ob-metaflow-stubs 6.0.10.16__py2.py3-none-any.whl → 6.0.10.17__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +1140 -1140
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +5 -5
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +1 -1
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/meta_files.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +1 -1
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +46 -46
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/hf_hub_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/packaging_sys/__init__.pyi +4 -4
- metaflow-stubs/packaging_sys/backend.pyi +3 -3
- metaflow-stubs/packaging_sys/distribution_support.pyi +3 -3
- metaflow-stubs/packaging_sys/tar_backend.pyi +4 -4
- metaflow-stubs/packaging_sys/utils.pyi +1 -1
- metaflow-stubs/packaging_sys/v1.pyi +2 -2
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +13 -13
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/argo/exit_hooks.pyi +2 -2
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +1 -1
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +1 -1
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/json_viewer.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/__init__.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/plugins/optuna/__init__.pyi +1 -1
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/parsers.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +3 -3
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_func.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +1 -1
- metaflow-stubs/plugins/secrets/utils.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +1 -1
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +34 -34
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +3 -3
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +5 -5
- metaflow-stubs/user_decorators/__init__.pyi +1 -1
- metaflow-stubs/user_decorators/common.pyi +1 -1
- metaflow-stubs/user_decorators/mutable_flow.pyi +3 -3
- metaflow-stubs/user_decorators/mutable_step.pyi +4 -4
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +4 -4
- metaflow-stubs/user_decorators/user_step_decorator.pyi +5 -5
- {ob_metaflow_stubs-6.0.10.16.dist-info → ob_metaflow_stubs-6.0.10.17.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.10.17.dist-info/RECORD +266 -0
- ob_metaflow_stubs-6.0.10.16.dist-info/RECORD +0 -266
- {ob_metaflow_stubs-6.0.10.16.dist-info → ob_metaflow_stubs-6.0.10.17.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.10.16.dist-info → ob_metaflow_stubs-6.0.10.17.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
3
|
# MF version: 2.18.11.1+obcheckpoint(0.2.8);ob(v1) #
|
|
4
|
-
# Generated on 2025-10-
|
|
4
|
+
# Generated on 2025-10-13T21:06:57.979951 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
8
8
|
|
|
9
9
|
import typing
|
|
10
10
|
if typing.TYPE_CHECKING:
|
|
11
|
-
import datetime
|
|
12
11
|
import typing
|
|
12
|
+
import datetime
|
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
|
15
15
|
|
|
@@ -39,9 +39,9 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
-
from . import cards as cards
|
|
43
|
-
from . import tuple_util as tuple_util
|
|
44
42
|
from . import metaflow_git as metaflow_git
|
|
43
|
+
from . import tuple_util as tuple_util
|
|
44
|
+
from . import cards as cards
|
|
45
45
|
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
@@ -49,8 +49,8 @@ from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package imp
|
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
51
|
from .plugins.parsers import yaml_parser as yaml_parser
|
|
52
|
-
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
53
52
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
53
|
+
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
54
54
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
55
55
|
from . import client as client
|
|
56
56
|
from .client.core import namespace as namespace
|
|
@@ -169,101 +169,64 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
169
169
|
"""
|
|
170
170
|
...
|
|
171
171
|
|
|
172
|
-
|
|
172
|
+
@typing.overload
|
|
173
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
173
174
|
"""
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
User code call
|
|
177
|
-
--------------
|
|
178
|
-
@vllm(
|
|
179
|
-
model="...",
|
|
180
|
-
...
|
|
181
|
-
)
|
|
182
|
-
|
|
183
|
-
Valid backend options
|
|
184
|
-
---------------------
|
|
185
|
-
- 'local': Run as a separate process on the local task machine.
|
|
186
|
-
|
|
187
|
-
Valid model options
|
|
188
|
-
-------------------
|
|
189
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
175
|
+
Specifies the PyPI packages for the step.
|
|
190
176
|
|
|
191
|
-
|
|
192
|
-
|
|
177
|
+
Information in this decorator will augment any
|
|
178
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
179
|
+
you can use `@pypi_base` to set packages required by all
|
|
180
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
193
181
|
|
|
194
182
|
|
|
195
183
|
Parameters
|
|
196
184
|
----------
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
Default is False (uses native engine).
|
|
204
|
-
Set to True for backward compatibility with existing code.
|
|
205
|
-
debug: bool
|
|
206
|
-
Whether to turn on verbose debugging logs.
|
|
207
|
-
card_refresh_interval: int
|
|
208
|
-
Interval in seconds for refreshing the vLLM status card.
|
|
209
|
-
Only used when openai_api_server=True.
|
|
210
|
-
max_retries: int
|
|
211
|
-
Maximum number of retries checking for vLLM server startup.
|
|
212
|
-
Only used when openai_api_server=True.
|
|
213
|
-
retry_alert_frequency: int
|
|
214
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
215
|
-
Only used when openai_api_server=True.
|
|
216
|
-
engine_args : dict
|
|
217
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
218
|
-
For example, `tensor_parallel_size=2`.
|
|
185
|
+
packages : Dict[str, str], default: {}
|
|
186
|
+
Packages to use for this step. The key is the name of the package
|
|
187
|
+
and the value is the version to use.
|
|
188
|
+
python : str, optional, default: None
|
|
189
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
190
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
219
191
|
"""
|
|
220
192
|
...
|
|
221
193
|
|
|
222
|
-
|
|
194
|
+
@typing.overload
|
|
195
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
196
|
+
...
|
|
197
|
+
|
|
198
|
+
@typing.overload
|
|
199
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
200
|
+
...
|
|
201
|
+
|
|
202
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
223
203
|
"""
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
User code call
|
|
227
|
-
--------------
|
|
228
|
-
@ollama(
|
|
229
|
-
models=[...],
|
|
230
|
-
...
|
|
231
|
-
)
|
|
232
|
-
|
|
233
|
-
Valid backend options
|
|
234
|
-
---------------------
|
|
235
|
-
- 'local': Run as a separate process on the local task machine.
|
|
236
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
237
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
204
|
+
Specifies the PyPI packages for the step.
|
|
238
205
|
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
206
|
+
Information in this decorator will augment any
|
|
207
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
208
|
+
you can use `@pypi_base` to set packages required by all
|
|
209
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
242
210
|
|
|
243
211
|
|
|
244
212
|
Parameters
|
|
245
213
|
----------
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
cache_update_policy: str
|
|
253
|
-
Cache update policy: "auto", "force", or "never".
|
|
254
|
-
force_cache_update: bool
|
|
255
|
-
Simple override for "force" cache update policy.
|
|
256
|
-
debug: bool
|
|
257
|
-
Whether to turn on verbose debugging logs.
|
|
258
|
-
circuit_breaker_config: dict
|
|
259
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
260
|
-
timeout_config: dict
|
|
261
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
214
|
+
packages : Dict[str, str], default: {}
|
|
215
|
+
Packages to use for this step. The key is the name of the package
|
|
216
|
+
and the value is the version to use.
|
|
217
|
+
python : str, optional, default: None
|
|
218
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
219
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
262
220
|
"""
|
|
263
221
|
...
|
|
264
222
|
|
|
265
|
-
def
|
|
223
|
+
def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
266
224
|
"""
|
|
225
|
+
`@nebius_s3_proxy` is a Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
226
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
227
|
+
a Neo Cloud like Nebius. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
228
|
+
|
|
229
|
+
|
|
267
230
|
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
268
231
|
for S3 read and write requests.
|
|
269
232
|
|
|
@@ -321,236 +284,365 @@ def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typin
|
|
|
321
284
|
"""
|
|
322
285
|
...
|
|
323
286
|
|
|
324
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
325
|
-
"""
|
|
326
|
-
Specifies that this step should execute on Kubernetes.
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
Parameters
|
|
330
|
-
----------
|
|
331
|
-
cpu : int, default 1
|
|
332
|
-
Number of CPUs required for this step. If `@resources` is
|
|
333
|
-
also present, the maximum value from all decorators is used.
|
|
334
|
-
memory : int, default 4096
|
|
335
|
-
Memory size (in MB) required for this step. If
|
|
336
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
337
|
-
used.
|
|
338
|
-
disk : int, default 10240
|
|
339
|
-
Disk size (in MB) required for this step. If
|
|
340
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
341
|
-
used.
|
|
342
|
-
image : str, optional, default None
|
|
343
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
344
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
345
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
346
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
347
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
348
|
-
image_pull_secrets: List[str], default []
|
|
349
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
350
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
351
|
-
in Kubernetes.
|
|
352
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
353
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
354
|
-
secrets : List[str], optional, default None
|
|
355
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
356
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
357
|
-
in Metaflow configuration.
|
|
358
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
359
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
360
|
-
Can be passed in as a comma separated string of values e.g.
|
|
361
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
362
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
363
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
364
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
365
|
-
gpu : int, optional, default None
|
|
366
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
367
|
-
the scheduled node should not have GPUs.
|
|
368
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
369
|
-
The vendor of the GPUs to be used for this step.
|
|
370
|
-
tolerations : List[Dict[str,str]], default []
|
|
371
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
372
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
373
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
374
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
375
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
376
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
377
|
-
use_tmpfs : bool, default False
|
|
378
|
-
This enables an explicit tmpfs mount for this step.
|
|
379
|
-
tmpfs_tempdir : bool, default True
|
|
380
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
381
|
-
tmpfs_size : int, optional, default: None
|
|
382
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
383
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
384
|
-
memory allocated for this step.
|
|
385
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
386
|
-
Path to tmpfs mount for this step.
|
|
387
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
388
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
389
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
390
|
-
shared_memory: int, optional
|
|
391
|
-
Shared memory size (in MiB) required for this step
|
|
392
|
-
port: int, optional
|
|
393
|
-
Port number to specify in the Kubernetes job object
|
|
394
|
-
compute_pool : str, optional, default None
|
|
395
|
-
Compute pool to be used for for this step.
|
|
396
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
397
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
398
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
399
|
-
Only applicable when @parallel is used.
|
|
400
|
-
qos: str, default: Burstable
|
|
401
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
402
|
-
|
|
403
|
-
security_context: Dict[str, Any], optional, default None
|
|
404
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
405
|
-
- privileged: bool, optional, default None
|
|
406
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
407
|
-
- run_as_user: int, optional, default None
|
|
408
|
-
- run_as_group: int, optional, default None
|
|
409
|
-
- run_as_non_root: bool, optional, default None
|
|
410
|
-
"""
|
|
411
|
-
...
|
|
412
|
-
|
|
413
|
-
@typing.overload
|
|
414
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
415
|
-
"""
|
|
416
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
417
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
418
|
-
"""
|
|
419
|
-
...
|
|
420
|
-
|
|
421
287
|
@typing.overload
|
|
422
|
-
def
|
|
423
|
-
...
|
|
424
|
-
|
|
425
|
-
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
426
|
-
"""
|
|
427
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
428
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
429
|
-
"""
|
|
430
|
-
...
|
|
431
|
-
|
|
432
|
-
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
288
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
433
289
|
"""
|
|
434
|
-
|
|
290
|
+
Enables checkpointing for a step.
