue.
|
|
578
427
|
|
|
579
428
|
|
|
580
429
|
Parameters
|
|
581
430
|
----------
|
|
582
|
-
|
|
583
|
-
|
|
584
|
-
|
|
585
|
-
|
|
586
|
-
will be loaded at the start of the task.
|
|
587
|
-
- "none": Do not load any checkpoint
|
|
588
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
589
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
590
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
591
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
592
|
-
|
|
593
|
-
temp_dir_root : str, default: None
|
|
594
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
431
|
+
times : int, default 3
|
|
432
|
+
Number of times to retry this task.
|
|
433
|
+
minutes_between_retries : int, default 2
|
|
434
|
+
Number of minutes between retries.
|
|
595
435
|
"""
|
|
596
436
|
...
|
|
597
437
|
|
|
598
438
|
@typing.overload
|
|
599
|
-
def
|
|
439
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
600
440
|
...
|
|
601
441
|
|
|
602
442
|
@typing.overload
|
|
603
|
-
def
|
|
443
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
604
444
|
...
|
|
605
445
|
|
|
606
|
-
def
|
|
446
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
607
447
|
"""
|
|
608
|
-
|
|
609
|
-
|
|
610
|
-
> Examples
|
|
611
|
-
|
|
612
|
-
- Saving Checkpoints
|
|
613
|
-
|
|
614
|
-
```python
|
|
615
|
-
@checkpoint
|
|
616
|
-
@step
|
|
617
|
-
def train(self):
|
|
618
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
619
|
-
for i in range(self.epochs):
|
|
620
|
-
# some training logic
|
|
621
|
-
loss = model.train(self.dataset)
|
|
622
|
-
if i % 10 == 0:
|
|
623
|
-
model.save(
|
|
624
|
-
current.checkpoint.directory,
|
|
625
|
-
)
|
|
626
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
627
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
628
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
629
|
-
name="epoch_checkpoint",
|
|
630
|
-
metadata={
|
|
631
|
-
"epoch": i,
|
|
632
|
-
"loss": loss,
|
|
633
|
-
}
|
|
634
|
-
)
|
|
635
|
-
```
|
|
636
|
-
|
|
637
|
-
- Using Loaded Checkpoints
|
|
448
|
+
Specifies the number of times the task corresponding
|
|
449
|
+
to a step needs to be retried.
|
|
638
450
|
|
|
639
|
-
|
|
640
|
-
|
|
641
|
-
|
|
642
|
-
@step
|
|
643
|
-
def train(self):
|
|
644
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
645
|
-
# saved a checkpoint
|
|
646
|
-
checkpoint_path = None
|
|
647
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
648
|
-
print("Loaded checkpoint from the previous attempt")
|
|
649
|
-
checkpoint_path = current.checkpoint.directory
|
|
451
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
452
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
453
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
650
454
|
|
|
651
|
-
|
|
652
|
-
|
|
653
|
-
|
|
654
|
-
```
|
|
455
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
456
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
457
|
+
ensuring that the flow execution can continue.
|
|
655
458
|
|
|
656
459
|
|
|
657
460
|
Parameters
|
|
658
461
|
----------
|
|
659
|
-
|
|
660
|
-
|
|
661
|
-
|
|
662
|
-
|
|
663
|
-
will be loaded at the start of the task.
|
|
664
|
-
- "none": Do not load any checkpoint
|
|
665
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
666
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
667
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
668
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
669
|
-
|
|
670
|
-
temp_dir_root : str, default: None
|
|
671
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
462
|
+
times : int, default 3
|
|
463
|
+
Number of times to retry this task.
|
|
464
|
+
minutes_between_retries : int, default 2
|
|
465
|
+
Number of minutes between retries.
|
|
672
466
|
"""
|
|
673
467
|
...
|
|
674
468
|
|
|
675
|
-
def
|
|
469
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
676
470
|
"""
|
|
677
|
-
|
|
471
|
+
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
472
|
+
for S3 read and write requests.
|
|
678
473
|
|
|
474
|
+
This decorator requires an integration in the Outerbounds platform that
|
|
475
|
+
points to an external bucket. It affects S3 operations performed via
|
|
476
|
+
Metaflow's `get_aws_client` and `S3` within a `@step`.
|
|
679
477
|
|
|
680
|
-
|
|
681
|
-
|
|
682
|
-
|
|
683
|
-
|
|
684
|
-
|
|
685
|
-
|
|
686
|
-
"""
|
|
687
|
-
...
|
|
688
|
-
|
|
689
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
690
|
-
"""
|
|
691
|
-
Specifies that this step should execute on Kubernetes.
|
|
478
|
+
Read operations
|
|
479
|
+
---------------
|
|
480
|
+
All read operations pass through the proxy. If an object does not already
|
|
481
|
+
exist in the external bucket, it is cached there. For example, if code reads
|
|
482
|
+
from buckets `FOO` and `BAR` using the `S3` interface, objects from both
|
|
483
|
+
buckets are cached in the external bucket.
|
|
692
484
|
|
|
693
|
-
|
|
694
|
-
|
|
695
|
-
|
|
696
|
-
|
|
697
|
-
|
|
698
|
-
|
|
699
|
-
|
|
700
|
-
|
|
701
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
702
|
-
used.
|
|
703
|
-
disk : int, default 10240
|
|
704
|
-
Disk size (in MB) required for this step. If
|
|
705
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
706
|
-
used.
|
|
707
|
-
image : str, optional, default None
|
|
708
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
709
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
710
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
711
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
712
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
713
|
-
image_pull_secrets: List[str], default []
|
|
714
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
715
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
716
|
-
in Kubernetes.
|
|
717
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
718
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
719
|
-
secrets : List[str], optional, default None
|
|
720
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
721
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
722
|
-
in Metaflow configuration.
|
|
723
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
724
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
725
|
-
Can be passed in as a comma separated string of values e.g.
|
|
726
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
727
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
728
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
729
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
730
|
-
gpu : int, optional, default None
|
|
731
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
732
|
-
the scheduled node should not have GPUs.
|
|
733
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
734
|
-
The vendor of the GPUs to be used for this step.
|
|
735
|
-
tolerations : List[Dict[str,str]], default []
|
|
736
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
737
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
738
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
739
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
740
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
741
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
742
|
-
use_tmpfs : bool, default False
|
|
743
|
-
This enables an explicit tmpfs mount for this step.
|
|
744
|
-
tmpfs_tempdir : bool, default True
|
|
745
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
746
|
-
tmpfs_size : int, optional, default: None
|
|
747
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
748
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
749
|
-
memory allocated for this step.
|
|
750
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
751
|
-
Path to tmpfs mount for this step.
|
|
752
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
753
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
754
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
755
|
-
shared_memory: int, optional
|
|
756
|
-
Shared memory size (in MiB) required for this step
|
|
757
|
-
port: int, optional
|
|
758
|
-
Port number to specify in the Kubernetes job object
|
|
759
|
-
compute_pool : str, optional, default None
|
|
760
|
-
Compute pool to be used for for this step.
|
|
761
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
762
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
763
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
764
|
-
Only applicable when @parallel is used.
|
|
765
|
-
qos: str, default: Burstable
|
|
766
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
767
|
-
|
|
768
|
-
security_context: Dict[str, Any], optional, default None
|
|
769
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
770
|
-
- privileged: bool, optional, default None
|
|
771
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
772
|
-
- run_as_user: int, optional, default None
|
|
773
|
-
- run_as_group: int, optional, default None
|
|
774
|
-
- run_as_non_root: bool, optional, default None
|
|
775
|
-
"""
|
|
776
|
-
...
|
|
777
|
-
|
|
778
|
-
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
779
|
-
"""
|
|
780
|
-
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
781
|
-
for S3 read and write requests.
|
|
782
|
-
|
|
783
|
-
This decorator requires an integration in the Outerbounds platform that
|
|
784
|
-
points to an external bucket. It affects S3 operations performed via
|
|
785
|
-
Metaflow's `get_aws_client` and `S3` within a `@step`.
|
|
786
|
-
|
|
787
|
-
Read operations
|
|
788
|
-
---------------
|
|
789
|
-
All read operations pass through the proxy. If an object does not already
|
|
790
|
-
exist in the external bucket, it is cached there. For example, if code reads
|
|
791
|
-
from buckets `FOO` and `BAR` using the `S3` interface, objects from both
|
|
792
|
-
buckets are cached in the external bucket.
|
|
793
|
-
|
|
794
|
-
During task execution, all S3‑related read requests are routed through the
|
|
795
|
-
proxy:
|
|
796
|
-
- If the object is present in the external object store, the proxy
|
|
797
|
-
streams it directly from there without accessing the requested origin
|
|
798
|
-
bucket.
