ob-metaflow-stubs 6.0.10.16__py2.py3-none-any.whl → 6.0.10.18__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ob-metaflow-stubs might be problematic. Click here for more details.
- metaflow-stubs/__init__.pyi +1058 -1058
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +6 -6
- metaflow-stubs/client/filecache.pyi +3 -3
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +5 -5
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/meta_files.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +2 -2
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -2
- metaflow-stubs/metaflow_current.pyi +77 -77
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/hf_hub_card.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/packaging_sys/__init__.pyi +6 -6
- metaflow-stubs/packaging_sys/backend.pyi +2 -2
- metaflow-stubs/packaging_sys/distribution_support.pyi +2 -2
- metaflow-stubs/packaging_sys/tar_backend.pyi +5 -5
- metaflow-stubs/packaging_sys/utils.pyi +2 -2
- metaflow-stubs/packaging_sys/v1.pyi +2 -2
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +13 -13
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +4 -4
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/argo/exit_hooks.pyi +3 -3
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +16 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/json_viewer.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +4 -4
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/plugins/optuna/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/parsers.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +5 -5
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +3 -3
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +5 -5
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +4 -4
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +6 -6
- metaflow-stubs/user_decorators/__init__.pyi +2 -2
- metaflow-stubs/user_decorators/common.pyi +2 -2
- metaflow-stubs/user_decorators/mutable_flow.pyi +6 -6
- metaflow-stubs/user_decorators/mutable_step.pyi +6 -6
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +4 -4
- metaflow-stubs/user_decorators/user_step_decorator.pyi +5 -5
- {ob_metaflow_stubs-6.0.10.16.dist-info → ob_metaflow_stubs-6.0.10.18.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.10.18.dist-info/RECORD +266 -0
- ob_metaflow_stubs-6.0.10.16.dist-info/RECORD +0 -266
- {ob_metaflow_stubs-6.0.10.16.dist-info → ob_metaflow_stubs-6.0.10.18.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.10.16.dist-info → ob_metaflow_stubs-6.0.10.18.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
|
-
# MF version: 2.18.
|
|
4
|
-
# Generated on 2025-10-
|
|
3
|
+
# MF version: 2.18.12.1+obcheckpoint(0.2.8);ob(v1) #
|
|
4
|
+
# Generated on 2025-10-20T19:13:33.388213 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
@@ -40,18 +40,18 @@ from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
42
|
from . import cards as cards
|
|
43
|
-
from . import tuple_util as tuple_util
|
|
44
43
|
from . import metaflow_git as metaflow_git
|
|
44
|
+
from . import tuple_util as tuple_util
|
|
45
45
|
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
|
-
from .plugins.parsers import
|
|
51
|
+
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
52
52
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
53
53
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
54
|
-
from .plugins.
|
|
54
|
+
from .plugins.parsers import yaml_parser as yaml_parser
|
|
55
55
|
from . import client as client
|
|
56
56
|
from .client.core import namespace as namespace
|
|
57
57
|
from .client.core import get_namespace as get_namespace
|
|
@@ -169,101 +169,13 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
169
169
|
"""
|
|
170
170
|
...
|
|
171
171
|
|
|
172
|
-
def
|
|
173
|
-
"""
|
|
174
|
-
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
175
|
-
|
|
176
|
-
User code call
|
|
177
|
-
--------------
|
|
178
|
-
@vllm(
|
|
179
|
-
model="...",
|
|
180
|
-
...
|
|
181
|
-
)
|
|
182
|
-
|
|
183
|
-
Valid backend options
|
|
184
|
-
---------------------
|
|
185
|
-
- 'local': Run as a separate process on the local task machine.
|
|
186
|
-
|
|
187
|
-
Valid model options
|
|
188
|
-
-------------------
|
|
189
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
190
|
-
|
|
191
|
-
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
192
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
Parameters
|
|
196
|
-
----------
|
|
197
|
-
model: str
|
|
198
|
-
HuggingFace model identifier to be served by vLLM.
|
|
199
|
-
backend: str
|
|
200
|
-
Determines where and how to run the vLLM process.
|
|
201
|
-
openai_api_server: bool
|
|
202
|
-
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
203
|
-
Default is False (uses native engine).
|
|
204
|
-
Set to True for backward compatibility with existing code.
|
|
205
|
-
debug: bool
|
|
206
|
-
Whether to turn on verbose debugging logs.
|
|
207
|
-
card_refresh_interval: int
|
|
208
|
-
Interval in seconds for refreshing the vLLM status card.
|
|
209
|
-
Only used when openai_api_server=True.
|
|
210
|
-
max_retries: int
|
|
211
|
-
Maximum number of retries checking for vLLM server startup.
|
|
212
|
-
Only used when openai_api_server=True.
|
|
213
|
-
retry_alert_frequency: int
|
|
214
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
215
|
-
Only used when openai_api_server=True.
|
|
216
|
-
engine_args : dict
|
|
217
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
218
|
-
For example, `tensor_parallel_size=2`.
|
|
219
|
-
"""
|
|
220
|
-
...
|
|
221
|
-
|
|
222
|
-
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
172
|
+
def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
223
173
|
"""
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
--------------
|
|
228
|
-
@ollama(
|
|
229
|
-
models=[...],
|
|
230
|
-
...
|
|
231
|
-
)
|
|
232
|
-
|
|
233
|
-
Valid backend options
|
|
234
|
-
---------------------
|
|
235
|
-
- 'local': Run as a separate process on the local task machine.
|
|
236
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
237
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
238
|
-
|
|
239
|
-
Valid model options
|
|
240
|
-
-------------------
|
|
241
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
174
|
+
`@nebius_s3_proxy` is a Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
175
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
176
|
+
a Neo Cloud like Nebius. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
242
177
|
|
|
243
178
|
|
|
244
|
-
Parameters
|
|
245
|
-
----------
|
|
246
|
-
models: list[str]
|
|
247
|
-
List of Ollama containers running models in sidecars.
|
|
248
|
-
backend: str
|
|
249
|
-
Determines where and how to run the Ollama process.
|
|
250
|
-
force_pull: bool
|
|
251
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
252
|
-
cache_update_policy: str
|
|
253
|
-
Cache update policy: "auto", "force", or "never".
|
|
254
|
-
force_cache_update: bool
|
|
255
|
-
Simple override for "force" cache update policy.
|
|
256
|
-
debug: bool
|
|
257
|
-
Whether to turn on verbose debugging logs.
|
|
258
|
-
circuit_breaker_config: dict
|
|
259
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
260
|
-
timeout_config: dict
|
|
261
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
262
|
-
"""
|
|
263
|
-
...
|
|
264
|
-
|
|
265
|
-
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
266
|
-
"""
|
|
267
179
|
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
268
180
|
for S3 read and write requests.
|
|
269
181
|
|
|
@@ -321,236 +233,353 @@ def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typin
|
|
|
321
233
|
"""
|
|
322
234
|
...
|
|
323
235
|
|
|
324
|
-
|
|
236
|
+
@typing.overload
|
|
237
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
325
238
|
"""
|
|
326
|
-
Specifies
|
|
239
|
+
Specifies the Conda environment for the step.
|
|
240
|
+
|
|
241
|
+
Information in this decorator will augment any
|
|
242
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
243
|
+
you can use `@conda_base` to set packages required by all
|
|
244
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
327
245
|
|
|
328
246
|
|
|
329
247
|
Parameters
|
|
330
248
|
----------
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
used.
|
|
342
|
-
image : str, optional, default None
|
|
343
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
344
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
345
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
346
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
347
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
348
|
-
image_pull_secrets: List[str], default []
|
|
349
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
350
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
351
|
-
in Kubernetes.
|
|
352
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
353
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
354
|
-
secrets : List[str], optional, default None
|
|
355
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
356
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
357
|
-
in Metaflow configuration.
|
|
358
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
359
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
360
|
-
Can be passed in as a comma separated string of values e.g.
|
|
361
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
362
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
363
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
364
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
365
|
-
gpu : int, optional, default None
|
|
366
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
367
|
-
the scheduled node should not have GPUs.
|
|
368
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
369
|
-
The vendor of the GPUs to be used for this step.
|
|
370
|
-
tolerations : List[Dict[str,str]], default []
|
|
371
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
372
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
373
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
374
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
375
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
376
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
377
|
-
use_tmpfs : bool, default False
|
|
378
|
-
This enables an explicit tmpfs mount for this step.
|
|
379
|
-
tmpfs_tempdir : bool, default True
|
|
380
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
381
|
-
tmpfs_size : int, optional, default: None
|
|
382
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
383
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
384
|
-
memory allocated for this step.
|
|
385
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
386
|
-
Path to tmpfs mount for this step.
|
|
387
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
388
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
389
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
390
|
-
shared_memory: int, optional
|
|
391
|
-
Shared memory size (in MiB) required for this step
|
|
392
|
-
port: int, optional
|
|
393
|
-
Port number to specify in the Kubernetes job object
|
|
394
|
-
compute_pool : str, optional, default None
|
|
395
|
-
Compute pool to be used for for this step.
|
|
396
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
397
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
398
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
399
|
-
Only applicable when @parallel is used.
|
|
400
|
-
qos: str, default: Burstable
|
|
401
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
402
|
-
|
|
403
|
-
security_context: Dict[str, Any], optional, default None
|
|
404
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
405
|
-
- privileged: bool, optional, default None
|
|
406
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
407
|
-
- run_as_user: int, optional, default None
|
|
408
|
-
- run_as_group: int, optional, default None
|
|
409
|
-
- run_as_non_root: bool, optional, default None
|
|
249
|
+
packages : Dict[str, str], default {}
|
|
250
|
+
Packages to use for this step. The key is the name of the package
|
|
251
|
+
and the value is the version to use.
|
|
252
|
+
libraries : Dict[str, str], default {}
|
|
253
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
254
|
+
python : str, optional, default None
|
|
255
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
256
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
257
|
+
disabled : bool, default False
|
|
258
|
+
If set to True, disables @conda.
|
|
410
259
|
"""
|
|
411
260
|
...
|
|
412
261
|
|
|
413
262
|
@typing.overload
|
|
414
|
-
def
|
|
415
|
-
"""
|
|
416
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
417
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
418
|
-
"""
|
|
263
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
419
264
|
...
|
|
420
265
|
|
|
421
266
|
@typing.overload
|
|
422
|
-
def
|
|
267
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
423
268
|
...
|
|
424
269
|
|
|
425
|
-
def
|
|
270
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
426
271
|
"""
|
|
427
|
-
|
|
428
|
-
|
|
272
|
+
Specifies the Conda environment for the step.
|
|
273
|
+
|
|
274
|
+
Information in this decorator will augment any
|
|
275
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
276
|
+
you can use `@conda_base` to set packages required by all
|
|
277
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
278
|
+
|
|
279
|
+
|
|
280
|
+
Parameters
|
|
281
|
+
----------
|
|
282
|
+
packages : Dict[str, str], default {}
|
|
283
|
+
Packages to use for this step. The key is the name of the package
|
|
284
|
+
and the value is the version to use.
