ob-metaflow-stubs 6.0.10.13__py2.py3-none-any.whl → 6.0.10.15__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ob-metaflow-stubs might be problematic. Click here for more details.
- metaflow-stubs/__init__.pyi +1134 -1134
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +3 -3
- metaflow-stubs/client/filecache.pyi +1 -1
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +3 -3
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +3 -3
- metaflow-stubs/meta_files.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +1 -1
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +86 -86
- metaflow-stubs/metaflow_git.pyi +1 -1
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/hf_hub_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +1 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/ob_internal.pyi +1 -1
- metaflow-stubs/packaging_sys/__init__.pyi +4 -4
- metaflow-stubs/packaging_sys/backend.pyi +4 -4
- metaflow-stubs/packaging_sys/distribution_support.pyi +4 -4
- metaflow-stubs/packaging_sys/tar_backend.pyi +4 -4
- metaflow-stubs/packaging_sys/utils.pyi +1 -1
- metaflow-stubs/packaging_sys/v1.pyi +2 -2
- metaflow-stubs/parameters.pyi +3 -3
- metaflow-stubs/plugins/__init__.pyi +13 -13
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +2 -2
- metaflow-stubs/plugins/argo/exit_hooks.pyi +1 -1
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +1 -1
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_client.pyi +1 -1
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +4 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/json_viewer.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +1 -1
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +3 -3
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/__init__.pyi +1 -1
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/plugins/optuna/__init__.pyi +1 -1
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/parsers.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +4 -4
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_func.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +1 -1
- metaflow-stubs/plugins/secrets/utils.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +1 -1
- metaflow-stubs/plugins/timeout_decorator.pyi +1 -1
- metaflow-stubs/plugins/torchtune/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/__init__.pyi +1 -1
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +31 -31
- metaflow-stubs/runner/deployer_impl.pyi +1 -1
- metaflow-stubs/runner/metaflow_runner.pyi +2 -2
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +1 -1
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_options.pyi +2 -2
- metaflow-stubs/user_configs/config_parameters.pyi +5 -5
- metaflow-stubs/user_decorators/__init__.pyi +1 -1
- metaflow-stubs/user_decorators/common.pyi +1 -1
- metaflow-stubs/user_decorators/mutable_flow.pyi +4 -4
- metaflow-stubs/user_decorators/mutable_step.pyi +4 -4
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +3 -3
- metaflow-stubs/user_decorators/user_step_decorator.pyi +4 -4
- {ob_metaflow_stubs-6.0.10.13.dist-info → ob_metaflow_stubs-6.0.10.15.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.10.15.dist-info/RECORD +266 -0
- ob_metaflow_stubs-6.0.10.13.dist-info/RECORD +0 -266
- {ob_metaflow_stubs-6.0.10.13.dist-info → ob_metaflow_stubs-6.0.10.15.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.10.13.dist-info → ob_metaflow_stubs-6.0.10.15.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
3
|
# MF version: 2.18.10.1+obcheckpoint(0.2.8);ob(v1) #
|
|
4
|
-
# Generated on 2025-10-
|
|
4
|
+
# Generated on 2025-10-09T09:15:42.339267 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
8
8
|
|
|
9
9
|
import typing
|
|
10
10
|
if typing.TYPE_CHECKING:
|
|
11
|
-
import datetime
|
|
12
11
|
import typing
|
|
12
|
+
import datetime
|
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
|
15
15
|
|
|
@@ -39,18 +39,18 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
-
from . import tuple_util as tuple_util
|
|
43
|
-
from . import cards as cards
|
|
44
42
|
from . import metaflow_git as metaflow_git
|
|
43
|
+
from . import cards as cards
|
|
44
|
+
from . import tuple_util as tuple_util
|
|
45
45
|
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
|
-
from .plugins.parsers import yaml_parser as yaml_parser
|
|
52
51
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
53
52
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
53
|
+
from .plugins.parsers import yaml_parser as yaml_parser
|
|
54
54
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
55
55
|
from . import client as client
|
|
56
56
|
from .client.core import namespace as namespace
|
|
@@ -170,410 +170,301 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
170
170
|
...
|
|
171
171
|
|
|
172
172
|
@typing.overload
|
|
173
|
-
def
|
|
173
|
+
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
174
174
|
"""
|
|
175
|
-
Specifies the
|
|
176
|
-
to a step needs to be retried.