|
|
799
|
-
- If the object is not present in the external storage, the proxy
|
|
800
|
-
fetches it from the requested bucket, caches it in the external
|
|
801
|
-
storage, and streams the response from the origin bucket.
|
|
485
|
+
During task execution, all S3‑related read requests are routed through the
|
|
486
|
+
proxy:
|
|
487
|
+
- If the object is present in the external object store, the proxy
|
|
488
|
+
streams it directly from there without accessing the requested origin
|
|
489
|
+
bucket.
|
|
490
|
+
- If the object is not present in the external storage, the proxy
|
|
491
|
+
fetches it from the requested bucket, caches it in the external
|
|
492
|
+
storage, and streams the response from the origin bucket.
|
|
802
493
|
|
|
803
494
|
Warning
|
|
804
495
|
-------
|
|
@@ -834,120 +525,169 @@ def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typin
|
|
|
834
525
|
"""
|
|
835
526
|
...
|
|
836
527
|
|
|
837
|
-
|
|
528
|
+
@typing.overload
|
|
529
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
838
530
|
"""
|
|
839
|
-
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
|
|
531
|
+
Internal decorator to support Fast bakery
|
|
532
|
+
"""
|
|
533
|
+
...
|
|
534
|
+
|
|
535
|
+
@typing.overload
|
|
536
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
537
|
+
...
|
|
538
|
+
|
|
539
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
540
|
+
"""
|
|
541
|
+
Internal decorator to support Fast bakery
|
|
542
|
+
"""
|
|
543
|
+
...
|
|
544
|
+
|
|
545
|
+
@typing.overload
|
|
546
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
547
|
+
"""
|
|
548
|
+
Specifies a timeout for your step.
|
|
843
549
|
|
|
844
|
-
|
|
845
|
-
# **Usage: creating references to models from the Hugging Face Hub that may be loaded in downstream steps**
|
|
846
|
-
@huggingface_hub
|
|
847
|
-
@step
|
|
848
|
-
def pull_model_from_huggingface(self):
|
|
849
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
850
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
851
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
852
|
-
# value of the function is a reference to the model in the backend storage.
|
|
853
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
550
|
+
This decorator is useful if this step may hang indefinitely.
|
|
854
551
|
|
|
855
|
-
|
|
856
|
-
|
|
857
|
-
|
|
858
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
859
|
-
)
|
|
860
|
-
self.next(self.train)
|
|
552
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
553
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
554
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
861
555
|
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
@step
|
|
865
|
-
def run_training(self):
|
|
866
|
-
# Temporary directory (auto-cleaned on exit)
|
|
867
|
-
with current.huggingface_hub.load(
|
|
868
|
-
repo_id="google-bert/bert-base-uncased",
|
|
869
|
-
allow_patterns=["*.bin"],
|
|
870
|
-
) as local_path:
|
|
871
|
-
# Use files under local_path
|
|
872
|
-
train_model(local_path)
|
|
873
|
-
...
|
|
556
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
557
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
874
558
|
|
|
875
|
-
# **Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
876
559
|
|
|
877
|
-
|
|
878
|
-
|
|
879
|
-
|
|
880
|
-
|
|
560
|
+
Parameters
|
|
561
|
+
----------
|
|
562
|
+
seconds : int, default 0
|
|
563
|
+
Number of seconds to wait prior to timing out.
|
|
564
|
+
minutes : int, default 0
|
|
565
|
+
Number of minutes to wait prior to timing out.
|
|
566
|
+
hours : int, default 0
|
|
567
|
+
Number of hours to wait prior to timing out.
|
|
568
|
+
"""
|
|
569
|
+
...
|
|
570
|
+
|
|
571
|
+
@typing.overload
|
|
572
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
573
|
+
...
|
|
574
|
+
|
|
575
|
+
@typing.overload
|
|
576
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
577
|
+
...
|
|
578
|
+
|
|
579
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
580
|
+
"""
|
|
581
|
+
Specifies a timeout for your step.
|
|
881
582
|
|
|
882
|
-
|
|
883
|
-
@step
|
|
884
|
-
def finetune_model(self):
|
|
885
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
886
|
-
# path_to_model will be /my-directory
|
|
583
|
+
This decorator is useful if this step may hang indefinitely.
|
|
887
584
|
|
|
585
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
586
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
587
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
888
588
|
|
|
889
|
-
|
|
890
|
-
|
|
891
|
-
@huggingface_hub(load=[
|
|
892
|
-
{
|
|
893
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
894
|
-
},
|
|
895
|
-
{
|
|
896
|
-
"repo_id": "myorg/mistral-lora",
|
|
897
|
-
"repo_type": "model",
|
|
898
|
-
},
|
|
899
|
-
])
|
|
900
|
-
@step
|
|
901
|
-
def finetune_model(self):
|
|
902
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
903
|
-
# path_to_model will be /my-directory
|
|
904
|
-
```
|
|
589
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
590
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
905
591
|
|
|
906
592
|
|
|
907
593
|
Parameters
|
|
908
594
|
----------
|
|
909
|
-
|
|
910
|
-
|
|
595
|
+
seconds : int, default 0
|
|
596
|
+
Number of seconds to wait prior to timing out.
|
|
597
|
+
minutes : int, default 0
|
|
598
|
+
Number of minutes to wait prior to timing out.
|
|
599
|
+
hours : int, default 0
|
|
600
|
+
Number of hours to wait prior to timing out.
|
|
601
|
+
"""
|
|
602
|
+
...
|
|
603
|
+
|
|
604
|
+
@typing.overload
|
|
605
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
606
|
+
"""
|
|
607
|
+
Specifies that the step will success under all circumstances.
|
|
911
608
|
|
|
912
|
-
|
|
913
|
-
|
|
914
|
-
|
|
915
|
-
|
|
916
|
-
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
609
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
610
|
+
contains the exception raised. You can use it to detect the presence
|
|
611
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
612
|
+
are missing.
|
|
917
613
|
|
|
918
|
-
- `flow`: All repos are cached under the flow, regardless of namespace.
|
|
919
|
-
i.e., the cached path is derived solely from the flow name.
|
|
920
|
-
When to use this mode: (1) Multiple users are executing the same flow and want shared access to the repos cached by the decorator. (2) Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
921
614
|
|
|
922
|
-
|
|
923
|
-
|
|
924
|
-
|
|
925
|
-
|
|
926
|
-
|
|
927
|
-
|
|
928
|
-
|
|
929
|
-
|
|
930
|
-
|
|
931
|
-
|
|
932
|
-
|
|
933
|
-
|
|
934
|
-
|
|
935
|
-
|
|
936
|
-
|
|
937
|
-
|
|
615
|
+
Parameters
|
|
616
|
+
----------
|
|
617
|
+
var : str, optional, default None
|
|
618
|
+
Name of the artifact in which to store the caught exception.
|
|
619
|
+
If not specified, the exception is not stored.
|
|
620
|
+
print_exception : bool, default True
|
|
621
|
+
Determines whether or not the exception is printed to
|
|
622
|
+
stdout when caught.
|
|
623
|
+
"""
|
|
624
|
+
...
|
|
625
|
+
|
|
626
|
+
@typing.overload
|
|
627
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
628
|
+
...
|
|
629
|
+
|
|
630
|
+
@typing.overload
|
|
631
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
632
|
+
...
|
|
633
|
+
|
|
634
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
635
|
+
"""
|
|
636
|
+
Specifies that the step will success under all circumstances.
|
|
938
637
|
|
|
939
|
-
|
|
940
|
-
|
|
638
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
639
|
+
contains the exception raised. You can use it to detect the presence
|
|
640
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
641
|
+
are missing.
|
|
941
642
|
|
|
942
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
943
643
|
|
|
944
|
-
|
|
945
|
-
|
|
946
|
-
|
|
947
|
-
|
|
644
|
+
Parameters
|
|
645
|
+
----------
|
|
646
|
+
var : str, optional, default None
|
|
647
|
+
Name of the artifact in which to store the caught exception.
|
|
648
|
+
If not specified, the exception is not stored.
|
|
649
|
+
print_exception : bool, default True
|
|
650
|
+
Determines whether or not the exception is printed to
|
|
651
|
+
stdout when caught.
|
|
652
|
+
"""
|
|
653
|
+
...
|
|
654
|
+
|
|
655
|
+
@typing.overload
|
|
656
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
657
|
+
"""
|
|
658
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
659
|
+
the execution of a step.
|
|
948
660
|
|
|
949
|
-
|
|
950
|
-
|
|
661
|
+
|
|
662
|
+
Parameters
|
|
663
|
+
----------
|
|
664
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
665
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
666
|
+
role : str, optional, default: None
|
|
667
|
+
Role to use for fetching secrets
|
|
668
|
+
"""
|
|
669
|
+
...
|
|
670
|
+
|
|
671
|
+
@typing.overload
|
|
672
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
673
|
+
...