|
|
435
291
|
|
|
436
|
-
Examples
|
|
437
|
-
|
|
292
|
+
> Examples
|
|
293
|
+
|
|
294
|
+
- Saving Checkpoints
|
|
438
295
|
|
|
439
296
|
```python
|
|
440
|
-
|
|
441
|
-
@huggingface_hub
|
|
297
|
+
@checkpoint
|
|
442
298
|
@step
|
|
443
|
-
def
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
|
|
299
|
+
def train(self):
|
|
300
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
301
|
+
for i in range(self.epochs):
|
|
302
|
+
# some training logic
|
|
303
|
+
loss = model.train(self.dataset)
|
|
304
|
+
if i % 10 == 0:
|
|
305
|
+
model.save(
|
|
306
|
+
current.checkpoint.directory,
|
|
307
|
+
)
|
|
308
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
309
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
310
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
311
|
+
name="epoch_checkpoint",
|
|
312
|
+
metadata={
|
|
313
|
+
"epoch": i,
|
|
314
|
+
"loss": loss,
|
|
315
|
+
}
|
|
316
|
+
)
|
|
317
|
+
```
|
|
318
|
+
|
|
319
|
+
- Using Loaded Checkpoints
|
|
320
|
+
|
|
321
|
+
```python
|
|
322
|
+
@retry(times=3)
|
|
323
|
+
@checkpoint
|
|
459
324
|
@step
|
|
460
|
-
def
|
|
461
|
-
#
|
|
462
|
-
|
|
463
|
-
|
|
464
|
-
|
|
465
|
-
|
|
466
|
-
|
|
467
|
-
|
|
325
|
+
def train(self):
|
|
326
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
327
|
+
# saved a checkpoint
|
|
328
|
+
checkpoint_path = None
|
|
329
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
330
|
+
print("Loaded checkpoint from the previous attempt")
|
|
331
|
+
checkpoint_path = current.checkpoint.directory
|
|
332
|
+
|
|
333
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
334
|
+
for i in range(self.epochs):
|
|
468
335
|
...
|
|
336
|
+
```
|
|
469
337
|
|
|
470
|
-
# **Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
471
338
|
|
|
472
|
-
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
|
|
339
|
+
Parameters
|
|
340
|
+
----------
|
|
341
|
+
load_policy : str, default: "fresh"
|
|
342
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
343
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
344
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
345
|
+
will be loaded at the start of the task.
|
|
346
|
+
- "none": Do not load any checkpoint
|
|
347
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
348
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
349
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
350
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
476
351
|
|
|
477
|
-
|
|
352
|
+
temp_dir_root : str, default: None
|
|
353
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
354
|
+
"""
|
|
355
|
+
...
|
|
356
|
+
|
|
357
|
+
@typing.overload
|
|
358
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
359
|
+
...
|
|
360
|
+
|
|
361
|
+
@typing.overload
|
|
362
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
363
|
+
...
|
|
364
|
+
|
|
365
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
366
|
+
"""
|
|
367
|
+
Enables checkpointing for a step.
|
|
368
|
+
|
|
369
|
+
> Examples
|
|
370
|
+
|
|
371
|
+
- Saving Checkpoints
|
|
372
|
+
|
|
373
|
+
```python
|
|
374
|
+
@checkpoint
|
|
478
375
|
@step
|
|
479
|
-
def
|
|
480
|
-
|
|
481
|
-
|
|
376
|
+
def train(self):
|
|
377
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
378
|
+
for i in range(self.epochs):
|
|
379
|
+
# some training logic
|
|
380
|
+
loss = model.train(self.dataset)
|
|
381
|
+
if i % 10 == 0:
|
|
382
|
+
model.save(
|
|
383
|
+
current.checkpoint.directory,
|
|
384
|
+
)
|
|
385
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
386
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
387
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
388
|
+
name="epoch_checkpoint",
|
|
389
|
+
metadata={
|
|
390
|
+
"epoch": i,
|
|
391
|
+
"loss": loss,
|
|
392
|
+
}
|
|
393
|
+
)
|
|
394
|
+
```
|
|
482
395
|
|
|
396
|
+
- Using Loaded Checkpoints
|
|
483
397
|
|
|
484
|
-
|
|
485
|
-
|
|
486
|
-
@
|
|
487
|
-
{
|
|
488
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
489
|
-
},
|
|
490
|
-
{
|
|
491
|
-
"repo_id": "myorg/mistral-lora",
|
|
492
|
-
"repo_type": "model",
|
|
493
|
-
},
|
|
494
|
-
])
|
|
398
|
+
```python
|
|
399
|
+
@retry(times=3)
|
|
400
|
+
@checkpoint
|
|
495
401
|
@step
|
|
496
|
-
def
|
|
497
|
-
|
|
498
|
-
#
|
|
402
|
+
def train(self):
|
|
403
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
404
|
+
# saved a checkpoint
|
|
405
|
+
checkpoint_path = None
|
|
406
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
407
|
+
print("Loaded checkpoint from the previous attempt")
|
|
408
|
+
checkpoint_path = current.checkpoint.directory
|
|
409
|
+
|
|
410
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
411
|
+
for i in range(self.epochs):
|
|
412
|
+
...
|
|
499
413
|
```
|
|
500
414
|
|
|
501
415
|
|
|
502
416
|
Parameters
|
|
503
417
|
----------
|
|
504
|
-
|
|
505
|
-
The
|
|
418
|
+
load_policy : str, default: "fresh"
|
|
419
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
420
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
421
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
422
|
+
will be loaded at the start of the task.
|
|
423
|
+
- "none": Do not load any checkpoint
|
|
424
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
425
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
426
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
427
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
506
428
|
|
|
507
|
-
|
|
508
|
-
The
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
|
|
429
|
+
temp_dir_root : str, default: None
|
|
430
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
431
|
+
"""
|
|
432
|
+
...
|
|
433
|
+
|
|
434
|
+
@typing.overload
|
|
435
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
436
|
+
"""
|
|
437
|
+
Specifies the Conda environment for the step.
|
|
512
438
|
|
|
513
|
-
|
|
514
|
-
|
|
515
|
-
|
|
439
|
+
Information in this decorator will augment any
|
|
440
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
441
|
+
you can use `@conda_base` to set packages required by all
|
|
442
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
516
443
|
|
|
517
|
-
- `global`: All repos are cached under a globally static path.
|
|
518
|
-
i.e., the base path of the cache is static and all repos are stored under it.
|
|
519
|
-
When to use this mode:
|
|
520
|
-
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
521
|
-
- Each caching scope comes with its own trade-offs:
|
|
522
|
-
- `checkpoint`:
|
|
523
|
-
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
524
|
-
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
525
|
-
- `flow`:
|
|
526
|
-
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
527
|
-
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
528
|
-
- It doesn't promote cache reuse across flows.
|
|
529
|
-
- `global`:
|
|
530
|
-
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
531
|
-
- It promotes cache reuse across flows.
|
|
532
|
-
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
533
444
|
|
|
534
|
-
|
|
535
|
-
|
|
445
|
+
Parameters
|
|
446
|
+
----------
|
|
447
|
+
packages : Dict[str, str], default {}
|
|
448
|
+
Packages to use for this step. The key is the name of the package
|
|
449
|
+
and the value is the version to use.
|
|
450
|
+
libraries : Dict[str, str], default {}
|
|
451
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
452
|
+
python : str, optional, default None
|
|
453
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
454
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
455
|
+
disabled : bool, default False
|
|
456
|
+
If set to True, disables @conda.
|
|
457
|
+
"""
|
|
458
|
+
...
|
|
459
|
+
|
|
460
|
+
@typing.overload
|
|
461
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
462
|
+
...
|
|
463
|
+
|
|
464
|
+
@typing.overload
|
|
465
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
466
|
+
...
|
|
467
|
+
|
|
468
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
469
|
+
"""
|
|
470
|
+
Specifies the Conda environment for the step.
|
|
536
471
|
|
|
537
|
-
|
|
472
|
+
Information in this decorator will augment any
|
|
473
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
474
|
+
you can use `@conda_base` to set packages required by all
|
|
475
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
538
476
|
|
|
539
|
-
- If repo (model/dataset) is not found in the datastore:
|
|
540
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
541
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
542
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
543
477
|
|
|
544
|
-
|
|
545
|
-
|
|
478
|
+
Parameters
|
|
479
|
+
----------
|
|
480
|
+
packages : Dict[str, str], default {}
|
|
481
|
+
Packages to use for this step. The key is the name of the package
|
|
482
|
+
and the value is the version to use.
|
|
483
|
+
libraries : Dict[str, str], default {}
|
|
484
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
485
|
+
python : str, optional, default None
|
|
486
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
487
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
488
|
+
disabled : bool, default False
|
|
489
|
+
If set to True, disables @conda.
|
|
546
490
|
"""
|
|
547
491
|
...
|
|
548
492
|
|
|
549
|
-
|
|
493
|
+
@typing.overload
|
|
494
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
550
495
|
"""
|
|
551
|
-
|
|
496
|
+
Internal decorator to support Fast bakery
|
|
497
|
+
"""
|
|
498
|
+
...
|
|
499
|
+
|
|
500
|
+
@typing.overload
|
|
501
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
502
|
+
...
|
|
503
|
+
|
|
504
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
505
|
+
"""
|
|
506
|
+
Internal decorator to support Fast bakery
|
|
507
|
+
"""
|
|
508
|
+
...
|
|
509
|
+
|
|
510
|
+
@typing.overload
|
|
511
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
512
|
+
"""
|
|
513
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
514
|
+
the execution of a step.
|
|
515
|
+
|
|
516
|
+
|
|
517
|
+
Parameters
|
|
518
|
+
----------
|
|
519
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
520
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
521
|
+
role : str, optional, default: None
|
|
522
|
+
Role to use for fetching secrets
|
|
523
|
+
"""
|
|
524
|
+
...
|
|
525
|
+
|
|
526
|
+
@typing.overload
|
|
527
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
528
|
+
...
|
|
529
|
+
|
|
530
|
+
@typing.overload
|
|
531
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
532
|
+
...
|
|
533
|
+
|
|
534
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
535
|
+
"""
|
|
536
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
537
|
+
the execution of a step.
|
|
538
|
+
|
|
539
|
+
|
|
540
|
+
Parameters
|
|
541
|
+
----------
|
|
542
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
543
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
544
|
+
role : str, optional, default: None
|
|
545
|
+
Role to use for fetching secrets
|
|
546
|
+
"""
|
|
547
|
+
...
|
|
548
|
+
|
|
549
|
+
@typing.overload
|
|
550
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
551
|
+
"""
|
|
552
|
+
Specifies a timeout for your step.
|
|
553
|
+
|
|
554
|
+
This decorator is useful if this step may hang indefinitely.
|
|
555
|
+
|
|
556
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
557
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
558
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
559
|
+
|
|
560
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
561
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
562
|
+
|
|
563
|
+
|
|
564
|
+
Parameters
|
|
565
|
+
----------
|
|
566
|
+
seconds : int, default 0
|
|
567
|
+
Number of seconds to wait prior to timing out.
|
|
568
|
+
minutes : int, default 0
|
|
569
|
+
Number of minutes to wait prior to timing out.
|
|
570
|
+
hours : int, default 0
|
|
571
|
+
Number of hours to wait prior to timing out.
|
|
572
|
+
"""
|
|
573
|
+
...
|
|
574
|
+
|
|
575
|
+
@typing.overload
|
|
576
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
577
|
+
...
|
|
578
|
+
|
|
579
|
+
@typing.overload
|
|
580
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
581
|
+
...
|
|
582
|
+
|
|
583
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
584
|
+
"""
|
|
585
|
+
Specifies a timeout for your step.
|
|
586
|
+
|
|
587
|
+
This decorator is useful if this step may hang indefinitely.
