ob-metaflow-stubs 6.0.10.17__py2.py3-none-any.whl → 6.0.10.19__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ob-metaflow-stubs might be problematic. Click here for more details.

Files changed (266) hide show
  1. metaflow-stubs/__init__.pyi +1109 -1109
  2. metaflow-stubs/cards.pyi +2 -2
  3. metaflow-stubs/cli.pyi +2 -2
  4. metaflow-stubs/cli_components/__init__.pyi +2 -2
  5. metaflow-stubs/cli_components/utils.pyi +2 -2
  6. metaflow-stubs/client/__init__.pyi +2 -2
  7. metaflow-stubs/client/core.pyi +5 -5
  8. metaflow-stubs/client/filecache.pyi +3 -3
  9. metaflow-stubs/events.pyi +3 -3
  10. metaflow-stubs/exception.pyi +2 -2
  11. metaflow-stubs/flowspec.pyi +6 -6
  12. metaflow-stubs/generated_for.txt +1 -1
  13. metaflow-stubs/includefile.pyi +3 -3
  14. metaflow-stubs/meta_files.pyi +2 -2
  15. metaflow-stubs/metadata_provider/__init__.pyi +2 -2
  16. metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
  17. metaflow-stubs/metadata_provider/metadata.pyi +3 -3
  18. metaflow-stubs/metadata_provider/util.pyi +2 -2
  19. metaflow-stubs/metaflow_config.pyi +2 -2
  20. metaflow-stubs/metaflow_current.pyi +51 -51
  21. metaflow-stubs/metaflow_git.pyi +2 -2
  22. metaflow-stubs/mf_extensions/__init__.pyi +2 -2
  23. metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
  24. metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
  25. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
  26. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
  27. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +3 -3
  28. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
  29. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +4 -4
  30. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
  31. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
  32. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +4 -4
  33. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
  34. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
  35. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
  36. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +4 -4
  37. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +5 -5
  38. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
  39. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +3 -3
  40. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
  41. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
  42. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +3 -3
  43. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
  44. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
  45. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
  46. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
  47. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
  48. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +3 -3
  49. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
  50. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
  51. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/__init__.pyi +2 -2
  52. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/hf_hub_card.pyi +4 -4
  53. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +3 -3
  54. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
  55. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
  56. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
  57. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +4 -4
  58. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
  59. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
  60. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
  61. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
  62. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
  63. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
  64. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +3 -3
  65. metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +3 -3
  66. metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
  67. metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
  68. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
  69. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
  70. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
  71. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
  72. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
  73. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
  74. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
  75. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +3 -3
  76. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +4 -4
  77. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
  78. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
  79. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +3 -3
  80. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
  81. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
  82. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +3 -3
  83. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
  84. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
  85. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +3 -3
  86. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
  87. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +5 -5
  88. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
  89. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
  90. metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +4 -4
  91. metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
  92. metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +3 -3
  93. metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
  94. metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
  95. metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
  96. metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
  97. metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +4 -4
  98. metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +4 -4
  99. metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
  100. metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +4 -4
  101. metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
  102. metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
  103. metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
  104. metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
  105. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
  106. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
  107. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
  108. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
  109. metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
  110. metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
  111. metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
  112. metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
  113. metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
  114. metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +3 -3
  115. metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
  116. metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
  117. metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +2 -2
  118. metaflow-stubs/multicore_utils.pyi +2 -2
  119. metaflow-stubs/ob_internal.pyi +2 -2
  120. metaflow-stubs/packaging_sys/__init__.pyi +7 -7
  121. metaflow-stubs/packaging_sys/backend.pyi +2 -2
  122. metaflow-stubs/packaging_sys/distribution_support.pyi +4 -4
  123. metaflow-stubs/packaging_sys/tar_backend.pyi +5 -5
  124. metaflow-stubs/packaging_sys/utils.pyi +2 -2
  125. metaflow-stubs/packaging_sys/v1.pyi +4 -4
  126. metaflow-stubs/parameters.pyi +3 -3
  127. metaflow-stubs/plugins/__init__.pyi +12 -12
  128. metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
  129. metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
  130. metaflow-stubs/plugins/airflow/exception.pyi +2 -2
  131. metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
  132. metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
  133. metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
  134. metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
  135. metaflow-stubs/plugins/argo/__init__.pyi +2 -2
  136. metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
  137. metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
  138. metaflow-stubs/plugins/argo/argo_workflows.pyi +4 -4
  139. metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
  140. metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +4 -4
  141. metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +4 -4
  142. metaflow-stubs/plugins/argo/exit_hooks.pyi +3 -3
  143. metaflow-stubs/plugins/aws/__init__.pyi +2 -2
  144. metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
  145. metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
  146. metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
  147. metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
  148. metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
  149. metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
  150. metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
  151. metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
  152. metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
  153. metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
  154. metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
  155. metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
  156. metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
  157. metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +4 -4
  158. metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +4 -4
  159. metaflow-stubs/plugins/azure/__init__.pyi +2 -2
  160. metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
  161. metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
  162. metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
  163. metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
  164. metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
  165. metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
  166. metaflow-stubs/plugins/cards/__init__.pyi +2 -2
  167. metaflow-stubs/plugins/cards/card_client.pyi +3 -3
  168. metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
  169. metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
  170. metaflow-stubs/plugins/cards/card_decorator.pyi +3 -3
  171. metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
  172. metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
  173. metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
  174. metaflow-stubs/plugins/cards/card_modules/components.pyi +18 -6
  175. metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
  176. metaflow-stubs/plugins/cards/card_modules/json_viewer.pyi +4 -4
  177. metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
  178. metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
  179. metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
  180. metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
  181. metaflow-stubs/plugins/cards/exception.pyi +2 -2
  182. metaflow-stubs/plugins/catch_decorator.pyi +2 -2
  183. metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
  184. metaflow-stubs/plugins/datatools/local.pyi +2 -2
  185. metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
  186. metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
  187. metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
  188. metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
  189. metaflow-stubs/plugins/debug_logger.pyi +2 -2
  190. metaflow-stubs/plugins/debug_monitor.pyi +2 -2
  191. metaflow-stubs/plugins/environment_decorator.pyi +2 -2
  192. metaflow-stubs/plugins/events_decorator.pyi +2 -2
  193. metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
  194. metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
  195. metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
  196. metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
  197. metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
  198. metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
  199. metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
  200. metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
  201. metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
  202. metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
  203. metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
  204. metaflow-stubs/plugins/kubernetes/kube_utils.pyi +3 -3
  205. metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
  206. metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
  207. metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
  208. metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
  209. metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
  210. metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
  211. metaflow-stubs/plugins/optuna/__init__.pyi +2 -2
  212. metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
  213. metaflow-stubs/plugins/parsers.pyi +2 -2
  214. metaflow-stubs/plugins/perimeters.pyi +2 -2
  215. metaflow-stubs/plugins/project_decorator.pyi +2 -2
  216. metaflow-stubs/plugins/pypi/__init__.pyi +3 -3
  217. metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
  218. metaflow-stubs/plugins/pypi/conda_environment.pyi +5 -5
  219. metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
  220. metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
  221. metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
  222. metaflow-stubs/plugins/pypi/utils.pyi +2 -2
  223. metaflow-stubs/plugins/resources_decorator.pyi +2 -2
  224. metaflow-stubs/plugins/retry_decorator.pyi +2 -2
  225. metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
  226. metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +4 -4
  227. metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
  228. metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
  229. metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
  230. metaflow-stubs/plugins/secrets/utils.pyi +2 -2
  231. metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
  232. metaflow-stubs/plugins/storage_executor.pyi +2 -2
  233. metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
  234. metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
  235. metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
  236. metaflow-stubs/plugins/uv/__init__.pyi +2 -2
  237. metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
  238. metaflow-stubs/profilers/__init__.pyi +2 -2
  239. metaflow-stubs/pylint_wrapper.pyi +2 -2
  240. metaflow-stubs/runner/__init__.pyi +2 -2
  241. metaflow-stubs/runner/deployer.pyi +34 -34
  242. metaflow-stubs/runner/deployer_impl.pyi +2 -2
  243. metaflow-stubs/runner/metaflow_runner.pyi +4 -4
  244. metaflow-stubs/runner/nbdeploy.pyi +2 -2
  245. metaflow-stubs/runner/nbrun.pyi +2 -2
  246. metaflow-stubs/runner/subprocess_manager.pyi +2 -2
  247. metaflow-stubs/runner/utils.pyi +2 -2
  248. metaflow-stubs/system/__init__.pyi +2 -2
  249. metaflow-stubs/system/system_logger.pyi +2 -2
  250. metaflow-stubs/system/system_monitor.pyi +2 -2
  251. metaflow-stubs/tagging_util.pyi +2 -2
  252. metaflow-stubs/tuple_util.pyi +2 -2
  253. metaflow-stubs/user_configs/__init__.pyi +2 -2
  254. metaflow-stubs/user_configs/config_options.pyi +3 -3
  255. metaflow-stubs/user_configs/config_parameters.pyi +6 -6
  256. metaflow-stubs/user_decorators/__init__.pyi +2 -2
  257. metaflow-stubs/user_decorators/common.pyi +2 -2
  258. metaflow-stubs/user_decorators/mutable_flow.pyi +4 -4
  259. metaflow-stubs/user_decorators/mutable_step.pyi +4 -4
  260. metaflow-stubs/user_decorators/user_flow_decorator.pyi +5 -5
  261. metaflow-stubs/user_decorators/user_step_decorator.pyi +6 -6
  262. {ob_metaflow_stubs-6.0.10.17.dist-info → ob_metaflow_stubs-6.0.10.19.dist-info}/METADATA +1 -1
  263. ob_metaflow_stubs-6.0.10.19.dist-info/RECORD +266 -0
  264. ob_metaflow_stubs-6.0.10.17.dist-info/RECORD +0 -266
  265. {ob_metaflow_stubs-6.0.10.17.dist-info → ob_metaflow_stubs-6.0.10.19.dist-info}/WHEEL +0 -0
  266. {ob_metaflow_stubs-6.0.10.17.dist-info → ob_metaflow_stubs-6.0.10.19.dist-info}/top_level.txt +0 -0
@@ -1,15 +1,15 @@
1
1
  ######################################################################################################
2
2
  # Auto-generated Metaflow stub file #
3
- # MF version: 2.18.11.1+obcheckpoint(0.2.8);ob(v1) #
4
- # Generated on 2025-10-13T21:06:57.979951 #
3
+ # MF version: 2.18.13.1+obcheckpoint(0.2.8);ob(v1) #
4
+ # Generated on 2025-10-21T09:01:27.410960 #
5
5
  ######################################################################################################
6
6
 
7
7
  from __future__ import annotations
8
8
 
9
9
  import typing
10
10
  if typing.TYPE_CHECKING:
11
- import typing
12
11
  import datetime
12
+ import typing
13
13
  FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
14
14
  StepFlag = typing.NewType("StepFlag", bool)
15
15
 
@@ -39,19 +39,19 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
39
39
  from .user_decorators.user_step_decorator import StepMutator as StepMutator
40
40
  from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
41
41
  from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
42
+ from . import events as events
42
43
  from . import metaflow_git as metaflow_git
43
- from . import tuple_util as tuple_util
44
44
  from . import cards as cards
45
- from . import events as events
45
+ from . import tuple_util as tuple_util
46
46
  from . import runner as runner
47
47
  from . import plugins as plugins
48
48
  from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
49
49
  from . import includefile as includefile
50
50
  from .includefile import IncludeFile as IncludeFile
51
+ from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
52
+ from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
51
53
  from .plugins.parsers import yaml_parser as yaml_parser
52
54
  from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
53
- from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
54
- from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
55
55
  from . import client as client
56
56
  from .client.core import namespace as namespace
57
57
  from .client.core import get_namespace as get_namespace
@@ -170,276 +170,145 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
170
170
  ...
171
171
 
172
172
  @typing.overload
173
- def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
173
+ def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
174
174
  """
175
- Specifies the PyPI packages for the step.
175
+ Specifies the resources needed when executing this step.
176
176
 