|
|
674
|
+
|
|
675
|
+
@typing.overload
|
|
676
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
677
|
+
...
|
|
678
|
+
|
|
679
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
680
|
+
"""
|
|
681
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
682
|
+
the execution of a step.
|
|
683
|
+
|
|
684
|
+
|
|
685
|
+
Parameters
|
|
686
|
+
----------
|
|
687
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
688
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
689
|
+
role : str, optional, default: None
|
|
690
|
+
Role to use for fetching secrets
|
|
951
691
|
"""
|
|
952
692
|
...
|
|
953
693
|
|
|
@@ -1096,310 +836,622 @@ def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[t
|
|
|
1096
836
|
"""
|
|
1097
837
|
...
|
|
1098
838
|
|
|
1099
|
-
|
|
839
|
+
@typing.overload
|
|
840
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1100
841
|
"""
|
|
1101
|
-
|
|
1102
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1103
|
-
a Neo Cloud like CoreWeave. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
842
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
1104
843
|
|
|
1105
844
|
|
|
1106
|
-
|
|
1107
|
-
|
|
845
|
+
Parameters
|
|
846
|
+
----------
|
|
847
|
+
vars : Dict[str, str], default {}
|
|
848
|
+
Dictionary of environment variables to set.
|
|
849
|
+
"""
|
|
850
|
+
...
|
|
851
|
+
|
|
852
|
+
@typing.overload
|
|
853
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
854
|
+
...
|
|
855
|
+
|
|
856
|
+
@typing.overload
|
|
857
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
858
|
+
...
|
|
859
|
+
|
|
860
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
861
|
+
"""
|
|
862
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
1108
863
|
|
|
1109
|
-
This decorator requires an integration in the Outerbounds platform that
|
|
1110
|
-
points to an external bucket. It affects S3 operations performed via
|
|
1111
|
-
Metaflow's `get_aws_client` and `S3` within a `@step`.
|
|
1112
864
|
|
|
1113
|
-
|
|
1114
|
-
|
|
1115
|
-
|
|
1116
|
-
|
|
1117
|
-
|
|
1118
|
-
|
|
865
|
+
Parameters
|
|
866
|
+
----------
|
|
867
|
+
vars : Dict[str, str], default {}
|
|
868
|
+
Dictionary of environment variables to set.
|
|
869
|
+
"""
|
|
870
|
+
...
|
|
871
|
+
|
|
872
|
+
@typing.overload
|
|
873
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
874
|
+
"""
|
|
875
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
876
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
877
|
+
"""
|
|
878
|
+
...
|
|
879
|
+
|
|
880
|
+
@typing.overload
|
|
881
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
882
|
+
...
|
|
883
|
+
|
|
884
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
885
|
+
"""
|
|
886
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
887
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
888
|
+
"""
|
|
889
|
+
...
|
|
890
|
+
|
|
891
|
+
@typing.overload
|
|
892
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
893
|
+
"""
|
|
894
|
+
Enables checkpointing for a step.
|
|
1119
895
|
|
|
1120
|
-
|
|
1121
|
-
proxy:
|
|
1122
|
-
- If the object is present in the external object store, the proxy
|
|
1123
|
-
streams it directly from there without accessing the requested origin
|
|
1124
|
-
bucket.
|
|
1125
|
-
- If the object is not present in the external storage, the proxy
|
|
1126
|
-
fetches it from the requested bucket, caches it in the external
|
|
1127
|
-
storage, and streams the response from the origin bucket.
|
|
896
|
+
> Examples
|
|
1128
897
|
|
|
1129
|
-
|
|
1130
|
-
-------
|
|
1131
|
-
All READ operations (e.g., GetObject, HeadObject) pass through the external
|
|
1132
|
-
bucket regardless of the bucket specified in user code. Even
|
|
1133
|
-
`S3(run=self)` and `S3(s3root="mybucketfoo")` requests go through the
|
|
1134
|
-
external bucket cache.
|
|
898
|
+
- Saving Checkpoints
|
|
1135
899
|
|
|
1136
|
-
|
|
1137
|
-
|
|
1138
|
-
|
|
1139
|
-
|
|
900
|
+
```python
|
|
901
|
+
@checkpoint
|
|
902
|
+
@step
|
|
903
|
+
def train(self):
|
|
904
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
905
|
+
for i in range(self.epochs):
|
|
906
|
+
# some training logic
|
|
907
|
+
loss = model.train(self.dataset)
|
|
908
|
+
if i % 10 == 0:
|
|
909
|
+
model.save(
|
|
910
|
+
current.checkpoint.directory,
|
|
911
|
+
)
|
|
912
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
913
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
914
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
915
|
+
name="epoch_checkpoint",
|
|
916
|
+
metadata={
|
|
917
|
+
"epoch": i,
|
|
918
|
+
"loss": loss,
|
|
919
|
+
}
|
|
920
|
+
)
|
|
921
|
+
```
|
|
1140
922
|
|
|
1141
|
-
|
|
1142
|
-
|
|
1143
|
-
|
|
1144
|
-
|
|
923
|
+
- Using Loaded Checkpoints
|
|
924
|
+
|
|
925
|
+
```python
|
|
926
|
+
@retry(times=3)
|
|
927
|
+
@checkpoint
|
|
928
|
+
@step
|
|
929
|
+
def train(self):
|
|
930
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
931
|
+
# saved a checkpoint
|
|
932
|
+
checkpoint_path = None
|
|
933
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
934
|
+
print("Loaded checkpoint from the previous attempt")
|
|
935
|
+
checkpoint_path = current.checkpoint.directory
|
|
936
|
+
|
|
937
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
938
|
+
for i in range(self.epochs):
|
|
939
|
+
...
|
|
940
|
+
```
|
|
1145
941
|
|
|
1146
942
|
|
|
1147
943
|
Parameters
|
|
1148
944
|
----------
|
|
1149
|
-
|
|
1150
|
-
|
|
1151
|
-
|
|
1152
|
-
|
|
1153
|
-
|
|
1154
|
-
|
|
1155
|
-
|
|
1156
|
-
|
|
1157
|
-
|
|
1158
|
-
|
|
1159
|
-
|
|
945
|
+
load_policy : str, default: "fresh"
|
|
946
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
947
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
948
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
949
|
+
will be loaded at the start of the task.
|
|
950
|
+
- "none": Do not load any checkpoint
|
|
951
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
952
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
953
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
954
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
955
|
+
|
|
956
|
+
temp_dir_root : str, default: None
|
|
957
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1160
958
|
"""
|
|
1161
959
|
...
|
|
1162
960
|
|
|
1163
961
|
@typing.overload
|
|
1164
|
-
def
|
|
962
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
963
|
+
...
|
|
964
|
+
|
|
965
|
+
@typing.overload
|
|
966
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
967
|
+
...
|
|
968
|
+
|
|
969
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
1165
970
|
"""
|
|
1166
|
-
|
|
971
|
+
Enables checkpointing for a step.
|
|
1167
972
|
|
|
1168
|
-
|
|
973
|
+
> Examples
|
|
1169
974
|
|
|
1170
|
-
|
|
1171
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1172
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
975
|
+
- Saving Checkpoints
|
|
1173
976
|
|
|
1174
|
-
|
|
1175
|
-
|
|
977
|
+
```python
|
|
978
|
+
@checkpoint
|
|
979
|
+
@step
|
|
980
|
+
def train(self):
|
|
981
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
982
|
+
for i in range(self.epochs):
|
|
983
|
+
# some training logic
|
|
984
|
+
loss = model.train(self.dataset)
|
|
985
|
+
if i % 10 == 0:
|
|
986
|
+
model.save(
|
|
987
|
+
current.checkpoint.directory,
|
|
988
|
+
)
|
|
989
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
990
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
991
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
992
|
+
name="epoch_checkpoint",
|
|
993
|
+
metadata={
|
|
994
|
+
"epoch": i,
|
|
995
|
+
"loss": loss,
|
|
996
|
+
}
|
|
997
|
+
)
|
|
998
|
+
```
|
|
999
|
+
|
|
1000
|
+
- Using Loaded Checkpoints
|
|
1001
|
+
|
|
1002
|
+
```python
|
|
1003
|
+
@retry(times=3)
|
|
1004
|
+
@checkpoint
|
|
1005
|
+
@step
|
|
1006
|
+
def train(self):
|
|
1007
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1008
|
+
# saved a checkpoint
|
|
1009
|
+
checkpoint_path = None
|
|
1010
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1011
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1012
|
+
checkpoint_path = current.checkpoint.directory
|
|
1013
|
+
|
|
1014
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1015
|
+
for i in range(self.epochs):
|
|
1016
|
+
...