|
|
588
|
+
|
|
589
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
590
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
591
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
592
|
+
|
|
593
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
594
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
595
|
+
|
|
596
|
+
|
|
597
|
+
Parameters
|
|
598
|
+
----------
|
|
599
|
+
seconds : int, default 0
|
|
600
|
+
Number of seconds to wait prior to timing out.
|
|
601
|
+
minutes : int, default 0
|
|
602
|
+
Number of minutes to wait prior to timing out.
|
|
603
|
+
hours : int, default 0
|
|
604
|
+
Number of hours to wait prior to timing out.
|
|
605
|
+
"""
|
|
606
|
+
...
|
|
607
|
+
|
|
608
|
+
@typing.overload
|
|
609
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
610
|
+
"""
|
|
611
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
612
|
+
|
|
613
|
+
|
|
614
|
+
Parameters
|
|
615
|
+
----------
|
|
616
|
+
vars : Dict[str, str], default {}
|
|
617
|
+
Dictionary of environment variables to set.
|
|
618
|
+
"""
|
|
619
|
+
...
|
|
620
|
+
|
|
621
|
+
@typing.overload
|
|
622
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
623
|
+
...
|
|
624
|
+
|
|
625
|
+
@typing.overload
|
|
626
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
627
|
+
...
|
|
628
|
+
|
|
629
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
630
|
+
"""
|
|
631
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
632
|
+
|
|
633
|
+
|
|
634
|
+
Parameters
|
|
635
|
+
----------
|
|
636
|
+
vars : Dict[str, str], default {}
|
|
637
|
+
Dictionary of environment variables to set.
|
|
638
|
+
"""
|
|
639
|
+
...
|
|
640
|
+
|
|
641
|
+
def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
642
|
+
"""
|
|
643
|
+
`@coreweave_s3_proxy` is a CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
552
644
|
It exists to make it easier for users to know that this decorator should only be used with
|
|
553
|
-
a Neo Cloud like
|
|
645
|
+
a Neo Cloud like CoreWeave. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
554
646
|
|
|
555
647
|
|
|
556
648
|
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
@@ -605,168 +697,24 @@ def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode
|
|
|
605
697
|
Controls whether writes also go to the external bucket.
|
|
606
698
|
- `origin` (default)
|
|
607
699
|
- `origin-and-cache`
|
|
608
|
-
debug : bool, optional
|
|
609
|
-
Enables debug logging for proxy operations.
|
|
610
|
-
"""
|
|
611
|
-
...
|
|
612
|
-
|
|
613
|
-
@typing.overload
|
|
614
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
615
|
-
"""
|
|
616
|
-
Internal decorator to support Fast bakery
|
|
617
|
-
"""
|
|
618
|
-
...
|
|
619
|
-
|
|
620
|
-
@typing.overload
|
|
621
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
622
|
-
...
|
|
623
|
-
|
|
624
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
625
|
-
"""
|
|
626
|
-
Internal decorator to support Fast bakery
|
|
627
|
-
"""
|
|
628
|
-
...
|
|
629
|
-
|
|
630
|
-
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
631
|
-
"""
|
|
632
|
-
Specifies that this step should execute on DGX cloud.
|
|
633
|
-
|
|
634
|
-
|
|
635
|
-
Parameters
|
|
636
|
-
----------
|
|
637
|
-
gpu : int
|
|
638
|
-
Number of GPUs to use.
|
|
639
|
-
gpu_type : str
|
|
640
|
-
Type of Nvidia GPU to use.
|
|
641
|
-
"""
|
|
642
|
-
...
|
|
643
|
-
|
|
644
|
-
@typing.overload
|
|
645
|
-
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
646
|
-
"""
|
|
647
|
-
Enables loading / saving of models within a step.
|
|
648
|
-
|
|
649
|
-
> Examples
|
|
650
|
-
- Saving Models
|
|
651
|
-
```python
|
|
652
|
-
@model
|
|
653
|
-
@step
|
|
654
|
-
def train(self):
|
|
655
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
656
|
-
self.my_model = current.model.save(
|
|
657
|
-
path_to_my_model,
|
|
658
|
-
label="my_model",
|
|
659
|
-
metadata={
|
|
660
|
-
"epochs": 10,
|
|
661
|
-
"batch-size": 32,
|
|
662
|
-
"learning-rate": 0.001,
|
|
663
|
-
}
|
|
664
|
-
)
|
|
665
|
-
self.next(self.test)
|
|
666
|
-
|
|
667
|
-
@model(load="my_model")
|
|
668
|
-
@step
|
|
669
|
-
def test(self):
|
|
670
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
671
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
672
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
673
|
-
self.next(self.end)
|
|
674
|
-
```
|
|
675
|
-
|
|
676
|
-
- Loading models
|
|
677
|
-
```python
|
|
678
|
-
@step
|
|
679
|
-
def train(self):
|
|
680
|
-
# current.model.load returns the path to the model loaded
|
|
681
|
-
checkpoint_path = current.model.load(
|
|
682
|
-
self.checkpoint_key,
|
|
683
|
-
)
|
|
684
|
-
model_path = current.model.load(
|
|
685
|
-
self.model,
|
|
686
|
-
)
|
|
687
|
-
self.next(self.test)
|
|
688
|
-
```
|
|
689
|
-
|
|
690
|
-
|
|
691
|
-
Parameters
|
|
692
|
-
----------
|
|
693
|
-
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
694
|
-
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
695
|
-
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
696
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
697
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
698
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
699
|
-
|
|
700
|
-
temp_dir_root : str, default: None
|
|
701
|
-
The root directory under which `current.model.loaded` will store loaded models
|
|
700
|
+
debug : bool, optional
|
|
701
|
+
Enables debug logging for proxy operations.
|
|
702
702
|
"""
|
|
703
703
|
...
|
|
704
704
|
|
|
705
|
-
|
|
706
|
-
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
707
|
-
...
|
|
708
|
-
|
|
709
|
-
@typing.overload
|
|
710
|
-
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
711
|
-
...
|
|
712
|
-
|
|
713
|
-
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
|
705
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
714
706
|
"""
|
|
715
|
-
|
|
716
|
-
|
|
717
|
-
> Examples
|
|
718
|
-
- Saving Models
|
|
719
|
-
```python
|
|
720
|
-
@model
|
|
721
|
-
@step
|
|
722
|
-
def train(self):
|
|
723
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
724
|
-
self.my_model = current.model.save(
|
|
725
|
-
path_to_my_model,
|
|
726
|
-
label="my_model",
|
|
727
|
-
metadata={
|
|
728
|
-
"epochs": 10,
|
|
729
|
-
"batch-size": 32,
|
|
730
|
-
"learning-rate": 0.001,
|
|
731
|
-
}
|
|
732
|
-
)
|
|
733
|
-
self.next(self.test)
|
|
734
|
-
|
|
735
|
-
@model(load="my_model")
|
|
736
|
-
@step
|
|
737
|
-
def test(self):
|
|
738
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
739
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
740
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
741
|
-
self.next(self.end)
|
|
742
|
-
```
|
|
743
|
-
|
|
744
|
-
- Loading models
|
|
745
|
-
```python
|
|
746
|
-
@step
|
|
747
|
-
def train(self):
|
|
748
|
-
# current.model.load returns the path to the model loaded
|
|
749
|
-
checkpoint_path = current.model.load(
|
|
750
|
-
self.checkpoint_key,
|
|
751
|
-
)
|
|
752
|
-
model_path = current.model.load(
|
|
753
|
-
self.model,
|
|
754
|
-
)
|
|
755
|
-
self.next(self.test)
|
|
756
|
-
```
|
|
707
|
+
Specifies that this step should execute on DGX cloud.
|
|
757
708
|
|
|
758
709
|
|
|
759
710
|
Parameters
|
|
760
711
|
----------
|
|
761
|
-
|
|
762
|
-
|
|
763
|
-
|
|
764
|
-
|
|
765
|
-
|
|
766
|
-
|
|
767
|
-
|
|
768
|
-
temp_dir_root : str, default: None
|
|
769
|
-
The root directory under which `current.model.loaded` will store loaded models
|
|
712
|
+
gpu : int
|
|
713
|
+
Number of GPUs to use.
|
|
714
|
+
gpu_type : str
|
|
715
|
+
Type of Nvidia GPU to use.
|
|
716
|
+
queue_timeout : int
|
|
717
|
+
Time to keep the job in NVCF's queue.
|
|
770
718
|
"""
|
|
771
719
|
...
|
|
772
720
|
|
|
@@ -825,499 +773,686 @@ def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
825
773
|
"""
|
|
826
774
|
...
|
|
827
775
|
|
|
828
|
-
|
|
829
|
-
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
776
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
830
777
|
"""
|
|
831
|
-
|
|
778
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
832
779
|
|
|
833
|
-
|
|
780
|
+
User code call
|
|
781
|
+
--------------
|
|
782
|
+
@ollama(
|
|
783
|
+
models=[...],
|
|
784
|
+
...
|
|
785
|
+
)
|
|
786
|
+
|
|
787
|
+
Valid backend options
|
|
788
|
+
---------------------
|
|
789
|
+
- 'local': Run as a separate process on the local task machine.
|
|
790
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
791
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
792
|
+
|
|
793
|
+
Valid model options
|
|
794
|
+
-------------------
|
|
795
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
834
796
|
|
|
835
797
|
|
|
836
798
|
Parameters
|
|
837
799
|
----------
|
|
838
|
-
|
|
839
|
-
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
|
|
843
|
-
|
|
844
|
-
|
|
845
|
-
|
|
800
|
+
models: list[str]
|
|
801
|
+
List of Ollama containers running models in sidecars.
|
|
802
|
+
backend: str
|
|
803
|
+
Determines where and how to run the Ollama process.
|
|
804
|
+
force_pull: bool
|
|
805
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
806
|
+
cache_update_policy: str
|
|
807
|
+
Cache update policy: "auto", "force", or "never".
|
|
808
|
+
force_cache_update: bool
|
|
809
|
+
Simple override for "force" cache update policy.
|
|
810
|
+
debug: bool
|
|
811
|
+
Whether to turn on verbose debugging logs.
|
|
812
|
+
circuit_breaker_config: dict
|
|
813
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
814
|
+
timeout_config: dict
|
|
815
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
816
|
+
"""
|
|
817
|
+
...
|
|
818
|
+
|
|
819
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
820
|
+
"""
|
|
821
|
+
Specifies that this step should execute on DGX cloud.
|
|
822
|
+
|
|
823
|
+
|
|
824
|
+
Parameters
|
|
825
|
+
----------
|
|
826
|
+
gpu : int
|
|
827
|
+
Number of GPUs to use.
|
|
828
|
+
gpu_type : str
|
|
829
|
+
Type of Nvidia GPU to use.
|
|
846
830
|
"""
|
|
847
831
|
...
|
|
848
832
|
|
|
849
833
|
@typing.overload
|
|
850
|
-
def
|
|
834
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
835
|
+
"""
|
|
836
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
837
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
838
|
+
"""
|
|
851
839
|
...
|
|
852
840
|
|
|
853
841
|
@typing.overload
|
|
854
|
-
def
|
|
842
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
855
843
|
...
|
|
856
844
|
|
|
857
|
-
def
|
|
845
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
858
846
|
"""
|
|
859
|
-
|
|
847
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
848
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
849
|
+
"""
|
|
850
|
+
...
|
|
851
|
+
|
|
852
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
853
|
+
"""
|
|
854
|
+
Decorator that helps cache, version, and store models/datasets from the Hugging Face Hub.