177
- Information in this decorator will augment any
178
- attributes set in the `@pyi_base` flow-level decorator. Hence,
179
- you can use `@pypi_base` to set packages required by all
180
- steps and use `@pypi` to specify step-specific overrides.
177
+ Use `@resources` to specify the resource requirements
178
+ independently of the specific compute layer (`@batch`, `@kubernetes`).
179
+
180
+ You can choose the compute layer on the command line by executing e.g.
181
+ ```
182
+ python myflow.py run --with batch
183
+ ```
184
+ or
185
+ ```
186
+ python myflow.py run --with kubernetes
187
+ ```
188
+ which executes the flow on the desired system using the
189
+ requirements specified in `@resources`.
181
190
 
182
191
 
183
192
  Parameters
184
193
  ----------
185
- packages : Dict[str, str], default: {}
186
- Packages to use for this step. The key is the name of the package
187
- and the value is the version to use.
188
- python : str, optional, default: None
189
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
190
- that the version used will correspond to the version of the Python interpreter used to start the run.
194
+ cpu : int, default 1
195
+ Number of CPUs required for this step.
196
+ gpu : int, optional, default None
197
+ Number of GPUs required for this step.
198
+ disk : int, optional, default None
199
+ Disk size (in MB) required for this step. Only applies on Kubernetes.
200
+ memory : int, default 4096
201
+ Memory size (in MB) required for this step.
202
+ shared_memory : int, optional, default None
203
+ The value for the size (in MiB) of the /dev/shm volume for this step.
204
+ This parameter maps to the `--shm-size` option in Docker.
191
205
  """
192
206
  ...
193
207
 
194
208
  @typing.overload
195
- def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
209
+ def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
196
210
  ...
197
211
 
198
212
  @typing.overload
199
- def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
213
+ def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
200
214
  ...
201
215
 
202
- def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
216
+ def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
203
217
  """
204
- Specifies the PyPI packages for the step.
218
+ Specifies the resources needed when executing this step.
205
219
 
206
- Information in this decorator will augment any
207
- attributes set in the `@pyi_base` flow-level decorator. Hence,
208
- you can use `@pypi_base` to set packages required by all
209
- steps and use `@pypi` to specify step-specific overrides.
220
+ Use `@resources` to specify the resource requirements
221
+ independently of the specific compute layer (`@batch`, `@kubernetes`).
222
+
223
+ You can choose the compute layer on the command line by executing e.g.
224
+ ```
225
+ python myflow.py run --with batch
226
+ ```
227
+ or
228
+ ```
229
+ python myflow.py run --with kubernetes
230
+ ```
231
+ which executes the flow on the desired system using the
232
+ requirements specified in `@resources`.
210
233
 
211
234
 
212
235
  Parameters
213
236
  ----------
214
- packages : Dict[str, str], default: {}
215
- Packages to use for this step. The key is the name of the package
216
- and the value is the version to use.
217
- python : str, optional, default: None
218
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
219
- that the version used will correspond to the version of the Python interpreter used to start the run.
237
+ cpu : int, default 1
238
+ Number of CPUs required for this step.
239
+ gpu : int, optional, default None
240
+ Number of GPUs required for this step.
241
+ disk : int, optional, default None
242
+ Disk size (in MB) required for this step. Only applies on Kubernetes.
243
+ memory : int, default 4096
244
+ Memory size (in MB) required for this step.
245
+ shared_memory : int, optional, default None
246
+ The value for the size (in MiB) of the /dev/shm volume for this step.
247
+ This parameter maps to the `--shm-size` option in Docker.
220
248
  """
221
249
  ...
222
250
 
223
- def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
251
+ @typing.overload
252
+ def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
224
253
  """
225
- `@nebius_s3_proxy` is a Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
226
- It exists to make it easier for users to know that this decorator should only be used with
227
- a Neo Cloud like Nebius. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
228
-
229
-
230
- Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
231
- for S3 read and write requests.
232
-
233
- This decorator requires an integration in the Outerbounds platform that
234
- points to an external bucket. It affects S3 operations performed via
235
- Metaflow's `get_aws_client` and `S3` within a `@step`.
236
-
237
- Read operations
238
- ---------------
239
- All read operations pass through the proxy. If an object does not already
240
- exist in the external bucket, it is cached there. For example, if code reads
241
- from buckets `FOO` and `BAR` using the `S3` interface, objects from both
242
- buckets are cached in the external bucket.
243
-
244
- During task execution, all S3‑related read requests are routed through the
245
- proxy:
246
- - If the object is present in the external object store, the proxy
247
- streams it directly from there without accessing the requested origin
248
- bucket.
249
- - If the object is not present in the external storage, the proxy
250
- fetches it from the requested bucket, caches it in the external
251
- storage, and streams the response from the origin bucket.
252
-
253
- Warning
254
- -------
255
- All READ operations (e.g., GetObject, HeadObject) pass through the external
256
- bucket regardless of the bucket specified in user code. Even
257
- `S3(run=self)` and `S3(s3root="mybucketfoo")` requests go through the
258
- external bucket cache.
259
-
260
- Write operations
261
- ----------------
262
- Write behavior is controlled by the `write_mode` parameter, which determines
263
- whether writes also persist objects in the cache.
264
-
265
- `write_mode` values:
266
- - `origin-and-cache`: objects are written both to the cache and to their
267
- intended origin bucket.
268
- - `origin`: objects are written only to their intended origin bucket.
254
+ Specifies environment variables to be set prior to the execution of a step.
269
255
 
270
256
 
271
257
  Parameters
272
258
  ----------
273
- integration_name : str, optional
274
- [Outerbounds integration name](https://docs.outerbounds.com/outerbounds/configuring-secrets/#integrations-view)
275
- that holds the configuration for the external, S3‑compatible object
276
- storage bucket. If not specified, the only available S3 proxy
277
- integration in the namespace is used (fails if multiple exist).
278
- write_mode : str, optional
279
- Controls whether writes also go to the external bucket.
280
- - `origin` (default)
281
- - `origin-and-cache`
282
- debug : bool, optional
283
- Enables debug logging for proxy operations.
259
+ vars : Dict[str, str], default {}
260
+ Dictionary of environment variables to set.
284
261
  """
285
262
  ...
286
263
 
287
264
  @typing.overload
288
- def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
265
+ def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
266
+ ...
267
+
268
+ @typing.overload
269
+ def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
270
+ ...
271
+
272
+ def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
289
273
  """
290
- Enables checkpointing for a step.
291
-
292
- > Examples
293
-
294
- - Saving Checkpoints
295
-
296
- ```python
297
- @checkpoint
298
- @step
299
- def train(self):
300
- model = create_model(self.parameters, checkpoint_path = None)
301
- for i in range(self.epochs):
302
- # some training logic
303
- loss = model.train(self.dataset)
304
- if i % 10 == 0:
305
- model.save(
306
- current.checkpoint.directory,
307
- )
308
- # saves the contents of the `current.checkpoint.directory` as a checkpoint
309
- # and returns a reference dictionary to the checkpoint saved in the datastore
310
- self.latest_checkpoint = current.checkpoint.save(
311
- name="epoch_checkpoint",
312
- metadata={
313
- "epoch": i,
314
- "loss": loss,
315
- }
316
- )
317
- ```
318
-
319
- - Using Loaded Checkpoints
320
-
321
- ```python
322
- @retry(times=3)
323
- @checkpoint
324
- @step
325
- def train(self):
326
- # Assume that the task has restarted and the previous attempt of the task
327
- # saved a checkpoint
328
- checkpoint_path = None
329
- if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
330
- print("Loaded checkpoint from the previous attempt")
331
- checkpoint_path = current.checkpoint.directory
332
-
333
- model = create_model(self.parameters, checkpoint_path = checkpoint_path)
334
- for i in range(self.epochs):
335
- ...
336
- ```
274
+ Specifies environment variables to be set prior to the execution of a step.
337
275
 
338
276
 
339
277
  Parameters
340
278
  ----------
341
- load_policy : str, default: "fresh"
342
- The policy for loading the checkpoint. The following policies are supported:
343
- - "eager": Loads the the latest available checkpoint within the namespace.
344
- With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
345
- will be loaded at the start of the task.
346
- - "none": Do not load any checkpoint
347
- - "fresh": Loads the lastest checkpoint created within the running Task.
348
- This mode helps loading checkpoints across various retry attempts of the same task.
349
- With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
350
- created within the task will be loaded when the task is retries execution on failure.
351
-
352
- temp_dir_root : str, default: None
353
- The root directory under which `current.checkpoint.directory` will be created.
279
+ vars : Dict[str, str], default {}
280
+ Dictionary of environment variables to set.
354
281
  """
355
282
  ...
356
283
 
357
284
  @typing.overload
358
- def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
285
+ def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
286
+ """
287
+ A simple decorator that demonstrates using CardDecoratorInjector
288
+ to inject a card and render simple markdown content.
289
+ """
359
290
  ...
360
291
 
361
292
  @typing.overload
362
- def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
293
+ def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
363
294
  ...
364
295
 
365
- def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
296
+ def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
366
297
  """
367
- Enables checkpointing for a step.
298
+ A simple decorator that demonstrates using CardDecoratorInjector
299
+ to inject a card and render simple markdown content.
300
+ """
301
+ ...
302
+
303
+ @typing.overload
304
+ def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
305
+ """
306
+ Specifies the Conda environment for the step.
368
307
 
369
- > Examples
370
-
371
- - Saving Checkpoints
372
-
373
- ```python
374
- @checkpoint
375
- @step
376
- def train(self):
377
- model = create_model(self.parameters, checkpoint_path = None)
378
- for i in range(self.epochs):
379
- # some training logic
380
- loss = model.train(self.dataset)
381
- if i % 10 == 0:
382
- model.save(
383
- current.checkpoint.directory,
384
- )
385
- # saves the contents of the `current.checkpoint.directory` as a checkpoint
386
- # and returns a reference dictionary to the checkpoint saved in the datastore
387
- self.latest_checkpoint = current.checkpoint.save(
388
- name="epoch_checkpoint",
389
- metadata={
390
- "epoch": i,
391
- "loss": loss,
392
- }
393
- )
394
- ```
395
-
396
- - Using Loaded Checkpoints
397
-
398
- ```python
399
- @retry(times=3)
400
- @checkpoint
401
- @step
402
- def train(self):
403
- # Assume that the task has restarted and the previous attempt of the task
404
- # saved a checkpoint
405
- checkpoint_path = None
406
- if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
407
- print("Loaded checkpoint from the previous attempt")
408
- checkpoint_path = current.checkpoint.directory
409
-
410
- model = create_model(self.parameters, checkpoint_path = checkpoint_path)
411
- for i in range(self.epochs):
412
- ...
413
- ```
414
-
415
-
416
- Parameters
417
- ----------
418
- load_policy : str, default: "fresh"
419
- The policy for loading the checkpoint. The following policies are supported:
420
- - "eager": Loads the the latest available checkpoint within the namespace.
421
- With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
422
- will be loaded at the start of the task.
423
- - "none": Do not load any checkpoint
424
- - "fresh": Loads the lastest checkpoint created within the running Task.
425
- This mode helps loading checkpoints across various retry attempts of the same task.
426
- With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
427
- created within the task will be loaded when the task is retries execution on failure.
428
-
429
- temp_dir_root : str, default: None
430
- The root directory under which `current.checkpoint.directory` will be created.
431
- """
432
- ...
433
-
434
- @typing.overload
435
- def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
436
- """
437
- Specifies the Conda environment for the step.
438
-
439
- Information in this decorator will augment any
440
- attributes set in the `@conda_base` flow-level decorator. Hence,
441
- you can use `@conda_base` to set packages required by all
442
- steps and use `@conda` to specify step-specific overrides.
308
+ Information in this decorator will augment any
309
+ attributes set in the `@conda_base` flow-level decorator. Hence,
310
+ you can use `@conda_base` to set packages required by all
311
+ steps and use `@conda` to specify step-specific overrides.
443
312
 
444
313
 
445
314
  Parameters
@@ -491,160 +360,423 @@ def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
491
360
  ...
492
361
 