|
|
175
|
+
Specifies the resources needed when executing this step.
|
|
177
176
|
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
177
|
+
Use `@resources` to specify the resource requirements
|
|
178
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
181
179
|
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
180
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
181
|
+
```
|
|
182
|
+
python myflow.py run --with batch
|
|
183
|
+
```
|
|
184
|
+
or
|
|
185
|
+
```
|
|
186
|
+
python myflow.py run --with kubernetes
|
|
187
|
+
```
|
|
188
|
+
which executes the flow on the desired system using the
|
|
189
|
+
requirements specified in `@resources`.
|
|
185
190
|
|
|
186
191
|
|
|
187
192
|
Parameters
|
|
188
193
|
----------
|
|
189
|
-
|
|
190
|
-
Number of
|
|
191
|
-
|
|
192
|
-
Number of
|
|
194
|
+
cpu : int, default 1
|
|
195
|
+
Number of CPUs required for this step.
|
|
196
|
+
gpu : int, optional, default None
|
|
197
|
+
Number of GPUs required for this step.
|
|
198
|
+
disk : int, optional, default None
|
|
199
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
200
|
+
memory : int, default 4096
|
|
201
|
+
Memory size (in MB) required for this step.
|
|
202
|
+
shared_memory : int, optional, default None
|
|
203
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
204
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
193
205
|
"""
|
|
194
206
|
...
|
|
195
207
|
|
|
196
208
|
@typing.overload
|
|
197
|
-
def
|
|
209
|
+
def resources(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
198
210
|
...
|
|
199
211
|
|
|
200
212
|
@typing.overload
|
|
201
|
-
def
|
|
213
|
+
def resources(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
202
214
|
...
|
|
203
215
|
|
|
204
|
-
def
|
|
216
|
+
def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None):
|
|
205
217
|
"""
|
|
206
|
-
Specifies the
|
|
207
|
-
to a step needs to be retried.
|
|
218
|
+
Specifies the resources needed when executing this step.
|
|
208
219
|
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
220
|
+
Use `@resources` to specify the resource requirements
|
|
221
|
+
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
212
222
|
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
223
|
+
You can choose the compute layer on the command line by executing e.g.
|
|
224
|
+
```
|
|
225
|
+
python myflow.py run --with batch
|
|
226
|
+
```
|
|
227
|
+
or
|
|
228
|
+
```
|
|
229
|
+
python myflow.py run --with kubernetes
|
|
230
|
+
```
|
|
231
|
+
which executes the flow on the desired system using the
|
|
232
|
+
requirements specified in `@resources`.
|
|
216
233
|
|
|
217
234
|
|
|
218
235
|
Parameters
|
|
219
236
|
----------
|
|
220
|
-
|
|
221
|
-
Number of
|
|
222
|
-
|
|
223
|
-
Number of
|
|
237
|
+
cpu : int, default 1
|
|
238
|
+
Number of CPUs required for this step.
|
|
239
|
+
gpu : int, optional, default None
|
|
240
|
+
Number of GPUs required for this step.
|
|
241
|
+
disk : int, optional, default None
|
|
242
|
+
Disk size (in MB) required for this step. Only applies on Kubernetes.
|
|
243
|
+
memory : int, default 4096
|
|
244
|
+
Memory size (in MB) required for this step.
|
|
245
|
+
shared_memory : int, optional, default None
|
|
246
|
+
The value for the size (in MiB) of the /dev/shm volume for this step.
|
|
247
|
+
This parameter maps to the `--shm-size` option in Docker.
|
|
224
248
|
"""
|
|
225
249
|
...
|
|
226
250
|
|
|
227
251
|
@typing.overload
|
|
228
|
-
def
|
|
252
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
229
253
|
"""
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
> Examples
|
|
233
|
-
- Saving Models
|
|
234
|
-
```python
|
|
235
|
-
@model
|
|
236
|
-
@step
|
|
237
|
-
def train(self):
|
|
238
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
239
|
-
self.my_model = current.model.save(
|
|
240
|
-
path_to_my_model,
|
|
241
|
-
label="my_model",
|
|
242
|
-
metadata={
|
|
243
|
-
"epochs": 10,
|
|
244
|
-
"batch-size": 32,
|
|
245
|
-
"learning-rate": 0.001,
|
|
246
|
-
}
|
|
247
|
-
)
|
|
248
|
-
self.next(self.test)
|
|
249
|
-
|
|
250
|
-
@model(load="my_model")
|
|
251
|
-
@step
|
|
252
|
-
def test(self):
|
|
253
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
254
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
255
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
256
|
-
self.next(self.end)
|
|
257
|
-
```
|
|
254
|
+
Specifies the Conda environment for the step.