|
|
285
|
+
libraries : Dict[str, str], default {}
|
|
286
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
287
|
+
python : str, optional, default None
|
|
288
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
289
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
290
|
+
disabled : bool, default False
|
|
291
|
+
If set to True, disables @conda.
|
|
429
292
|
"""
|
|
430
293
|
...
|
|
431
294
|
|
|
432
|
-
|
|
295
|
+
@typing.overload
|
|
296
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
433
297
|
"""
|
|
434
|
-
|
|
298
|
+
Enables checkpointing for a step.
|
|
435
299
|
|
|
436
|
-
Examples
|
|
437
|
-
|
|
300
|
+
> Examples
|
|
301
|
+
|
|
302
|
+
- Saving Checkpoints
|
|
438
303
|
|
|
439
304
|
```python
|
|
440
|
-
|
|
441
|
-
@huggingface_hub
|
|
305
|
+
@checkpoint
|
|
442
306
|
@step
|
|
443
|
-
def
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
|
|
307
|
+
def train(self):
|
|
308
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
309
|
+
for i in range(self.epochs):
|
|
310
|
+
# some training logic
|
|
311
|
+
loss = model.train(self.dataset)
|
|
312
|
+
if i % 10 == 0:
|
|
313
|
+
model.save(
|
|
314
|
+
current.checkpoint.directory,
|
|
315
|
+
)
|
|
316
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
317
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
318
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
319
|
+
name="epoch_checkpoint",
|
|
320
|
+
metadata={
|
|
321
|
+
"epoch": i,
|
|
322
|
+
"loss": loss,
|
|
323
|
+
}
|
|
324
|
+
)
|
|
325
|
+
```
|
|
456
326
|
|
|
457
|
-
|
|
458
|
-
|
|
327
|
+
- Using Loaded Checkpoints
|
|
328
|
+
|
|
329
|
+
```python
|
|
330
|
+
@retry(times=3)
|
|
331
|
+
@checkpoint
|
|
459
332
|
@step
|
|
460
|
-
def
|
|
461
|
-
#
|
|
462
|
-
|
|
463
|
-
|
|
464
|
-
|
|
465
|
-
|
|
466
|
-
|
|
467
|
-
|
|
333
|
+
def train(self):
|
|
334
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
335
|
+
# saved a checkpoint
|
|
336
|
+
checkpoint_path = None
|
|
337
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
338
|
+
print("Loaded checkpoint from the previous attempt")
|
|
339
|
+
checkpoint_path = current.checkpoint.directory
|
|
340
|
+
|
|
341
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
342
|
+
for i in range(self.epochs):
|
|
468
343
|
...
|
|
344
|
+
```
|
|
469
345
|
|
|
470
|
-
# **Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
471
346
|
|
|
472
|
-
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
|
|
347
|
+
Parameters
|
|
348
|
+
----------
|
|
349
|
+
load_policy : str, default: "fresh"
|
|
350
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
351
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
352
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
353
|
+
will be loaded at the start of the task.
|
|
354
|
+
- "none": Do not load any checkpoint
|
|
355
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
356
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
357
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
358
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
476
359
|
|
|
477
|
-
|
|
360
|
+
temp_dir_root : str, default: None
|
|
361
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
362
|
+
"""
|
|
363
|
+
...
|
|
364
|
+
|
|
365
|
+
@typing.overload
|
|
366
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
367
|
+
...
|
|
368
|
+
|
|
369
|
+
@typing.overload
|
|
370
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
371
|
+
...
|
|
372
|
+
|
|
373
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
374
|
+
"""
|
|
375
|
+
Enables checkpointing for a step.
|
|
376
|
+
|
|
377
|
+
> Examples
|
|
378
|
+
|
|
379
|
+
- Saving Checkpoints
|
|
380
|
+
|
|
381
|
+
```python
|
|
382
|
+
@checkpoint
|
|
478
383
|
@step
|
|
479
|
-
def
|
|
480
|
-
|
|
481
|
-
|
|
384
|
+
def train(self):
|
|
385
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
386
|
+
for i in range(self.epochs):
|
|
387
|
+
# some training logic
|
|
388
|
+
loss = model.train(self.dataset)
|
|
389
|
+
if i % 10 == 0:
|
|
390
|
+
model.save(
|
|
391
|
+
current.checkpoint.directory,
|
|
392
|
+
)
|
|
393
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
394
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
395
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
396
|
+
name="epoch_checkpoint",
|
|
397
|
+
metadata={
|
|
398
|
+
"epoch": i,
|
|
399
|
+
"loss": loss,
|
|
400
|
+
}
|
|
401
|
+
)
|
|
402
|
+
```
|
|
482
403
|
|
|
404
|
+
- Using Loaded Checkpoints
|
|
483
405
|
|
|
484
|
-
|
|
485
|
-
|
|
486
|
-
@
|
|
487
|
-
{
|
|
488
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
489
|
-
},
|
|
490
|
-
{
|
|
491
|
-
"repo_id": "myorg/mistral-lora",
|
|
492
|
-
"repo_type": "model",
|
|
493
|
-
},
|
|
494
|
-
])
|
|
406
|
+
```python
|
|
407
|
+
@retry(times=3)
|
|
408
|
+
@checkpoint
|
|
495
409
|
@step
|
|
496
|
-
def
|
|
497
|
-
|
|
498
|
-
#
|
|
410
|
+
def train(self):
|
|
411
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
412
|
+
# saved a checkpoint
|
|
413
|
+
checkpoint_path = None
|
|
414
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
415
|
+
print("Loaded checkpoint from the previous attempt")
|
|
416
|
+
checkpoint_path = current.checkpoint.directory
|
|
417
|
+
|
|
418
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
419
|
+
for i in range(self.epochs):
|
|
420
|
+
...
|
|
499
421
|
```
|
|
500
422
|
|
|
501
423
|
|
|
502
424
|
Parameters
|
|
503
425
|
----------
|
|
504
|
-
|
|
505
|
-
The
|
|
426
|
+
load_policy : str, default: "fresh"
|
|
427
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
428
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
429
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
430
|
+
will be loaded at the start of the task.
|
|
431
|
+
- "none": Do not load any checkpoint
|
|
432
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
433
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
434
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
435
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
506
436
|
|
|
507
|
-
|
|
508
|
-
The
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
|
|
437
|
+
temp_dir_root : str, default: None
|
|
438
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
439
|
+
"""
|
|
440
|
+
...
|
|
441
|
+
|
|
442
|
+
@typing.overload
|
|
443
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
444
|
+
"""
|
|
445
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
512
446
|
|
|
513
|
-
|
|
514
|
-
i.e., the cached path is derived solely from the flow name.
|
|
515
|
-
When to use this mode: (1) Multiple users are executing the same flow and want shared access to the repos cached by the decorator. (2) Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
447
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
516
448
|
|
|
517
|
-
- `global`: All repos are cached under a globally static path.
|
|
518
|
-
i.e., the base path of the cache is static and all repos are stored under it.
|
|
519
|
-
When to use this mode:
|
|
520
|
-
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
521
|
-
- Each caching scope comes with its own trade-offs:
|
|
522
|
-
- `checkpoint`:
|
|
523
|
-
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
524
|
-
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
525
|
-
- `flow`:
|
|
526
|
-
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
527
|
-
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
528
|
-
- It doesn't promote cache reuse across flows.
|
|
529
|
-
- `global`:
|
|
530
|
-
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
531
|
-
- It promotes cache reuse across flows.
|
|
532
|
-
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
533
449
|
|
|
534
|
-
|
|
535
|
-
|
|
450
|
+
Parameters
|
|
451
|
+
----------
|
|
452
|
+
type : str, default 'default'
|
|
453
|
+
Card type.
|
|
454
|
+
id : str, optional, default None
|
|
455
|
+
If multiple cards are present, use this id to identify this card.
|
|
456
|
+
options : Dict[str, Any], default {}
|
|
457
|
+
Options passed to the card. The contents depend on the card type.
|
|
458
|
+
timeout : int, default 45
|
|
459
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
460
|
+
"""
|
|
461
|
+
...
|
|
462
|
+
|
|
463
|
+
@typing.overload
|
|
464
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
465
|
+
...
|
|
466
|
+
|
|
467
|
+
@typing.overload
|
|
468
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
469
|
+
...
|
|
470
|
+
|
|
471
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
472
|
+
"""
|
|
473
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
536
474
|
|
|
537
|
-
|
|
475
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
538
476
|
|
|
539
|
-
- If repo (model/dataset) is not found in the datastore:
|
|
540
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
541
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
542
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
543
477
|
|
|
544
|
-
|
|
545
|
-
|
|
478
|
+
Parameters
|
|
479
|
+
----------
|
|
480
|
+
type : str, default 'default'
|
|
481
|
+
Card type.
|
|
482
|
+
id : str, optional, default None
|
|
483
|
+
If multiple cards are present, use this id to identify this card.
|
|
484
|
+
options : Dict[str, Any], default {}
|
|
485
|
+
Options passed to the card. The contents depend on the card type.
|
|
486
|
+
timeout : int, default 45
|
|
487
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
546
488
|
"""
|
|
547
489
|
...
|
|
548
490
|
|
|
549
|
-
|
|
491
|
+
@typing.overload
|
|
492
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
550
493
|
"""
|
|
551
|
-
|
|
494
|
+
Internal decorator to support Fast bakery
|
|
495
|
+
"""
|
|
496
|
+
...
|
|
497
|
+
|
|
498
|
+
@typing.overload
|
|
499
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
500
|
+
...
|
|
501
|
+
|
|
502
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
503
|
+
"""
|
|
504
|
+
Internal decorator to support Fast bakery
|
|
505
|
+
"""
|
|
506
|
+
...
|
|
507
|
+
|
|
508
|
+
@typing.overload
|
|
509
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
510
|
+
"""
|
|
511
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
512
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
513
|
+
"""
|
|
514
|
+
...
|
|
515
|
+
|
|
516
|
+
@typing.overload
|
|
517
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
518
|
+
...
|
|
519
|
+
|
|
520
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
521
|
+
"""
|
|
522
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
523
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
524
|
+
"""
|
|
525
|
+
...
|
|
526
|
+
|
|
527
|
+
@typing.overload
|
|
528
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
529
|
+
"""
|
|
530
|
+
Specifies the PyPI packages for the step.
|
|
531
|
+
|
|
532
|
+
Information in this decorator will augment any
|
|
533
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
534
|
+
you can use `@pypi_base` to set packages required by all
|
|
535
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
536
|
+
|
|
537
|
+
|
|
538
|
+
Parameters
|
|
539
|
+
----------
|
|
540
|
+
packages : Dict[str, str], default: {}
|
|
541
|
+
Packages to use for this step. The key is the name of the package
|
|
542
|
+
and the value is the version to use.
|
|
543
|
+
python : str, optional, default: None
|
|
544
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
545
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
546
|
+
"""
|
|
547
|
+
...
|
|
548
|
+
|
|
549
|
+
@typing.overload
|
|
550
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
551
|
+
...
|
|
552
|
+
|
|
553
|
+
@typing.overload
|
|
554
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
555
|
+
...
|
|
556
|
+
|
|
557
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
558
|
+
"""
|
|
559
|
+
Specifies the PyPI packages for the step.