|
|
1017
|
+
```
|
|
1176
1018
|
|
|
1177
1019
|
|
|
1178
1020
|
Parameters
|
|
1179
1021
|
----------
|
|
1180
|
-
|
|
1181
|
-
|
|
1182
|
-
|
|
1183
|
-
|
|
1184
|
-
|
|
1185
|
-
|
|
1022
|
+
load_policy : str, default: "fresh"
|
|
1023
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1024
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1025
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1026
|
+
will be loaded at the start of the task.
|
|
1027
|
+
- "none": Do not load any checkpoint
|
|
1028
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1029
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1030
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1031
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1032
|
+
|
|
1033
|
+
temp_dir_root : str, default: None
|
|
1034
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1186
1035
|
"""
|
|
1187
1036
|
...
|
|
1188
1037
|
|
|
1189
|
-
|
|
1190
|
-
|
|
1191
|
-
|
|
1192
|
-
|
|
1193
|
-
|
|
1194
|
-
|
|
1038
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1039
|
+
"""
|
|
1040
|
+
Specifies that this step should execute on Kubernetes.
|
|
1041
|
+
|
|
1042
|
+
|
|
1043
|
+
Parameters
|
|
1044
|
+
----------
|
|
1045
|
+
cpu : int, default 1
|
|
1046
|
+
Number of CPUs required for this step. If `@resources` is
|
|
1047
|
+
also present, the maximum value from all decorators is used.
|
|
1048
|
+
memory : int, default 4096
|
|
1049
|
+
Memory size (in MB) required for this step. If
|
|
1050
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
1051
|
+
used.
|
|
1052
|
+
disk : int, default 10240
|
|
1053
|
+
Disk size (in MB) required for this step. If
|
|
1054
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
1055
|
+
used.
|
|
1056
|
+
image : str, optional, default None
|
|
1057
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
1058
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
1059
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
1060
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
1061
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
1062
|
+
image_pull_secrets: List[str], default []
|
|
1063
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
1064
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
1065
|
+
in Kubernetes.
|
|
1066
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
1067
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
1068
|
+
secrets : List[str], optional, default None
|
|
1069
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
1070
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
1071
|
+
in Metaflow configuration.
|
|
1072
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
1073
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
1074
|
+
Can be passed in as a comma separated string of values e.g.
|
|
1075
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
1076
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
1077
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
1078
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
1079
|
+
gpu : int, optional, default None
|
|
1080
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
1081
|
+
the scheduled node should not have GPUs.
|
|
1082
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
1083
|
+
The vendor of the GPUs to be used for this step.
|
|
1084
|
+
tolerations : List[Dict[str,str]], default []
|
|
1085
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
1086
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
1087
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
1088
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
1089
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
1090
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
1091
|
+
use_tmpfs : bool, default False
|
|
1092
|
+
This enables an explicit tmpfs mount for this step.
|
|
1093
|
+
tmpfs_tempdir : bool, default True
|
|
1094
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
1095
|
+
tmpfs_size : int, optional, default: None
|
|
1096
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
1097
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
1098
|
+
memory allocated for this step.
|
|
1099
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
1100
|
+
Path to tmpfs mount for this step.
|
|
1101
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
1102
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
1103
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
1104
|
+
shared_memory: int, optional
|
|
1105
|
+
Shared memory size (in MiB) required for this step
|
|
1106
|
+
port: int, optional
|
|
1107
|
+
Port number to specify in the Kubernetes job object
|
|
1108
|
+
compute_pool : str, optional, default None
|
|
1109
|
+
Compute pool to be used for for this step.
|
|
1110
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
1111
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
1112
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
1113
|
+
Only applicable when @parallel is used.
|
|
1114
|
+
qos: str, default: Burstable
|
|
1115
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
1116
|
+
|
|
1117
|
+
security_context: Dict[str, Any], optional, default None
|
|
1118
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
1119
|
+
- privileged: bool, optional, default None
|
|
1120
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
1121
|
+
- run_as_user: int, optional, default None
|
|
1122
|
+
- run_as_group: int, optional, default None
|
|
1123
|
+
- run_as_non_root: bool, optional, default None
|
|
1124
|
+
"""
|
|
1195
1125
|
...
|
|
1196
1126
|
|
|
1197
|
-
def
|
|
1127
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1198
1128
|
"""
|
|
1199
|
-
|
|
1129
|
+
Decorator that helps cache, version, and store models/datasets from the Hugging Face Hub.
|
|
1200
1130
|
|
|
1201
|
-
|
|
1131
|
+
Examples
|
|
1132
|
+
--------
|
|
1133
|
+
|
|
1134
|
+
```python
|
|
1135
|
+
# **Usage: creating references to models from the Hugging Face Hub that may be loaded in downstream steps**
|
|
1136
|
+
@huggingface_hub
|
|
1137
|
+
@step
|
|
1138
|
+
def pull_model_from_huggingface(self):
|
|
1139
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
1140
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
1141
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
1142
|
+
# value of the function is a reference to the model in the backend storage.
|
|
1143
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
1144
|
+
|
|
1145
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
1146
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
1147
|
+
repo_id=self.model_id,
|
|
1148
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
1149
|
+
)
|
|
1150
|
+
self.next(self.train)
|
|
1151
|
+
|
|
1152
|
+
# **Usage: explicitly loading models at runtime from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
1153
|
+
@huggingface_hub
|
|
1154
|
+
@step
|
|
1155
|
+
def run_training(self):
|
|
1156
|
+
# Temporary directory (auto-cleaned on exit)
|
|
1157
|
+
with current.huggingface_hub.load(
|
|
1158
|
+
repo_id="google-bert/bert-base-uncased",
|
|
1159
|
+
allow_patterns=["*.bin"],
|
|
1160
|
+
) as local_path:
|
|
1161
|
+
# Use files under local_path
|
|
1162
|
+
train_model(local_path)
|
|
1163
|
+
...
|
|
1164
|
+
|
|
1165
|
+
# **Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
1166
|
+
|
|
1167
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
1168
|
+
@step
|
|
1169
|
+
def pull_model_from_huggingface(self):
|
|
1170
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1171
|
+
|
|
1172
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora", "/my-lora-directory")])
|
|
1173
|
+
@step
|
|
1174
|
+
def finetune_model(self):
|
|
1175
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1176
|
+
# path_to_model will be /my-directory
|
|
1177
|
+
|
|
1178
|
+
|
|
1179
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
1180
|
+
# except for `local_dir`
|
|
1181
|
+
@huggingface_hub(load=[
|
|
1182
|
+
{
|
|
1183
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
1184
|
+
},
|
|
1185
|
+
{
|
|
1186
|
+
"repo_id": "myorg/mistral-lora",
|
|
1187
|
+
"repo_type": "model",
|
|
1188
|
+
},
|
|
1189
|
+
])
|
|
1190
|
+
@step
|
|
1191
|
+
def finetune_model(self):
|
|
1192
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1193
|
+
# path_to_model will be /my-directory
|
|
1194
|
+
```
|
|
1195
|
+
|
|
1196
|
+
|
|
1197
|
+
Parameters
|
|
1198
|
+
----------
|
|
1199
|
+
temp_dir_root : str, optional
|
|
1200
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
1201
|
+
|
|
1202
|
+
cache_scope : str, optional
|
|
1203
|
+
The scope of the cache. Can be `checkpoint` / `flow` / `global`.
|
|
1204
|
+
- `checkpoint` (default): All repos are stored like objects saved by `@checkpoint`.
|
|
1205
|
+
i.e., the cached path is derived from the namespace, flow, step, and Metaflow foreach iteration.
|
|
1206
|
+
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
1207
|
+
|
|
1208
|
+
- `flow`: All repos are cached under the flow, regardless of namespace.
|
|
1209
|
+
i.e., the cached path is derived solely from the flow name.
|
|
1210
|
+
When to use this mode: (1) Multiple users are executing the same flow and want shared access to the repos cached by the decorator. (2) Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
1211
|
+
|
|
1212
|
+
- `global`: All repos are cached under a globally static path.
|
|
1213
|
+
i.e., the base path of the cache is static and all repos are stored under it.
|
|
1214
|
+
When to use this mode:
|
|
1215
|
+
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
1216
|
+
- Each caching scope comes with its own trade-offs:
|
|
1217
|
+
- `checkpoint`:
|
|
1218
|
+
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
1219
|
+
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
1220
|
+
- `flow`:
|
|
1221
|
+
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
1222
|
+
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
1223
|
+
- It doesn't promote cache reuse across flows.
|
|
1224
|
+
- `global`:
|
|
1225
|
+
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
1226
|
+
- It promotes cache reuse across flows.
|
|
1227
|
+
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
1202
1228
|
|
|
1203
|
-
|
|
1204
|
-
|
|
1205
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1229
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
1230
|
+
The list of repos (models/datasets) to load.