493
362
  @typing.overload
494
- def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
363
+ def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
495
364
  """
496
- Internal decorator to support Fast bakery
365
+ Specifies the number of times the task corresponding
366
+ to a step needs to be retried.
367
+
368
+ This decorator is useful for handling transient errors, such as networking issues.
369
+ If your task contains operations that can't be retried safely, e.g. database updates,
370
+ it is advisable to annotate it with `@retry(times=0)`.
371
+
372
+ This can be used in conjunction with the `@catch` decorator. The `@catch`
373
+ decorator will execute a no-op task after all retries have been exhausted,
374
+ ensuring that the flow execution can continue.
375
+
376
+
377
+ Parameters
378
+ ----------
379
+ times : int, default 3
380
+ Number of times to retry this task.
381
+ minutes_between_retries : int, default 2
382
+ Number of minutes between retries.
497
383
  """
498
384
  ...
499
385
 
500
386
  @typing.overload
501
- def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
387
+ def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
502
388
  ...
503
389
 
504
- def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
505
- """
506
- Internal decorator to support Fast bakery
507
- """
390
+ @typing.overload
391
+ def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
508
392
  ...
509
393
 
510
- @typing.overload
511
- def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
394
+ def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
512
395
  """
513
- Specifies secrets to be retrieved and injected as environment variables prior to
514
- the execution of a step.
396
+ Specifies the number of times the task corresponding
397
+ to a step needs to be retried.
398
+
399
+ This decorator is useful for handling transient errors, such as networking issues.
400
+ If your task contains operations that can't be retried safely, e.g. database updates,
401
+ it is advisable to annotate it with `@retry(times=0)`.
402
+
403
+ This can be used in conjunction with the `@catch` decorator. The `@catch`
404
+ decorator will execute a no-op task after all retries have been exhausted,
405
+ ensuring that the flow execution can continue.
515
406
 
516
407
 
517
408
  Parameters
518
409
  ----------
519
- sources : List[Union[str, Dict[str, Any]]], default: []
520
- List of secret specs, defining how the secrets are to be retrieved
521
- role : str, optional, default: None
522
- Role to use for fetching secrets
410
+ times : int, default 3
411
+ Number of times to retry this task.
412
+ minutes_between_retries : int, default 2
413
+ Number of minutes between retries.
523
414
  """
524
415
  ...
525
416
 
526
417
  @typing.overload
527
- def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
418
+ def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
419
+ """
420
+ Decorator prototype for all step decorators. This function gets specialized
421
+ and imported for all decorators types by _import_plugin_decorators().
422
+ """
528
423
  ...
529
424
 
530
425
  @typing.overload
531
- def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
426
+ def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
532
427
  ...
533
428
 
534
- def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
429
+ def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
535
430
  """
536
- Specifies secrets to be retrieved and injected as environment variables prior to
537
- the execution of a step.
538
-
539
-
540
- Parameters
541
- ----------
542
- sources : List[Union[str, Dict[str, Any]]], default: []
543
- List of secret specs, defining how the secrets are to be retrieved
544
- role : str, optional, default: None
545
- Role to use for fetching secrets
431
+ Decorator prototype for all step decorators. This function gets specialized
432
+ and imported for all decorators types by _import_plugin_decorators().
546
433
  """
547
434
  ...
548
435
 
549
436
  @typing.overload
550
- def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
437
+ def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
551
438
  """
552
- Specifies a timeout for your step.
553
-
554
- This decorator is useful if this step may hang indefinitely.
555
-
556
- This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
557
- A timeout is considered to be an exception thrown by the step. It will cause the step to be
558
- retried if needed and the exception will be caught by the `@catch` decorator, if present.
439
+ Creates a human-readable report, a Metaflow Card, after this step completes.
559
440
 
560
- Note that all the values specified in parameters are added together so if you specify
561
- 60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
441
+ Note that you may add multiple `@card` decorators in a step with different parameters.
562
442
 
563
443
 
564
444
  Parameters
565
445
  ----------
566
- seconds : int, default 0
567
- Number of seconds to wait prior to timing out.
568
- minutes : int, default 0
569
- Number of minutes to wait prior to timing out.
570
- hours : int, default 0
571
- Number of hours to wait prior to timing out.
446
+ type : str, default 'default'
447
+ Card type.
448
+ id : str, optional, default None
449
+ If multiple cards are present, use this id to identify this card.
450
+ options : Dict[str, Any], default {}
451
+ Options passed to the card. The contents depend on the card type.
452
+ timeout : int, default 45
453
+ Interrupt reporting if it takes more than this many seconds.
572
454
  """
573
455
  ...
574
456
 
575
457
  @typing.overload
576
- def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
458
+ def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
577
459
  ...
578
460
 
579
461
  @typing.overload
580
- def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
462
+ def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
581
463
  ...
582
464
 
583
- def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
465
+ def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
584
466
  """
585
- Specifies a timeout for your step.
586
-
587
- This decorator is useful if this step may hang indefinitely.
588
-
589
- This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
590
- A timeout is considered to be an exception thrown by the step. It will cause the step to be
591
- retried if needed and the exception will be caught by the `@catch` decorator, if present.
467
+ Creates a human-readable report, a Metaflow Card, after this step completes.
592
468
 
593
- Note that all the values specified in parameters are added together so if you specify
594
- 60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
469
+ Note that you may add multiple `@card` decorators in a step with different parameters.
595
470
 
596
471
 
597
472
  Parameters
598
473
  ----------
599
- seconds : int, default 0
600
- Number of seconds to wait prior to timing out.
601
- minutes : int, default 0
602
- Number of minutes to wait prior to timing out.
603
- hours : int, default 0
604
- Number of hours to wait prior to timing out.
474
+ type : str, default 'default'
475
+ Card type.
476
+ id : str, optional, default None
477
+ If multiple cards are present, use this id to identify this card.
478
+ options : Dict[str, Any], default {}
479
+ Options passed to the card. The contents depend on the card type.
480
+ timeout : int, default 45
481
+ Interrupt reporting if it takes more than this many seconds.
605
482
  """
606
483
  ...
607
484
 
608
- @typing.overload
609
- def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
485
+ def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
610
486
  """
611
- Specifies environment variables to be set prior to the execution of a step.
487
+ This decorator is used to run Ollama APIs as Metaflow task sidecars.
488
+
489
+ User code call
490
+ --------------
491
+ @ollama(
492
+ models=[...],
493
+ ...
494
+ )
495
+
496
+ Valid backend options
497
+ ---------------------
498
+ - 'local': Run as a separate process on the local task machine.
499
+ - (TODO) 'managed': Outerbounds hosts and selects compute provider.
500
+ - (TODO) 'remote': Spin up separate instance to serve Ollama models.
501
+
502
+ Valid model options
503
+ -------------------
504
+ Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
612
505
 
613
506
 
614
507
  Parameters
615
508
  ----------
616
- vars : Dict[str, str], default {}
617
- Dictionary of environment variables to set.
509
+ models: list[str]
510
+ List of Ollama containers running models in sidecars.
511
+ backend: str
512
+ Determines where and how to run the Ollama process.
513
+ force_pull: bool
514
+ Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
515
+ cache_update_policy: str
516
+ Cache update policy: "auto", "force", or "never".
517
+ force_cache_update: bool
518
+ Simple override for "force" cache update policy.
519
+ debug: bool
520
+ Whether to turn on verbose debugging logs.
521
+ circuit_breaker_config: dict
522
+ Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
523
+ timeout_config: dict
524
+ Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
618
525
  """
619
526
  ...
620
527
 
621
528
  @typing.overload
622
- def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
623
- ...
624
-
625
- @typing.overload
626
- def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
627
- ...
628
-
629
- def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
529
+ def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
630
530
  """
631
- Specifies environment variables to be set prior to the execution of a step.
531
+ Enables checkpointing for a step.
632
532
 
533
+ > Examples
633
534
 
634
- Parameters
635
- ----------
636
- vars : Dict[str, str], default {}
637
- Dictionary of environment variables to set.
638
- """
639
- ...
640
-
641
- def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
535
+ - Saving Checkpoints
536
+
537
+ ```python
538
+ @checkpoint
539
+ @step
540
+ def train(self):
541
+ model = create_model(self.parameters, checkpoint_path = None)
542
+ for i in range(self.epochs):
543
+ # some training logic
544
+ loss = model.train(self.dataset)
545
+ if i % 10 == 0:
546
+ model.save(
547
+ current.checkpoint.directory,
548
+ )
549
+ # saves the contents of the `current.checkpoint.directory` as a checkpoint
550
+ # and returns a reference dictionary to the checkpoint saved in the datastore
551
+ self.latest_checkpoint = current.checkpoint.save(
552
+ name="epoch_checkpoint",
553
+ metadata={
554
+ "epoch": i,
555
+ "loss": loss,
556
+ }
557
+ )
558
+ ```
559
+
560
+ - Using Loaded Checkpoints
561
+
562
+ ```python
563
+ @retry(times=3)
564
+ @checkpoint
565
+ @step
566
+ def train(self):
567
+ # Assume that the task has restarted and the previous attempt of the task
568
+ # saved a checkpoint
569
+ checkpoint_path = None
570
+ if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
571
+ print("Loaded checkpoint from the previous attempt")
572
+ checkpoint_path = current.checkpoint.directory
573
+
574
+ model = create_model(self.parameters, checkpoint_path = checkpoint_path)
575
+ for i in range(self.epochs):
576
+ ...
577
+ ```
578
+
579
+
580
+ Parameters
581
+ ----------
582
+ load_policy : str, default: "fresh"
583
+ The policy for loading the checkpoint. The following policies are supported:
584
+ - "eager": Loads the the latest available checkpoint within the namespace.
585
+ With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
586
+ will be loaded at the start of the task.
587
+ - "none": Do not load any checkpoint
588
+ - "fresh": Loads the lastest checkpoint created within the running Task.
589
+ This mode helps loading checkpoints across various retry attempts of the same task.
590
+ With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
591
+ created within the task will be loaded when the task is retries execution on failure.
592
+
593
+ temp_dir_root : str, default: None
594
+ The root directory under which `current.checkpoint.directory` will be created.
642
595
  """
643
- `@coreweave_s3_proxy` is a CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
644
- It exists to make it easier for users to know that this decorator should only be used with
645
- a Neo Cloud like CoreWeave. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
596
+ ...
597
+
598
+ @typing.overload
599
+ def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
600
+ ...
601
+
602
+ @typing.overload
603
+ def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
604
+ ...
605
+
606
+ def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
607
+ """
608
+ Enables checkpointing for a step.
609
+
610
+ > Examples
611
+
612
+ - Saving Checkpoints
613
+
614
+ ```python
615
+ @checkpoint
616
+ @step
617
+ def train(self):
618
+ model = create_model(self.parameters, checkpoint_path = None)
619
+ for i in range(self.epochs):
620
+ # some training logic
621
+ loss = model.train(self.dataset)
622
+ if i % 10 == 0:
623
+ model.save(
624
+ current.checkpoint.directory,
625
+ )
626
+ # saves the contents of the `current.checkpoint.directory` as a checkpoint
627
+ # and returns a reference dictionary to the checkpoint saved in the datastore
628
+ self.latest_checkpoint = current.checkpoint.save(
629
+ name="epoch_checkpoint",
630
+ metadata={
631
+ "epoch": i,
632
+ "loss": loss,
633
+ }
634
+ )
635
+ ```
636
+
637
+ - Using Loaded Checkpoints
638
+
639
+ ```python
640
+ @retry(times=3)
641
+ @checkpoint
642
+ @step
643
+ def train(self):
644
+ # Assume that the task has restarted and the previous attempt of the task
645
+ # saved a checkpoint
646
+ checkpoint_path = None
647
+ if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
648
+ print("Loaded checkpoint from the previous attempt")
649
+ checkpoint_path = current.checkpoint.directory
650
+
651
+ model = create_model(self.parameters, checkpoint_path = checkpoint_path)
652
+ for i in range(self.epochs):
653
+ ...
654
+ ```
655
+
656
+
657
+ Parameters
658
+ ----------
659
+ load_policy : str, default: "fresh"
660
+ The policy for loading the checkpoint. The following policies are supported:
661
+ - "eager": Loads the the latest available checkpoint within the namespace.
662
+ With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
663
+ will be loaded at the start of the task.
664
+ - "none": Do not load any checkpoint
665
+ - "fresh": Loads the lastest checkpoint created within the running Task.
666
+ This mode helps loading checkpoints across various retry attempts of the same task.
667
+ With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
668
+ created within the task will be loaded when the task is retries execution on failure.
669
+
670
+ temp_dir_root : str, default: None
671
+ The root directory under which `current.checkpoint.directory` will be created.
672
+ """
673
+ ...
674
+
675
+ def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
676
+ """
677
+ Specifies that this step should execute on DGX cloud.
678
+
679
+
680
+ Parameters
681
+ ----------
682
+ gpu : int
683
+ Number of GPUs to use.
684
+ gpu_type : str
685
+ Type of Nvidia GPU to use.
686
+ """
687
+ ...
688
+
689
+ def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
690
+ """
691
+ Specifies that this step should execute on Kubernetes.
646
692
 