|
|
560
|
+
|
|
561
|
+
Information in this decorator will augment any
|
|
562
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
563
|
+
you can use `@pypi_base` to set packages required by all
|
|
564
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
565
|
+
|
|
566
|
+
|
|
567
|
+
Parameters
|
|
568
|
+
----------
|
|
569
|
+
packages : Dict[str, str], default: {}
|
|
570
|
+
Packages to use for this step. The key is the name of the package
|
|
571
|
+
and the value is the version to use.
|
|
572
|
+
python : str, optional, default: None
|
|
573
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
574
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
575
|
+
"""
|
|
576
|
+
...
|
|
577
|
+
|
|
578
|
+
def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
579
|
+
"""
|
|
580
|
+
`@coreweave_s3_proxy` is a CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
552
581
|
It exists to make it easier for users to know that this decorator should only be used with
|
|
553
|
-
a Neo Cloud like
|
|
582
|
+
a Neo Cloud like CoreWeave. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
554
583
|
|
|
555
584
|
|
|
556
585
|
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
@@ -611,162 +640,72 @@ def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode
|
|
|
611
640
|
...
|
|
612
641
|
|
|
613
642
|
@typing.overload
|
|
614
|
-
def
|
|
643
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
615
644
|
"""
|
|
616
|
-
|
|
645
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
646
|
+
to inject a card and render simple markdown content.
|
|
617
647
|
"""
|
|
618
648
|
...
|
|
619
649
|
|
|
620
650
|
@typing.overload
|
|
621
|
-
def
|
|
622
|
-
...
|
|
623
|
-
|
|
624
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
625
|
-
"""
|
|
626
|
-
Internal decorator to support Fast bakery
|
|
627
|
-
"""
|
|
651
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
628
652
|
...
|
|
629
653
|
|
|
630
|
-
def
|
|
654
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
631
655
|
"""
|
|
632
|
-
|
|
633
|
-
|
|
634
|
-
|
|
635
|
-
Parameters
|
|
636
|
-
----------
|
|
637
|
-
gpu : int
|
|
638
|
-
Number of GPUs to use.
|
|
639
|
-
gpu_type : str
|
|
640
|
-
Type of Nvidia GPU to use.
|
|
656
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
657
|
+
to inject a card and render simple markdown content.
|
|
641
658
|
"""
|
|
642
659
|
...
|
|
643
660
|
|
|
644
661
|
@typing.overload
|
|
645
|
-
def
|
|
662
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
646
663
|
"""
|
|
647
|
-
|
|
648
|
-
|
|
649
|
-
> Examples
|
|
650
|
-
- Saving Models
|
|
651
|
-
```python
|
|
652
|
-
@model
|
|
653
|
-
@step
|
|
654
|
-
def train(self):
|
|
655
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
656
|
-
self.my_model = current.model.save(
|
|
657
|
-
path_to_my_model,
|
|
658
|
-
label="my_model",
|
|
659
|
-
metadata={
|
|
660
|
-
"epochs": 10,
|
|
661
|
-
"batch-size": 32,
|
|
662
|
-
"learning-rate": 0.001,
|
|
663
|
-
}
|
|
664
|
-
)
|
|
665
|
-
self.next(self.test)
|
|
666
|
-
|
|
667
|
-
@model(load="my_model")
|
|
668
|
-
@step
|
|
669
|
-
def test(self):
|
|
670
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
671
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
672
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
673
|
-
self.next(self.end)
|
|
674
|
-
```
|
|
664
|
+
Specifies that the step will success under all circumstances.
|
|
675
665
|
|
|
676
|
-
|
|
677
|
-
|
|
678
|
-
|
|
679
|
-
|
|
680
|
-
# current.model.load returns the path to the model loaded
|
|
681
|
-
checkpoint_path = current.model.load(
|
|
682
|
-
self.checkpoint_key,
|
|
683
|
-
)
|
|
684
|
-
model_path = current.model.load(
|
|
685
|
-
self.model,
|
|
686
|
-
)
|
|
687
|
-
self.next(self.test)
|
|
688
|
-
```
|
|
666
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
667
|
+
contains the exception raised. You can use it to detect the presence
|
|
668
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
669
|
+
are missing.
|
|
689
670
|
|
|
690
671
|
|
|
691
672
|
Parameters
|
|
692
673
|
----------
|
|
693
|
-
|
|
694
|
-
|
|
695
|
-
|
|
696
|
-
|
|
697
|
-
|
|
698
|
-
|
|
699
|
-
|
|
700
|
-
temp_dir_root : str, default: None
|
|
701
|
-
The root directory under which `current.model.loaded` will store loaded models
|
|
674
|
+
var : str, optional, default None
|
|
675
|
+
Name of the artifact in which to store the caught exception.
|
|
676
|
+
If not specified, the exception is not stored.
|
|
677
|
+
print_exception : bool, default True
|
|
678
|
+
Determines whether or not the exception is printed to
|
|
679
|
+
stdout when caught.
|
|
702
680
|
"""
|
|
703
681
|
...
|
|
704
682
|
|
|
705
683
|
@typing.overload
|
|
706
|
-
def
|
|
684
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
707
685
|
...
|
|
708
686
|
|
|
709
687
|
@typing.overload
|
|
710
|
-
def
|
|
688
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
711
689
|
...
|
|
712
690
|
|
|
713
|
-
def
|
|
691
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
714
692
|
"""
|
|
715
|
-
|
|
716
|
-
|
|
717
|
-
> Examples
|
|
718
|
-
- Saving Models
|
|
719
|
-
```python
|
|
720
|
-
@model
|
|
721
|
-
@step
|
|
722
|
-
def train(self):
|
|
723
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
724
|
-
self.my_model = current.model.save(
|
|
725
|
-
path_to_my_model,
|
|
726
|
-
label="my_model",
|
|
727
|
-
metadata={
|
|
728
|
-
"epochs": 10,
|
|
729
|
-
"batch-size": 32,
|
|
730
|
-
"learning-rate": 0.001,
|
|
731
|
-
}
|
|
732
|
-
)
|
|
733
|
-
self.next(self.test)
|
|
734
|
-
|
|
735
|
-
@model(load="my_model")
|
|
736
|
-
@step
|
|
737
|
-
def test(self):
|
|
738
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
739
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
740
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
741
|
-
self.next(self.end)
|
|
742
|
-
```
|
|
693
|
+
Specifies that the step will success under all circumstances.
|
|
743
694
|
|
|
744
|
-
|
|
745
|
-
|
|
746
|
-
|
|
747
|
-
|
|
748
|
-
# current.model.load returns the path to the model loaded
|
|
749
|
-
checkpoint_path = current.model.load(
|
|
750
|
-
self.checkpoint_key,
|
|
751
|
-
)
|
|
752
|
-
model_path = current.model.load(
|
|
753
|
-
self.model,
|
|
754
|
-
)
|
|
755
|
-
self.next(self.test)
|
|
756
|
-
```
|
|
695
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
696
|
+
contains the exception raised. You can use it to detect the presence
|
|
697
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
698
|
+
are missing.
|
|
757
699
|
|
|
758
700
|
|
|
759
701
|
Parameters
|
|
760
702
|
----------
|
|
761
|
-
|
|
762
|
-
|
|
763
|
-
|
|
764
|
-
|
|
765
|
-
|
|
766
|
-
|
|
767
|
-
|
|
768
|
-
temp_dir_root : str, default: None
|
|
769
|
-
The root directory under which `current.model.loaded` will store loaded models
|
|
703
|
+
var : str, optional, default None
|
|
704
|
+
Name of the artifact in which to store the caught exception.
|
|
705
|
+
If not specified, the exception is not stored.
|
|
706
|
+
print_exception : bool, default True
|
|
707
|
+
Determines whether or not the exception is printed to
|
|
708
|
+
stdout when caught.
|
|
770
709
|
"""
|
|
771
710
|
...
|
|
772
711
|
|
|
@@ -826,498 +765,409 @@ def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
826
765
|
...
|
|
827
766
|
|
|
828
767
|
@typing.overload
|
|
829
|
-
def
|
|
830
|
-
"""
|
|
831
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
832
|
-
|
|
833
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
834
|
-
|
|
835
|
-
|
|
836
|
-
Parameters
|
|
837
|
-
----------
|
|
838
|
-
type : str, default 'default'
|
|
839
|
-
Card type.
|
|
840
|
-
id : str, optional, default None
|
|
841
|
-
If multiple cards are present, use this id to identify this card.
|
|
842
|
-
options : Dict[str, Any], default {}
|
|
843
|
-
Options passed to the card. The contents depend on the card type.
|
|
844
|
-
timeout : int, default 45
|
|
845
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
846
|
-
"""
|
|
847
|
-
...
|
|
848
|
-
|
|
849
|
-
@typing.overload
|
|
850
|
-
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
851
|
-
...
|
|
852
|
-
|
|
853
|
-
@typing.overload
|
|
854
|
-
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
855
|
-
...
|
|
856
|
-
|
|
857
|
-
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
858
|
-
"""
|
|
859
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
860
|
-
|
|
861
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
Parameters
|
|
865
|
-
----------
|
|
866
|
-
type : str, default 'default'
|
|
867
|
-
Card type.
|
|
868
|
-
id : str, optional, default None
|
|
869
|
-
If multiple cards are present, use this id to identify this card.
|
|
870
|
-
options : Dict[str, Any], default {}
|
|
871
|
-
Options passed to the card. The contents depend on the card type.
|
|
872
|
-
timeout : int, default 45
|
|
873
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
874
|
-
"""
|
|
875
|
-
...
|
|
876
|
-
|
|
877
|
-
@typing.overload
|
|
878
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
879
|
-
"""
|
|
880
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
881
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
882
|
-
"""
|
|
883
|
-
...
|
|
884
|
-
|
|
885
|
-
@typing.overload
|
|
886
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
887
|
-
...
|
|
888
|
-
|
|
889
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
890
|
-
"""
|
|
891
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
892
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
893
|
-
"""
|
|
894
|
-
...
|
|
895
|
-
|
|
896
|
-
@typing.overload
|
|
897
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
768
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
898
769
|
"""
|
|
899
|
-
Enables
|
|
770
|
+
Enables loading / saving of models within a step.