|
|
860
855
|
|
|
861
|
-
|
|
856
|
+
Examples
|
|
857
|
+
--------
|
|
858
|
+
|
|
859
|
+
```python
|
|
860
|
+
# **Usage: creating references to models from the Hugging Face Hub that may be loaded in downstream steps**
|
|
861
|
+
@huggingface_hub
|
|
862
|
+
@step
|
|
863
|
+
def pull_model_from_huggingface(self):
|
|
864
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
865
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
866
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
867
|
+
# value of the function is a reference to the model in the backend storage.
|
|
868
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
869
|
+
|
|
870
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
871
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
872
|
+
repo_id=self.model_id,
|
|
873
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
874
|
+
)
|
|
875
|
+
self.next(self.train)
|
|
876
|
+
|
|
877
|
+
# **Usage: explicitly loading models at runtime from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
878
|
+
@huggingface_hub
|
|
879
|
+
@step
|
|
880
|
+
def run_training(self):
|
|
881
|
+
# Temporary directory (auto-cleaned on exit)
|
|
882
|
+
with current.huggingface_hub.load(
|
|
883
|
+
repo_id="google-bert/bert-base-uncased",
|
|
884
|
+
allow_patterns=["*.bin"],
|
|
885
|
+
) as local_path:
|
|
886
|
+
# Use files under local_path
|
|
887
|
+
train_model(local_path)
|
|
888
|
+
...
|
|
889
|
+
|
|
890
|
+
# **Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
891
|
+
|
|
892
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
893
|
+
@step
|
|
894
|
+
def pull_model_from_huggingface(self):
|
|
895
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
896
|
+
|
|
897
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora", "/my-lora-directory")])
|
|
898
|
+
@step
|
|
899
|
+
def finetune_model(self):
|
|
900
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
901
|
+
# path_to_model will be /my-directory
|
|
902
|
+
|
|
903
|
+
|
|
904
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
905
|
+
# except for `local_dir`
|
|
906
|
+
@huggingface_hub(load=[
|
|
907
|
+
{
|
|
908
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
909
|
+
},
|
|
910
|
+
{
|
|
911
|
+
"repo_id": "myorg/mistral-lora",
|
|
912
|
+
"repo_type": "model",
|
|
913
|
+
},
|
|
914
|
+
])
|
|
915
|
+
@step
|
|
916
|
+
def finetune_model(self):
|
|
917
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
918
|
+
# path_to_model will be /my-directory
|
|
919
|
+
```
|
|
920
|
+
|
|
921
|
+
|
|
922
|
+
Parameters
|
|
923
|
+
----------
|
|
924
|
+
temp_dir_root : str, optional
|
|
925
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
926
|
+
|
|
927
|
+
cache_scope : str, optional
|
|
928
|
+
The scope of the cache. Can be `checkpoint` / `flow` / `global`.
|
|
929
|
+
- `checkpoint` (default): All repos are stored like objects saved by `@checkpoint`.
|
|
930
|
+
i.e., the cached path is derived from the namespace, flow, step, and Metaflow foreach iteration.
|
|
931
|
+
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
932
|
+
|
|
933
|
+
- `flow`: All repos are cached under the flow, regardless of namespace.
|
|
934
|
+
i.e., the cached path is derived solely from the flow name.
|
|
935
|
+
When to use this mode: (1) Multiple users are executing the same flow and want shared access to the repos cached by the decorator. (2) Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
936
|
+
|
|
937
|
+
- `global`: All repos are cached under a globally static path.
|
|
938
|
+
i.e., the base path of the cache is static and all repos are stored under it.
|
|
939
|
+
When to use this mode:
|
|
940
|
+
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
941
|
+
- Each caching scope comes with its own trade-offs:
|
|
942
|
+
- `checkpoint`:
|
|
943
|
+
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
944
|
+
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
945
|
+
- `flow`:
|
|
946
|
+
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
947
|
+
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
948
|
+
- It doesn't promote cache reuse across flows.
|
|
949
|
+
- `global`:
|
|
950
|
+
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
951
|
+
- It promotes cache reuse across flows.
|
|
952
|
+
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
953
|
+
|
|
954
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
955
|
+
The list of repos (models/datasets) to load.
|
|
956
|
+
|
|
957
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
862
958
|
|
|
959
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
960
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
961
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
962
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
863
963
|
|
|
864
|
-
|
|
865
|
-
|
|
866
|
-
type : str, default 'default'
|
|
867
|
-
Card type.
|
|
868
|
-
id : str, optional, default None
|
|
869
|
-
If multiple cards are present, use this id to identify this card.
|
|
870
|
-
options : Dict[str, Any], default {}
|
|
871
|
-
Options passed to the card. The contents depend on the card type.
|
|
872
|
-
timeout : int, default 45
|
|
873
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
874
|
-
"""
|
|
875
|
-
...
|
|
876
|
-
|
|
877
|
-
@typing.overload
|
|
878
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
879
|
-
"""
|
|
880
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
881
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
882
|
-
"""
|
|
883
|
-
...
|
|
884
|
-
|
|
885
|
-
@typing.overload
|
|
886
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
887
|
-
...
|
|
888
|
-
|
|
889
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
890
|
-
"""
|
|
891
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
892
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
964
|
+
- If repo is found in the datastore:
|
|
965
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
893
966
|
"""
|
|
894
967
|
...
|
|
895
968
|
|
|
896
969
|
@typing.overload
|
|
897
|
-
def
|
|
970
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
898
971
|
"""
|
|
899
|
-
|
|
900
|
-
|
|
901
|
-
> Examples
|
|
972
|
+
Specifies the resources needed when executing this step.
|
|
902
973
|
|
|
903
|
-
|
|
974
|
+
Use `@resources` to specify the resource requirements
|
|
975
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
904
976
|
|
|
905
|
-
|
|
906
|
-
@checkpoint
|
|
907
|
-
@step
|
|
908
|
-
def train(self):
|
|
909
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
910
|
-
for i in range(self.epochs):
|
|
911
|
-
# some training logic
|
|
912
|
-
loss = model.train(self.dataset)
|
|
913
|
-
if i % 10 == 0:
|
|
914
|
-
model.save(
|
|
915
|
-
current.checkpoint.directory,
|
|
916
|
-
)
|
|
917
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
918
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
919
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
920
|
-
name="epoch_checkpoint",
|
|
921
|
-
metadata={
|
|
922
|
-
"epoch": i,
|
|
923
|
-
"loss": loss,
|
|
924
|
-
}
|
|
925
|
-
)
|
|
977
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
926
978
|
```
|
|
927
|
-
|
|
928
|
-
|
|
929
|
-
|
|
930
|
-
```
|
|
931
|
-
|
|
932
|
-
@checkpoint
|
|
933
|
-
@step
|
|
934
|
-
def train(self):
|
|
935
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
936
|
-
# saved a checkpoint
|
|
937
|
-
checkpoint_path = None
|
|
938
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
939
|
-
print("Loaded checkpoint from the previous attempt")
|
|
940
|
-
checkpoint_path = current.checkpoint.directory
|
|
941
|
-
|
|
942
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
943
|
-
for i in range(self.epochs):
|
|
944
|
-
...
|
|
979
|
+
python myflow.py run --with batch
|
|
980
|
+
```
|
|
981
|
+
or
|
|
982
|
+
```
|
|
983
|
+
python myflow.py run --with kubernetes
|
|
945
984
|
```
|
|
985
|
+
which executes the flow on the desired system using the
|
|
986
|
+
requirements specified in `@resources`.
|
|
946
987
|
|
|
947
988
|
|
|
948
989
|
Parameters
|
|
949
990
|
----------
|
|
950
|
-
|
|
951
|
-
|
|
952
|
-
|
|
953
|
-
|
|
954
|
-
|
|
955
|
-
|
|
956
|
-
|
|
957
|
-
|
|
958
|
-
|
|
959
|
-
|
|
960
|
-
|
|
961
|
-
temp_dir_root : str, default: None
|
|
962
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
991
|
+
cpu : int, default 1
|
|
992
|
+
Number of CPUs required for this step.
|
|
993
|
+
gpu : int, optional, default None
|
|
994
|
+
Number of GPUs required for this step.
|
|
995
|
+
disk : int, optional, default None
|
|
996
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
997
|
+
memory : int, default 4096
|
|
998
|
+
Memory size (in MB) required for this step.
|
|
999
|
+
shared_memory : int, optional, default None
|
|
1000
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1001
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
963
1002
|
"""
|
|
964
1003
|
...
|
|
965
1004
|
|
|
966
1005
|
@typing.overload
|
|
967
|
-
def
|
|
1006
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
968
1007
|
...
|
|
969
1008
|
|
|
970
1009
|
@typing.overload
|
|
971
|
-
def
|
|
1010
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
972
1011
|
...
|
|
973
1012
|
|
|
974
|
-
def
|
|
1013
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
975
1014
|
"""
|
|
976
|
-
|
|
977
|
-
|
|
978
|
-
> Examples
|
|
1015
|
+
Specifies the resources needed when executing this step.
|
|
979
1016
|
|
|
980
|
-
|
|
1017
|
+
Use `@resources` to specify the resource requirements
|
|
1018
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
981
1019
|
|
|
982
|
-
|
|
983
|
-
@checkpoint
|
|
984
|
-
@step
|
|
985
|
-
def train(self):
|
|
986
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
987
|
-
for i in range(self.epochs):
|
|
988
|
-
# some training logic
|
|
989
|
-
loss = model.train(self.dataset)
|
|
990
|
-
if i % 10 == 0:
|
|
991
|
-
model.save(
|
|
992
|
-
current.checkpoint.directory,
|
|
993
|
-
)
|
|
994
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
995
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
996
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
997
|
-
name="epoch_checkpoint",
|
|
998
|
-
metadata={
|
|
999
|
-
"epoch": i,
|
|
1000
|
-
"loss": loss,
|
|
1001
|
-
}
|
|
1002
|
-
)
|
|
1020
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
1003
1021
|
```
|
|
1022
|
+
python myflow.py run --with batch
|
|
1023
|
+
```
|
|
1024
|
+
or
|
|
1025
|
+
```
|
|
1026
|
+
python myflow.py run --with kubernetes
|
|
1027
|
+
```
|
|
1028
|
+
which executes the flow on the desired system using the
|
|
1029
|
+
requirements specified in `@resources`.
|
|
1004
1030
|
|
|
1005
|
-
- Using Loaded Checkpoints
|
|
1006
|
-
|
|
1007
|
-
```python
|
|
1008
|
-
@retry(times=3)
|
|
1009
|
-
@checkpoint
|
|
1010
|
-
@step
|
|
1011
|
-
def train(self):
|
|
1012
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
1013
|
-
# saved a checkpoint
|
|
1014
|
-
checkpoint_path = None
|
|
1015
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1016
|
-
print("Loaded checkpoint from the previous attempt")
|
|
1017
|
-
checkpoint_path = current.checkpoint.directory
|
|
1018
1031
|
|
|
1019
|
-
|
|
1020
|
-
|
|
1021
|
-
|
|
1022
|
-
|
|
1032
|
+
Parameters
|
|
1033
|
+
----------
|
|
1034
|
+
cpu : int, default 1
|
|
1035
|
+
Number of CPUs required for this step.
|
|
1036
|
+
gpu : int, optional, default None
|
|
1037
|
+
Number of GPUs required for this step.
|
|
1038
|
+
disk : int, optional, default None
|
|
1039
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
1040
|
+
memory : int, default 4096
|
|
1041
|
+
Memory size (in MB) required for this step.