647
693
 
694
+ Parameters
695
+ ----------
696
+ cpu : int, default 1
697
+ Number of CPUs required for this step. If `@resources` is
698
+ also present, the maximum value from all decorators is used.
699
+ memory : int, default 4096
700
+ Memory size (in MB) required for this step. If
701
+ `@resources` is also present, the maximum value from all decorators is
702
+ used.
703
+ disk : int, default 10240
704
+ Disk size (in MB) required for this step. If
705
+ `@resources` is also present, the maximum value from all decorators is
706
+ used.
707
+ image : str, optional, default None
708
+ Docker image to use when launching on Kubernetes. If not specified, and
709
+ METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
710
+ not, a default Docker image mapping to the current version of Python is used.
711
+ image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
712
+ If given, the imagePullPolicy to be applied to the Docker image of the step.
713
+ image_pull_secrets: List[str], default []
714
+ The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
715
+ Kubernetes image pull secrets to use when pulling container images
716
+ in Kubernetes.
717
+ service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
718
+ Kubernetes service account to use when launching pod in Kubernetes.
719
+ secrets : List[str], optional, default None
720
+ Kubernetes secrets to use when launching pod in Kubernetes. These
721
+ secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
722
+ in Metaflow configuration.
723
+ node_selector: Union[Dict[str,str], str], optional, default None
724
+ Kubernetes node selector(s) to apply to the pod running the task.
725
+ Can be passed in as a comma separated string of values e.g.
726
+ 'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
727
+ {'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
728
+ namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
729
+ Kubernetes namespace to use when launching pod in Kubernetes.
730
+ gpu : int, optional, default None
731
+ Number of GPUs required for this step. A value of zero implies that
732
+ the scheduled node should not have GPUs.
733
+ gpu_vendor : str, default KUBERNETES_GPU_VENDOR
734
+ The vendor of the GPUs to be used for this step.
735
+ tolerations : List[Dict[str,str]], default []
736
+ The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
737
+ Kubernetes tolerations to use when launching pod in Kubernetes.
738
+ labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
739
+ Kubernetes labels to use when launching pod in Kubernetes.
740
+ annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
741
+ Kubernetes annotations to use when launching pod in Kubernetes.
742
+ use_tmpfs : bool, default False
743
+ This enables an explicit tmpfs mount for this step.
744
+ tmpfs_tempdir : bool, default True
745
+ sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
746
+ tmpfs_size : int, optional, default: None
747
+ The value for the size (in MiB) of the tmpfs mount for this step.
748
+ This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
749
+ memory allocated for this step.
750
+ tmpfs_path : str, optional, default /metaflow_temp
751
+ Path to tmpfs mount for this step.
752
+ persistent_volume_claims : Dict[str, str], optional, default None
753
+ A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
754
+ volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
755
+ shared_memory: int, optional
756
+ Shared memory size (in MiB) required for this step
757
+ port: int, optional
758
+ Port number to specify in the Kubernetes job object
759
+ compute_pool : str, optional, default None
760
+ Compute pool to be used for for this step.
761
+ If not specified, any accessible compute pool within the perimeter is used.
762
+ hostname_resolution_timeout: int, default 10 * 60
763
+ Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
764
+ Only applicable when @parallel is used.
765
+ qos: str, default: Burstable
766
+ Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
767
+
768
+ security_context: Dict[str, Any], optional, default None
769
+ Container security context. Applies to the task container. Allows the following keys:
770
+ - privileged: bool, optional, default None
771
+ - allow_privilege_escalation: bool, optional, default None
772
+ - run_as_user: int, optional, default None
773
+ - run_as_group: int, optional, default None
774
+ - run_as_non_root: bool, optional, default None
775
+ """
776
+ ...
777
+
778
+ def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
779
+ """
648
780
  Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
649
781
  for S3 read and write requests.
650
782
 
@@ -702,159 +834,12 @@ def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_m
702
834
  """
703
835
  ...
704
836
 
705
- def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
837
+ def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
706
838
  """
707
- Specifies that this step should execute on DGX cloud.
839
+ Decorator that helps cache, version, and store models/datasets from the Hugging Face Hub.
708
840
 
709
-
710
- Parameters
711
- ----------
712
- gpu : int
713
- Number of GPUs to use.
714
- gpu_type : str
715
- Type of Nvidia GPU to use.
716
- queue_timeout : int
717
- Time to keep the job in NVCF's queue.
718
- """
719
- ...
720
-
721
- @typing.overload
722
- def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
723
- """
724
- Specifies the number of times the task corresponding
725
- to a step needs to be retried.
726
-
727
- This decorator is useful for handling transient errors, such as networking issues.
728
- If your task contains operations that can't be retried safely, e.g. database updates,
729
- it is advisable to annotate it with `@retry(times=0)`.
730
-
731
- This can be used in conjunction with the `@catch` decorator. The `@catch`
732
- decorator will execute a no-op task after all retries have been exhausted,
733
- ensuring that the flow execution can continue.
734
-
735
-
736
- Parameters
737
- ----------
738
- times : int, default 3
739
- Number of times to retry this task.
740
- minutes_between_retries : int, default 2
741
- Number of minutes between retries.
742
- """
743
- ...
744
-
745
- @typing.overload
746
- def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
747
- ...
748
-
749
- @typing.overload
750
- def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
751
- ...
752
-
753
- def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
754
- """
755
- Specifies the number of times the task corresponding
756
- to a step needs to be retried.
757
-
758
- This decorator is useful for handling transient errors, such as networking issues.
759
- If your task contains operations that can't be retried safely, e.g. database updates,
760
- it is advisable to annotate it with `@retry(times=0)`.
761
-
762
- This can be used in conjunction with the `@catch` decorator. The `@catch`
763
- decorator will execute a no-op task after all retries have been exhausted,
764
- ensuring that the flow execution can continue.
765
-
766
-
767
- Parameters
768
- ----------
769
- times : int, default 3
770
- Number of times to retry this task.
771
- minutes_between_retries : int, default 2
772
- Number of minutes between retries.
773
- """
774
- ...
775
-
776
- def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
777
- """
778
- This decorator is used to run Ollama APIs as Metaflow task sidecars.
779
-
780
- User code call
781
- --------------
782
- @ollama(
783
- models=[...],
784
- ...
785
- )
786
-
787
- Valid backend options
788
- ---------------------
789
- - 'local': Run as a separate process on the local task machine.
790
- - (TODO) 'managed': Outerbounds hosts and selects compute provider.
791
- - (TODO) 'remote': Spin up separate instance to serve Ollama models.
792
-
793
- Valid model options
794
- -------------------
795
- Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
796
-
797
-
798
- Parameters
799
- ----------
800
- models: list[str]
801
- List of Ollama containers running models in sidecars.
802
- backend: str
803
- Determines where and how to run the Ollama process.
804
- force_pull: bool
805
- Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
806
- cache_update_policy: str
807
- Cache update policy: "auto", "force", or "never".
808
- force_cache_update: bool
809
- Simple override for "force" cache update policy.
810
- debug: bool
811
- Whether to turn on verbose debugging logs.
812
- circuit_breaker_config: dict
813
- Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
814
- timeout_config: dict
815
- Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
816
- """
817
- ...
818
-
819
- def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
820
- """
821
- Specifies that this step should execute on DGX cloud.
822
-
823
-
824
- Parameters
825
- ----------
826
- gpu : int
827
- Number of GPUs to use.
828
- gpu_type : str
829
- Type of Nvidia GPU to use.
830
- """
831
- ...
832
-
833
- @typing.overload
834
- def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
835
- """
836
- Decorator prototype for all step decorators. This function gets specialized
837
- and imported for all decorators types by _import_plugin_decorators().
838
- """
839
- ...
840
-
841
- @typing.overload
842
- def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
843
- ...
844
-
845
- def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
846
- """
847
- Decorator prototype for all step decorators. This function gets specialized
848
- and imported for all decorators types by _import_plugin_decorators().
849
- """
850
- ...
851
-
852
- def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
853
- """
854
- Decorator that helps cache, version, and store models/datasets from the Hugging Face Hub.
855
-
856
- Examples
857
- --------
841
+ Examples
842
+ --------
858
843
 
859
844
  ```python
860
845
  # **Usage: creating references to models from the Hugging Face Hub that may be loaded in downstream steps**
@@ -967,221 +952,270 @@ def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope:
967
952
  ...
968
953
 
969
954
  @typing.overload
970
- def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
955
+ def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
971
956
  """
972
- Specifies the resources needed when executing this step.
957
+ Enables loading / saving of models within a step.
973
958
 
974
- Use `@resources` to specify the resource requirements
975
- independently of the specific compute layer (`@batch`, `@kubernetes`).
959
+ > Examples
960
+ - Saving Models
961
+ ```python
962
+ @model
963
+ @step
964
+ def train(self):
965
+ # current.model.save returns a dictionary reference to the model saved
966
+ self.my_model = current.model.save(
967
+ path_to_my_model,
968
+ label="my_model",
969
+ metadata={
970
+ "epochs": 10,
971
+ "batch-size": 32,
972
+ "learning-rate": 0.001,
973
+ }
974
+ )
975
+ self.next(self.test)
976
976
 
977
- You can choose the compute layer on the command line by executing e.g.
978
- ```
979
- python myflow.py run --with batch
980
- ```
981
- or
977
+ @model(load="my_model")
978
+ @step
979
+ def test(self):
980
+ # `current.model.loaded` returns a dictionary of the loaded models
981
+ # where the key is the name of the artifact and the value is the path to the model
982
+ print(os.listdir(current.model.loaded["my_model"]))
983
+ self.next(self.end)
982
984
  ```
983
- python myflow.py run --with kubernetes
985
+
986
+ - Loading models
987
+ ```python
988
+ @step
989
+ def train(self):
990
+ # current.model.load returns the path to the model loaded
991
+ checkpoint_path = current.model.load(
992
+ self.checkpoint_key,
993
+ )
994
+ model_path = current.model.load(
995
+ self.model,
996
+ )
997
+ self.next(self.test)
984
998
  ```
985
- which executes the flow on the desired system using the
986
- requirements specified in `@resources`.
987
999
 
988
1000
 
989
1001
  Parameters
990
1002
  ----------
991
- cpu : int, default 1
992
- Number of CPUs required for this step.
993
- gpu : int, optional, default None
994
- Number of GPUs required for this step.
995
- disk : int, optional, default None
996
- Disk size (in MB) required for this step. Only applies on Kubernetes.
997
- memory : int, default 4096
998
- Memory size (in MB) required for this step.
999
- shared_memory : int, optional, default None
1000
- The value for the size (in MiB) of the /dev/shm volume for this step.
1001
- This parameter maps to the `--shm-size` option in Docker.
1003
+ load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
1004
+ Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
1005
+ These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
1006
+ If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
1007
+ the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
1008
+ If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
1009
+
1010
+ temp_dir_root : str, default: None
1011
+ The root directory under which `current.model.loaded` will store loaded models
1002
1012
  """
1003
1013
  ...
1004
1014
 
1005
1015
  @typing.overload
1006
- def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1016
+ def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1007
1017
  ...
1008
1018
 
1009
1019
  @typing.overload
1010
- def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1020
+ def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1011
1021
  ...
1012
1022
 
1013
- def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
1023
+ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
1014
1024
  """
1015
- Specifies the resources needed when executing this step.
1025
+ Enables loading / saving of models within a step.
1016
1026
 
1017
- Use `@resources` to specify the resource requirements
1018
- independently of the specific compute layer (`@batch`, `@kubernetes`).
1027
+ > Examples
1028
+ - Saving Models
1029
+ ```python
1030
+ @model
1031
+ @step
1032
+ def train(self):
1033
+ # current.model.save returns a dictionary reference to the model saved
1034
+ self.my_model = current.model.save(
1035
+ path_to_my_model,
1036
+ label="my_model",
1037
+ metadata={
1038
+ "epochs": 10,
1039
+ "batch-size": 32,
1040
+ "learning-rate": 0.001,
1041
+ }
1042
+ )
1043
+ self.next(self.test)
1019
1044
 