|
|
258
255
|
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
# current.model.load returns the path to the model loaded
|
|
264
|
-
checkpoint_path = current.model.load(
|
|
265
|
-
self.checkpoint_key,
|
|
266
|
-
)
|
|
267
|
-
model_path = current.model.load(
|
|
268
|
-
self.model,
|
|
269
|
-
)
|
|
270
|
-
self.next(self.test)
|
|
271
|
-
```
|
|
256
|
+
Information in this decorator will augment any
|
|
257
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
258
|
+
you can use `@conda_base` to set packages required by all
|
|
259
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
272
260
|
|
|
273
261
|
|
|
274
262
|
Parameters
|
|
275
263
|
----------
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
264
|
+
packages : Dict[str, str], default {}
|
|
265
|
+
Packages to use for this step. The key is the name of the package
|
|
266
|
+
and the value is the version to use.
|
|
267
|
+
libraries : Dict[str, str], default {}
|
|
268
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
269
|
+
python : str, optional, default None
|
|
270
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
271
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
272
|
+
disabled : bool, default False
|
|
273
|
+
If set to True, disables @conda.
|
|
285
274
|
"""
|
|
286
275
|
...
|
|
287
276
|
|
|
288
277
|
@typing.overload
|
|
289
|
-
def
|
|
278
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
290
279
|
...
|
|
291
280
|
|
|
292
281
|
@typing.overload
|
|
293
|
-
def
|
|
282
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
294
283
|
...
|
|
295
284
|
|
|
296
|
-
def
|
|
285
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
297
286
|
"""
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
> Examples
|
|
301
|
-
- Saving Models
|
|
302
|
-
```python
|
|
303
|
-
@model
|
|
304
|
-
@step
|
|
305
|
-
def train(self):
|
|
306
|
-
# current.model.save returns a dictionary reference to the model saved
|
|
307
|
-
self.my_model = current.model.save(
|
|
308
|
-
path_to_my_model,
|
|
309
|
-
label="my_model",
|
|
310
|
-
metadata={
|
|
311
|
-
"epochs": 10,
|
|
312
|
-
"batch-size": 32,
|
|
313
|
-
"learning-rate": 0.001,
|
|
314
|
-
}
|
|
315
|
-
)
|
|
316
|
-
self.next(self.test)
|
|
317
|
-
|
|
318
|
-
@model(load="my_model")
|
|
319
|
-
@step
|
|
320
|
-
def test(self):
|
|
321
|
-
# `current.model.loaded` returns a dictionary of the loaded models
|
|
322
|
-
# where the key is the name of the artifact and the value is the path to the model
|
|
323
|
-
print(os.listdir(current.model.loaded["my_model"]))
|
|
324
|
-
self.next(self.end)
|
|
325
|
-
```
|
|
287
|
+
Specifies the Conda environment for the step.
|
|
326
288
|
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
# current.model.load returns the path to the model loaded
|
|
332
|
-
checkpoint_path = current.model.load(
|
|
333
|
-
self.checkpoint_key,
|
|
334
|
-
)
|
|
335
|
-
model_path = current.model.load(
|
|
336
|
-
self.model,
|
|
337
|
-
)
|
|
338
|
-
self.next(self.test)
|
|
339
|
-
```
|
|
289
|
+
Information in this decorator will augment any
|
|
290
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
291
|
+
you can use `@conda_base` to set packages required by all
|
|
292
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
340
293
|
|
|
341
294
|
|
|
342
295
|
Parameters
|
|
343
296
|
----------
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
...
|
|
355
|
-
|
|
356
|
-
@typing.overload
|
|
357
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
358
|
-
"""
|
|
359
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
360
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
361
|
-
"""
|
|
362
|
-
...
|
|
363
|
-
|
|
364
|
-
@typing.overload
|
|
365
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
366
|
-
...