|
|
1042
|
+
shared_memory : int, optional, default None
|
|
1043
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1044
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
1045
|
+
"""
|
|
1046
|
+
...
|
|
1047
|
+
|
|
1048
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1049
|
+
"""
|
|
1050
|
+
Specifies that this step should execute on Kubernetes.
|
|
1023
1051
|
|
|
1024
1052
|
|
|
1025
1053
|
Parameters
|
|
1026
1054
|
----------
|
|
1027
|
-
|
|
1028
|
-
|
|
1029
|
-
|
|
1030
|
-
|
|
1031
|
-
|
|
1032
|
-
|
|
1033
|
-
|
|
1034
|
-
|
|
1035
|
-
|
|
1036
|
-
|
|
1055
|
+
cpu : int, default 1
|
|
1056
|
+
Number of CPUs required for this step. If `@resources` is
|
|
1057
|
+
also present, the maximum value from all decorators is used.
|
|
1058
|
+
memory : int, default 4096
|
|
1059
|
+
Memory size (in MB) required for this step. If
|
|
1060
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
1061
|
+
used.
|
|
1062
|
+
disk : int, default 10240
|
|
1063
|
+
Disk size (in MB) required for this step. If
|
|
1064
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
1065
|
+
used.
|
|
1066
|
+
image : str, optional, default None
|
|
1067
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
1068
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
1069
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
1070
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
1071
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
1072
|
+
image_pull_secrets: List[str], default []
|
|
1073
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
1074
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
1075
|
+
in Kubernetes.
|
|
1076
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
1077
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
1078
|
+
secrets : List[str], optional, default None
|
|
1079
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
1080
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
1081
|
+
in Metaflow configuration.
|
|
1082
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
1083
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
1084
|
+
Can be passed in as a comma separated string of values e.g.
|
|
1085
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
1086
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
1087
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
1088
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
1089
|
+
gpu : int, optional, default None
|
|
1090
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
1091
|
+
the scheduled node should not have GPUs.
|
|
1092
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
1093
|
+
The vendor of the GPUs to be used for this step.
|
|
1094
|
+
tolerations : List[Dict[str,str]], default []
|
|
1095
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
1096
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
1097
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
1098
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
1099
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
1100
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
1101
|
+
use_tmpfs : bool, default False
|
|
1102
|
+
This enables an explicit tmpfs mount for this step.
|
|
1103
|
+
tmpfs_tempdir : bool, default True
|
|
1104
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
1105
|
+
tmpfs_size : int, optional, default: None
|
|
1106
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
1107
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
1108
|
+
memory allocated for this step.
|
|
1109
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
1110
|
+
Path to tmpfs mount for this step.
|
|
1111
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
1112
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
1113
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
1114
|
+
shared_memory: int, optional
|
|
1115
|
+
Shared memory size (in MiB) required for this step
|
|
1116
|
+
port: int, optional
|
|
1117
|
+
Port number to specify in the Kubernetes job object
|
|
1118
|
+
compute_pool : str, optional, default None
|
|
1119
|
+
Compute pool to be used for for this step.
|
|
1120
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
1121
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
1122
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
1123
|
+
Only applicable when @parallel is used.
|
|
1124
|
+
qos: str, default: Burstable
|
|
1125
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
1037
1126
|
|
|
1038
|
-
|
|
1039
|
-
|
|
1127
|
+
security_context: Dict[str, Any], optional, default None
|
|
1128
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
1129
|
+
- privileged: bool, optional, default None
|
|
1130
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
1131
|
+
- run_as_user: int, optional, default None
|
|
1132
|
+
- run_as_group: int, optional, default None
|
|
1133
|
+
- run_as_non_root: bool, optional, default None
|
|
1040
1134
|
"""
|
|
1041
1135
|
...
|
|
1042
1136
|
|
|
1043
1137
|
@typing.overload
|
|
1044
|
-
def
|
|
1138
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1045
1139
|
"""
|
|
1046
|
-
Specifies
|
|
1047
|
-
|
|
1048
|
-
This decorator is useful if this step may hang indefinitely.
|
|
1049
|
-
|
|
1050
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1051
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1052
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1140
|
+
Specifies that the step will success under all circumstances.
|
|
1053
1141
|
|
|
1054
|
-
|
|
1055
|
-
|
|
1142
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
1143
|
+
contains the exception raised. You can use it to detect the presence
|
|
1144
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
1145
|
+
are missing.
|
|
1056
1146
|
|
|
1057
1147
|
|
|
1058
1148
|
Parameters
|
|
1059
1149
|
----------
|
|
1060
|
-
|
|
1061
|
-
|
|
1062
|
-
|
|
1063
|
-
|
|
1064
|
-
|
|
1065
|
-
|
|
1150
|
+
var : str, optional, default None
|
|
1151
|
+
Name of the artifact in which to store the caught exception.
|
|
1152
|
+
If not specified, the exception is not stored.
|
|
1153
|
+
print_exception : bool, default True
|
|
1154
|
+
Determines whether or not the exception is printed to
|
|
1155
|
+
stdout when caught.
|
|
1066
1156
|
"""
|
|
1067
1157
|
...
|
|
1068
1158
|
|
|
1069
1159
|
@typing.overload
|
|
1070
|
-
def
|
|
1160
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1071
1161
|
...
|
|
1072
1162
|
|
|
1073
1163
|
@typing.overload
|
|
1074
|
-
def
|
|
1164
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1075
1165
|
...
|
|
1076
1166
|
|
|
1077
|
-
def
|
|
1167
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
1078
1168
|
"""
|
|
1079
|
-
Specifies
|
|
1080
|
-
|
|
1081
|
-
This decorator is useful if this step may hang indefinitely.
|
|
1082
|
-
|
|
1083
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1084
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1085
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1169
|
+
Specifies that the step will success under all circumstances.
|
|
1086
1170
|
|
|
1087
|
-
|
|
1088
|
-
|
|
1171
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
1172
|
+
contains the exception raised. You can use it to detect the presence
|
|
1173
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
1174
|
+
are missing.
|
|
1089
1175
|
|
|
1090
1176
|
|
|
1091
1177
|
Parameters
|
|
1092
1178
|
----------
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
|
-
|
|
1096
|
-
|
|
1097
|
-
|
|
1098
|
-
|
|
1179
|
+
var : str, optional, default None
|
|
1180
|
+
Name of the artifact in which to store the caught exception.
|
|
1181
|
+
If not specified, the exception is not stored.
|
|
1182
|
+
print_exception : bool, default True
|
|
1183
|
+
Determines whether or not the exception is printed to
|
|
1184
|
+
stdout when caught.
|
|
1099
1185
|
"""
|
|
1100
1186
|
...
|
|
1101
1187
|
|
|
1102
|
-
|
|
1103
|
-
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1188
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1104
1189
|
"""
|
|
1105
|
-
|
|
1190
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
1106
1191
|
|
|
1107
|
-
|
|
1108
|
-
|
|
1109
|
-
|
|
1110
|
-
|
|
1192
|
+
User code call
|
|
1193
|
+
--------------
|
|
1194
|
+
@vllm(
|
|
1195
|
+
model="...",
|
|
1196
|
+
...
|
|
1197
|
+
)
|
|
1111
1198
|
|
|
1199
|
+
Valid backend options
|
|
1200
|
+
---------------------
|
|
1201
|
+
- 'local': Run as a separate process on the local task machine.
|
|
1112
1202
|
|
|
1113
|
-
|
|
1114
|
-
|
|
1115
|
-
|
|
1116
|
-
Packages to use for this step. The key is the name of the package
|
|
1117
|
-
and the value is the version to use.
|
|
1118
|
-
libraries : Dict[str, str], default {}
|
|
1119
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1120
|
-
python : str, optional, default None
|
|
1121
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1122
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1123
|
-
disabled : bool, default False
|
|
1124
|
-
If set to True, disables @conda.
|
|
1125
|
-
"""
|
|
1126
|
-
...
|
|
1127
|
-
|
|
1128
|
-
@typing.overload
|
|
1129
|
-
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1130
|
-
...
|
|
1131
|
-
|
|
1132
|
-
@typing.overload
|
|
1133
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1134
|
-
...
|
|
1135
|
-
|
|
1136
|
-
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1137
|
-
"""
|
|
1138
|
-
Specifies the Conda environment for the step.
|
|
1203
|
+
Valid model options
|
|
1204
|
+
-------------------
|
|
1205
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
1139
1206
|
|
|
1140
|
-
|
|
1141
|
-
|
|
1142
|
-
you can use `@conda_base` to set packages required by all
|
|
1143
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
1207
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
1208
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
1144
1209
|
|
|
1145
1210
|
|
|
1146
1211
|
Parameters
|
|
1147
1212
|
----------
|
|
1148
|
-
|
|
1149
|
-
|
|
1150
|
-
|
|
1151
|
-
|
|
1152
|
-
|
|
1153
|
-
|
|
1154
|
-
|
|
1155
|
-
|
|
1156
|
-
|
|
1157
|
-
|
|
1213
|
+
model: str
|
|
1214
|
+
HuggingFace model identifier to be served by vLLM.
|
|
1215
|
+
backend: str
|
|
1216
|
+
Determines where and how to run the vLLM process.
|
|
1217
|
+
openai_api_server: bool
|
|
1218
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
1219
|
+
Default is False (uses native engine).
|
|
1220
|
+
Set to True for backward compatibility with existing code.
|
|
1221
|
+
debug: bool
|
|
1222
|
+
Whether to turn on verbose debugging logs.
|
|
1223
|
+
card_refresh_interval: int
|
|
1224
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
1225
|
+
Only used when openai_api_server=True.
|
|
1226
|
+
max_retries: int
|
|
1227
|
+
Maximum number of retries checking for vLLM server startup.
|
|
1228
|
+
Only used when openai_api_server=True.
|
|
1229
|
+
retry_alert_frequency: int
|
|
1230
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
1231
|
+
Only used when openai_api_server=True.
|
|
1232
|
+
engine_args : dict
|
|
1233
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
1234
|
+
For example, `tensor_parallel_size=2`.
|
|
1158
1235
|
"""
|
|
1159
1236
|
...
|
|
1160
1237
|
|
|
1161
1238
|
@typing.overload
|
|
1162
|
-
def
|
|
1239
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1163
1240
|
"""
|
|
1164
|
-
|
|
1241
|
+
Enables loading / saving of models within a step.
|
|
1165
1242
|
|
|
1166
|
-
|
|
1167
|
-
|
|
1243
|
+
> Examples
|
|
1244
|
+
- Saving Models
|
|
1245
|
+
```python
|
|
1246
|
+
@model
|
|
1247
|
+
@step
|
|
1248
|
+
def train(self):
|
|
1249
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
1250
|
+
self.my_model = current.model.save(
|
|
1251
|
+
path_to_my_model,
|
|
1252
|
+
label="my_model",
|
|
1253
|
+
metadata={
|
|
1254
|
+
"epochs": 10,
|
|
1255
|
+
"batch-size": 32,
|
|
1256
|
+
"learning-rate": 0.001,
|
|
1257
|
+
}
|
|
1258
|
+
)
|
|
1259
|
+
self.next(self.test)
|
|
1168
1260
|
|
|
1169
|
-
|
|
1170
|
-
|
|
1171
|
-
|
|
1172
|
-
|
|
1173
|
-
|
|
1261
|
+
@model(load="my_model")
|
|
1262
|
+
@step
|
|
1263
|
+
def test(self):
|
|
1264
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
1265
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
1266
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
1267
|
+
self.next(self.end)
|
|
1174
1268
|
```
|
|
1175
|
-
|
|
1269
|
+
|
|
1270
|
+
- Loading models
|
|
1271
|
+
```python
|
|
1272
|
+
@step
|
|
1273
|
+
def train(self):
|
|
1274
|
+
# current.model.load returns the path to the model loaded
|
|
1275
|
+
checkpoint_path = current.model.load(
|
|
1276
|
+
self.checkpoint_key,
|
|
1277
|
+
)
|
|
1278
|
+
model_path = current.model.load(
|
|
1279
|
+
self.model,
|
|
1280
|
+
)
|
|
1281
|
+
self.next(self.test)
|
|
1176
1282
|
```
|
|
1177
|
-
which executes the flow on the desired system using the
|
|
1178
|
-
requirements specified in `@resources`.