1020
- You can choose the compute layer on the command line by executing e.g.
1021
- ```
1022
- python myflow.py run --with batch
1023
- ```
1024
- or
1045
+ @model(load="my_model")
1046
+ @step
1047
+ def test(self):
1048
+ # `current.model.loaded` returns a dictionary of the loaded models
1049
+ # where the key is the name of the artifact and the value is the path to the model
1050
+ print(os.listdir(current.model.loaded["my_model"]))
1051
+ self.next(self.end)
1025
1052
  ```
1026
- python myflow.py run --with kubernetes
1053
+
1054
+ - Loading models
1055
+ ```python
1056
+ @step
1057
+ def train(self):
1058
+ # current.model.load returns the path to the model loaded
1059
+ checkpoint_path = current.model.load(
1060
+ self.checkpoint_key,
1061
+ )
1062
+ model_path = current.model.load(
1063
+ self.model,
1064
+ )
1065
+ self.next(self.test)
1027
1066
  ```
1028
- which executes the flow on the desired system using the
1029
- requirements specified in `@resources`.
1030
1067
 
1031
1068
 
1032
1069
  Parameters
1033
1070
  ----------
1034
- cpu : int, default 1
1035
- Number of CPUs required for this step.
1036
- gpu : int, optional, default None
1037
- Number of GPUs required for this step.
1038
- disk : int, optional, default None
1039
- Disk size (in MB) required for this step. Only applies on Kubernetes.
1040
- memory : int, default 4096
1041
- Memory size (in MB) required for this step.
1042
- shared_memory : int, optional, default None
1043
- The value for the size (in MiB) of the /dev/shm volume for this step.
1044
- This parameter maps to the `--shm-size` option in Docker.
1071
+ load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
1072
+ Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
1073
+ These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
1074
+ If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
1075
+ the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
1076
+ If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
1077
+
1078
+ temp_dir_root : str, default: None
1079
+ The root directory under which `current.model.loaded` will store loaded models
1045
1080
  """
1046
1081
  ...
1047
1082
 
1048
- def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1083
+ def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1049
1084
  """
1050
- Specifies that this step should execute on Kubernetes.
1085
+ Specifies that this step should execute on DGX cloud.
1051
1086
 
1052
1087
 
1053
1088
  Parameters
1054
1089
  ----------
1055
- cpu : int, default 1
1056
- Number of CPUs required for this step. If `@resources` is
1057
- also present, the maximum value from all decorators is used.
1058
- memory : int, default 4096
1059
- Memory size (in MB) required for this step. If
1060
- `@resources` is also present, the maximum value from all decorators is
1061
- used.
1062
- disk : int, default 10240
1063
- Disk size (in MB) required for this step. If
1064
- `@resources` is also present, the maximum value from all decorators is
1065
- used.
1066
- image : str, optional, default None
1067
- Docker image to use when launching on Kubernetes. If not specified, and
1068
- METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
1069
- not, a default Docker image mapping to the current version of Python is used.
1070
- image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
1071
- If given, the imagePullPolicy to be applied to the Docker image of the step.
1072
- image_pull_secrets: List[str], default []
1073
- The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
1074
- Kubernetes image pull secrets to use when pulling container images
1075
- in Kubernetes.
1076
- service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
1077
- Kubernetes service account to use when launching pod in Kubernetes.
1078
- secrets : List[str], optional, default None
1079
- Kubernetes secrets to use when launching pod in Kubernetes. These
1080
- secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
1081
- in Metaflow configuration.
1082
- node_selector: Union[Dict[str,str], str], optional, default None
1083
- Kubernetes node selector(s) to apply to the pod running the task.
1084
- Can be passed in as a comma separated string of values e.g.
1085
- 'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
1086
- {'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
1087
- namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
1088
- Kubernetes namespace to use when launching pod in Kubernetes.
1089
- gpu : int, optional, default None
1090
- Number of GPUs required for this step. A value of zero implies that
1091
- the scheduled node should not have GPUs.
1092
- gpu_vendor : str, default KUBERNETES_GPU_VENDOR
1093
- The vendor of the GPUs to be used for this step.
1094
- tolerations : List[Dict[str,str]], default []
1095
- The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
1096
- Kubernetes tolerations to use when launching pod in Kubernetes.
1097
- labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
1098
- Kubernetes labels to use when launching pod in Kubernetes.
1099
- annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
1100
- Kubernetes annotations to use when launching pod in Kubernetes.
1101
- use_tmpfs : bool, default False
1102
- This enables an explicit tmpfs mount for this step.
1103
- tmpfs_tempdir : bool, default True
1104
- sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
1105
- tmpfs_size : int, optional, default: None
1106
- The value for the size (in MiB) of the tmpfs mount for this step.
1107
- This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
1108
- memory allocated for this step.
1109
- tmpfs_path : str, optional, default /metaflow_temp
1110
- Path to tmpfs mount for this step.
1111
- persistent_volume_claims : Dict[str, str], optional, default None
1112
- A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
1113
- volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
1114
- shared_memory: int, optional
1115
- Shared memory size (in MiB) required for this step
1116
- port: int, optional
1117
- Port number to specify in the Kubernetes job object
1118
- compute_pool : str, optional, default None
1119
- Compute pool to be used for for this step.
1120
- If not specified, any accessible compute pool within the perimeter is used.
1121
- hostname_resolution_timeout: int, default 10 * 60
1122
- Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
1123
- Only applicable when @parallel is used.
1124
- qos: str, default: Burstable
1125
- Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
1090
+ gpu : int
1091
+ Number of GPUs to use.
1092
+ gpu_type : str
1093
+ Type of Nvidia GPU to use.
1094
+ queue_timeout : int
1095
+ Time to keep the job in NVCF's queue.
1096
+ """
1097
+ ...
1098
+
1099
+ def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1100
+ """
1101
+ `@coreweave_s3_proxy` is a CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
1102
+ It exists to make it easier for users to know that this decorator should only be used with
1103
+ a Neo Cloud like CoreWeave. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
1104
+
1105
+
1106
+ Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
1107
+ for S3 read and write requests.
1108
+
1109
+ This decorator requires an integration in the Outerbounds platform that
1110
+ points to an external bucket. It affects S3 operations performed via
1111
+ Metaflow's `get_aws_client` and `S3` within a `@step`.
1112
+
1113
+ Read operations
1114
+ ---------------
1115
+ All read operations pass through the proxy. If an object does not already
1116
+ exist in the external bucket, it is cached there. For example, if code reads
1117
+ from buckets `FOO` and `BAR` using the `S3` interface, objects from both
1118
+ buckets are cached in the external bucket.
1119
+
1120
+ During task execution, all S3‑related read requests are routed through the
1121
+ proxy:
1122
+ - If the object is present in the external object store, the proxy
1123
+ streams it directly from there without accessing the requested origin
1124
+ bucket.
1125
+ - If the object is not present in the external storage, the proxy
1126
+ fetches it from the requested bucket, caches it in the external
1127
+ storage, and streams the response from the origin bucket.
1128
+
1129
+ Warning
1130
+ -------
1131
+ All READ operations (e.g., GetObject, HeadObject) pass through the external
1132
+ bucket regardless of the bucket specified in user code. Even
1133
+ `S3(run=self)` and `S3(s3root="mybucketfoo")` requests go through the
1134
+ external bucket cache.
1135
+
1136
+ Write operations
1137
+ ----------------
1138
+ Write behavior is controlled by the `write_mode` parameter, which determines
1139
+ whether writes also persist objects in the cache.
1140
+
1141
+ `write_mode` values:
1142
+ - `origin-and-cache`: objects are written both to the cache and to their
1143
+ intended origin bucket.
1144
+ - `origin`: objects are written only to their intended origin bucket.
1145
+
1126
1146
 
1127
- security_context: Dict[str, Any], optional, default None
1128
- Container security context. Applies to the task container. Allows the following keys:
1129
- - privileged: bool, optional, default None
1130
- - allow_privilege_escalation: bool, optional, default None
1131
- - run_as_user: int, optional, default None
1132
- - run_as_group: int, optional, default None
1133
- - run_as_non_root: bool, optional, default None
1147
+ Parameters
1148
+ ----------
1149
+ integration_name : str, optional
1150
+ [Outerbounds integration name](https://docs.outerbounds.com/outerbounds/configuring-secrets/#integrations-view)
1151
+ that holds the configuration for the external, S3‑compatible object
1152
+ storage bucket. If not specified, the only available S3 proxy
1153
+ integration in the namespace is used (fails if multiple exist).
1154
+ write_mode : str, optional
1155
+ Controls whether writes also go to the external bucket.
1156
+ - `origin` (default)
1157
+ - `origin-and-cache`
1158
+ debug : bool, optional
1159
+ Enables debug logging for proxy operations.
1134
1160
  """
1135
1161
  ...
1136
1162
 
1137
1163
  @typing.overload
1138
- def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1164
+ def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1139
1165
  """
1140
- Specifies that the step will success under all circumstances.
1166
+ Specifies a timeout for your step.
1141
1167
 
1142
- The decorator will create an optional artifact, specified by `var`, which
1143
- contains the exception raised. You can use it to detect the presence
1144
- of errors, indicating that all happy-path artifacts produced by the step
1145
- are missing.
1168
+ This decorator is useful if this step may hang indefinitely.
1169
+
1170
+ This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
1171
+ A timeout is considered to be an exception thrown by the step. It will cause the step to be
1172
+ retried if needed and the exception will be caught by the `@catch` decorator, if present.
1173
+
1174
+ Note that all the values specified in parameters are added together so if you specify
1175
+ 60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
1146
1176
 
1147
1177
 
1148
1178
  Parameters
1149
1179
  ----------
1150
- var : str, optional, default None
1151
- Name of the artifact in which to store the caught exception.
1152
- If not specified, the exception is not stored.
1153
- print_exception : bool, default True
1154
- Determines whether or not the exception is printed to
1155
- stdout when caught.
1180
+ seconds : int, default 0
1181
+ Number of seconds to wait prior to timing out.
1182
+ minutes : int, default 0
1183
+ Number of minutes to wait prior to timing out.
1184
+ hours : int, default 0
1185
+ Number of hours to wait prior to timing out.
1156
1186
  """
1157
1187
  ...
1158
1188
 
1159
1189
  @typing.overload
1160
- def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1190
+ def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1161
1191
  ...
1162
1192
 
1163
1193
  @typing.overload
1164
- def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1194
+ def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1165
1195
  ...
1166
1196
 
1167
- def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
1197
+ def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
1168
1198
  """
1169
- Specifies that the step will success under all circumstances.
1199
+ Specifies a timeout for your step.
1170
1200
 
1171
- The decorator will create an optional artifact, specified by `var`, which
1172
- contains the exception raised. You can use it to detect the presence
1173
- of errors, indicating that all happy-path artifacts produced by the step
1174
- are missing.
1201
+ This decorator is useful if this step may hang indefinitely.
1202
+
1203
+ This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
1204
+ A timeout is considered to be an exception thrown by the step. It will cause the step to be
1205
+ retried if needed and the exception will be caught by the `@catch` decorator, if present.
1206
+
1207
+ Note that all the values specified in parameters are added together so if you specify
1208
+ 60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
1175
1209
 
1176
1210
 
1177
1211
  Parameters
1178
1212
  ----------
1179
- var : str, optional, default None
1180
- Name of the artifact in which to store the caught exception.
1181
- If not specified, the exception is not stored.
1182
- print_exception : bool, default True
1183
- Determines whether or not the exception is printed to
1184
- stdout when caught.
1213
+ seconds : int, default 0
1214
+ Number of seconds to wait prior to timing out.
1215
+ minutes : int, default 0
1216
+ Number of minutes to wait prior to timing out.
1217
+ hours : int, default 0
1218
+ Number of hours to wait prior to timing out.
1185
1219
  """
1186
1220
  ...
1187
1221
 
@@ -1236,223 +1270,138 @@ def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card
1236
1270
  ...
1237
1271
 
1238
1272
  @typing.overload
1239
- def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1273
+ def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1240
1274
  """