|
|
900
771
|
|
|
901
772
|
> Examples
|
|
902
|
-
|
|
903
|
-
- Saving Checkpoints
|
|
904
|
-
|
|
773
|
+
- Saving Models
|
|
905
774
|
```python
|
|
906
|
-
@
|
|
775
|
+
@model
|
|
907
776
|
@step
|
|
908
777
|
def train(self):
|
|
909
|
-
model
|
|
910
|
-
|
|
911
|
-
|
|
912
|
-
|
|
913
|
-
|
|
914
|
-
|
|
915
|
-
|
|
916
|
-
|
|
917
|
-
|
|
918
|
-
|
|
919
|
-
|
|
920
|
-
name="epoch_checkpoint",
|
|
921
|
-
metadata={
|
|
922
|
-
"epoch": i,
|
|
923
|
-
"loss": loss,
|
|
924
|
-
}
|
|
925
|
-
)
|
|
926
|
-
```
|
|
778
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
779
|
+
self.my_model = current.model.save(
|
|
780
|
+
path_to_my_model,
|
|
781
|
+
label="my_model",
|
|
782
|
+
metadata={
|
|
783
|
+
"epochs": 10,
|
|
784
|
+
"batch-size": 32,
|
|
785
|
+
"learning-rate": 0.001,
|
|
786
|
+
}
|
|
787
|
+
)
|
|
788
|
+
self.next(self.test)
|
|
927
789
|
|
|
928
|
-
|
|
790
|
+
@model(load="my_model")
|
|
791
|
+
@step
|
|
792
|
+
def test(self):
|
|
793
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
794
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
795
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
796
|
+
self.next(self.end)
|
|
797
|
+
```
|
|
929
798
|
|
|
799
|
+
- Loading models
|
|
930
800
|
```python
|
|
931
|
-
@retry(times=3)
|
|
932
|
-
@checkpoint
|
|
933
801
|
@step
|
|
934
802
|
def train(self):
|
|
935
|
-
#
|
|
936
|
-
|
|
937
|
-
|
|
938
|
-
|
|
939
|
-
|
|
940
|
-
|
|
941
|
-
|
|
942
|
-
|
|
943
|
-
for i in range(self.epochs):
|
|
944
|
-
...
|
|
803
|
+
# current.model.load returns the path to the model loaded
|
|
804
|
+
checkpoint_path = current.model.load(
|
|
805
|
+
self.checkpoint_key,
|
|
806
|
+
)
|
|
807
|
+
model_path = current.model.load(
|
|
808
|
+
self.model,
|
|
809
|
+
)
|
|
810
|
+
self.next(self.test)
|
|
945
811
|
```
|
|
946
812
|
|
|
947
813
|
|
|
948
814
|
Parameters
|
|
949
815
|
----------
|
|
950
|
-
|
|
951
|
-
|
|
952
|
-
|
|
953
|
-
|
|
954
|
-
|
|
955
|
-
|
|
956
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
957
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
958
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
959
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
816
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
817
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
818
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
819
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
820
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
821
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
960
822
|
|
|
961
823
|
temp_dir_root : str, default: None
|
|
962
|
-
The root directory under which `current.
|
|
824
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
963
825
|
"""
|
|
964
826
|
...
|
|
965
827
|
|
|
966
828
|
@typing.overload
|
|
967
|
-
def
|
|
829
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
968
830
|
...
|
|
969
831
|
|
|
970
832
|
@typing.overload
|
|
971
|
-
def
|
|
833
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
972
834
|
...
|
|
973
835
|
|
|
974
|
-
def
|
|
836
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
|
975
837
|
"""
|
|
976
|
-
Enables
|
|
838
|
+
Enables loading / saving of models within a step.
|
|
977
839
|
|
|
978
840
|
> Examples
|
|
979
|
-
|
|
980
|
-
- Saving Checkpoints
|
|
981
|
-
|
|
841
|
+
- Saving Models
|
|
982
842
|
```python
|
|
983
|
-
@
|
|
843
|
+
@model
|
|
984
844
|
@step
|
|
985
845
|
def train(self):
|
|
986
|
-
model
|
|
987
|
-
|
|
988
|
-
|
|
989
|
-
|
|
990
|
-
|
|
991
|
-
|
|
992
|
-
|
|
993
|
-
|
|
994
|
-
|
|
995
|
-
|
|
996
|
-
|
|
997
|
-
name="epoch_checkpoint",
|
|
998
|
-
metadata={
|
|
999
|
-
"epoch": i,
|
|
1000
|
-
"loss": loss,
|
|
1001
|
-
}
|
|
1002
|
-
)
|
|
1003
|
-
```
|
|
846
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
847
|
+
self.my_model = current.model.save(
|
|
848
|
+
path_to_my_model,
|
|
849
|
+
label="my_model",
|
|
850
|
+
metadata={
|
|
851
|
+
"epochs": 10,
|
|
852
|
+
"batch-size": 32,
|
|
853
|
+
"learning-rate": 0.001,
|
|
854
|
+
}
|
|
855
|
+
)
|
|
856
|
+
self.next(self.test)
|
|
1004
857
|
|
|
1005
|
-
|
|
858
|
+
@model(load="my_model")
|
|
859
|
+
@step
|
|
860
|
+
def test(self):
|
|
861
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
862
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
863
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
864
|
+
self.next(self.end)
|
|
865
|
+
```
|
|
1006
866
|
|
|
867
|
+
- Loading models
|
|
1007
868
|
```python
|
|
1008
|
-
@retry(times=3)
|
|
1009
|
-
@checkpoint
|
|
1010
869
|
@step
|
|
1011
870
|
def train(self):
|
|
1012
|
-
#
|
|
1013
|
-
|
|
1014
|
-
|
|
1015
|
-
|
|
1016
|
-
|
|
1017
|
-
|
|
1018
|
-
|
|
1019
|
-
|
|
1020
|
-
for i in range(self.epochs):
|
|
1021
|
-
...
|
|
871
|
+
# current.model.load returns the path to the model loaded
|
|
872
|
+
checkpoint_path = current.model.load(
|
|
873
|
+
self.checkpoint_key,
|
|
874
|
+
)
|
|
875
|
+
model_path = current.model.load(
|
|
876
|
+
self.model,
|
|
877
|
+
)
|
|
878
|
+
self.next(self.test)
|
|
1022
879
|
```
|
|
1023
880
|
|
|
1024
881
|
|
|
1025
882
|
Parameters
|
|
1026
883
|
----------
|
|
1027
|
-
|
|
1028
|
-
|
|
1029
|
-
|
|
1030
|
-
|
|
1031
|
-
|
|
1032
|
-
|
|
1033
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1034
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1035
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1036
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
884
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
885
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
886
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
887
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
888
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
889
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
1037
890
|
|
|
1038
891
|
temp_dir_root : str, default: None
|
|
1039
|
-
The root directory under which `current.
|
|
892
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
1040
893
|
"""
|
|
1041
894
|
...
|
|
1042
895
|
|
|
1043
|
-
|
|
1044
|
-
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
896
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1045
897
|
"""
|
|
1046
|
-
Specifies
|
|
1047
|
-
|
|
1048
|
-
This decorator is useful if this step may hang indefinitely.
|
|
1049
|
-
|
|
1050
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1051
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1052
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1053
|
-
|
|
1054
|
-
Note that all the values specified in parameters are added together so if you specify
|
|
1055
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
898
|
+
Specifies that this step should execute on Kubernetes.
|
|
1056
899
|
|
|
1057
900
|
|
|
1058
901
|
Parameters
|
|
1059
902
|
----------
|
|
1060
|
-
|
|
1061
|
-
Number of
|
|
1062
|
-
|
|
1063
|
-
|
|
1064
|
-
|
|
1065
|
-
|
|
903
|
+
cpu : int, default 1
|
|
904
|
+
Number of CPUs required for this step. If `@resources` is
|
|
905
|
+
also present, the maximum value from all decorators is used.
|
|
906
|
+
memory : int, default 4096
|
|
907
|
+
Memory size (in MB) required for this step. If
|
|
908
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
909
|
+
used.
|
|
910
|
+
disk : int, default 10240
|
|
911
|
+
Disk size (in MB) required for this step. If
|
|
912
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
913
|
+
used.
|
|
914
|
+
image : str, optional, default None
|
|
915
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
916
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
917
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
918
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
919
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
920
|
+
image_pull_secrets: List[str], default []
|
|
921
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
922
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
923
|
+
in Kubernetes.
|
|
924
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
925
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
926
|
+
secrets : List[str], optional, default None
|
|
927
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
928
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
929
|
+
in Metaflow configuration.
|
|
930
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
931
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
932
|
+
Can be passed in as a comma separated string of values e.g.
|
|
933
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
934
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
935
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
936
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
937
|
+
gpu : int, optional, default None
|
|
938
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
939
|
+
the scheduled node should not have GPUs.
|
|
940
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
941
|
+
The vendor of the GPUs to be used for this step.
|
|
942
|
+
tolerations : List[Dict[str,str]], default []
|
|
943
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
944
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
945
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
946
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
947
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
948
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
949
|
+
use_tmpfs : bool, default False
|
|
950
|
+
This enables an explicit tmpfs mount for this step.
|
|
951
|
+
tmpfs_tempdir : bool, default True
|
|
952
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
953
|
+
tmpfs_size : int, optional, default: None
|
|
954
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
955
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
956
|
+
memory allocated for this step.
|
|
957
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
958
|
+
Path to tmpfs mount for this step.
|
|
959
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
960
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
961
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
962
|
+
shared_memory: int, optional
|
|
963
|
+
Shared memory size (in MiB) required for this step
|
|
964
|
+
port: int, optional
|
|
965
|
+
Port number to specify in the Kubernetes job object
|
|
966
|
+
compute_pool : str, optional, default None
|
|
967
|
+
Compute pool to be used for for this step.
|
|
968
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
969
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
970
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
971
|
+
Only applicable when @parallel is used.
|
|
972
|
+
qos: str, default: Burstable
|
|
973
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
974
|
+
|
|
975
|
+
security_context: Dict[str, Any], optional, default None
|
|
976
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
977
|
+
- privileged: bool, optional, default None
|
|
978
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
979
|
+
- run_as_user: int, optional, default None
|
|
980
|
+
- run_as_group: int, optional, default None
|
|
981
|
+
- run_as_non_root: bool, optional, default None
|
|
1066
982
|
"""
|
|
1067
983
|
...
|
|
1068
984
|
|
|
1069
|
-
|
|
1070
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1071
|
-
...
|
|
1072
|
-
|
|
1073
|
-
@typing.overload
|
|
1074
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1075
|
-
...
|
|
1076
|
-
|
|
1077
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
985
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1078
986
|
"""
|
|
1079
|
-
|
|
987
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
1080
988
|
|
|
1081
|
-
|
|
989
|
+
User code call
|
|
990
|
+
--------------
|
|
991
|
+
@ollama(
|
|
992
|
+
models=[...],
|
|
993
|
+
...
|
|
994
|
+
)
|
|
1082
995
|
|
|
1083
|
-
|
|
1084
|
-
|
|
1085
|
-
|
|
996
|
+
Valid backend options
|
|
997
|
+
---------------------
|
|
998
|
+
- 'local': Run as a separate process on the local task machine.
|
|
999
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
1000
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
1086
1001
|
|
|
1087
|
-
|
|
1088
|
-
|
|
1002
|
+
Valid model options
|
|
1003
|
+
-------------------
|
|
1004
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
1089
1005
|
|
|
1090
1006
|
|
|
1091
1007
|
Parameters
|
|
1092
1008
|
----------
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
|
-
|
|
1096
|
-
|
|
1097
|
-
|
|
1098
|
-
|
|
1009
|
+
models: list[str]
|
|
1010
|
+
List of Ollama containers running models in sidecars.
|
|
1011
|
+
backend: str
|
|
1012
|
+
Determines where and how to run the Ollama process.
|
|
1013
|
+
force_pull: bool
|
|
1014
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
1015
|
+
cache_update_policy: str
|
|
1016
|
+
Cache update policy: "auto", "force", or "never".
|
|
1017
|
+
force_cache_update: bool
|
|
1018
|
+
Simple override for "force" cache update policy.