|
|
1179
1283
|
|
|
1180
1284
|
|
|
1181
1285
|
Parameters
|
|
1182
1286
|
----------
|
|
1183
|
-
|
|
1184
|
-
|
|
1185
|
-
|
|
1186
|
-
|
|
1187
|
-
|
|
1188
|
-
|
|
1189
|
-
|
|
1190
|
-
|
|
1191
|
-
|
|
1192
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1193
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
1287
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
1288
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
1289
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
1290
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
1291
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
1292
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
1293
|
+
|
|
1294
|
+
temp_dir_root : str, default: None
|
|
1295
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
1194
1296
|
"""
|
|
1195
1297
|
...
|
|
1196
1298
|
|
|
1197
1299
|
@typing.overload
|
|
1198
|
-
def
|
|
1300
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1199
1301
|
...
|
|
1200
1302
|
|
|
1201
1303
|
@typing.overload
|
|
1202
|
-
def
|
|
1304
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1203
1305
|
...
|
|
1204
1306
|
|
|
1205
|
-
def
|
|
1307
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
|
1206
1308
|
"""
|
|
1207
|
-
|
|
1309
|
+
Enables loading / saving of models within a step.
|
|
1208
1310
|
|
|
1209
|
-
|
|
1210
|
-
|
|
1311
|
+
> Examples
|
|
1312
|
+
- Saving Models
|
|
1313
|
+
```python
|
|
1314
|
+
@model
|
|
1315
|
+
@step
|
|
1316
|
+
def train(self):
|
|
1317
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
1318
|
+
self.my_model = current.model.save(
|
|
1319
|
+
path_to_my_model,
|
|
1320
|
+
label="my_model",
|
|
1321
|
+
metadata={
|
|
1322
|
+
"epochs": 10,
|
|
1323
|
+
"batch-size": 32,
|
|
1324
|
+
"learning-rate": 0.001,
|
|
1325
|
+
}
|
|
1326
|
+
)
|
|
1327
|
+
self.next(self.test)
|
|
1211
1328
|
|
|
1212
|
-
|
|
1213
|
-
|
|
1214
|
-
|
|
1215
|
-
|
|
1216
|
-
|
|
1329
|
+
@model(load="my_model")
|
|
1330
|
+
@step
|
|
1331
|
+
def test(self):
|
|
1332
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
1333
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
1334
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
1335
|
+
self.next(self.end)
|
|
1217
1336
|
```
|
|
1218
|
-
|
|
1337
|
+
|
|
1338
|
+
- Loading models
|
|
1339
|
+
```python
|
|
1340
|
+
@step
|
|
1341
|
+
def train(self):
|
|
1342
|
+
# current.model.load returns the path to the model loaded
|
|
1343
|
+
checkpoint_path = current.model.load(
|
|
1344
|
+
self.checkpoint_key,
|
|
1345
|
+
)
|
|
1346
|
+
model_path = current.model.load(
|
|
1347
|
+
self.model,
|
|
1348
|
+
)
|
|
1349
|
+
self.next(self.test)
|
|
1219
1350
|
```
|
|
1220
|
-
which executes the flow on the desired system using the
|
|
1221
|
-
requirements specified in `@resources`.
|
|
1222
1351
|
|
|
1223
1352
|
|
|
1224
1353
|
Parameters
|
|
1225
1354
|
----------
|
|
1226
|
-
|
|
1227
|
-
|
|
1228
|
-
|
|
1229
|
-
|
|
1230
|
-
|
|
1231
|
-
|
|
1232
|
-
|
|
1233
|
-
|
|
1234
|
-
|
|
1235
|
-
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
1236
|
-
This parameter maps to the `--shm-size` option in Docker.
|
|
1355
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
1356
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
1357
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
1358
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
1359
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
1360
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
1361
|
+
|
|
1362
|
+
temp_dir_root : str, default: None
|
|
1363
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
1237
1364
|
"""
|
|
1238
1365
|
...
|
|
1239
1366
|
|
|
1240
1367
|
@typing.overload
|
|
1241
|
-
def
|
|
1368
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1242
1369
|
"""
|
|
1243
|
-
|
|
1244
|
-
|
|
1370
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
1371
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1245
1372
|
"""
|
|
1246
1373
|
...
|
|
1247
1374
|
|
|
1248
1375
|
@typing.overload
|
|
1249
|
-
def
|
|
1376
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1250
1377
|
...
|
|
1251
1378
|
|
|
1252
|
-
def
|
|
1379
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1253
1380
|
"""
|
|
1254
|
-
|
|
1255
|
-
|
|
1381
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
1382
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1256
1383
|
"""
|
|
1257
1384
|
...
|
|
1258
1385
|
|
|
1259
|
-
|
|
1386
|
+
@typing.overload
|
|
1387
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1260
1388
|
"""
|
|
1261
|
-
|
|
1389
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1390
|
+
|
|
1391
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1262
1392
|
|
|
1263
1393
|
|
|
1264
1394
|
Parameters
|
|
1265
1395
|
----------
|
|
1266
|
-
|
|
1267
|
-
|
|
1268
|
-
|
|
1269
|
-
|
|
1270
|
-
|
|
1271
|
-
|
|
1396
|
+
type : str, default 'default'
|
|
1397
|
+
Card type.
|
|
1398
|
+
id : str, optional, default None
|
|
1399
|
+
If multiple cards are present, use this id to identify this card.
|
|
1400
|
+
options : Dict[str, Any], default {}
|
|
1401
|
+
Options passed to the card. The contents depend on the card type.
|
|
1402
|
+
timeout : int, default 45
|
|
1403
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1272
1404
|
"""
|
|
1273
1405
|
...
|
|
1274
1406
|
|
|
1275
1407
|
@typing.overload
|
|
1276
|
-
def
|
|
1408
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1409
|
+
...
|
|
1410
|
+
|
|
1411
|
+
@typing.overload
|
|
1412
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1413
|
+
...
|
|
1414
|
+
|
|
1415
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
1277
1416
|
"""
|
|
1278
|
-
|
|
1279
|
-
|
|
1417
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1418
|
+
|
|
1419
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1280
1420
|
|
|
1281
1421
|
|
|
1282
1422
|
Parameters
|
|
1283
1423
|
----------
|
|
1284
|
-
|
|
1285
|
-
|
|
1286
|
-
|
|
1287
|
-
|
|
1424
|
+
type : str, default 'default'
|
|
1425
|
+
Card type.
|
|
1426
|
+
id : str, optional, default None
|
|
1427
|
+
If multiple cards are present, use this id to identify this card.
|
|
1428
|
+
options : Dict[str, Any], default {}
|
|
1429
|
+
Options passed to the card. The contents depend on the card type.
|
|
1430
|
+
timeout : int, default 45
|
|
1431
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1288
1432
|
"""
|
|
1289
1433
|
...
|
|
1290
1434
|
|
|
1291
1435
|
@typing.overload
|
|
1292
|
-
def
|
|
1436
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1437
|
+
"""
|
|
1438
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1439
|
+
to inject a card and render simple markdown content.
|
|
1440
|
+
"""
|
|
1293
1441
|
...
|
|
1294
1442
|
|
|
1295
1443
|
@typing.overload
|
|
1296
|
-
def
|
|
1444
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1297
1445
|
...
|
|
1298
1446
|
|
|
1299
|
-
def
|
|
1447
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1300
1448
|
"""
|
|
1301
|
-
|
|
1302
|
-
|
|
1303
|
-
|
|
1304
|
-
|
|
1305
|
-
Parameters
|
|
1306
|
-
----------
|
|
1307
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
1308
|
-
List of secret specs, defining how the secrets are to be retrieved
|
|
1309
|
-
role : str, optional, default: None
|
|
1310
|
-
Role to use for fetching secrets
|
|
1449
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1450
|
+
to inject a card and render simple markdown content.
|
|
1311
1451
|
"""
|
|
1312
1452
|
...
|
|
1313
1453
|
|
|
1314
|
-
def
|
|
1454
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1315
1455
|
"""
|
|
1316
|
-
`@coreweave_s3_proxy` is a CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1317
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1318
|
-
a Neo Cloud like CoreWeave. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
1319
|
-
|
|
1320
|
-
|
|
1321
1456
|
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
1322
1457
|
for S3 read and write requests.
|
|
1323
1458
|
|
|
@@ -1376,137 +1511,103 @@ def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_m
|
|
|
1376
1511
|
...
|
|
1377
1512
|
|
|
1378
1513
|
@typing.overload
|
|
1379
|
-
def
|
|
1380
|
-
"""
|
|
1381
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
1382
|
-
|
|
1383
|
-
|
|
1384
|
-
Parameters
|
|
1385
|
-
----------
|
|
1386
|
-
vars : Dict[str, str], default {}
|
|
1387
|
-
Dictionary of environment variables to set.
|
|
1388
|
-
"""
|
|
1389
|
-
...
|
|
1390
|
-
|
|
1391
|
-
@typing.overload
|
|
1392
|
-
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1393
|
-
...
|
|
1394
|
-
|
|
1395
|
-
@typing.overload
|
|
1396
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1397
|
-
...
|
|
1398
|
-
|
|
1399
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
1400
|
-
"""
|
|
1401
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
1402
|
-
|
|
1403
|
-
|
|
1404
|
-
Parameters
|
|
1405
|
-
----------
|
|
1406
|
-
vars : Dict[str, str], default {}
|
|
1407
|
-
Dictionary of environment variables to set.
|
|
1408
|
-
"""
|
|
1409
|
-
...
|
|
1410
|
-
|
|
1411
|
-
@typing.overload
|
|
1412
|
-
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1413
|
-
"""
|
|
1414
|
-
Specifies the PyPI packages for the step.
|
|
1415
|
-
|
|
1416
|
-
Information in this decorator will augment any
|
|
1417
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
1418
|
-
you can use `@pypi_base` to set packages required by all
|
|
1419
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1420
|
-
|
|
1421
|
-
|
|
1422
|
-
Parameters
|
|
1423
|
-
----------
|
|
1424
|
-
packages : Dict[str, str], default: {}
|
|
1425
|
-
Packages to use for this step. The key is the name of the package
|
|
1426
|
-
and the value is the version to use.
|
|
1427
|
-
python : str, optional, default: None
|
|
1428
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1429
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1430
|
-
"""
|
|
1431
|
-
...
|
|
1432
|
-
|
|
1433
|
-
@typing.overload
|
|
1434
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1435
|
-
...
|
|
1436
|
-
|
|
1437
|
-
@typing.overload
|
|
1438
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1439
|
-
...
|
|
1440
|
-
|
|
1441
|
-
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1514
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1442
1515
|
"""
|
|
1443
|
-
Specifies the
|
|
1516
|
+
Specifies the flow(s) that this flow depends on.