1241
- Enables loading / saving of models within a step.
1242
-
1243
- > Examples
1244
- - Saving Models
1245
- ```python
1246
- @model
1247
- @step
1248
- def train(self):
1249
- # current.model.save returns a dictionary reference to the model saved
1250
- self.my_model = current.model.save(
1251
- path_to_my_model,
1252
- label="my_model",
1253
- metadata={
1254
- "epochs": 10,
1255
- "batch-size": 32,
1256
- "learning-rate": 0.001,
1257
- }
1258
- )
1259
- self.next(self.test)
1260
-
1261
- @model(load="my_model")
1262
- @step
1263
- def test(self):
1264
- # `current.model.loaded` returns a dictionary of the loaded models
1265
- # where the key is the name of the artifact and the value is the path to the model
1266
- print(os.listdir(current.model.loaded["my_model"]))
1267
- self.next(self.end)
1268
- ```
1269
-
1270
- - Loading models
1271
- ```python
1272
- @step
1273
- def train(self):
1274
- # current.model.load returns the path to the model loaded
1275
- checkpoint_path = current.model.load(
1276
- self.checkpoint_key,
1277
- )
1278
- model_path = current.model.load(
1279
- self.model,
1280
- )
1281
- self.next(self.test)
1282
- ```
1283
-
1284
-
1285
- Parameters
1286
- ----------
1287
- load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
1288
- Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
1289
- These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
1290
- If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
1291
- the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
1292
- If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
1293
-
1294
- temp_dir_root : str, default: None
1295
- The root directory under which `current.model.loaded` will store loaded models
1275
+ Internal decorator to support Fast bakery
1296
1276
  """
1297
1277
  ...
1298
1278
 
1299
1279
  @typing.overload
1300
- def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1280
+ def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1301
1281
  ...
1302
1282
 
1303
- @typing.overload
1304
- def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1283
+ def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
1284
+ """
1285
+ Internal decorator to support Fast bakery
1286
+ """
1305
1287
  ...
1306
1288
 
1307
- def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
1289
+ @typing.overload
1290
+ def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1308
1291
  """
1309
- Enables loading / saving of models within a step.
1310
-
1311
- > Examples
1312
- - Saving Models
1313
- ```python
1314
- @model
1315
- @step
1316
- def train(self):
1317
- # current.model.save returns a dictionary reference to the model saved
1318
- self.my_model = current.model.save(
1319
- path_to_my_model,
1320
- label="my_model",
1321
- metadata={
1322
- "epochs": 10,
1323
- "batch-size": 32,
1324
- "learning-rate": 0.001,
1325
- }
1326
- )
1327
- self.next(self.test)
1328
-
1329
- @model(load="my_model")
1330
- @step
1331
- def test(self):
1332
- # `current.model.loaded` returns a dictionary of the loaded models
1333
- # where the key is the name of the artifact and the value is the path to the model
1334
- print(os.listdir(current.model.loaded["my_model"]))
1335
- self.next(self.end)
1336
- ```
1337
-
1338
- - Loading models
1339
- ```python
1340
- @step
1341
- def train(self):
1342
- # current.model.load returns the path to the model loaded
1343
- checkpoint_path = current.model.load(
1344
- self.checkpoint_key,
1345
- )
1346
- model_path = current.model.load(
1347
- self.model,
1348
- )
1349
- self.next(self.test)
1350
- ```
1292
+ Specifies secrets to be retrieved and injected as environment variables prior to
1293
+ the execution of a step.
1351
1294
 
1352
1295
 
1353
1296
  Parameters
1354
1297
  ----------
1355
- load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
1356
- Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
1357
- These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
1358
- If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
1359
- the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
1360
- If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
1361
-
1362
- temp_dir_root : str, default: None
1363
- The root directory under which `current.model.loaded` will store loaded models
1298
+ sources : List[Union[str, Dict[str, Any]]], default: []
1299
+ List of secret specs, defining how the secrets are to be retrieved
1300
+ role : str, optional, default: None
1301
+ Role to use for fetching secrets
1364
1302
  """
1365
1303
  ...
1366
1304
 
1367
1305
  @typing.overload
1368
- def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1369
- """
1370
- Decorator prototype for all step decorators. This function gets specialized
1371
- and imported for all decorators types by _import_plugin_decorators().
1372
- """
1306
+ def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1373
1307
  ...
1374
1308
 
1375
1309
  @typing.overload
1376
- def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1310
+ def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1377
1311
  ...
1378
1312
 
1379
- def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
1313
+ def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
1380
1314
  """
1381
- Decorator prototype for all step decorators. This function gets specialized
1382
- and imported for all decorators types by _import_plugin_decorators().
1315
+ Specifies secrets to be retrieved and injected as environment variables prior to
1316
+ the execution of a step.
1317
+
1318
+
1319
+ Parameters
1320
+ ----------
1321
+ sources : List[Union[str, Dict[str, Any]]], default: []
1322
+ List of secret specs, defining how the secrets are to be retrieved
1323
+ role : str, optional, default: None
1324
+ Role to use for fetching secrets
1383
1325
  """
1384
1326
  ...
1385
1327
 
1386
1328
  @typing.overload
1387
- def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1329
+ def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1388
1330
  """
1389
- Creates a human-readable report, a Metaflow Card, after this step completes.
1331
+ Specifies that the step will success under all circumstances.
1390
1332
 
1391
- Note that you may add multiple `@card` decorators in a step with different parameters.
1333
+ The decorator will create an optional artifact, specified by `var`, which
1334
+ contains the exception raised. You can use it to detect the presence
1335
+ of errors, indicating that all happy-path artifacts produced by the step
1336
+ are missing.
1392
1337
 
1393
1338
 
1394
1339
  Parameters
1395
1340
  ----------
1396
- type : str, default 'default'
1397
- Card type.
1398
- id : str, optional, default None
1399
- If multiple cards are present, use this id to identify this card.
1400
- options : Dict[str, Any], default {}
1401
- Options passed to the card. The contents depend on the card type.
1402
- timeout : int, default 45
1403
- Interrupt reporting if it takes more than this many seconds.
1341
+ var : str, optional, default None
1342
+ Name of the artifact in which to store the caught exception.
1343
+ If not specified, the exception is not stored.
1344
+ print_exception : bool, default True
1345
+ Determines whether or not the exception is printed to
1346
+ stdout when caught.
1404
1347
  """
1405
1348
  ...
1406
1349
 
1407
1350
  @typing.overload
1408
- def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1351
+ def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1409
1352
  ...
1410
1353
 
1411
1354
  @typing.overload
1412
- def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1355
+ def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1413
1356
  ...
1414
1357
 
1415
- def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
1358
+ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
1416
1359
  """
1417
- Creates a human-readable report, a Metaflow Card, after this step completes.
1360
+ Specifies that the step will success under all circumstances.
1418
1361
 
1419
- Note that you may add multiple `@card` decorators in a step with different parameters.
1362
+ The decorator will create an optional artifact, specified by `var`, which
1363
+ contains the exception raised. You can use it to detect the presence
1364
+ of errors, indicating that all happy-path artifacts produced by the step
1365
+ are missing.
1420
1366
 
1421
1367
 
1422
1368
  Parameters
1423
1369
  ----------
1424
- type : str, default 'default'
1425
- Card type.
1426
- id : str, optional, default None
1427
- If multiple cards are present, use this id to identify this card.
1428
- options : Dict[str, Any], default {}
1429
- Options passed to the card. The contents depend on the card type.
1430
- timeout : int, default 45
1431
- Interrupt reporting if it takes more than this many seconds.
1370
+ var : str, optional, default None
1371
+ Name of the artifact in which to store the caught exception.
1372
+ If not specified, the exception is not stored.
1373
+ print_exception : bool, default True
1374
+ Determines whether or not the exception is printed to
1375
+ stdout when caught.
1432
1376
  """
1433
1377
  ...
1434
1378
 
1435
1379
  @typing.overload
1436
- def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1380
+ def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1437
1381
  """
1438
- A simple decorator that demonstrates using CardDecoratorInjector
1439
- to inject a card and render simple markdown content.
1382
+ Decorator prototype for all step decorators. This function gets specialized
1383
+ and imported for all decorators types by _import_plugin_decorators().
1440
1384
  """
1441
1385
  ...
1442
1386
 
1443
1387
  @typing.overload
1444
- def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1388
+ def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1445
1389
  ...
1446
1390
 
1447
- def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
1391
+ def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
1448
1392
  """
1449
- A simple decorator that demonstrates using CardDecoratorInjector
1450
- to inject a card and render simple markdown content.
1393
+ Decorator prototype for all step decorators. This function gets specialized
1394
+ and imported for all decorators types by _import_plugin_decorators().
1451
1395
  """
1452
1396
  ...
1453
1397
 
1454
- def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1398
+ def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1455
1399
  """
1400
+ `@nebius_s3_proxy` is a Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
1401
+ It exists to make it easier for users to know that this decorator should only be used with
1402
+ a Neo Cloud like Nebius. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
1403
+
1404
+
1456
1405
  Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
1457
1406
  for S3 read and write requests.
1458
1407
 
@@ -1511,103 +1460,276 @@ def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typin
1511
1460
  ...
1512
1461
 
1513
1462
  @typing.overload
1514
- def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1463
+ def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
1515
1464
  """
1516
- Specifies the flow(s) that this flow depends on.
1465
+ Specifies the PyPI packages for the step.
1517
1466
 
1518
- ```
1519
- @trigger_on_finish(flow='FooFlow')
1520
- ```
1521
- or
1522
- ```
1523
- @trigger_on_finish(flows=['FooFlow', 'BarFlow'])
1524
- ```
1525
- This decorator respects the @project decorator and triggers the flow
1526
- when upstream runs within the same namespace complete successfully
1467
+ Information in this decorator will augment any
1468
+ attributes set in the `@pyi_base` flow-level decorator. Hence,
1469
+ you can use `@pypi_base` to set packages required by all
1470
+ steps and use `@pypi` to specify step-specific overrides.
1527
1471
 
1528
- Additionally, you can specify project aware upstream flow dependencies
1529
- by specifying the fully qualified project_flow_name.
1530
- ```
1531
- @trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
1532
- ```
1533
- or
1534
- ```
1535
- @trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
1536
- ```
1537
1472
 
1538
- You can also specify just the project or project branch (other values will be
1539
- inferred from the current project or project branch):
1540
- ```
1541
- @trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
1542
- ```
1473
+ Parameters
1474
+ ----------
1475
+ packages : Dict[str, str], default: {}
1476
+ Packages to use for this step. The key is the name of the package
1477
+ and the value is the version to use.
1478
+ python : str, optional, default: None
1479
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
1480
+ that the version used will correspond to the version of the Python interpreter used to start the run.
1481
+ """
1482
+ ...
1483
+
1484
+ @typing.overload
1485
+ def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
1486
+ ...
1487
+
1488
+ @typing.overload
1489
+ def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
1490
+ ...
1491
+
1492
+ def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
1493
+ """
1494
+ Specifies the PyPI packages for the step.
1495
+
1496
+ Information in this decorator will augment any
1497
+ attributes set in the `@pyi_base` flow-level decorator. Hence,
1498
+ you can use `@pypi_base` to set packages required by all
1499
+ steps and use `@pypi` to specify step-specific overrides.
1500
+
1501
+
1502
+ Parameters
1503
+ ----------
1504
+ packages : Dict[str, str], default: {}
1505
+ Packages to use for this step. The key is the name of the package
1506
+ and the value is the version to use.
1507
+ python : str, optional, default: None
1508
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
1509
+ that the version used will correspond to the version of the Python interpreter used to start the run.
1510
+ """
1511
+ ...
1512
+
1513
+ @typing.overload
1514
+ def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1515
+ """
1516
+ Specifies the times when the flow should be run when running on a
1517
+ production scheduler.
1518
+
1519
+
1520
+ Parameters
1521
+ ----------
1522
+ hourly : bool, default False
1523