|
|
367
|
-
|
|
368
|
-
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
369
|
-
"""
|
|
370
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
371
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
297
|
+
packages : Dict[str, str], default {}
|
|
298
|
+
Packages to use for this step. The key is the name of the package
|
|
299
|
+
and the value is the version to use.
|
|
300
|
+
libraries : Dict[str, str], default {}
|
|
301
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
302
|
+
python : str, optional, default None
|
|
303
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
304
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
305
|
+
disabled : bool, default False
|
|
306
|
+
If set to True, disables @conda.
|
|
372
307
|
"""
|
|
373
308
|
...
|
|
374
309
|
|
|
375
|
-
|
|
376
|
-
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
310
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
377
311
|
"""
|
|
378
|
-
|
|
312
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
379
313
|
|
|
314
|
+
User code call
|
|
315
|
+
--------------
|
|
316
|
+
@ollama(
|
|
317
|
+
models=[...],
|
|
318
|
+
...
|
|
319
|
+
)
|
|
380
320
|
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
...
|
|
391
|
-
|
|
392
|
-
@typing.overload
|
|
393
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
394
|
-
...
|
|
395
|
-
|
|
396
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
397
|
-
"""
|
|
398
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
321
|
+
Valid backend options
|
|
322
|
+
---------------------
|
|
323
|
+
- 'local': Run as a separate process on the local task machine.
|
|
324
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
325
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
326
|
+
|
|
327
|
+
Valid model options
|
|
328
|
+
-------------------
|
|
329
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
399
330
|
|
|
400
331
|
|
|
401
332
|
Parameters
|
|
402
333
|
----------
|
|
403
|
-
|
|
404
|
-
|
|
334
|
+
models: list[str]
|
|
335
|
+
List of Ollama containers running models in sidecars.
|
|
336
|
+
backend: str
|
|
337
|
+
Determines where and how to run the Ollama process.
|
|
338
|
+
force_pull: bool
|
|
339
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
340
|
+
cache_update_policy: str
|
|
341
|
+
Cache update policy: "auto", "force", or "never".
|
|
342
|
+
force_cache_update: bool
|
|
343
|
+
Simple override for "force" cache update policy.
|
|
344
|
+
debug: bool
|
|
345
|
+
Whether to turn on verbose debugging logs.
|
|
346
|
+
circuit_breaker_config: dict
|
|
347
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
348
|
+
timeout_config: dict
|
|
349
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
405
350
|
"""
|
|
406
351
|
...
|
|
407
352
|
|
|
408
|
-
|
|
409
|
-
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
353
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
410
354
|
"""
|
|
411
|
-
|
|
355
|
+
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
356
|
+
for S3 read and write requests.
|
|
412
357
|
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
358
|
+
This decorator requires an integration in the Outerbounds platform that
|
|
359
|
+
points to an external bucket. It affects S3 operations performed via
|
|
360
|
+
Metaflow's `get_aws_client` and `S3` within a `@step`.
|
|
417
361
|
|
|
362
|
+
Read operations
|
|
363
|
+
---------------
|
|
364
|
+
All read operations pass through the proxy. If an object does not already
|
|
365
|
+
exist in the external bucket, it is cached there. For example, if code reads
|
|
366
|
+
from buckets `FOO` and `BAR` using the `S3` interface, objects from both
|
|
367
|
+
buckets are cached in the external bucket.
|
|
418
368
|
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
|
|
424
|
-
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
428
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
429
|
-
disabled : bool, default False
|
|
430
|
-
If set to True, disables @conda.
|
|
431
|
-
"""
|
|
432
|
-
...
|
|
433
|
-
|
|
434
|
-
@typing.overload
|
|
435
|
-
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
436
|
-
...
|
|
437
|
-
|
|
438
|
-
@typing.overload
|
|
439
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
440
|
-
...
|
|
441
|
-
|
|
442
|
-
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
443
|
-
"""
|
|
444
|
-
Specifies the Conda environment for the step.
|
|
369
|
+
During task execution, all S3‑related read requests are routed through the
|
|
370
|
+
proxy:
|
|
371
|
+
- If the object is present in the external object store, the proxy
|
|
372
|
+
streams it directly from there without accessing the requested origin
|
|
373
|
+
bucket.
|
|
374
|
+
- If the object is not present in the external storage, the proxy
|
|
375
|
+
fetches it from the requested bucket, caches it in the external
|
|
376
|
+
storage, and streams the response from the origin bucket.