|
|
1019
|
+
debug: bool
|
|
1020
|
+
Whether to turn on verbose debugging logs.
|
|
1021
|
+
circuit_breaker_config: dict
|
|
1022
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
1023
|
+
timeout_config: dict
|
|
1024
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
1099
1025
|
"""
|
|
1100
1026
|
...
|
|
1101
1027
|
|
|
1102
1028
|
@typing.overload
|
|
1103
|
-
def
|
|
1029
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1104
1030
|
"""
|
|
1105
|
-
|
|
1106
|
-
|
|
1107
|
-
Information in this decorator will augment any
|
|
1108
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1109
|
-
you can use `@conda_base` to set packages required by all
|
|
1110
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
1111
|
-
|
|
1112
|
-
|
|
1113
|
-
Parameters
|
|
1114
|
-
----------
|
|
1115
|
-
packages : Dict[str, str], default {}
|
|
1116
|
-
Packages to use for this step. The key is the name of the package
|
|
1117
|
-
and the value is the version to use.
|
|
1118
|
-
libraries : Dict[str, str], default {}
|
|
1119
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1120
|
-
python : str, optional, default None
|
|
1121
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1122
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1123
|
-
disabled : bool, default False
|
|
1124
|
-
If set to True, disables @conda.
|
|
1031
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
1032
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1125
1033
|
"""
|
|
1126
1034
|
...
|
|
1127
1035
|
|
|
1128
1036
|
@typing.overload
|
|
1129
|
-
def
|
|
1037
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1130
1038
|
...
|
|
1131
1039
|
|
|
1132
|
-
|
|
1133
|
-
|
|
1040
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1041
|
+
"""
|
|
1042
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
1043
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1044
|
+
"""
|
|
1134
1045
|
...
|
|
1135
1046
|
|
|
1136
|
-
def
|
|
1047
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1137
1048
|
"""
|
|
1138
|
-
Specifies
|
|
1139
|
-
|
|
1140
|
-
Information in this decorator will augment any
|
|
1141
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1142
|
-
you can use `@conda_base` to set packages required by all
|
|
1143
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
1049
|
+
Specifies that this step should execute on DGX cloud.
|
|
1144
1050
|
|
|
1145
1051
|
|
|
1146
1052
|
Parameters
|
|
1147
1053
|
----------
|
|
1148
|
-
|
|
1149
|
-
|
|
1150
|
-
|
|
1151
|
-
|
|
1152
|
-
|
|
1153
|
-
|
|
1154
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1155
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1156
|
-
disabled : bool, default False
|
|
1157
|
-
If set to True, disables @conda.
|
|
1054
|
+
gpu : int
|
|
1055
|
+
Number of GPUs to use.
|
|
1056
|
+
gpu_type : str
|
|
1057
|
+
Type of Nvidia GPU to use.
|
|
1058
|
+
queue_timeout : int
|
|
1059
|
+
Time to keep the job in NVCF's queue.
|
|
1158
1060
|
"""
|
|
1159
1061
|
...
|
|
1160
1062
|
|
|
1161
|
-
|
|
1162
|
-
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1063
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1163
1064
|
"""
|
|
1164
|
-
Specifies
|
|
1165
|
-
|
|
1166
|
-
Use `@resources` to specify the resource requirements
|
|
1167
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1168
|
-
|
|
1169
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
1170
|
-
```
|
|
1171
|
-
python myflow.py run --with batch
|
|
1172
|
-
```
|
|
1173
|
-
or
|
|
1174
|
-
```
|
|
1175
|
-
python myflow.py run --with kubernetes
|
|
1176
|
-
```
|
|
1177
|
-
which executes the flow on the desired system using the
|
|
1178
|
-
requirements specified in `@resources`.
|
|
1065
|
+
Specifies that this step should execute on DGX cloud.
|
|
1179
1066
|
|
|
1180
1067
|
|
|
1181
1068
|
Parameters
|
|
1182
1069
|
----------
|
|
1183
|
-
|
|
1184
|
-
Number of
|
|
1185
|
-
|
|
1186
|
-
|
|
1187
|
-
disk : int, optional, default None
|
|
1188
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1189
|
-
memory : int, default 4096
|
|
1190
|
-
Memory size (in MB) required for this step.
|
|
1191
|
-
shared_memory : int, optional, default None
|
|
1192
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1193
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
1070
|
+
gpu : int
|
|
1071
|
+
Number of GPUs to use.
|
|
1072
|
+
gpu_type : str
|
|
1073
|
+
Type of Nvidia GPU to use.
|
|
1194
1074
|
"""
|
|
1195
1075
|
...
|
|
1196
1076
|
|
|
1197
1077
|
@typing.overload
|
|
1198
|
-
def
|
|
1199
|
-
...
|
|
1200
|
-
|
|
1201
|
-
@typing.overload
|
|
1202
|
-
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1203
|
-
...
|
|
1204
|
-
|
|
1205
|
-
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
1078
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1206
1079
|
"""
|
|
1207
|
-
Specifies
|
|
1208
|
-
|
|
1209
|
-
Use `@resources` to specify the resource requirements
|
|
1210
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1211
|
-
|
|
1212
|
-
You can choose the compute layer on the command line by executing e.g.
|
|
1213
|
-
```
|
|
1214
|
-
python myflow.py run --with batch
|
|
1215
|
-
```
|
|
1216
|
-
or
|
|
1217
|
-
```
|
|
1218
|
-
python myflow.py run --with kubernetes
|
|
1219
|
-
```
|
|
1220
|
-
which executes the flow on the desired system using the
|
|
1221
|
-
requirements specified in `@resources`.
|
|
1080
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
1222
1081
|
|
|
1223
1082
|
|
|
1224
1083
|
Parameters
|
|
1225
1084
|
----------
|
|
1226
|
-
|
|
1227
|
-
|
|
1228
|
-
gpu : int, optional, default None
|
|
1229
|
-
Number of GPUs required for this step.
|
|
1230
|
-
disk : int, optional, default None
|
|
1231
|
-
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1232
|
-
memory : int, default 4096
|
|
1233
|
-
Memory size (in MB) required for this step.
|
|
1234
|
-
shared_memory : int, optional, default None
|
|
1235
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1236
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
1085
|
+
vars : Dict[str, str], default {}
|
|
1086
|
+
Dictionary of environment variables to set.
|
|
1237
1087
|
"""
|
|
1238
1088
|
...
|
|
1239
1089
|
|
|
1240
1090
|
@typing.overload
|
|
1241
|
-
def
|
|
1242
|
-
"""
|
|
1243
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1244
|
-
to inject a card and render simple markdown content.
|
|
1245
|
-
"""
|
|
1091
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1246
1092
|
...
|
|
1247
1093
|
|
|
1248
1094
|
@typing.overload
|
|
1249
|
-
def
|
|
1250
|
-
...
|
|
1251
|
-
|
|
1252
|
-
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1253
|
-
"""
|
|
1254
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1255
|
-
to inject a card and render simple markdown content.
|
|
1256
|
-
"""
|
|
1095
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1257
1096
|
...
|
|
1258
1097
|
|
|
1259
|
-
def
|
|
1098
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
1260
1099
|
"""
|
|
1261
|
-
Specifies
|
|
1100
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
1262
1101
|
|
|
1263
1102
|
|
|
1264
1103
|
Parameters
|
|
1265
1104
|
----------
|
|
1266
|
-
|
|
1267
|
-
|
|
1268
|
-
gpu_type : str
|
|
1269
|
-
Type of Nvidia GPU to use.
|
|
1270
|
-
queue_timeout : int
|
|
1271
|
-
Time to keep the job in NVCF's queue.
|
|
1105
|
+
vars : Dict[str, str], default {}
|
|
1106
|
+
Dictionary of environment variables to set.
|
|
1272
1107
|
"""
|
|
1273
1108
|
...
|
|
1274
1109
|
|
|
1275
1110
|
@typing.overload
|
|
1276
|
-
def
|
|
1111
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1277
1112
|
"""
|
|
1278
|
-
Specifies
|
|
1279
|
-
|
|
1113
|
+
Specifies a timeout for your step.
|
|
1114
|
+
|
|
1115
|
+
This decorator is useful if this step may hang indefinitely.
|
|
1116
|
+
|
|
1117
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1118
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1119
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1120
|
+
|
|
1121
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
1122
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
1280
1123
|
|
|
1281
1124
|
|
|
1282
1125
|
Parameters
|
|
1283
1126
|
----------
|
|
1284
|
-
|
|
1285
|
-
|
|
1286
|
-
|
|
1287
|
-
|
|
1127
|
+
seconds : int, default 0
|
|
1128
|
+
Number of seconds to wait prior to timing out.
|
|
1129
|
+
minutes : int, default 0
|
|
1130
|
+
Number of minutes to wait prior to timing out.
|
|
1131
|
+
hours : int, default 0
|
|
1132
|
+
Number of hours to wait prior to timing out.
|
|
1288
1133
|
"""
|
|
1289
1134
|
...
|
|
1290
1135
|
|
|
1291
1136
|
@typing.overload
|
|
1292
|
-
def
|
|
1137
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1293
1138
|
...
|
|
1294
1139
|
|
|
1295
1140
|
@typing.overload
|
|
1296
|
-
def
|
|
1141
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1297
1142
|
...
|
|
1298
1143
|
|
|
1299
|
-
def
|
|
1144
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
1300
1145
|
"""
|
|
1301
|
-
Specifies
|
|
1302
|
-
|
|
1146
|
+
Specifies a timeout for your step.
|
|
1147
|
+
|
|
1148
|
+
This decorator is useful if this step may hang indefinitely.
|
|
1149
|
+
|
|
1150
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1151
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1152
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1153
|
+
|
|
1154
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
1155
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
1303
1156
|
|
|
1304
1157
|
|
|
1305
1158
|
Parameters
|
|
1306
1159
|
----------
|
|
1307
|
-
|
|
1308
|
-
|
|
1309
|
-
|
|
1310
|
-
|
|
1160
|
+
seconds : int, default 0
|
|
1161
|
+
Number of seconds to wait prior to timing out.
|
|
1162
|
+
minutes : int, default 0
|
|
1163
|
+
Number of minutes to wait prior to timing out.
|
|
1164
|
+
hours : int, default 0
|
|
1165
|
+
Number of hours to wait prior to timing out.
|
|
1311
1166
|
"""
|
|
1312
1167
|
...
|
|
1313
1168
|
|
|
1314
|
-
def
|
|
1169
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1315
1170
|
"""
|
|
1316
|
-
`@coreweave_s3_proxy` is a CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1317
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1318
|
-
a Neo Cloud like CoreWeave. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
1319
|
-
|
|
1320
|
-
|
|
1321
1171
|
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
1322
1172
|
for S3 read and write requests.
|
|
1323
1173
|
|
|
@@ -1376,251 +1226,338 @@ def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_m
|
|
|
1376
1226
|
...
|
|
1377
1227
|
|
|
1378
1228
|
@typing.overload
|
|
1379
|
-
def
|
|
1229
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1380
1230
|
"""
|
|
1381
|
-
Specifies
|
|
1231
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
1232
|
+
the execution of a step.