+ Run the workflow hourly.
1524
+ daily : bool, default True
1525
+ Run the workflow daily.
1526
+ weekly : bool, default False
1527
+ Run the workflow weekly.
1528
+ cron : str, optional, default None
1529
+ Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
1530
+ specified by this expression.
1531
+ timezone : str, optional, default None
1532
+ Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
1533
+ which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
1534
+ """
1535
+ ...
1536
+
1537
+ @typing.overload
1538
+ def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1539
+ ...
1540
+
1541
+ def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
1542
+ """
1543
+ Specifies the times when the flow should be run when running on a
1544
+ production scheduler.
1545
+
1546
+
1547
+ Parameters
1548
+ ----------
1549
+ hourly : bool, default False
1550
+ Run the workflow hourly.
1551
+ daily : bool, default True
1552
+ Run the workflow daily.
1553
+ weekly : bool, default False
1554
+ Run the workflow weekly.
1555
+ cron : str, optional, default None
1556
+ Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
1557
+ specified by this expression.
1558
+ timezone : str, optional, default None
1559
+ Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
1560
+ which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
1561
+ """
1562
+ ...
1563
+
1564
+ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1565
+ """
1566
+ The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
1567
+ before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
1568
+ and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
1569
+ added as a flow decorators. Adding more than one decorator will ensure that `start` step
1570
+ starts only after all sensors finish.
1571
+
1572
+
1573
+ Parameters
1574
+ ----------
1575
+ timeout : int
1576
+ Time, in seconds before the task times out and fails. (Default: 3600)
1577
+ poke_interval : int
1578
+ Time in seconds that the job should wait in between each try. (Default: 60)
1579
+ mode : str
1580
+ How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
1581
+ exponential_backoff : bool
1582
+ allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
1583
+ pool : str
1584
+ the slot pool this task should run in,
1585
+ slot pools are a way to limit concurrency for certain tasks. (Default:None)
1586
+ soft_fail : bool
1587
+ Set to true to mark the task as SKIPPED on failure. (Default: False)
1588
+ name : str
1589
+ Name of the sensor on Airflow
1590
+ description : str
1591
+ Description of sensor in the Airflow UI
1592
+ bucket_key : Union[str, List[str]]
1593
+ The key(s) being waited on. Supports full s3:// style url or relative path from root level.
1594
+ When it's specified as a full s3:// url, please leave `bucket_name` as None
1595
+ bucket_name : str
1596
+ Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
1597
+ When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
1598
+ wildcard_match : bool
1599
+ whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
1600
+ aws_conn_id : str
1601
+ a reference to the s3 connection on Airflow. (Default: None)
1602
+ verify : bool
1603
+ Whether or not to verify SSL certificates for S3 connection. (Default: None)
1604
+ """
1605
+ ...
1606
+
1607
+ @typing.overload
1608
+ def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1609
+ """
1610
+ Specifies the Conda environment for all steps of the flow.
1611
+
1612
+ Use `@conda_base` to set common libraries required by all
1613
+ steps and use `@conda` to specify step-specific additions.
1614
+
1615
+
1616
+ Parameters
1617
+ ----------
1618
+ packages : Dict[str, str], default {}
1619
+ Packages to use for this flow. The key is the name of the package
1620
+ and the value is the version to use.
1621
+ libraries : Dict[str, str], default {}
1622
+ Supported for backward compatibility. When used with packages, packages will take precedence.
1623
+ python : str, optional, default None
1624
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
1625
+ that the version used will correspond to the version of the Python interpreter used to start the run.
1626
+ disabled : bool, default False
1627
+ If set to True, disables Conda.
1628
+ """
1629
+ ...
1630
+
1631
+ @typing.overload
1632
+ def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1633
+ ...
1634
+
1635
+ def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
1636
+ """
1637
+ Specifies the Conda environment for all steps of the flow.
1638
+
1639
+ Use `@conda_base` to set common libraries required by all
1640
+ steps and use `@conda` to specify step-specific additions.
1641
+
1642
+
1643
+ Parameters
1644
+ ----------
1645
+ packages : Dict[str, str], default {}
1646
+ Packages to use for this flow. The key is the name of the package
1647
+ and the value is the version to use.
1648
+ libraries : Dict[str, str], default {}
1649
+ Supported for backward compatibility. When used with packages, packages will take precedence.
1650
+ python : str, optional, default None
1651
+ Version of Python to use, e.g. '3.7.4'. A default value of None implies
1652
+ that the version used will correspond to the version of the Python interpreter used to start the run.
1653
+ disabled : bool, default False
1654
+ If set to True, disables Conda.
1655
+ """
1656
+ ...
1657
+
1658
+ def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1659
+ """
1660
+ Specifies what flows belong to the same project.
1543
1661
 
1544
- Note that `branch` is typically one of:
1545
- - `prod`
1546
- - `user.bob`
1547
- - `test.my_experiment`
1548
- - `prod.staging`
1662
+ A project-specific namespace is created for all flows that
1663
+ use the same `@project(name)`.
1549
1664
 
1550
1665
 
1551
1666
  Parameters
1552
1667
  ----------
1553
- flow : Union[str, Dict[str, str]], optional, default None
1554
- Upstream flow dependency for this flow.
1555
- flows : List[Union[str, Dict[str, str]]], default []
1556
- Upstream flow dependencies for this flow.
1557
- options : Dict[str, Any], default {}
1558
- Backend-specific configuration for tuning eventing behavior.
1668
+ name : str
1669
+ Project name. Make sure that the name is unique amongst all
1670
+ projects that use the same production scheduler. The name may
1671
+ contain only lowercase alphanumeric characters and underscores.
1672
+
1673
+ branch : Optional[str], default None
1674
+ The branch to use. If not specified, the branch is set to
1675
+ `user.<username>` unless `production` is set to `True`. This can
1676
+ also be set on the command line using `--branch` as a top-level option.
1677
+ It is an error to specify `branch` in the decorator and on the command line.
1678
+
1679
+ production : bool, default False
1680
+ Whether or not the branch is the production branch. This can also be set on the
1681
+ command line using `--production` as a top-level option. It is an error to specify
1682
+ `production` in the decorator and on the command line.
1683
+ The project branch name will be:
1684
+ - if `branch` is specified:
1685
+ - if `production` is True: `prod.<branch>`
1686
+ - if `production` is False: `test.<branch>`
1687
+ - if `branch` is not specified:
1688
+ - if `production` is True: `prod`
1689
+ - if `production` is False: `user.<username>`
1559
1690
  """
1560
1691
  ...
1561
1692
 
1562
- @typing.overload
1563
- def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1564
- ...
1565
-
1566
- def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
1693
+ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1567
1694
  """
1568
- Specifies the flow(s) that this flow depends on.
1569
-
1570
- ```
1571
- @trigger_on_finish(flow='FooFlow')
1572
- ```
1573
- or
1574
- ```
1575
- @trigger_on_finish(flows=['FooFlow', 'BarFlow'])
1576
- ```
1577
- This decorator respects the @project decorator and triggers the flow
1578
- when upstream runs within the same namespace complete successfully
1579
-
1580
- Additionally, you can specify project aware upstream flow dependencies
1581
- by specifying the fully qualified project_flow_name.
1582
- ```
1583
- @trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
1584
- ```
1585
- or
1586
- ```
1587
- @trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
1588
- ```
1589
-
1590
- You can also specify just the project or project branch (other values will be
1591
- inferred from the current project or project branch):
1592
- ```
1593
- @trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
1594
- ```
1595
-
1596
- Note that `branch` is typically one of:
1597
- - `prod`
1598
- - `user.bob`
1599
- - `test.my_experiment`
1600
- - `prod.staging`
1695
+ The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
1696
+ This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
1601
1697
 
1602
1698
 
1603
1699
  Parameters
1604
1700
  ----------
1605
- flow : Union[str, Dict[str, str]], optional, default None
1606
- Upstream flow dependency for this flow.
1607
- flows : List[Union[str, Dict[str, str]]], default []
1608
- Upstream flow dependencies for this flow.
1609
- options : Dict[str, Any], default {}
1610
- Backend-specific configuration for tuning eventing behavior.
1701
+ timeout : int
1702
+ Time, in seconds before the task times out and fails. (Default: 3600)
1703
+ poke_interval : int
1704
+ Time in seconds that the job should wait in between each try. (Default: 60)
1705
+ mode : str
1706
+ How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
1707
+ exponential_backoff : bool
1708
+ allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
1709
+ pool : str
1710
+ the slot pool this task should run in,
1711
+ slot pools are a way to limit concurrency for certain tasks. (Default:None)
1712
+ soft_fail : bool
1713
+ Set to true to mark the task as SKIPPED on failure. (Default: False)
1714
+ name : str
1715
+ Name of the sensor on Airflow
1716
+ description : str
1717
+ Description of sensor in the Airflow UI
1718
+ external_dag_id : str
1719
+ The dag_id that contains the task you want to wait for.
1720
+ external_task_ids : List[str]
1721
+ The list of task_ids that you want to wait for.
1722
+ If None (default value) the sensor waits for the DAG. (Default: None)
1723
+ allowed_states : List[str]
1724
+ Iterable of allowed states, (Default: ['success'])
1725
+ failed_states : List[str]
1726
+ Iterable of failed or dis-allowed states. (Default: None)
1727
+ execution_delta : datetime.timedelta
1728
+ time difference with the previous execution to look at,
1729
+ the default is the same logical date as the current task or DAG. (Default: None)
1730
+ check_existence: bool
1731
+ Set to True to check if the external task exists or check if
1732
+ the DAG to wait for exists. (Default: True)
1611
1733
  """
1612
1734
  ...
1613
1735
 
@@ -1726,232 +1848,103 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
1726
1848
  ...
1727
1849
 
1728
1850
  @typing.overload
1729
- def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1730
- """
1731
- Specifies the event(s) that this flow depends on.
1732
-
1733
- ```
1734
- @trigger(event='foo')
1735
- ```
1736
- or
1737
- ```
1738
- @trigger(events=['foo', 'bar'])
1739
- ```
1740
-
1741
- Additionally, you can specify the parameter mappings
1742
- to map event payload to Metaflow parameters for the flow.
1743
- ```
1744
- @trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
1745
- ```
1746
- or
1747
- ```
1748
- @trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
1749
- {'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
1750
- ```
1751
-
1752
- 'parameters' can also be a list of strings and tuples like so:
1753
- ```
1754
- @trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
1755
- ```
1756
- This is equivalent to:
1757
- ```
1758
- @trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
1759
- ```
1760
-
1761
-
1762
- Parameters
1763
- ----------
1764
- event : Union[str, Dict[str, Any]], optional, default None
1765
- Event dependency for this flow.
1766
- events : List[Union[str, Dict[str, Any]]], default []
1767
- Events dependency for this flow.
1768
- options : Dict[str, Any], default {}
1769
- Backend-specific configuration for tuning eventing behavior.
1770
- """
1771
- ...
1772
-
1773
- @typing.overload
1774
- def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1775
- ...
1776
-
1777
- def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
1851
+ def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1778
1852
  """
1779
- Specifies the event(s) that this flow depends on.
1853
+ Specifies the flow(s) that this flow depends on.
1780
1854
 
1781
1855
  ```
1782
- @trigger(event='foo')
1856
+ @trigger_on_finish(flow='FooFlow')
1783
1857
  ```
1784
1858
  or
1785
1859
  ```
1786
- @trigger(events=['foo', 'bar'])
1860
+ @trigger_on_finish(flows=['FooFlow', 'BarFlow'])
1787
1861
  ```
1862
+ This decorator respects the @project decorator and triggers the flow
1863
+ when upstream runs within the same namespace complete successfully
1788
1864
 
1789
- Additionally, you can specify the parameter mappings
1790
- to map event payload to Metaflow parameters for the flow.
1865
+ Additionally, you can specify project aware upstream flow dependencies
1866
+ by specifying the fully qualified project_flow_name.
1791
1867
  ```
1792
- @trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
1868
+ @trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
1793
1869
  ```
1794
1870
  or
1795
1871
  ```
1796
- @trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
1797
- {'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
1798
- ```
1799
-
1800
- 'parameters' can also be a list of strings and tuples like so:
1801
- ```
1802
- @trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
1803
- ```
1804
- This is equivalent to:
1805
- ```
1806
- @trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
1872
+ @trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
1807
1873
  ```
1808
1874
 
1809
-
1810
- Parameters
1811
- ----------
1812
- event : Union[str, Dict[str, Any]], optional, default None
1813
- Event dependency for this flow.
1814
- events : List[Union[str, Dict[str, Any]]], default []
1815