|
|
1444
1517
|
|
|
1445
|
-
|
|
1446
|
-
|
|
1447
|
-
|
|
1448
|
-
|
|
1518
|
+
```
|
|
1519
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1520
|
+
```
|
|
1521
|
+
or
|
|
1522
|
+
```
|
|
1523
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1524
|
+
```
|
|
1525
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1526
|
+
when upstream runs within the same namespace complete successfully
|
|
1449
1527
|
|
|
1528
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1529
|
+
by specifying the fully qualified project_flow_name.
|
|
1530
|
+
```
|
|
1531
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1532
|
+
```
|
|
1533
|
+
or
|
|
1534
|
+
```
|
|
1535
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1536
|
+
```
|
|
1450
1537
|
|
|
1451
|
-
|
|
1452
|
-
|
|
1453
|
-
|
|
1454
|
-
|
|
1455
|
-
|
|
1456
|
-
python : str, optional, default: None
|
|
1457
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1458
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1459
|
-
"""
|
|
1460
|
-
...
|
|
1461
|
-
|
|
1462
|
-
@typing.overload
|
|
1463
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1464
|
-
"""
|
|
1465
|
-
Specifies that the step will success under all circumstances.
|
|
1538
|
+
You can also specify just the project or project branch (other values will be
|
|
1539
|
+
inferred from the current project or project branch):
|
|
1540
|
+
```
|
|
1541
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1542
|
+
```
|
|
1466
1543
|
|
|
1467
|
-
|
|
1468
|
-
|
|
1469
|
-
|
|
1470
|
-
|
|
1544
|
+
Note that `branch` is typically one of:
|
|
1545
|
+
- `prod`
|
|
1546
|
+
- `user.bob`
|
|
1547
|
+
- `test.my_experiment`
|
|
1548
|
+
- `prod.staging`
|
|
1471
1549
|
|
|
1472
1550
|
|
|
1473
1551
|
Parameters
|
|
1474
1552
|
----------
|
|
1475
|
-
|
|
1476
|
-
|
|
1477
|
-
|
|
1478
|
-
|
|
1479
|
-
|
|
1480
|
-
|
|
1553
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1554
|
+
Upstream flow dependency for this flow.
|
|
1555
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1556
|
+
Upstream flow dependencies for this flow.
|
|
1557
|
+
options : Dict[str, Any], default {}
|
|
1558
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1481
1559
|
"""
|
|
1482
1560
|
...
|
|
1483
1561
|
|
|
1484
1562
|
@typing.overload
|
|
1485
|
-
def
|
|
1486
|
-
...
|
|
1487
|
-
|
|
1488
|
-
@typing.overload
|
|
1489
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1563
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1490
1564
|
...
|
|
1491
1565
|
|
|
1492
|
-
def
|
|
1566
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1493
1567
|
"""
|
|
1494
|
-
Specifies
|
|
1568
|
+
Specifies the flow(s) that this flow depends on.
|
|
1495
1569
|
|
|
1496
|
-
|
|
1497
|
-
|
|
1498
|
-
|
|
1499
|
-
|
|
1570
|
+
```
|
|
1571
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1572
|
+
```
|
|
1573
|
+
or
|
|
1574
|
+
```
|
|
1575
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1576
|
+
```
|
|
1577
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1578
|
+
when upstream runs within the same namespace complete successfully
|
|
1579
|
+
|
|
1580
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1581
|
+
by specifying the fully qualified project_flow_name.
|
|
1582
|
+
```
|
|
1583
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1584
|
+
```
|
|
1585
|
+
or
|
|
1586
|
+
```
|
|
1587
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1588
|
+
```
|
|
1589
|
+
|
|
1590
|
+
You can also specify just the project or project branch (other values will be
|
|
1591
|
+
inferred from the current project or project branch):
|
|
1592
|
+
```
|
|
1593
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1594
|
+
```
|
|
1595
|
+
|
|
1596
|
+
Note that `branch` is typically one of:
|
|
1597
|
+
- `prod`
|
|
1598
|
+
- `user.bob`
|
|
1599
|
+
- `test.my_experiment`
|
|
1600
|
+
- `prod.staging`
|
|
1500
1601
|
|
|
1501
1602
|
|
|
1502
1603
|
Parameters
|
|
1503
1604
|
----------
|
|
1504
|
-
|
|
1505
|
-
|
|
1506
|
-
|
|
1507
|
-
|
|
1508
|
-
|
|
1509
|
-
|
|
1605
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1606
|
+
Upstream flow dependency for this flow.
|
|
1607
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1608
|
+
Upstream flow dependencies for this flow.
|
|
1609
|
+
options : Dict[str, Any], default {}
|
|
1610
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1510
1611
|
"""
|
|
1511
1612
|
...
|
|
1512
1613
|
|
|
@@ -1624,87 +1725,96 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1624
1725
|
"""
|
|
1625
1726
|
...
|
|
1626
1727
|
|
|
1627
|
-
|
|
1728
|
+
@typing.overload
|
|
1729
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1628
1730
|
"""
|
|
1629
|
-
|
|
1630
|
-
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1731
|
+
Specifies the event(s) that this flow depends on.
|
|
1631
1732
|
|
|
1733
|
+
```
|
|
1734
|
+
@trigger(event='foo')
|
|
1735
|
+
```
|
|
1736
|
+
or
|
|
1737
|
+
```
|
|
1738
|
+
@trigger(events=['foo', 'bar'])
|
|
1739
|
+
```
|
|
1632
1740
|
|
|
1633
|
-
|
|
1634
|
-
|
|
1635
|
-
|
|
1636
|
-
|
|
1637
|
-
|
|
1638
|
-
|
|
1639
|
-
|
|
1640
|
-
|
|
1641
|
-
|
|
1642
|
-
|
|
1643
|
-
|
|
1644
|
-
|
|
1645
|
-
|
|
1646
|
-
|
|
1647
|
-
|
|
1648
|
-
|
|
1649
|
-
|
|
1650
|
-
|
|
1651
|
-
|
|
1652
|
-
external_dag_id : str
|
|
1653
|
-
The dag_id that contains the task you want to wait for.
|
|
1654
|
-
external_task_ids : List[str]
|
|
1655
|
-
The list of task_ids that you want to wait for.
|
|
1656
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1657
|
-
allowed_states : List[str]
|
|
1658
|
-
Iterable of allowed states, (Default: ['success'])
|
|
1659
|
-
failed_states : List[str]
|
|
1660
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
|
1661
|
-
execution_delta : datetime.timedelta
|
|
1662
|
-
time difference with the previous execution to look at,
|
|
1663
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1664
|
-
check_existence: bool
|
|
1665
|
-
Set to True to check if the external task exists or check if
|
|
1666
|
-
the DAG to wait for exists. (Default: True)
|
|
1667
|
-
"""
|
|
1668
|
-
...
|
|
1669
|
-
|
|
1670
|
-
@typing.overload
|
|
1671
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1672
|
-
"""
|
|
1673
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1741
|
+
Additionally, you can specify the parameter mappings
|
|
1742
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1743
|
+
```
|
|
1744
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1745
|
+
```
|
|
1746
|
+
or
|
|
1747
|
+
```
|
|
1748
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1749
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1750
|
+
```
|
|
1751
|
+
|
|
1752
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1753
|
+
```
|
|
1754
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1755
|
+
```
|
|
1756
|
+
This is equivalent to:
|
|
1757
|
+
```
|
|
1758
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1759
|
+
```
|
|
1674
1760
|
|
|
1675
|
-
Use `@pypi_base` to set common packages required by all
|
|
1676
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1677
1761
|
|
|
1678
1762
|
Parameters
|
|
1679
1763
|
----------
|
|
1680
|
-
|
|
1681
|
-
|
|
1682
|
-
|
|
1683
|
-
|
|
1684
|
-
|
|
1685
|
-
|
|
1764
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1765
|
+
Event dependency for this flow.
|
|
1766
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1767
|
+
Events dependency for this flow.
|
|
1768
|
+
options : Dict[str, Any], default {}
|
|
1769
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1686
1770
|
"""
|
|
1687
1771
|
...
|
|
1688
1772
|
|
|
1689
1773
|
@typing.overload
|
|
1690
|
-
def
|
|
1774
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1691
1775
|
...
|
|
1692
1776
|
|
|
1693
|
-
def
|
|
1777
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1694
1778
|
"""
|
|
1695
|
-
Specifies the
|
|
1779
|
+
Specifies the event(s) that this flow depends on.
|
|
1780
|
+
|
|
1781
|
+
```
|
|
1782
|
+
@trigger(event='foo')
|
|
1783
|
+
```
|
|
1784
|
+
or
|
|
1785
|
+
```
|
|
1786
|
+
@trigger(events=['foo', 'bar'])
|
|
1787
|
+
```
|
|
1788
|
+
|
|
1789
|
+
Additionally, you can specify the parameter mappings
|
|
1790
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1791
|
+
```
|
|
1792
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1793
|
+
```
|
|
1794
|
+
or
|
|
1795
|
+
```
|
|
1796
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1797
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1798
|
+
```
|
|
1799
|
+
|
|
1800
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1801
|
+
```
|
|
1802
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1803
|
+
```
|
|
1804
|
+
This is equivalent to:
|
|
1805
|
+
```
|
|
1806
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1807
|
+
```
|
|
1696
1808
|
|
|
1697
|
-
Use `@pypi_base` to set common packages required by all
|
|
1698
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1699
1809
|
|
|
1700
1810
|
Parameters
|
|
1701
1811
|
----------
|
|
1702
|
-
|
|
1703
|
-
|
|
1704
|
-
|
|
1705
|
-
|
|
1706
|
-
|
|
1707
|
-
|
|
1812
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1813
|
+
Event dependency for this flow.
|
|
1814
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1815
|
+
Events dependency for this flow.
|
|
1816
|
+
options : Dict[str, Any], default {}
|
|
1817
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1708
1818
|
"""
|
|
1709
1819
|
...
|
|
1710
1820
|
|
|
@@ -1741,48 +1851,13 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
|
1741
1851
|
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1742
1852
|
bucket_name : str
|
|
1743
1853
|
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1744
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1745
|
-
wildcard_match : bool
|
|
1746
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1747
|
-
aws_conn_id : str
|
|
1748
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
|
1749
|
-
verify : bool
|
|
1750
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1751
|
-
"""
|
|
1752
|
-
...
|
|
1753
|
-
|
|
1754
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1755
|
-
"""
|
|
1756
|
-
Specifies what flows belong to the same project.
|
|
1757
|
-
|
|
1758
|
-
A project-specific namespace is created for all flows that
|
|
1759
|
-
use the same `@project(name)`.
|
|
1760
|
-
|
|
1761
|
-
|
|
1762
|
-
Parameters
|
|
1763
|
-
----------
|
|
1764
|
-
name : str
|
|
1765
|
-
Project name. Make sure that the name is unique amongst all
|
|
1766
|
-
projects that use the same production scheduler. The name may
|
|
1767
|
-
contain only lowercase alphanumeric characters and underscores.
|
|
1768
|
-
|
|
1769
|
-
branch : Optional[str], default None
|
|
1770
|
-
The branch to use. If not specified, the branch is set to
|
|
1771
|
-
`user.<username>` unless `production` is set to `True`. This can
|
|
1772
|
-
also be set on the command line using `--branch` as a top-level option.