|
|
1382
1233
|
|
|
1383
1234
|
|
|
1384
1235
|
Parameters
|
|
1385
1236
|
----------
|
|
1386
|
-
|
|
1387
|
-
|
|
1237
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1238
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
1239
|
+
role : str, optional, default: None
|
|
1240
|
+
Role to use for fetching secrets
|
|
1388
1241
|
"""
|
|
1389
1242
|
...
|
|
1390
1243
|
|
|
1391
1244
|
@typing.overload
|
|
1392
|
-
def
|
|
1245
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1393
1246
|
...
|
|
1394
1247
|
|
|
1395
1248
|
@typing.overload
|
|
1396
|
-
def
|
|
1249
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1397
1250
|
...
|
|
1398
1251
|
|
|
1399
|
-
def
|
|
1252
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
1400
1253
|
"""
|
|
1401
|
-
Specifies
|
|
1254
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
1255
|
+
the execution of a step.
|
|
1402
1256
|
|
|
1403
1257
|
|
|
1404
1258
|
Parameters
|
|
1405
1259
|
----------
|
|
1406
|
-
|
|
1407
|
-
|
|
1260
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1261
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
1262
|
+
role : str, optional, default: None
|
|
1263
|
+
Role to use for fetching secrets
|
|
1408
1264
|
"""
|
|
1409
1265
|
...
|
|
1410
1266
|
|
|
1411
1267
|
@typing.overload
|
|
1412
|
-
def
|
|
1268
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1413
1269
|
"""
|
|
1414
|
-
Specifies the
|
|
1270
|
+
Specifies the resources needed when executing this step.
|
|
1415
1271
|
|
|
1416
|
-
|
|
1417
|
-
|
|
1418
|
-
|
|
1419
|
-
|
|
1272
|
+
Use `@resources` to specify the resource requirements
|
|
1273
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1274
|
+
|
|
1275
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1276
|
+
```
|
|
1277
|
+
python myflow.py run --with batch
|
|
1278
|
+
```
|
|
1279
|
+
or
|
|
1280
|
+
```
|
|
1281
|
+
python myflow.py run --with kubernetes
|
|
1282
|
+
```
|
|
1283
|
+
which executes the flow on the desired system using the
|
|
1284
|
+
requirements specified in `@resources`.
|
|
1420
1285
|
|
|
1421
1286
|
|
|
1422
1287
|
Parameters
|
|
1423
1288
|
----------
|
|
1424
|
-
|
|
1425
|
-
|
|
1426
|
-
|
|
1427
|
-
|
|
1428
|
-
|
|
1429
|
-
|
|
1289
|
+
cpu : int, default 1
|
|
1290
|
+
Number of CPUs required for this step.
|
|
1291
|
+
gpu : int, optional, default None
|
|
1292
|
+
Number of GPUs required for this step.
|
|
1293
|
+
disk : int, optional, default None
|
|
1294
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1295
|
+
memory : int, default 4096
|
|
1296
|
+
Memory size (in MB) required for this step.
|
|
1297
|
+
shared_memory : int, optional, default None
|
|
1298
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1299
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1430
1300
|
"""
|
|
1431
1301
|
...
|
|
1432
1302
|
|
|
1433
1303
|
@typing.overload
|
|
1434
|
-
def
|
|
1304
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1435
1305
|
...
|
|
1436
1306
|
|
|
1437
1307
|
@typing.overload
|
|
1438
|
-
def
|
|
1308
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1439
1309
|
...
|
|
1440
1310
|
|
|
1441
|
-
def
|
|
1311
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
1442
1312
|
"""
|
|
1443
|
-
Specifies the
|
|
1313
|
+
Specifies the resources needed when executing this step.
|
|
1314
|
+
|
|
1315
|
+
Use `@resources` to specify the resource requirements
|
|
1316
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
1317
|
+
|
|
1318
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1319
|
+
```
|
|
1320
|
+
python myflow.py run --with batch
|
|
1321
|
+
```
|
|
1322
|
+
or
|
|
1323
|
+
```
|
|
1324
|
+
python myflow.py run --with kubernetes
|
|
1325
|
+
```
|
|
1326
|
+
which executes the flow on the desired system using the
|
|
1327
|
+
requirements specified in `@resources`.
|
|
1328
|
+
|
|
1329
|
+
|
|
1330
|
+
Parameters
|
|
1331
|
+
----------
|
|
1332
|
+
cpu : int, default 1
|
|
1333
|
+
Number of CPUs required for this step.
|
|
1334
|
+
gpu : int, optional, default None
|
|
1335
|
+
Number of GPUs required for this step.
|
|
1336
|
+
disk : int, optional, default None
|
|
1337
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1338
|
+
memory : int, default 4096
|
|
1339
|
+
Memory size (in MB) required for this step.
|
|
1340
|
+
shared_memory : int, optional, default None
|
|
1341
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1342
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1343
|
+
"""
|
|
1344
|
+
...
|
|
1345
|
+
|
|
1346
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1347
|
+
"""
|
|
1348
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
1349
|
+
|
|
1350
|
+
User code call
|
|
1351
|
+
--------------
|
|
1352
|
+
@vllm(
|
|
1353
|
+
model="...",
|
|
1354
|
+
...
|
|
1355
|
+
)
|
|
1356
|
+
|
|
1357
|
+
Valid backend options
|
|
1358
|
+
---------------------
|
|
1359
|
+
- 'local': Run as a separate process on the local task machine.
|
|
1360
|
+
|
|
1361
|
+
Valid model options
|
|
1362
|
+
-------------------
|
|
1363
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
1364
|
+
|
|
1365
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
1366
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
1367
|
+
|
|
1368
|
+
|
|
1369
|
+
Parameters
|
|
1370
|
+
----------
|
|
1371
|
+
model: str
|
|
1372
|
+
HuggingFace model identifier to be served by vLLM.
|
|
1373
|
+
backend: str
|
|
1374
|
+
Determines where and how to run the vLLM process.
|
|
1375
|
+
openai_api_server: bool
|
|
1376
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
1377
|
+
Default is False (uses native engine).
|
|
1378
|
+
Set to True for backward compatibility with existing code.
|
|
1379
|
+
debug: bool
|
|
1380
|
+
Whether to turn on verbose debugging logs.
|
|
1381
|
+
card_refresh_interval: int
|
|
1382
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
1383
|
+
Only used when openai_api_server=True.
|
|
1384
|
+
max_retries: int
|
|
1385
|
+
Maximum number of retries checking for vLLM server startup.
|
|
1386
|
+
Only used when openai_api_server=True.
|
|
1387
|
+
retry_alert_frequency: int
|
|
1388
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
1389
|
+
Only used when openai_api_server=True.
|
|
1390
|
+
engine_args : dict
|
|
1391
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
1392
|
+
For example, `tensor_parallel_size=2`.
|
|
1393
|
+
"""
|
|
1394
|
+
...
|
|
1395
|
+
|
|
1396
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1397
|
+
"""
|
|
1398
|
+
Decorator that helps cache, version, and store models/datasets from the Hugging Face Hub.
|
|
1399
|
+
|
|
1400
|
+
Examples
|
|
1401
|
+
--------
|
|
1402
|
+
|
|
1403
|
+
```python
|
|
1404
|
+
# **Usage: creating references to models from the Hugging Face Hub that may be loaded in downstream steps**
|
|
1405
|
+
@huggingface_hub
|
|
1406
|
+
@step
|
|
1407
|
+
def pull_model_from_huggingface(self):
|
|
1408
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
1409
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
1410
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
1411
|
+
# value of the function is a reference to the model in the backend storage.
|
|
1412
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
1413
|
+
|
|
1414
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
1415
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
1416
|
+
repo_id=self.model_id,
|
|
1417
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
1418
|
+
)
|
|
1419
|
+
self.next(self.train)
|
|
1420
|
+
|
|
1421
|
+
# **Usage: explicitly loading models at runtime from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
1422
|
+
@huggingface_hub
|
|
1423
|
+
@step
|
|
1424
|
+
def run_training(self):
|
|
1425
|
+
# Temporary directory (auto-cleaned on exit)
|
|
1426
|
+
with current.huggingface_hub.load(
|
|
1427
|
+
repo_id="google-bert/bert-base-uncased",
|
|
1428
|
+
allow_patterns=["*.bin"],
|
|
1429
|
+
) as local_path:
|
|
1430
|
+
# Use files under local_path
|
|
1431
|
+
train_model(local_path)
|
|
1432
|
+
...
|
|
1433
|
+
|
|
1434
|
+
# **Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
1435
|
+
|
|
1436
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
1437
|
+
@step
|
|
1438
|
+
def pull_model_from_huggingface(self):
|
|
1439
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1440
|
+
|
|
1441
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora", "/my-lora-directory")])
|
|
1442
|
+
@step
|
|
1443
|
+
def finetune_model(self):
|
|
1444
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1445
|
+
# path_to_model will be /my-directory
|
|
1446
|
+
|
|
1447
|
+
|
|
1448
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
1449
|
+
# except for `local_dir`
|
|
1450
|
+
@huggingface_hub(load=[
|
|
1451
|
+
{
|
|
1452
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
1453
|
+
},
|
|
1454
|
+
{
|
|
1455
|
+
"repo_id": "myorg/mistral-lora",
|
|
1456
|
+
"repo_type": "model",
|
|
1457
|
+
},
|
|
1458
|
+
])
|
|
1459
|
+
@step
|
|
1460
|
+
def finetune_model(self):
|
|
1461
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1462
|
+
# path_to_model will be /my-directory
|
|
1463
|
+
```
|
|
1464
|
+
|
|
1465
|
+
|
|
1466
|
+
Parameters
|
|
1467
|
+
----------
|
|
1468
|
+
temp_dir_root : str, optional
|
|
1469
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
1470
|
+
|
|
1471
|
+
cache_scope : str, optional
|
|
1472
|
+
The scope of the cache. Can be `checkpoint` / `flow` / `global`.
|
|
1473
|
+
- `checkpoint` (default): All repos are stored like objects saved by `@checkpoint`.
|
|
1474
|
+
i.e., the cached path is derived from the namespace, flow, step, and Metaflow foreach iteration.
|
|
1475
|
+
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
1476
|
+
|
|
1477
|
+
- `flow`: All repos are cached under the flow, regardless of namespace.
|
|
1478
|
+
i.e., the cached path is derived solely from the flow name.
|
|
1479
|
+
When to use this mode: (1) Multiple users are executing the same flow and want shared access to the repos cached by the decorator. (2) Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
1480
|
+
|
|
1481
|
+
- `global`: All repos are cached under a globally static path.
|
|
1482
|
+
i.e., the base path of the cache is static and all repos are stored under it.
|
|
1483
|
+
When to use this mode:
|
|
1484
|
+
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
1485
|
+
- Each caching scope comes with its own trade-offs:
|
|
1486
|
+
- `checkpoint`:
|
|
1487
|
+
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
1488
|
+
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
1489
|
+
- `flow`:
|
|
1490
|
+
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
1491
|
+
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
1492
|
+
- It doesn't promote cache reuse across flows.
|
|
1493
|
+
- `global`:
|
|
1494
|
+
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
1495
|
+
- It promotes cache reuse across flows.