- Events dependency for this flow.
1816
- options : Dict[str, Any], default {}
1817
- Backend-specific configuration for tuning eventing behavior.
1818
- """
1819
- ...
1820
-
1821
- def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1822
- """
1823
- The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
1824
- before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
1825
- and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
1826
- added as a flow decorators. Adding more than one decorator will ensure that `start` step
1827
- starts only after all sensors finish.
1828
-
1829
-
1830
- Parameters
1831
- ----------
1832
- timeout : int
1833
- Time, in seconds before the task times out and fails. (Default: 3600)
1834
- poke_interval : int
1835
- Time in seconds that the job should wait in between each try. (Default: 60)
1836
- mode : str
1837
- How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
1838
- exponential_backoff : bool
1839
- allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
1840
- pool : str
1841
- the slot pool this task should run in,
1842
- slot pools are a way to limit concurrency for certain tasks. (Default:None)
1843
- soft_fail : bool
1844
- Set to true to mark the task as SKIPPED on failure. (Default: False)
1845
- name : str
1846
- Name of the sensor on Airflow
1847
- description : str
1848
- Description of sensor in the Airflow UI
1849
- bucket_key : Union[str, List[str]]
1850
- The key(s) being waited on. Supports full s3:// style url or relative path from root level.
1851
- When it's specified as a full s3:// url, please leave `bucket_name` as None
1852
- bucket_name : str
1853
- Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
1854
- When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
1855
- wildcard_match : bool
1856
- whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
1857
- aws_conn_id : str
1858
- a reference to the s3 connection on Airflow. (Default: None)
1859
- verify : bool
1860
- Whether or not to verify SSL certificates for S3 connection. (Default: None)
1861
- """
1862
- ...
1863
-
1864
- @typing.overload
1865
- def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1866
- """
1867
- Specifies the times when the flow should be run when running on a
1868
- production scheduler.
1875
+ You can also specify just the project or project branch (other values will be
1876
+ inferred from the current project or project branch):
1877
+ ```
1878
+ @trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
1879
+ ```
1880
+
1881
+ Note that `branch` is typically one of:
1882
+ - `prod`
1883
+ - `user.bob`
1884
+ - `test.my_experiment`
1885
+ - `prod.staging`
1869
1886
 
1870
1887
 
1871
1888
  Parameters
1872
1889
  ----------
1873
- hourly : bool, default False
1874
- Run the workflow hourly.
1875
- daily : bool, default True
1876
- Run the workflow daily.
1877
- weekly : bool, default False
1878
- Run the workflow weekly.
1879
- cron : str, optional, default None
1880
- Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
1881
- specified by this expression.
1882
- timezone : str, optional, default None
1883
- Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
1884
- which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
1890
+ flow : Union[str, Dict[str, str]], optional, default None
1891
+ Upstream flow dependency for this flow.
1892
+ flows : List[Union[str, Dict[str, str]]], default []
1893
+ Upstream flow dependencies for this flow.
1894
+ options : Dict[str, Any], default {}
1895
+ Backend-specific configuration for tuning eventing behavior.
1885
1896
  """
1886
1897
  ...
1887
1898
 
1888
1899
  @typing.overload
1889
- def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1900
+ def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
1890
1901
  ...
1891
1902
 
1892
- def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
1903
+ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
1893
1904
  """
1894
- Specifies the times when the flow should be run when running on a
1895
- production scheduler.
1905
+ Specifies the flow(s) that this flow depends on.
1896
1906
 
1907
+ ```
1908
+ @trigger_on_finish(flow='FooFlow')
1909
+ ```
1910
+ or
1911
+ ```
1912
+ @trigger_on_finish(flows=['FooFlow', 'BarFlow'])
1913
+ ```
1914
+ This decorator respects the @project decorator and triggers the flow
1915
+ when upstream runs within the same namespace complete successfully
1897
1916
 
1898
- Parameters
1899
- ----------
1900
- hourly : bool, default False
1901
- Run the workflow hourly.
1902
- daily : bool, default True
1903
- Run the workflow daily.
1904
- weekly : bool, default False
1905
- Run the workflow weekly.
1906
- cron : str, optional, default None
1907
- Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
1908
- specified by this expression.
1909
- timezone : str, optional, default None
1910
- Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
1911
- which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
1912
- """
1913
- ...
1914
-
1915
- def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1916
- """
1917
- The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
1918
- This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
1917
+ Additionally, you can specify project aware upstream flow dependencies
1918
+ by specifying the fully qualified project_flow_name.
1919
+ ```
1920
+ @trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
1921
+ ```
1922
+ or
1923
+ ```
1924
+ @trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
1925
+ ```
1926
+
1927
+ You can also specify just the project or project branch (other values will be
1928
+ inferred from the current project or project branch):
1929
+ ```
1930
+ @trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
1931
+ ```
1932
+
1933
+ Note that `branch` is typically one of:
1934
+ - `prod`
1935
+ - `user.bob`
1936
+ - `test.my_experiment`
1937
+ - `prod.staging`
1919
1938
 
1920
1939
 
1921
1940
  Parameters
1922
1941
  ----------
1923
- timeout : int
1924
- Time, in seconds before the task times out and fails. (Default: 3600)
1925
- poke_interval : int
1926
- Time in seconds that the job should wait in between each try. (Default: 60)
1927
- mode : str
1928
- How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
1929
- exponential_backoff : bool
1930
- allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
1931
- pool : str
1932
- the slot pool this task should run in,
1933
- slot pools are a way to limit concurrency for certain tasks. (Default:None)
1934
- soft_fail : bool
1935
- Set to true to mark the task as SKIPPED on failure. (Default: False)
1936
- name : str
1937
- Name of the sensor on Airflow
1938
- description : str
1939
- Description of sensor in the Airflow UI
1940
- external_dag_id : str
1941
- The dag_id that contains the task you want to wait for.
1942
- external_task_ids : List[str]
1943
- The list of task_ids that you want to wait for.
1944
- If None (default value) the sensor waits for the DAG. (Default: None)
1945
- allowed_states : List[str]
1946
- Iterable of allowed states, (Default: ['success'])
1947
- failed_states : List[str]
1948
- Iterable of failed or dis-allowed states. (Default: None)
1949
- execution_delta : datetime.timedelta
1950
- time difference with the previous execution to look at,
1951
- the default is the same logical date as the current task or DAG. (Default: None)
1952
- check_existence: bool
1953
- Set to True to check if the external task exists or check if
1954
- the DAG to wait for exists. (Default: True)
1942
+ flow : Union[str, Dict[str, str]], optional, default None
1943
+ Upstream flow dependency for this flow.
1944
+ flows : List[Union[str, Dict[str, str]]], default []
1945
+ Upstream flow dependencies for this flow.
1946
+ options : Dict[str, Any], default {}
1947
+ Backend-specific configuration for tuning eventing behavior.
1955
1948
  """
1956
1949
  ...
1957
1950
 
@@ -1997,88 +1990,95 @@ def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packag
1997
1990
  ...
1998
1991
 
1999
1992
  @typing.overload
2000
- def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
1993
+ def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
2001
1994
  """
2002
- Specifies the Conda environment for all steps of the flow.
1995
+ Specifies the event(s) that this flow depends on.
2003
1996
 
2004
- Use `@conda_base` to set common libraries required by all
2005
- steps and use `@conda` to specify step-specific additions.
1997
+ ```
1998
+ @trigger(event='foo')
1999
+ ```
2000
+ or
2001
+ ```
2002
+ @trigger(events=['foo', 'bar'])
2003
+ ```
2004
+
2005
+ Additionally, you can specify the parameter mappings
2006
+ to map event payload to Metaflow parameters for the flow.
2007
+ ```
2008
+ @trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
2009
+ ```
2010
+ or
2011
+ ```
2012
+ @trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
2013
+ {'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
2014
+ ```
2015
+
2016
+ 'parameters' can also be a list of strings and tuples like so:
2017
+ ```
2018
+ @trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
2019
+ ```
2020
+ This is equivalent to:
2021
+ ```
2022
+ @trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
2023
+ ```
2006
2024
 
2007
2025
 
2008
2026
  Parameters
2009
2027
  ----------
2010
- packages : Dict[str, str], default {}
2011
- Packages to use for this flow. The key is the name of the package
2012
- and the value is the version to use.
2013
- libraries : Dict[str, str], default {}
2014
- Supported for backward compatibility. When used with packages, packages will take precedence.
2015
- python : str, optional, default None
2016
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
2017
- that the version used will correspond to the version of the Python interpreter used to start the run.
2018
- disabled : bool, default False
2019
- If set to True, disables Conda.
2028
+ event : Union[str, Dict[str, Any]], optional, default None
2029
+ Event dependency for this flow.
2030
+ events : List[Union[str, Dict[str, Any]]], default []
2031
+ Events dependency for this flow.
2032
+ options : Dict[str, Any], default {}
2033
+ Backend-specific configuration for tuning eventing behavior.
2020
2034
  """
2021
2035
  ...
2022
2036
 
2023
2037
  @typing.overload
2024
- def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
2038
+ def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
2025
2039
  ...
2026
2040
 
2027
- def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
2041
+ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
2028
2042
  """
2029
- Specifies the Conda environment for all steps of the flow.
2030
-
2031
- Use `@conda_base` to set common libraries required by all
2032
- steps and use `@conda` to specify step-specific additions.
2043
+ Specifies the event(s) that this flow depends on.
2033
2044
 
2045
+ ```
2046
+ @trigger(event='foo')
2047
+ ```
2048
+ or
2049
+ ```
2050
+ @trigger(events=['foo', 'bar'])
2051
+ ```
2034
2052
 
2035
- Parameters
2036
- ----------
2037
- packages : Dict[str, str], default {}
2038
- Packages to use for this flow. The key is the name of the package
2039
- and the value is the version to use.
2040
- libraries : Dict[str, str], default {}
2041
- Supported for backward compatibility. When used with packages, packages will take precedence.
2042
- python : str, optional, default None
2043
- Version of Python to use, e.g. '3.7.4'. A default value of None implies
2044
- that the version used will correspond to the version of the Python interpreter used to start the run.
2045
- disabled : bool, default False
2046
- If set to True, disables Conda.
2047
- """
2048
- ...
2049
-
2050
- def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
2051
- """
2052
- Specifies what flows belong to the same project.
2053
+ Additionally, you can specify the parameter mappings
2054
+ to map event payload to Metaflow parameters for the flow.
2055
+ ```
2056
+ @trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
2057
+ ```
2058
+ or
2059
+ ```
2060
+ @trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
2061
+ {'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
2062
+ ```
2053
2063
 
2054
- A project-specific namespace is created for all flows that
2055
- use the same `@project(name)`.
2064
+ 'parameters' can also be a list of strings and tuples like so:
2065
+ ```
2066
+ @trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
2067
+ ```
2068
+ This is equivalent to:
2069
+ ```
2070
+ @trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
2071
+ ```
2056
2072
 
2057
2073
 
2058
2074
  Parameters
2059
2075
  ----------
2060
- name : str
2061
- Project name. Make sure that the name is unique amongst all
2062
- projects that use the same production scheduler. The name may
2063
- contain only lowercase alphanumeric characters and underscores.
2064
-
2065
- branch : Optional[str], default None
2066
- The branch to use. If not specified, the branch is set to
2067
- `user.<username>` unless `production` is set to `True`. This can
2068
- also be set on the command line using `--branch` as a top-level option.
2069
- It is an error to specify `branch` in the decorator and on the command line.
2070
-
2071
- production : bool, default False
2072
- Whether or not the branch is the production branch. This can also be set on the
2073
- command line using `--production` as a top-level option. It is an error to specify
2074
- `production` in the decorator and on the command line.
2075
- The project branch name will be:
2076
- - if `branch` is specified:
2077
- - if `production` is True: `prod.<branch>`
2078
- - if `production` is False: `test.<branch>`
2079
- - if `branch` is not specified:
2080
- - if `production` is True: `prod`
2081
- - if `production` is False: `user.<username>`
2076
+ event : Union[str, Dict[str, Any]], optional, default None
2077
+ Event dependency for this flow.
2078
+ events : List[Union[str, Dict[str, Any]]], default []
2079
+ Events dependency for this flow.
2080
+ options : Dict[str, Any], default {}
2081
+ Backend-specific configuration for tuning eventing behavior.
2082
2082
  """
2083
2083
  ...
2084
2084