|
|
1773
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
|
1774
|
-
|
|
1775
|
-
production : bool, default False
|
|
1776
|
-
Whether or not the branch is the production branch. This can also be set on the
|
|
1777
|
-
command line using `--production` as a top-level option. It is an error to specify
|
|
1778
|
-
`production` in the decorator and on the command line.
|
|
1779
|
-
The project branch name will be:
|
|
1780
|
-
- if `branch` is specified:
|
|
1781
|
-
- if `production` is True: `prod.<branch>`
|
|
1782
|
-
- if `production` is False: `test.<branch>`
|
|
1783
|
-
- if `branch` is not specified:
|
|
1784
|
-
- if `production` is True: `prod`
|
|
1785
|
-
- if `production` is False: `user.<username>`
|
|
1854
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1855
|
+
wildcard_match : bool
|
|
1856
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1857
|
+
aws_conn_id : str
|
|
1858
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1859
|
+
verify : bool
|
|
1860
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1786
1861
|
"""
|
|
1787
1862
|
...
|
|
1788
1863
|
|
|
@@ -1837,96 +1912,87 @@ def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly:
|
|
|
1837
1912
|
"""
|
|
1838
1913
|
...
|
|
1839
1914
|
|
|
1840
|
-
|
|
1841
|
-
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1915
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1842
1916
|
"""
|
|
1843
|
-
|
|
1844
|
-
|
|
1845
|
-
```
|
|
1846
|
-
@trigger(event='foo')
|
|
1847
|
-
```
|
|
1848
|
-
or
|
|
1849
|
-
```
|
|
1850
|
-
@trigger(events=['foo', 'bar'])
|
|
1851
|
-
```
|
|
1917
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
1918
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1852
1919
|
|
|
1853
|
-
Additionally, you can specify the parameter mappings
|
|
1854
|
-
to map event payload to Metaflow parameters for the flow.
|
|
1855
|
-
```
|
|
1856
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1857
|
-
```
|
|
1858
|
-
or
|
|
1859
|
-
```
|
|
1860
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1861
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1862
|
-
```
|
|
1863
1920
|
|
|
1864
|
-
|
|
1865
|
-
|
|
1866
|
-
|
|
1867
|
-
|
|
1868
|
-
|
|
1869
|
-
|
|
1870
|
-
|
|
1871
|
-
|
|
1921
|
+
Parameters
|
|
1922
|
+
----------
|
|
1923
|
+
timeout : int
|
|
1924
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1925
|
+
poke_interval : int
|
|
1926
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1927
|
+
mode : str
|
|
1928
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1929
|
+
exponential_backoff : bool
|
|
1930
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1931
|
+
pool : str
|
|
1932
|
+
the slot pool this task should run in,
|
|
1933
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1934
|
+
soft_fail : bool
|
|
1935
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1936
|
+
name : str
|
|
1937
|
+
Name of the sensor on Airflow
|
|
1938
|
+
description : str
|
|
1939
|
+
Description of sensor in the Airflow UI
|
|
1940
|
+
external_dag_id : str
|
|
1941
|
+
The dag_id that contains the task you want to wait for.
|
|
1942
|
+
external_task_ids : List[str]
|
|
1943
|
+
The list of task_ids that you want to wait for.
|
|
1944
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1945
|
+
allowed_states : List[str]
|
|
1946
|
+
Iterable of allowed states, (Default: ['success'])
|
|
1947
|
+
failed_states : List[str]
|
|
1948
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
|
1949
|
+
execution_delta : datetime.timedelta
|
|
1950
|
+
time difference with the previous execution to look at,
|
|
1951
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1952
|
+
check_existence: bool
|
|
1953
|
+
Set to True to check if the external task exists or check if
|
|
1954
|
+
the DAG to wait for exists. (Default: True)
|
|
1955
|
+
"""
|
|
1956
|
+
...
|
|
1957
|
+
|
|
1958
|
+
@typing.overload
|
|
1959
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1960
|
+
"""
|
|
1961
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1872
1962
|
|
|
1963
|
+
Use `@pypi_base` to set common packages required by all
|
|
1964
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1873
1965
|
|
|
1874
1966
|
Parameters
|
|
1875
1967
|
----------
|
|
1876
|
-
|
|
1877
|
-
|
|
1878
|
-
|
|
1879
|
-
|
|
1880
|
-
|
|
1881
|
-
|
|
1968
|
+
packages : Dict[str, str], default: {}
|
|
1969
|
+
Packages to use for this flow. The key is the name of the package
|
|
1970
|
+
and the value is the version to use.
|
|
1971
|
+
python : str, optional, default: None
|
|
1972
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1973
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1882
1974
|
"""
|
|
1883
1975
|
...
|
|
1884
1976
|
|
|
1885
1977
|
@typing.overload
|
|
1886
|
-
def
|
|
1978
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1887
1979
|
...
|
|
1888
1980
|
|
|
1889
|
-
def
|
|
1981
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1890
1982
|
"""
|
|
1891
|
-
Specifies the
|
|
1892
|
-
|
|
1893
|
-
```
|
|
1894
|
-
@trigger(event='foo')
|
|
1895
|
-
```
|
|
1896
|
-
or
|
|
1897
|
-
```
|
|
1898
|
-
@trigger(events=['foo', 'bar'])
|
|
1899
|
-
```
|
|
1900
|
-
|
|
1901
|
-
Additionally, you can specify the parameter mappings
|
|
1902
|
-
to map event payload to Metaflow parameters for the flow.
|
|
1903
|
-
```
|
|
1904
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1905
|
-
```
|
|
1906
|
-
or
|
|
1907
|
-
```
|
|
1908
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1909
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1910
|
-
```
|
|
1911
|
-
|
|
1912
|
-
'parameters' can also be a list of strings and tuples like so:
|
|
1913
|
-
```
|
|
1914
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1915
|
-
```
|
|
1916
|
-
This is equivalent to:
|
|
1917
|
-
```
|
|
1918
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1919
|
-
```
|
|
1983
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1920
1984
|
|
|
1985
|
+
Use `@pypi_base` to set common packages required by all
|
|
1986
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1921
1987
|
|
|
1922
1988
|
Parameters
|
|
1923
1989
|
----------
|
|
1924
|
-
|
|
1925
|
-
|
|
1926
|
-
|
|
1927
|
-
|
|
1928
|
-
|
|
1929
|
-
|
|
1990
|
+
packages : Dict[str, str], default: {}
|
|
1991
|
+
Packages to use for this flow. The key is the name of the package
|
|
1992
|
+
and the value is the version to use.
|
|
1993
|
+
python : str, optional, default: None
|
|
1994
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1995
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1930
1996
|
"""
|
|
1931
1997
|
...
|
|
1932
1998
|
|
|
@@ -1981,104 +2047,38 @@ def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packa
|
|
|
1981
2047
|
"""
|
|
1982
2048
|
...
|
|
1983
2049
|
|
|
1984
|
-
|
|
1985
|
-
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
2050
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1986
2051
|
"""
|
|
1987
|
-
Specifies
|
|
1988
|
-
|
|
1989
|
-
```
|
|
1990
|
-
@trigger_on_finish(flow='FooFlow')
|
|
1991
|
-
```
|
|
1992
|
-
or
|
|
1993
|
-
```
|
|
1994
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1995
|
-
```
|
|
1996
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1997
|
-
when upstream runs within the same namespace complete successfully
|
|
1998
|
-
|
|
1999
|
-
Additionally, you can specify project aware upstream flow dependencies
|
|
2000
|
-
by specifying the fully qualified project_flow_name.
|
|
2001
|
-
```
|
|
2002
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
2003
|
-
```
|
|
2004
|
-
or
|
|
2005
|
-
```
|
|
2006
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
2007
|
-
```
|
|
2008
|
-
|
|
2009
|
-
You can also specify just the project or project branch (other values will be
|
|
2010
|
-
inferred from the current project or project branch):
|
|
2011
|
-
```
|
|
2012
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
2013
|
-
```
|
|
2052
|
+
Specifies what flows belong to the same project.
|
|
2014
2053
|
|
|
2015
|
-
|
|
2016
|
-
|
|
2017
|
-
- `user.bob`
|
|
2018
|
-
- `test.my_experiment`
|
|
2019
|
-
- `prod.staging`
|
|
2054
|
+
A project-specific namespace is created for all flows that
|
|
2055
|
+
use the same `@project(name)`.
|
|
2020
2056
|
|
|
2021
2057
|
|
|
2022
2058
|
Parameters
|
|
2023
2059
|
----------
|
|
2024
|
-
|
|
2025
|
-
|
|
2026
|
-
|
|
2027
|
-
|
|
2028
|
-
options : Dict[str, Any], default {}
|
|
2029
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
2030
|
-
"""
|
|
2031
|
-
...
|
|
2032
|
-
|
|
2033
|
-
@typing.overload
|
|
2034
|
-
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
2035
|
-
...
|
|
2036
|
-
|
|
2037
|
-
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
2038
|
-
"""
|
|
2039
|
-
Specifies the flow(s) that this flow depends on.
|
|
2040
|
-
|
|
2041
|
-
```
|
|
2042
|
-
@trigger_on_finish(flow='FooFlow')
|
|
2043
|
-
```
|
|
2044
|
-
or
|
|
2045
|
-
```
|
|
2046
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
2047
|
-
```
|
|
2048
|
-
This decorator respects the @project decorator and triggers the flow
|
|
2049
|
-
when upstream runs within the same namespace complete successfully
|
|
2050
|
-
|
|
2051
|
-
Additionally, you can specify project aware upstream flow dependencies
|
|
2052
|
-
by specifying the fully qualified project_flow_name.
|
|
2053
|
-
```
|
|
2054
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
2055
|
-
```
|
|
2056
|
-
or
|
|
2057
|
-
```
|
|
2058
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
2059
|
-
```
|
|
2060
|
-
|
|
2061
|
-
You can also specify just the project or project branch (other values will be
|
|
2062
|
-
inferred from the current project or project branch):
|
|
2063
|
-
```
|
|
2064
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
2065
|
-
```
|
|
2066
|
-
|
|
2067
|
-
Note that `branch` is typically one of:
|
|
2068
|
-
- `prod`
|
|
2069
|
-
- `user.bob`
|
|
2070
|
-
- `test.my_experiment`
|
|
2071
|
-
- `prod.staging`
|
|
2060
|
+
name : str
|
|
2061
|
+
Project name. Make sure that the name is unique amongst all
|
|
2062
|
+
projects that use the same production scheduler. The name may
|
|
2063
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
2072
2064
|
|
|
2065
|
+
branch : Optional[str], default None
|
|
2066
|
+
The branch to use. If not specified, the branch is set to
|
|
2067
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
2068
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
2069
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
2073
2070
|
|
|
2074
|
-
|
|
2075
|
-
|
|
2076
|
-
|
|
2077
|
-
|
|
2078
|
-
|
|
2079
|
-
|
|
2080
|
-
|
|
2081
|
-
|
|
2071
|
+
production : bool, default False
|
|
2072
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
2073
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
2074
|
+
`production` in the decorator and on the command line.
|
|
2075
|
+
The project branch name will be:
|
|
2076
|
+
- if `branch` is specified:
|
|
2077
|
+
- if `production` is True: `prod.<branch>`
|
|
2078
|
+
- if `production` is False: `test.<branch>`
|
|
2079
|
+
- if `branch` is not specified:
|
|
2080
|
+
- if `production` is True: `prod`
|
|
2081
|
+
- if `production` is False: `user.<username>`
|
|
2082
2082
|
"""
|
|
2083
2083
|
...
|
|
2084
2084
|
|