|
|
445
377
|
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
378
|
+
Warning
|
|
379
|
+
-------
|
|
380
|
+
All READ operations (e.g., GetObject, HeadObject) pass through the external
|
|
381
|
+
bucket regardless of the bucket specified in user code. Even
|
|
382
|
+
`S3(run=self)` and `S3(s3root="mybucketfoo")` requests go through the
|
|
383
|
+
external bucket cache.
|
|
450
384
|
|
|
385
|
+
Write operations
|
|
386
|
+
----------------
|
|
387
|
+
Write behavior is controlled by the `write_mode` parameter, which determines
|
|
388
|
+
whether writes also persist objects in the cache.
|
|
451
389
|
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
and the value is the version to use.
|
|
457
|
-
libraries : Dict[str, str], default {}
|
|
458
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
459
|
-
python : str, optional, default None
|
|
460
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
461
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
462
|
-
disabled : bool, default False
|
|
463
|
-
If set to True, disables @conda.
|
|
464
|
-
"""
|
|
465
|
-
...
|
|
466
|
-
|
|
467
|
-
@typing.overload
|
|
468
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
469
|
-
"""
|
|
470
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
471
|
-
the execution of a step.
|
|
390
|
+
`write_mode` values:
|
|
391
|
+
- `origin-and-cache`: objects are written both to the cache and to their
|
|
392
|
+
intended origin bucket.
|
|
393
|
+
- `origin`: objects are written only to their intended origin bucket.
|
|
472
394
|
|
|
473
395
|
|
|
474
396
|
Parameters
|
|
475
397
|
----------
|
|
476
|
-
|
|
477
|
-
|
|
478
|
-
|
|
479
|
-
|
|
398
|
+
integration_name : str, optional
|
|
399
|
+
[Outerbounds integration name](https://docs.outerbounds.com/outerbounds/configuring-secrets/#integrations-view)
|
|
400
|
+
that holds the configuration for the external, S3‑compatible object
|
|
401
|
+
storage bucket. If not specified, the only available S3 proxy
|
|
402
|
+
integration in the namespace is used (fails if multiple exist).
|
|
403
|
+
write_mode : str, optional
|
|
404
|
+
Controls whether writes also go to the external bucket.
|
|
405
|
+
- `origin` (default)
|
|
406
|
+
- `origin-and-cache`
|
|
407
|
+
debug : bool, optional
|
|
408
|
+
Enables debug logging for proxy operations.
|
|
480
409
|
"""
|
|
481
410
|
...
|
|
482
411
|
|
|
483
412
|
@typing.overload
|
|
484
|
-
def
|
|
485
|
-
...
|
|
486
|
-
|
|
487
|
-
@typing.overload
|
|
488
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
489
|
-
...
|
|
490
|
-
|
|
491
|
-
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
413
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
492
414
|
"""
|
|
493
|
-
|
|
494
|
-
|
|
415
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
416
|
+
|
|
417
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
495
418
|
|
|
496
419
|
|
|
497
420
|
Parameters
|
|
498
421
|
----------
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
422
|
+
type : str, default 'default'
|
|
423
|
+
Card type.
|
|
424
|
+
id : str, optional, default None
|
|
425
|
+
If multiple cards are present, use this id to identify this card.
|
|
426
|
+
options : Dict[str, Any], default {}
|
|
427
|
+
Options passed to the card. The contents depend on the card type.
|
|
428
|
+
timeout : int, default 45
|
|
429
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
503
430
|
"""
|
|
504
431
|
...
|
|
505
432
|
|
|
506
433
|
@typing.overload
|
|
507
|
-
def
|
|
508
|
-
"""
|
|
509
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
510
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
511
|
-
"""
|
|
434
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
512
435
|
...
|
|
513
436
|
|
|
514
437
|
@typing.overload
|
|
515
|
-
def
|
|
516
|
-
...
|
|
517
|
-
|
|
518
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
519
|
-
"""
|
|
520
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
521
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
522
|
-
"""
|
|
438
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
523
439
|
...
|
|
524
440
|
|
|
525
|
-
def
|
|
441
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
526
442
|
"""
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
User code call
|
|
530
|
-
--------------
|
|
531
|
-
@vllm(
|
|
532
|
-
model="...",
|
|
533
|
-
...