|
|
1496
|
+
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
1444
1497
|
|
|
1445
|
-
|
|
1446
|
-
|
|
1447
|
-
you can use `@pypi_base` to set packages required by all
|
|
1448
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1498
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
1499
|
+
The list of repos (models/datasets) to load.
|
|
1449
1500
|
|
|
1501
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
1450
1502
|
|
|
1451
|
-
|
|
1452
|
-
|
|
1453
|
-
|
|
1454
|
-
|
|
1455
|
-
|
|
1456
|
-
|
|
1457
|
-
|
|
1458
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1503
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
1504
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
1505
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
1506
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
1507
|
+
|
|
1508
|
+
- If repo is found in the datastore:
|
|
1509
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
1459
1510
|
"""
|
|
1460
1511
|
...
|
|
1461
1512
|
|
|
1462
1513
|
@typing.overload
|
|
1463
|
-
def
|
|
1514
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1464
1515
|
"""
|
|
1465
|
-
Specifies
|
|
1466
|
-
|
|
1467
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
1468
|
-
contains the exception raised. You can use it to detect the presence
|
|
1469
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
1470
|
-
are missing.
|
|
1516
|
+
Specifies the times when the flow should be run when running on a
|
|
1517
|
+
production scheduler.
|
|
1471
1518
|
|
|
1472
1519
|
|
|
1473
1520
|
Parameters
|
|
1474
1521
|
----------
|
|
1475
|
-
|
|
1476
|
-
|
|
1477
|
-
|
|
1478
|
-
|
|
1479
|
-
|
|
1480
|
-
|
|
1522
|
+
hourly : bool, default False
|
|
1523
|
+
Run the workflow hourly.
|
|
1524
|
+
daily : bool, default True
|
|
1525
|
+
Run the workflow daily.
|
|
1526
|
+
weekly : bool, default False
|
|
1527
|
+
Run the workflow weekly.
|
|
1528
|
+
cron : str, optional, default None
|
|
1529
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1530
|
+
specified by this expression.
|
|
1531
|
+
timezone : str, optional, default None
|
|
1532
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1533
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1481
1534
|
"""
|
|
1482
1535
|
...
|
|
1483
1536
|
|
|
1484
1537
|
@typing.overload
|
|
1485
|
-
def
|
|
1486
|
-
...
|
|
1487
|
-
|
|
1488
|
-
@typing.overload
|
|
1489
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1538
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1490
1539
|
...
|
|
1491
1540
|
|
|
1492
|
-
def
|
|
1541
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1493
1542
|
"""
|
|
1494
|
-
Specifies
|
|
1495
|
-
|
|
1496
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
1497
|
-
contains the exception raised. You can use it to detect the presence
|
|
1498
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
1499
|
-
are missing.
|
|
1543
|
+
Specifies the times when the flow should be run when running on a
|
|
1544
|
+
production scheduler.
|
|
1500
1545
|
|
|
1501
1546
|
|
|
1502
1547
|
Parameters
|
|
1503
1548
|
----------
|
|
1504
|
-
|
|
1505
|
-
|
|
1506
|
-
|
|
1507
|
-
|
|
1508
|
-
|
|
1509
|
-
|
|
1510
|
-
|
|
1511
|
-
|
|
1512
|
-
|
|
1513
|
-
|
|
1514
|
-
|
|
1515
|
-
|
|
1516
|
-
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
|
1517
|
-
|
|
1518
|
-
This decorator is useful when users wish to save data to a different datastore
|
|
1519
|
-
than what is configured in Metaflow. This can be for variety of reasons:
|
|
1520
|
-
|
|
1521
|
-
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
|
1522
|
-
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
|
1523
|
-
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
|
1524
|
-
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
|
1525
|
-
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
|
1526
|
-
|
|
1527
|
-
Usage:
|
|
1528
|
-
----------
|
|
1529
|
-
|
|
1530
|
-
- Using a custom IAM role to access the datastore.
|
|
1531
|
-
|
|
1532
|
-
```python
|
|
1533
|
-
@with_artifact_store(
|
|
1534
|
-
type="s3",
|
|
1535
|
-
config=lambda: {
|
|
1536
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
|
1537
|
-
"role_arn": ROLE,
|
|
1538
|
-
},
|
|
1539
|
-
)
|
|
1540
|
-
class MyFlow(FlowSpec):
|
|
1541
|
-
|
|
1542
|
-
@checkpoint
|
|
1543
|
-
@step
|
|
1544
|
-
def start(self):
|
|
1545
|
-
with open("my_file.txt", "w") as f:
|
|
1546
|
-
f.write("Hello, World!")
|
|
1547
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
|
1548
|
-
self.next(self.end)
|
|
1549
|
-
|
|
1550
|
-
```
|
|
1551
|
-
|
|
1552
|
-
- Using credentials to access the s3-compatible datastore.
|
|
1553
|
-
|
|
1554
|
-
```python
|
|
1555
|
-
@with_artifact_store(
|
|
1556
|
-
type="s3",
|
|
1557
|
-
config=lambda: {
|
|
1558
|
-
"root": "s3://my-bucket-foo/path/to/root",
|
|
1559
|
-
"client_params": {
|
|
1560
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1561
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1562
|
-
},
|
|
1563
|
-
},
|
|
1564
|
-
)
|
|
1565
|
-
class MyFlow(FlowSpec):
|
|
1566
|
-
|
|
1567
|
-
@checkpoint
|
|
1568
|
-
@step
|
|
1569
|
-
def start(self):
|
|
1570
|
-
with open("my_file.txt", "w") as f:
|
|
1571
|
-
f.write("Hello, World!")
|
|
1572
|
-
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
|
1573
|
-
self.next(self.end)
|
|
1574
|
-
|
|
1575
|
-
```
|
|
1576
|
-
|
|
1577
|
-
- Accessing objects stored in external datastores after task execution.
|
|
1578
|
-
|
|
1579
|
-
```python
|
|
1580
|
-
run = Run("CheckpointsTestsFlow/8992")
|
|
1581
|
-
with artifact_store_from(run=run, config={
|
|
1582
|
-
"client_params": {
|
|
1583
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1584
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1585
|
-
},
|
|
1586
|
-
}):
|
|
1587
|
-
with Checkpoint() as cp:
|
|
1588
|
-
latest = cp.list(
|
|
1589
|
-
task=run["start"].task
|
|
1590
|
-
)[0]
|
|
1591
|
-
print(latest)
|
|
1592
|
-
cp.load(
|
|
1593
|
-
latest,
|
|
1594
|
-
"test-checkpoints"
|
|
1595
|
-
)
|
|
1596
|
-
|
|
1597
|
-
task = Task("TorchTuneFlow/8484/train/53673")
|
|
1598
|
-
with artifact_store_from(run=run, config={
|
|
1599
|
-
"client_params": {
|
|
1600
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1601
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1602
|
-
},
|
|
1603
|
-
}):
|
|
1604
|
-
load_model(
|
|
1605
|
-
task.data.model_ref,
|
|
1606
|
-
"test-models"
|
|
1607
|
-
)
|
|
1608
|
-
```
|
|
1609
|
-
Parameters:
|
|
1610
|
-
----------
|
|
1611
|
-
|
|
1612
|
-
type: str
|
|
1613
|
-
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
|
1614
|
-
|
|
1615
|
-
config: dict or Callable
|
|
1616
|
-
Dictionary of configuration options for the datastore. The following keys are required:
|
|
1617
|
-
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
|
1618
|
-
- example: 's3://bucket-name/path/to/root'
|
|
1619
|
-
- example: 'gs://bucket-name/path/to/root'
|
|
1620
|
-
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
|
1621
|
-
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
|
1622
|
-
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
|
1623
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
|
1549
|
+
hourly : bool, default False
|
|
1550
|
+
Run the workflow hourly.
|
|
1551
|
+
daily : bool, default True
|
|
1552
|
+
Run the workflow daily.
|
|
1553
|
+
weekly : bool, default False
|
|
1554
|
+
Run the workflow weekly.
|
|
1555
|
+
cron : str, optional, default None
|
|
1556
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1557
|
+
specified by this expression.
|
|
1558
|
+
timezone : str, optional, default None
|
|
1559
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1560
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1624
1561
|
"""
|
|
1625
1562
|
...
|
|
1626
1563
|
|
|
@@ -1652,59 +1589,18 @@ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str,
|
|
|
1652
1589
|
external_dag_id : str
|
|
1653
1590
|
The dag_id that contains the task you want to wait for.
|
|
1654
1591
|
external_task_ids : List[str]
|
|
1655
|
-
The list of task_ids that you want to wait for.
|
|
1656
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1657
|
-
allowed_states : List[str]
|
|
1658
|
-
Iterable of allowed states, (Default: ['success'])
|
|
1659
|
-
failed_states : List[str]
|
|
1660
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
|
1661
|
-
execution_delta : datetime.timedelta
|
|
1662
|
-
time difference with the previous execution to look at,
|
|
1663
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1664
|
-
check_existence: bool
|
|
1665
|
-
Set to True to check if the external task exists or check if
|
|
1666
|
-
the DAG to wait for exists. (Default: True)
|
|
1667
|
-
"""
|
|
1668
|
-
...
|
|
1669
|
-
|
|
1670
|
-
@typing.overload
|
|
1671
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1672
|
-
"""
|
|
1673
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1674
|
-
|
|
1675
|
-
Use `@pypi_base` to set common packages required by all
|
|
1676
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1677
|
-
|
|
1678
|
-
Parameters
|
|
1679
|
-
----------
|
|
1680
|
-
packages : Dict[str, str], default: {}
|
|
1681
|
-
Packages to use for this flow. The key is the name of the package
|
|
1682
|
-
and the value is the version to use.
|
|
1683
|
-
python : str, optional, default: None
|
|
1684
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1685
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1686
|
-
"""
|
|
1687
|
-
...
|
|
1688
|
-
|
|
1689
|
-
@typing.overload
|
|
1690
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1691
|
-
...
|
|
1692
|
-
|
|
1693
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1694
|
-
"""
|
|
1695
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1696
|
-
|
|
1697
|
-
Use `@pypi_base` to set common packages required by all
|
|
1698
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1699
|
-
|
|
1700
|
-
Parameters
|
|
1701
|
-
----------
|
|
1702
|
-
packages : Dict[str, str], default: {}
|
|
1703
|
-
Packages to use for this flow. The key is the name of the package
|
|
1704
|
-
and the value is the version to use.
|
|
1705
|
-
python : str, optional, default: None
|
|
1706
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1707
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1592
|
+
The list of task_ids that you want to wait for.
|
|
1593
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1594
|
+
allowed_states : List[str]
|
|
1595
|
+
Iterable of allowed states, (Default: ['success'])
|
|
1596
|
+
failed_states : List[str]
|
|
1597
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
|
1598
|
+
execution_delta : datetime.timedelta
|
|
1599
|
+
time difference with the previous execution to look at,
|
|
1600
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1601
|
+
check_existence: bool
|
|
1602
|
+
Set to True to check if the external task exists or check if
|
|
1603
|
+
the DAG to wait for exists. (Default: True)
|
|
1708
1604
|
"""
|
|
1709
1605
|
...