|
|
1206
1231
|
|
|
1207
|
-
|
|
1208
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
1232
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
1209
1233
|
|
|
1234
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
1235
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
1236
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
1237
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
1210
1238
|
|
|
1211
|
-
|
|
1212
|
-
|
|
1213
|
-
seconds : int, default 0
|
|
1214
|
-
Number of seconds to wait prior to timing out.
|
|
1215
|
-
minutes : int, default 0
|
|
1216
|
-
Number of minutes to wait prior to timing out.
|
|
1217
|
-
hours : int, default 0
|
|
1218
|
-
Number of hours to wait prior to timing out.
|
|
1239
|
+
- If repo is found in the datastore:
|
|
1240
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
1219
1241
|
"""
|
|
1220
1242
|
...
|
|
1221
1243
|
|
|
1222
|
-
|
|
1244
|
+
@typing.overload
|
|
1245
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1223
1246
|
"""
|
|
1224
|
-
|
|
1225
|
-
|
|
1226
|
-
User code call
|
|
1227
|
-
--------------
|
|
1228
|
-
@vllm(
|
|
1229
|
-
model="...",
|
|
1230
|
-
...
|
|
1231
|
-
)
|
|
1232
|
-
|
|
1233
|
-
Valid backend options
|
|
1234
|
-
---------------------
|
|
1235
|
-
- 'local': Run as a separate process on the local task machine.
|
|
1236
|
-
|
|
1237
|
-
Valid model options
|
|
1238
|
-
-------------------
|
|
1239
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
1247
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1240
1248
|
|
|
1241
|
-
|
|
1242
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
|
1249
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1243
1250
|
|
|
1244
1251
|
|
|
1245
1252
|
Parameters
|
|
1246
1253
|
----------
|
|
1247
|
-
|
|
1248
|
-
|
|
1249
|
-
|
|
1250
|
-
|
|
1251
|
-
|
|
1252
|
-
|
|
1253
|
-
|
|
1254
|
-
|
|
1255
|
-
debug: bool
|
|
1256
|
-
Whether to turn on verbose debugging logs.
|
|
1257
|
-
card_refresh_interval: int
|
|
1258
|
-
Interval in seconds for refreshing the vLLM status card.
|
|
1259
|
-
Only used when openai_api_server=True.
|
|
1260
|
-
max_retries: int
|
|
1261
|
-
Maximum number of retries checking for vLLM server startup.
|
|
1262
|
-
Only used when openai_api_server=True.
|
|
1263
|
-
retry_alert_frequency: int
|
|
1264
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
1265
|
-
Only used when openai_api_server=True.
|
|
1266
|
-
engine_args : dict
|
|
1267
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
1268
|
-
For example, `tensor_parallel_size=2`.
|
|
1254
|
+
type : str, default 'default'
|
|
1255
|
+
Card type.
|
|
1256
|
+
id : str, optional, default None
|
|
1257
|
+
If multiple cards are present, use this id to identify this card.
|
|
1258
|
+
options : Dict[str, Any], default {}
|
|
1259
|
+
Options passed to the card. The contents depend on the card type.
|
|
1260
|
+
timeout : int, default 45
|
|
1261
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1269
1262
|
"""
|
|
1270
1263
|
...
|
|
1271
1264
|
|
|
1272
1265
|
@typing.overload
|
|
1273
|
-
def
|
|
1274
|
-
"""
|
|
1275
|
-
Internal decorator to support Fast bakery
|
|
1276
|
-
"""
|
|
1266
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1277
1267
|
...
|
|
1278
1268
|
|
|
1279
1269
|
@typing.overload
|
|
1280
|
-
def
|
|
1281
|
-
...
|
|
1282
|
-
|
|
1283
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1284
|
-
"""
|
|
1285
|
-
Internal decorator to support Fast bakery
|
|
1286
|
-
"""
|
|
1270
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1287
1271
|
...
|
|
1288
1272
|
|
|
1289
|
-
|
|
1290
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1273
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
1291
1274
|
"""
|
|
1292
|
-
|
|
1293
|
-
|
|
1275
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1276
|
+
|
|
1277
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1294
1278
|
|
|
1295
1279
|
|
|
1296
1280
|
Parameters
|
|
1297
1281
|
----------
|
|
1298
|
-
|
|
1299
|
-
|
|
1300
|
-
|
|
1301
|
-
|
|
1282
|
+
type : str, default 'default'
|
|
1283
|
+
Card type.
|
|
1284
|
+
id : str, optional, default None
|
|
1285
|
+
If multiple cards are present, use this id to identify this card.
|
|
1286
|
+
options : Dict[str, Any], default {}
|
|
1287
|
+
Options passed to the card. The contents depend on the card type.
|
|
1288
|
+
timeout : int, default 45
|
|
1289
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1302
1290
|
"""
|
|
1303
1291
|
...
|
|
1304
1292
|
|
|
1305
|
-
|
|
1306
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1307
|
-
...
|
|
1308
|
-
|
|
1309
|
-
@typing.overload
|
|
1310
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1311
|
-
...
|
|
1312
|
-
|
|
1313
|
-
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
1293
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1314
1294
|
"""
|
|
1315
|
-
Specifies
|
|
1316
|
-
the execution of a step.
|
|
1295
|
+
Specifies that this step should execute on DGX cloud.
|
|
1317
1296
|
|
|
1318
1297
|
|
|
1319
1298
|
Parameters
|
|
1320
1299
|
----------
|
|
1321
|
-
|
|
1322
|
-
|
|
1323
|
-
|
|
1324
|
-
|
|
1300
|
+
gpu : int
|
|
1301
|
+
Number of GPUs to use.
|
|
1302
|
+
gpu_type : str
|
|
1303
|
+
Type of Nvidia GPU to use.
|
|
1325
1304
|
"""
|
|
1326
1305
|
...
|
|
1327
1306
|
|
|
1328
1307
|
@typing.overload
|
|
1329
|
-
def
|
|
1308
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1330
1309
|
"""
|
|
1331
|
-
Specifies
|
|
1310
|
+
Specifies the resources needed when executing this step.
|
|
1332
1311
|
|
|
1333
|
-
|
|
1334
|
-
|
|
1335
|
-
|
|
1336
|
-
|
|
1312
|
+
Use `@resources` to specify the resource requirements
|
|
1313
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1314
|
+
|
|
1315
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1316
|
+
```
|
|
1317
|
+
python myflow.py run --with batch
|
|
1318
|
+
```
|
|
1319
|
+
or
|
|
1320
|
+
```
|
|
1321
|
+
python myflow.py run --with kubernetes
|
|
1322
|
+
```
|
|
1323
|
+
which executes the flow on the desired system using the
|
|
1324
|
+
requirements specified in `@resources`.
|
|
1337
1325
|
|
|
1338
1326
|
|
|
1339
1327
|
Parameters
|
|
1340
1328
|
----------
|
|
1341
|
-
|
|
1342
|
-
|
|
1343
|
-
|
|
1344
|
-
|
|
1345
|
-
|
|
1346
|
-
|
|
1329
|
+
cpu : int, default 1
|
|
1330
|
+
Number of CPUs required for this step.
|
|
1331
|
+
gpu : int, optional, default None
|
|
1332
|
+
Number of GPUs required for this step.
|
|
1333
|
+
disk : int, optional, default None
|
|
1334
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1335
|
+
memory : int, default 4096
|
|
1336
|
+
Memory size (in MB) required for this step.
|
|
1337
|
+
shared_memory : int, optional, default None
|
|
1338
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1339
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1347
1340
|
"""
|
|
1348
1341
|
...
|
|
1349
1342
|
|
|
1350
1343
|
@typing.overload
|
|
1351
|
-
def
|
|
1344
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1352
1345
|
...
|
|
1353
1346
|
|
|
1354
1347
|
@typing.overload
|
|
1355
|
-
def
|
|
1348
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1356
1349
|
...
|
|
1357
1350
|
|
|
1358
|
-
def
|
|
1351
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
1359
1352
|
"""
|
|
1360
|
-
Specifies
|
|
1353
|
+
Specifies the resources needed when executing this step.
|
|
1361
1354
|
|
|
1362
|
-
|
|
1363
|
-
|
|
1364
|
-
|
|
1365
|
-
|
|
1355
|
+
Use `@resources` to specify the resource requirements
|
|
1356
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1357
|
+
|
|
1358
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1359
|
+
```
|
|
1360
|
+
python myflow.py run --with batch
|
|
1361
|
+
```
|
|
1362
|
+
or
|
|
1363
|
+
```
|
|
1364
|
+
python myflow.py run --with kubernetes
|
|
1365
|
+
```
|
|
1366
|
+
which executes the flow on the desired system using the
|
|
1367
|
+
requirements specified in `@resources`.