|
|
1710
1606
|
|
|
@@ -1751,6 +1647,47 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
|
1751
1647
|
"""
|
|
1752
1648
|
...
|
|
1753
1649
|
|
|
1650
|
+
@typing.overload
|
|
1651
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1652
|
+
"""
|
|
1653
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1654
|
+
|
|
1655
|
+
Use `@pypi_base` to set common packages required by all
|
|
1656
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1657
|
+
|
|
1658
|
+
Parameters
|
|
1659
|
+
----------
|
|
1660
|
+
packages : Dict[str, str], default: {}
|
|
1661
|
+
Packages to use for this flow. The key is the name of the package
|
|
1662
|
+
and the value is the version to use.
|
|
1663
|
+
python : str, optional, default: None
|
|
1664
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1665
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1666
|
+
"""
|
|
1667
|
+
...
|
|
1668
|
+
|
|
1669
|
+
@typing.overload
|
|
1670
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1671
|
+
...
|
|
1672
|
+
|
|
1673
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1674
|
+
"""
|
|
1675
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1676
|
+
|
|
1677
|
+
Use `@pypi_base` to set common packages required by all
|
|
1678
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1679
|
+
|
|
1680
|
+
Parameters
|
|
1681
|
+
----------
|
|
1682
|
+
packages : Dict[str, str], default: {}
|
|
1683
|
+
Packages to use for this flow. The key is the name of the package
|
|
1684
|
+
and the value is the version to use.
|
|
1685
|
+
python : str, optional, default: None
|
|
1686
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1687
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1688
|
+
"""
|
|
1689
|
+
...
|
|
1690
|
+
|
|
1754
1691
|
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1755
1692
|
"""
|
|
1756
1693
|
Specifies what flows belong to the same project.
|
|
@@ -1787,53 +1724,53 @@ def project(*, name: str, branch: typing.Optional[str] = None, production: bool
|
|
|
1787
1724
|
...
|
|
1788
1725
|
|
|
1789
1726
|
@typing.overload
|
|
1790
|
-
def
|
|
1727
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1791
1728
|
"""
|
|
1792
|
-
Specifies the
|
|
1793
|
-
|
|
1729
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1730
|
+
|
|
1731
|
+
Use `@conda_base` to set common libraries required by all
|
|
1732
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1794
1733
|
|
|
1795
1734
|
|
|
1796
1735
|
Parameters
|
|
1797
1736
|
----------
|
|
1798
|
-
|
|
1799
|
-
|
|
1800
|
-
|
|
1801
|
-
|
|
1802
|
-
|
|
1803
|
-
|
|
1804
|
-
|
|
1805
|
-
|
|
1806
|
-
|
|
1807
|
-
|
|
1808
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1809
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1737
|
+
packages : Dict[str, str], default {}
|
|
1738
|
+
Packages to use for this flow. The key is the name of the package
|
|
1739
|
+
and the value is the version to use.
|
|
1740
|
+
libraries : Dict[str, str], default {}
|
|
1741
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1742
|
+
python : str, optional, default None
|
|
1743
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1744
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1745
|
+
disabled : bool, default False
|
|
1746
|
+
If set to True, disables Conda.
|
|
1810
1747
|
"""
|
|
1811
1748
|
...
|
|
1812
1749
|
|
|
1813
1750
|
@typing.overload
|
|
1814
|
-
def
|
|
1751
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1815
1752
|
...
|
|
1816
1753
|
|
|
1817
|
-
def
|
|
1754
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1818
1755
|
"""
|
|
1819
|
-
Specifies the
|
|
1820
|
-
|
|
1756
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1757
|
+
|
|
1758
|
+
Use `@conda_base` to set common libraries required by all
|
|
1759
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1821
1760
|
|
|
1822
1761
|
|
|
1823
1762
|
Parameters
|
|
1824
1763
|
----------
|
|
1825
|
-
|
|
1826
|
-
|
|
1827
|
-
|
|
1828
|
-
|
|
1829
|
-
|
|
1830
|
-
|
|
1831
|
-
|
|
1832
|
-
|
|
1833
|
-
|
|
1834
|
-
|
|
1835
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1836
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1764
|
+
packages : Dict[str, str], default {}
|
|
1765
|
+
Packages to use for this flow. The key is the name of the package
|
|
1766
|
+
and the value is the version to use.
|
|
1767
|
+
libraries : Dict[str, str], default {}
|
|
1768
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1769
|
+
python : str, optional, default None
|
|
1770
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1771
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1772
|
+
disabled : bool, default False
|
|
1773
|
+
If set to True, disables Conda.
|
|
1837
1774
|
"""
|
|
1838
1775
|
...
|
|
1839
1776
|
|
|
@@ -1930,54 +1867,117 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
|
1930
1867
|
"""
|
|
1931
1868
|
...
|
|
1932
1869
|
|
|
1933
|
-
|
|
1934
|
-
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1870
|
+
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
|
1935
1871
|
"""
|
|
1936
|
-
|
|
1872
|
+
Allows setting external datastores to save data for the
|
|
1873
|
+
`@checkpoint`/`@model`/`@huggingface_hub` decorators.
|
|
1937
1874
|
|
|
1938
|
-
|
|
1939
|
-
|
|
1875
|
+
This decorator is useful when users wish to save data to a different datastore
|
|
1876
|
+
than what is configured in Metaflow. This can be for variety of reasons:
|
|
1940
1877
|
|
|
1878
|
+
1. Data security: The objects needs to be stored in a bucket (object storage) that is not accessible by other flows.
|
|
1879
|
+
2. Data Locality: The location where the task is executing is not located in the same region as the datastore.
|
|
1880
|
+
- Example: Metaflow datastore lives in US East, but the task is executing in Finland datacenters.
|
|
1881
|
+
3. Data Lifecycle Policies: The objects need to be archived / managed separately from the Metaflow managed objects.
|
|
1882
|
+
- Example: Flow is training very large models that need to be stored separately and will be deleted more aggressively than the Metaflow managed objects.
|
|
1941
1883
|
|
|
1942
|
-
|
|
1884
|
+
Usage:
|
|
1943
1885
|
----------
|
|
1944
|
-
packages : Dict[str, str], default {}
|
|
1945
|
-
Packages to use for this flow. The key is the name of the package
|
|
1946
|
-
and the value is the version to use.
|
|
1947
|
-
libraries : Dict[str, str], default {}
|
|
1948
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1949
|
-
python : str, optional, default None
|
|
1950
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1951
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1952
|
-
disabled : bool, default False
|
|
1953
|
-
If set to True, disables Conda.
|
|
1954
|
-
"""
|
|
1955
|
-
...
|
|
1956
|
-
|
|
1957
|
-
@typing.overload
|
|
1958
|
-
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1959
|
-
...
|
|
1960
|
-
|
|
1961
|
-
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1962
|
-
"""
|
|
1963
|
-
Specifies the Conda environment for all steps of the flow.
|
|
1964
1886
|
|
|
1965
|
-
|
|
1966
|
-
|
|
1887
|
+
- Using a custom IAM role to access the datastore.
|
|
1888
|
+
|
|
1889
|
+
```python
|
|
1890
|
+
@with_artifact_store(
|
|
1891
|
+
type="s3",
|
|
1892
|
+
config=lambda: {
|
|
1893
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
|
1894
|
+
"role_arn": ROLE,
|
|
1895
|
+
},
|
|
1896
|
+
)
|
|
1897
|
+
class MyFlow(FlowSpec):
|
|
1898
|
+
|
|
1899
|
+
@checkpoint
|
|
1900
|
+
@step
|
|
1901
|
+
def start(self):
|
|
1902
|
+
with open("my_file.txt", "w") as f:
|
|
1903
|
+
f.write("Hello, World!")
|
|
1904
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
|
1905
|
+
self.next(self.end)
|
|
1967
1906
|
|
|
1907
|
+
```
|
|
1968
1908
|
|
|
1969
|
-
|
|
1909
|
+
- Using credentials to access the s3-compatible datastore.
|
|
1910
|
+
|
|
1911
|
+
```python
|
|
1912
|
+
@with_artifact_store(
|
|
1913
|
+
type="s3",
|
|
1914
|
+
config=lambda: {
|
|
1915
|
+
"root": "s3://my-bucket-foo/path/to/root",
|
|
1916
|
+
"client_params": {
|
|
1917
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1918
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1919
|
+
},
|
|
1920
|
+
},
|
|
1921
|
+
)
|
|
1922
|
+
class MyFlow(FlowSpec):
|
|
1923
|
+
|
|
1924
|
+
@checkpoint
|
|
1925
|
+
@step
|
|
1926
|
+
def start(self):
|
|
1927
|
+
with open("my_file.txt", "w") as f:
|
|
1928
|
+
f.write("Hello, World!")
|
|
1929
|
+
self.external_bucket_checkpoint = current.checkpoint.save("my_file.txt")
|
|
1930
|
+
self.next(self.end)
|
|
1931
|
+
|
|
1932
|
+
```
|
|
1933
|
+
|
|
1934
|
+
- Accessing objects stored in external datastores after task execution.
|
|
1935
|
+
|
|
1936
|
+
```python
|
|
1937
|
+
run = Run("CheckpointsTestsFlow/8992")
|
|
1938
|
+
with artifact_store_from(run=run, config={
|
|
1939
|
+
"client_params": {
|
|
1940
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1941
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1942
|
+
},
|
|
1943
|
+
}):
|
|
1944
|
+
with Checkpoint() as cp:
|
|
1945
|
+
latest = cp.list(
|
|
1946
|
+
task=run["start"].task
|
|
1947
|
+
)[0]
|
|
1948
|
+
print(latest)
|
|
1949
|
+
cp.load(
|
|
1950
|
+
latest,
|
|
1951
|
+
"test-checkpoints"
|
|
1952
|
+
)
|
|
1953
|
+
|
|
1954
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
|
1955
|
+
with artifact_store_from(run=run, config={
|
|
1956
|
+
"client_params": {
|
|
1957
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
|
1958
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
|
1959
|
+
},
|
|
1960
|
+
}):
|
|
1961
|
+
load_model(
|
|
1962
|
+
task.data.model_ref,
|
|
1963
|
+
"test-models"
|
|
1964
|
+
)
|
|
1965
|
+
```
|
|
1966
|
+
Parameters:
|
|
1970
1967
|
----------
|
|
1971
|
-
|
|
1972
|
-
|
|
1973
|
-
|
|
1974
|
-
|
|
1975
|
-
|
|
1976
|
-
|
|
1977
|
-
|
|
1978
|
-
|
|
1979
|
-
|
|
1980
|
-
|
|
1968
|
+
|
|
1969
|
+
type: str
|
|
1970
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
|
1971
|
+
|
|
1972
|
+
config: dict or Callable
|
|
1973
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
|
1974
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
|
1975
|
+
- example: 's3://bucket-name/path/to/root'
|
|
1976
|
+
- example: 'gs://bucket-name/path/to/root'
|
|
1977
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
|
1978
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
|
1979
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
|
1980
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
|
1981
1981
|
"""
|
|
1982
1982
|
...
|
|
1983
1983
|
|