|
|
1366
1368
|
|
|
1367
1369
|
|
|
1368
1370
|
Parameters
|
|
1369
1371
|
----------
|
|
1370
|
-
|
|
1371
|
-
|
|
1372
|
-
|
|
1373
|
-
|
|
1374
|
-
|
|
1375
|
-
|
|
1376
|
-
|
|
1377
|
-
|
|
1378
|
-
|
|
1379
|
-
|
|
1380
|
-
|
|
1381
|
-
"""
|
|
1382
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
1383
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
1372
|
+
cpu : int, default 1
|
|
1373
|
+
Number of CPUs required for this step.
|
|
1374
|
+
gpu : int, optional, default None
|
|
1375
|
+
Number of GPUs required for this step.
|
|
1376
|
+
disk : int, optional, default None
|
|
1377
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1378
|
+
memory : int, default 4096
|
|
1379
|
+
Memory size (in MB) required for this step.
|
|
1380
|
+
shared_memory : int, optional, default None
|
|
1381
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1382
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1384
1383
|
"""
|
|
1385
1384
|
...
|
|
1386
1385
|
|
|
1387
|
-
|
|
1388
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1389
|
-
...
|
|
1390
|
-
|
|
1391
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1386
|
+
def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1392
1387
|
"""
|
|
1393
|
-
|
|
1394
|
-
|
|
1388
|
+
`@nebius_s3_proxy` is a Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1389
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1390
|
+
a Neo Cloud like Nebius. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
1391
|
+
|
|
1392
|
+
|
|
1393
|
+
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
1394
|
+
for S3 read and write requests.
|
|
1395
|
+
|
|
1396
|
+
This decorator requires an integration in the Outerbounds platform that
|
|
1397
|
+
points to an external bucket. It affects S3 operations performed via
|
|
1398
|
+
Metaflow's `get_aws_client` and `S3` within a `@step`.
|
|
1399
|
+
|
|
1400
|
+
Read operations
|
|
1401
|
+
---------------
|
|
1402
|
+
All read operations pass through the proxy. If an object does not already
|
|
1403
|
+
exist in the external bucket, it is cached there. For example, if code reads
|
|
1404
|
+
from buckets `FOO` and `BAR` using the `S3` interface, objects from both
|
|
1405
|
+
buckets are cached in the external bucket.
|
|
1406
|
+
|
|
1407
|
+
During task execution, all S3‑related read requests are routed through the
|
|
1408
|
+
proxy:
|
|
1409
|
+
- If the object is present in the external object store, the proxy
|
|
1410
|
+
streams it directly from there without accessing the requested origin
|
|
1411
|
+
bucket.
|
|
1412
|
+
- If the object is not present in the external storage, the proxy
|
|
1413
|
+
fetches it from the requested bucket, caches it in the external
|
|
1414
|
+
storage, and streams the response from the origin bucket.
|
|
1415
|
+
|
|
1416
|
+
Warning
|
|
1417
|
+
-------
|
|
1418
|
+
All READ operations (e.g., GetObject, HeadObject) pass through the external
|
|
1419
|
+
bucket regardless of the bucket specified in user code. Even
|
|
1420
|
+
`S3(run=self)` and `S3(s3root="mybucketfoo")` requests go through the
|
|
1421
|
+
external bucket cache.
|
|
1422
|
+
|
|
1423
|
+
Write operations
|
|
1424
|
+
----------------
|
|
1425
|
+
Write behavior is controlled by the `write_mode` parameter, which determines
|
|
1426
|
+
whether writes also persist objects in the cache.
|
|
1427
|
+
|
|
1428
|
+
`write_mode` values:
|
|
1429
|
+
- `origin-and-cache`: objects are written both to the cache and to their
|
|
1430
|
+
intended origin bucket.
|
|
1431
|
+
- `origin`: objects are written only to their intended origin bucket.
|
|
1432
|
+
|
|
1433
|
+
|
|
1434
|
+
Parameters
|
|
1435
|
+
----------
|
|
1436
|
+
integration_name : str, optional
|
|
1437
|
+
[Outerbounds integration name](https://docs.outerbounds.com/outerbounds/configuring-secrets/#integrations-view)
|
|
1438
|
+
that holds the configuration for the external, S3‑compatible object
|
|
1439
|
+
storage bucket. If not specified, the only available S3 proxy
|
|
1440
|
+
integration in the namespace is used (fails if multiple exist).
|
|
1441
|
+
write_mode : str, optional
|
|
1442
|
+
Controls whether writes also go to the external bucket.
|
|
1443
|
+
- `origin` (default)
|
|
1444
|
+
- `origin-and-cache`
|
|
1445
|
+
debug : bool, optional
|
|
1446
|
+
Enables debug logging for proxy operations.
|
|
1395
1447
|
"""
|
|
1396
1448
|
...
|
|
1397
1449
|
|
|
1398
|
-
def
|
|
1450
|
+
def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1399
1451
|
"""
|
|
1400
|
-
`@
|
|
1452
|
+
`@coreweave_s3_proxy` is a CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1401
1453
|
It exists to make it easier for users to know that this decorator should only be used with
|
|
1402
|
-
a Neo Cloud like
|
|
1454
|
+
a Neo Cloud like CoreWeave. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
1403
1455
|
|
|
1404
1456
|
|
|
1405
1457
|
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
@@ -1460,104 +1512,88 @@ def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode
|
|
|
1460
1512
|
...
|
|
1461
1513
|
|
|
1462
1514
|
@typing.overload
|
|
1463
|
-
def
|
|
1515
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1464
1516
|
"""
|
|
1465
|
-
Specifies the
|
|
1517
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1466
1518
|
|
|
1467
|
-
|
|
1468
|
-
|
|
1469
|
-
you can use `@pypi_base` to set packages required by all
|
|
1470
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1519
|
+
Use `@conda_base` to set common libraries required by all
|
|
1520
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1471
1521
|
|
|
1472
1522
|
|
|
1473
1523
|
Parameters
|
|
1474
1524
|
----------
|
|
1475
|
-
packages : Dict[str, str], default
|
|
1476
|
-
Packages to use for this
|
|
1525
|
+
packages : Dict[str, str], default {}
|
|
1526
|
+
Packages to use for this flow. The key is the name of the package
|
|
1477
1527
|
and the value is the version to use.
|
|
1478
|
-
|
|
1528
|
+
libraries : Dict[str, str], default {}
|
|
1529
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1530
|
+
python : str, optional, default None
|
|
1479
1531
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1480
1532
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1533
|
+
disabled : bool, default False
|
|
1534
|
+
If set to True, disables Conda.
|
|
1481
1535
|
"""
|
|
1482
1536
|
...
|
|
1483
1537
|
|
|
1484
1538
|
@typing.overload
|
|
1485
|
-
def
|
|
1486
|
-
...
|
|
1487
|
-
|
|
1488
|
-
@typing.overload
|
|
1489
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1539
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1490
1540
|
...
|
|
1491
1541
|
|
|
1492
|
-
def
|
|
1542
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1493
1543
|
"""
|
|
1494
|
-
Specifies the
|
|
1544
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1495
1545
|
|
|
1496
|
-
|
|
1497
|
-
|
|
1498
|
-
you can use `@pypi_base` to set packages required by all
|
|
1499
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1546
|
+
Use `@conda_base` to set common libraries required by all
|
|
1547
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1500
1548
|
|
|
1501
1549
|
|
|
1502
1550
|
Parameters
|
|
1503
1551
|
----------
|
|
1504
|
-
packages : Dict[str, str], default
|
|
1505
|
-
Packages to use for this
|
|
1552
|
+
packages : Dict[str, str], default {}
|
|
1553
|
+
Packages to use for this flow. The key is the name of the package
|
|
1506
1554
|
and the value is the version to use.
|
|
1507
|
-
|
|
1555
|
+
libraries : Dict[str, str], default {}
|
|
1556
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1557
|
+
python : str, optional, default None
|
|
1508
1558
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1509
1559
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1560
|
+
disabled : bool, default False
|
|
1561
|
+
If set to True, disables Conda.
|
|
1510
1562
|
"""
|
|
1511
1563
|
...
|
|
1512
1564
|
|
|
1513
|
-
|
|
1514
|
-
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1565
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1515
1566
|
"""
|
|
1516
|
-
Specifies
|
|
1517
|
-
|
|
1567
|
+
Specifies what flows belong to the same project.
|
|
1568
|
+
|
|
1569
|
+
A project-specific namespace is created for all flows that
|
|
1570
|
+
use the same `@project(name)`.
|
|
1518
1571
|
|
|
1519
1572
|
|
|
1520
1573
|
Parameters
|
|
1521
1574
|
----------
|
|
1522
|
-
|
|
1523
|
-
|
|
1524
|
-
|
|
1525
|
-
|
|
1526
|
-
weekly : bool, default False
|
|
1527
|
-
Run the workflow weekly.
|
|
1528
|
-
cron : str, optional, default None
|
|
1529
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1530
|
-
specified by this expression.
|
|
1531
|
-
timezone : str, optional, default None
|
|
1532
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1533
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1534
|
-
"""
|
|
1535
|
-
...
|
|
1536
|
-
|
|
1537
|
-
@typing.overload
|
|
1538
|
-
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1539
|
-
...
|
|
1540
|
-
|
|
1541
|
-
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1542
|
-
"""
|
|
1543
|
-
Specifies the times when the flow should be run when running on a
|
|
1544
|
-
production scheduler.
|
|
1575
|
+
name : str
|
|
1576
|
+
Project name. Make sure that the name is unique amongst all
|
|
1577
|
+
projects that use the same production scheduler. The name may
|
|
1578
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
1545
1579
|
|
|
1580
|
+
branch : Optional[str], default None
|
|
1581
|
+
The branch to use. If not specified, the branch is set to
|
|
1582
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
1583
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
1584
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
1546
1585
|
|
|
1547
|
-
|
|
1548
|
-
|
|
1549
|
-
|
|
1550
|
-
|
|
1551
|
-
|
|
1552
|
-
|
|
1553
|
-
|
|
1554
|
-
|
|
1555
|
-
|
|
1556
|
-
|
|
1557
|
-
|
|
1558
|
-
timezone : str, optional, default None
|
|
1559
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1560
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1586
|
+
production : bool, default False
|
|
1587
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
1588
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
1589
|
+
`production` in the decorator and on the command line.
|
|
1590
|
+
The project branch name will be:
|
|
1591
|
+
- if `branch` is specified:
|
|
1592
|
+
- if `production` is True: `prod.<branch>`
|
|
1593
|
+
- if `production` is False: `test.<branch>`
|
|
1594
|
+
- if `branch` is not specified:
|
|
1595
|
+
- if `production` is True: `prod`
|
|
1596
|
+
- if `production` is False: `user.<username>`
|
|
1561
1597
|
"""
|
|
1562
1598
|
...
|
|
1563
1599
|
|
|
@@ -1605,88 +1641,144 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
|
1605
1641
|
...
|
|
1606
1642
|
|
|
1607
1643
|
@typing.overload
|
|
1608
|
-
def
|
|
1644
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1609
1645
|
"""
|
|
1610
|
-
Specifies the
|
|
1646
|
+
Specifies the flow(s) that this flow depends on.
|
|
1611
1647
|
|
|
1612
|
-
|
|
1613
|
-
|
|
1648
|
+
```
|
|
1649
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1650
|
+
```
|
|
1651
|
+
or
|
|
1652
|
+
```
|
|
1653
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1654
|
+
```
|
|
1655
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1656
|
+
when upstream runs within the same namespace complete successfully
|
|
1657
|
+
|
|
1658
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1659
|
+
by specifying the fully qualified project_flow_name.
|
|
1660
|
+
```
|
|
1661
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1662
|
+
```
|
|
1663
|
+
or
|
|
1664
|
+
```
|
|
1665
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1666
|
+
```
|
|
1667
|
+
|
|
1668
|
+
You can also specify just the project or project branch (other values will be
|
|
1669
|
+
inferred from the current project or project branch):
|
|
1670
|
+
```
|
|
1671
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1672
|
+
```
|
|
1673
|
+
|
|
1674
|
+
Note that `branch` is typically one of:
|
|
1675
|
+
- `prod`
|
|
1676
|
+
- `user.bob`
|
|
1677
|
+
- `test.my_experiment`
|
|
1678
|
+
- `prod.staging`
|
|
1679
|
+
|
|
1680
|
+
|
|
1681
|
+
Parameters
|
|
1682
|
+
----------
|
|
1683
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1684
|
+
Upstream flow dependency for this flow.
|
|
1685
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1686
|
+
Upstream flow dependencies for this flow.
|
|
1687
|
+
options : Dict[str, Any], default {}
|
|
1688
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1689
|
+
"""
|
|
1690
|
+
...
|
|
1691
|
+
|
|
1692
|
+
@typing.overload
|
|
1693
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1694
|
+
...
|
|
1695
|
+
|
|
1696
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1697
|
+
"""
|
|
1698
|
+
Specifies the flow(s) that this flow depends on.
|
|
1699
|
+
|
|
1700
|
+
```
|
|
1701
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1702
|
+
```
|
|
1703
|
+
or
|
|
1704
|
+
```
|
|
1705
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1706
|
+
```
|
|
1707
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1708
|
+
when upstream runs within the same namespace complete successfully
|
|
1709
|
+
|
|
1710
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1711
|
+
by specifying the fully qualified project_flow_name.
|
|
1712
|
+
```
|
|
1713
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1714
|
+
```
|
|
1715
|
+
or
|
|
1716
|
+
```
|
|
1717
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1718
|
+
```
|
|
1719
|
+
|
|
1720
|
+
You can also specify just the project or project branch (other values will be
|
|
1721
|
+
inferred from the current project or project branch):
|
|
1722
|
+
```
|
|
1723
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1724
|
+
```
|
|
1725
|
+
|
|
1726
|
+
Note that `branch` is typically one of:
|
|
1727
|
+
- `prod`
|
|
1728
|
+
- `user.bob`
|
|
1729
|
+
- `test.my_experiment`
|
|
1730
|
+
- `prod.staging`
|
|
1731
|
+
|
|
1732
|
+
|
|
1733
|
+
Parameters
|
|
1734
|
+
----------
|
|
1735
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1736
|
+
Upstream flow dependency for this flow.
|
|
1737
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1738
|
+
Upstream flow dependencies for this flow.
|
|
1739
|
+
options : Dict[str, Any], default {}
|
|
1740
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1741
|
+
"""
|
|
1742
|
+
...
|
|
1743
|
+
|
|
1744
|
+
@typing.overload
|
|
1745
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1746
|
+
"""
|
|
1747
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1614
1748
|
|
|
1749
|
+
Use `@pypi_base` to set common packages required by all
|
|
1750
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1615
1751
|
|
|
1616
1752
|
Parameters
|
|
1617
1753
|
----------
|
|
1618
|
-
packages : Dict[str, str], default {}
|
|
1754
|
+
packages : Dict[str, str], default: {}
|
|
1619
1755
|
Packages to use for this flow. The key is the name of the package
|
|
1620
1756
|
and the value is the version to use.
|
|
1621
|
-
|
|
1622
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1623
|
-
python : str, optional, default None
|
|
1757
|
+
python : str, optional, default: None
|
|
1624
1758
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1625
1759
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1626
|
-
disabled : bool, default False
|
|
1627
|
-
If set to True, disables Conda.
|
|
1628
1760
|
"""
|
|
1629
1761
|
...
|
|
1630
1762
|
|
|
1631
1763
|
@typing.overload
|
|
1632
|
-
def
|
|
1764
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1633
1765
|
...
|
|
1634
1766
|
|
|
1635
|
-
def
|
|
1767
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1636
1768
|
"""
|
|
1637
|
-
Specifies the
|
|
1638
|
-
|
|
1639
|
-
Use `@conda_base` to set common libraries required by all
|
|
1640
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1769
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1641
1770
|
|
|
1771
|
+
Use `@pypi_base` to set common packages required by all
|
|
1772
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1642
1773
|
|
|
1643
1774
|
Parameters
|
|
1644
1775
|
----------
|
|
1645
|
-
packages : Dict[str, str], default {}
|
|
1776
|
+
packages : Dict[str, str], default: {}
|
|
1646
1777
|
Packages to use for this flow. The key is the name of the package
|
|
1647
1778
|
and the value is the version to use.
|
|
1648
|
-
|
|
1649
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1650
|
-
python : str, optional, default None
|
|
1779
|
+
python : str, optional, default: None
|
|
1651
1780
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1652
1781
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1653
|
-
disabled : bool, default False
|
|
1654
|
-
If set to True, disables Conda.
|
|
1655
|
-
"""
|
|
1656
|
-
...
|
|
1657
|
-
|
|
1658
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1659
|
-
"""
|
|
1660
|
-
Specifies what flows belong to the same project.
|
|
1661
|
-
|
|
1662
|
-
A project-specific namespace is created for all flows that
|
|
1663
|
-
use the same `@project(name)`.
|
|
1664
|
-
|
|
1665
|
-
|
|
1666
|
-
Parameters
|
|
1667
|
-
----------
|
|
1668
|
-
name : str
|
|
1669
|
-
Project name. Make sure that the name is unique amongst all
|
|
1670
|
-
projects that use the same production scheduler. The name may
|
|
1671
|
-
contain only lowercase alphanumeric characters and underscores.
|
|
1672
|
-
|
|
1673
|
-
branch : Optional[str], default None
|
|
1674
|
-
The branch to use. If not specified, the branch is set to
|
|
1675
|
-
`user.<username>` unless `production` is set to `True`. This can
|
|
1676
|
-
also be set on the command line using `--branch` as a top-level option.
|
|
1677
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
|
1678
|
-
|
|
1679
|
-
production : bool, default False
|
|
1680
|
-
Whether or not the branch is the production branch. This can also be set on the
|
|
1681
|
-
command line using `--production` as a top-level option. It is an error to specify
|
|
1682
|
-
`production` in the decorator and on the command line.
|
|
1683
|
-
The project branch name will be:
|
|
1684
|
-
- if `branch` is specified:
|
|
1685
|
-
- if `production` is True: `prod.<branch>`
|
|
1686
|
-
- if `production` is False: `test.<branch>`
|
|
1687
|
-
- if `branch` is not specified:
|
|
1688
|
-
- if `production` is True: `prod`
|
|
1689
|
-
- if `production` is False: `user.<username>`
|
|
1690
1782
|
"""
|
|
1691
1783
|
...
|
|
1692
1784
|
|
|
@@ -1847,148 +1939,6 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1847
1939
|
"""
|
|
1848
1940
|
...
|
|
1849
1941
|
|
|
1850
|
-
@typing.overload
|
|
1851
|
-
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1852
|
-
"""
|
|
1853
|
-
Specifies the flow(s) that this flow depends on.
|
|
1854
|
-
|
|
1855
|
-
```
|
|
1856
|
-
@trigger_on_finish(flow='FooFlow')
|
|
1857
|
-
```
|
|
1858
|
-
or
|
|
1859
|
-
```
|
|
1860
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1861
|
-
```
|
|
1862
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1863
|
-
when upstream runs within the same namespace complete successfully
|
|
1864
|
-
|
|
1865
|
-
Additionally, you can specify project aware upstream flow dependencies
|
|
1866
|
-
by specifying the fully qualified project_flow_name.
|
|
1867
|
-
```
|
|
1868
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1869
|
-
```
|
|
1870
|
-
or
|
|
1871
|
-
```
|
|
1872
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1873
|
-
```
|
|
1874
|
-
|
|
1875
|
-
You can also specify just the project or project branch (other values will be
|
|
1876
|
-
inferred from the current project or project branch):
|
|
1877
|
-
```
|
|
1878
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1879
|
-
```
|
|
1880
|
-
|
|
1881
|
-
Note that `branch` is typically one of:
|
|
1882
|
-
- `prod`
|
|
1883
|
-
- `user.bob`
|
|
1884
|
-
- `test.my_experiment`
|
|
1885
|
-
- `prod.staging`
|
|
1886
|
-
|
|
1887
|
-
|
|
1888
|
-
Parameters
|
|
1889
|
-
----------
|
|
1890
|
-
flow : Union[str, Dict[str, str]], optional, default None
|
|
1891
|
-
Upstream flow dependency for this flow.
|
|
1892
|
-
flows : List[Union[str, Dict[str, str]]], default []
|
|
1893
|
-
Upstream flow dependencies for this flow.
|
|
1894
|
-
options : Dict[str, Any], default {}
|
|
1895
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
1896
|
-
"""
|
|
1897
|
-
...
|
|
1898
|
-
|
|
1899
|
-
@typing.overload
|
|
1900
|
-
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1901
|
-
...
|
|
1902
|
-
|
|
1903
|
-
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1904
|
-
"""
|
|
1905
|
-
Specifies the flow(s) that this flow depends on.
|
|
1906
|
-
|
|
1907
|
-
```
|
|
1908
|
-
@trigger_on_finish(flow='FooFlow')
|
|
1909
|
-
```
|
|
1910
|
-
or
|
|
1911
|
-
```
|
|
1912
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1913
|
-
```
|
|
1914
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1915
|
-
when upstream runs within the same namespace complete successfully
|
|
1916
|
-
|
|
1917
|
-
Additionally, you can specify project aware upstream flow dependencies
|
|
1918
|
-
by specifying the fully qualified project_flow_name.
|
|
1919
|
-
```
|
|
1920
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1921
|
-
```
|
|
1922
|
-
or
|
|
1923
|
-
```
|
|
1924
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1925
|
-
```
|
|
1926
|
-
|
|
1927
|
-
You can also specify just the project or project branch (other values will be
|
|
1928
|
-
inferred from the current project or project branch):
|
|
1929
|
-
```
|
|
1930
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1931
|
-
```
|
|
1932
|
-
|
|
1933
|
-
Note that `branch` is typically one of:
|
|
1934
|
-
- `prod`
|
|
1935
|
-
- `user.bob`
|
|
1936
|
-
- `test.my_experiment`
|
|
1937
|
-
- `prod.staging`
|
|
1938
|
-
|
|
1939
|
-
|
|
1940
|
-
Parameters
|
|
1941
|
-
----------
|
|
1942
|
-
flow : Union[str, Dict[str, str]], optional, default None
|
|
1943
|
-
Upstream flow dependency for this flow.
|
|
1944
|
-
flows : List[Union[str, Dict[str, str]]], default []
|
|
1945
|
-
Upstream flow dependencies for this flow.
|
|
1946
|
-
options : Dict[str, Any], default {}
|
|
1947
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
1948
|
-
"""
|
|
1949
|
-
...
|
|
1950
|
-
|
|
1951
|
-
@typing.overload
|
|
1952
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1953
|
-
"""
|
|
1954
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1955
|
-
|
|
1956
|
-
Use `@pypi_base` to set common packages required by all
|
|
1957
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1958
|
-
|
|
1959
|
-
Parameters
|
|
1960
|
-
----------
|
|
1961
|
-
packages : Dict[str, str], default: {}
|
|
1962
|
-
Packages to use for this flow. The key is the name of the package
|
|
1963
|
-
and the value is the version to use.
|
|
1964
|
-
python : str, optional, default: None
|
|
1965
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1966
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1967
|
-
"""
|
|
1968
|
-
...
|
|
1969
|
-
|
|
1970
|
-
@typing.overload
|
|
1971
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1972
|
-
...
|
|
1973
|
-
|
|
1974
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1975
|
-
"""
|
|
1976
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1977
|
-
|
|
1978
|
-
Use `@pypi_base` to set common packages required by all
|
|
1979
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1980
|
-
|
|
1981
|
-
Parameters
|
|
1982
|
-
----------
|
|
1983
|
-
packages : Dict[str, str], default: {}
|
|
1984
|
-
Packages to use for this flow. The key is the name of the package
|
|
1985
|
-
and the value is the version to use.
|
|
1986
|
-
python : str, optional, default: None
|
|
1987
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1988
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1989
|
-
"""
|
|
1990
|
-
...
|
|
1991
|
-
|
|
1992
1942
|
@typing.overload
|
|
1993
1943
|
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1994
1944
|
"""
|
|
@@ -2082,5 +2032,56 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
|
2082
2032
|
"""
|
|
2083
2033
|
...
|
|
2084
2034
|
|
|
2035
|
+
@typing.overload
|
|
2036
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
2037
|
+
"""
|
|
2038
|
+
Specifies the times when the flow should be run when running on a
|
|
2039
|
+
production scheduler.
|
|
2040
|
+
|
|
2041
|
+
|
|
2042
|
+
Parameters
|
|
2043
|
+
----------
|
|
2044
|
+
hourly : bool, default False
|
|
2045
|
+
Run the workflow hourly.
|
|
2046
|
+
daily : bool, default True
|
|
2047
|
+
Run the workflow daily.
|
|
2048
|
+
weekly : bool, default False
|
|
2049
|
+
Run the workflow weekly.
|
|
2050
|
+
cron : str, optional, default None
|
|
2051
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
2052
|
+
specified by this expression.
|
|
2053
|
+
timezone : str, optional, default None
|
|
2054
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
2055
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
2056
|
+
"""
|
|
2057
|
+
...
|
|
2058
|
+
|
|
2059
|
+
@typing.overload
|
|
2060
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
2061
|
+
...
|
|
2062
|
+
|
|
2063
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
2064
|
+
"""
|
|
2065
|
+
Specifies the times when the flow should be run when running on a
|
|
2066
|
+
production scheduler.
|
|
2067
|
+
|
|
2068
|
+
|
|
2069
|
+
Parameters
|
|
2070
|
+
----------
|
|
2071
|
+
hourly : bool, default False
|
|
2072
|
+
Run the workflow hourly.
|
|
2073
|
+
daily : bool, default True
|
|
2074
|
+
Run the workflow daily.
|
|
2075
|
+
weekly : bool, default False
|
|
2076
|
+
Run the workflow weekly.
|
|
2077
|
+
cron : str, optional, default None
|
|
2078
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
2079
|
+
specified by this expression.
|
|
2080
|
+
timezone : str, optional, default None
|
|
2081
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
2082
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
2083
|
+
"""
|
|
2084
|
+
...
|
|
2085
|
+
|
|
2085
2086
|
pkg_name: str
|
|
2086
2087
|
|