|
|
534
|
-
)
|
|
535
|
-
|
|
536
|
-
Valid backend options
|
|
537
|
-
---------------------
|
|
538
|
-
- 'local': Run as a separate process on the local task machine.
|
|
539
|
-
|
|
540
|
-
Valid model options
|
|
541
|
-
-------------------
|
|
542
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
443
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
543
444
|
|
|
544
|
-
|
|
545
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
|
445
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
546
446
|
|
|
547
447
|
|
|
548
448
|
Parameters
|
|
549
449
|
----------
|
|
550
|
-
|
|
551
|
-
|
|
552
|
-
|
|
553
|
-
|
|
554
|
-
|
|
555
|
-
|
|
556
|
-
|
|
557
|
-
|
|
558
|
-
debug: bool
|
|
559
|
-
Whether to turn on verbose debugging logs.
|
|
560
|
-
card_refresh_interval: int
|
|
561
|
-
Interval in seconds for refreshing the vLLM status card.
|
|
562
|
-
Only used when openai_api_server=True.
|
|
563
|
-
max_retries: int
|
|
564
|
-
Maximum number of retries checking for vLLM server startup.
|
|
565
|
-
Only used when openai_api_server=True.
|
|
566
|
-
retry_alert_frequency: int
|
|
567
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
568
|
-
Only used when openai_api_server=True.
|
|
569
|
-
engine_args : dict
|
|
570
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
571
|
-
For example, `tensor_parallel_size=2`.
|
|
450
|
+
type : str, default 'default'
|
|
451
|
+
Card type.
|
|
452
|
+
id : str, optional, default None
|
|
453
|
+
If multiple cards are present, use this id to identify this card.
|
|
454
|
+
options : Dict[str, Any], default {}
|
|
455
|
+
Options passed to the card. The contents depend on the card type.
|
|
456
|
+
timeout : int, default 45
|
|
457
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
572
458
|
"""
|
|
573
459
|
...
|
|
574
460
|
|
|
575
|
-
def
|
|
461
|
+
def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
576
462
|
"""
|
|
463
|
+
`@nebius_s3_proxy` is a Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
464
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
465
|
+
a Neo Cloud like Nebius. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
466
|
+
|
|
467
|
+
|
|
577
468
|
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
578
469
|
for S3 read and write requests.
|
|
579
470
|
|
|
@@ -632,19 +523,41 @@ def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typin
|
|
|
632
523
|
...
|
|
633
524
|
|
|
634
525
|
@typing.overload
|
|
635
|
-
def
|
|
636
|
-
"""
|
|
637
|
-
Internal decorator to support Fast bakery
|
|
526
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
638
527
|
"""
|
|
639
|
-
|
|
528
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
529
|
+
the execution of a step.
|
|
530
|
+
|
|
531
|
+
|
|
532
|
+
Parameters
|
|
533
|
+
----------
|
|
534
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
535
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
536
|
+
role : str, optional, default: None
|
|
537
|
+
Role to use for fetching secrets
|
|
538
|
+
"""
|
|
539
|
+
...
|
|
640
540
|
|
|
641
541
|
@typing.overload
|
|
642
|
-
def
|
|
542
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
643
543
|
...
|
|
644
544
|
|
|
645
|
-
|
|
545
|
+
@typing.overload
|
|
546
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
547
|
+
...
|
|
548
|
+
|
|
549
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
646
550
|
"""
|
|
647
|
-
|
|
551
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
552
|
+
the execution of a step.
|
|
553
|
+
|
|
554
|
+
|
|
555
|
+
Parameters
|
|
556
|
+
----------
|
|
557
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
558
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
559
|
+
role : str, optional, default: None
|
|
560
|
+
Role to use for fetching secrets
|
|
648
561
|
"""
|
|
649
562
|
...
|
|
650
563
|
|
|
@@ -765,198 +678,193 @@ def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope:
|
|
|
765
678
|
"""
|
|
766
679
|
...
|
|
767
680
|
|
|
681
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
682
|
+
"""
|
|
683
|
+
Specifies that this step should execute on DGX cloud.
|
|
684
|
+
|
|
685
|
+
|
|
686
|
+
Parameters
|
|
687
|
+
----------
|
|
688
|
+
gpu : int
|
|
689
|
+
Number of GPUs to use.
|
|
690
|
+
gpu_type : str
|
|
691
|
+
Type of Nvidia GPU to use.
|
|
692
|
+
queue_timeout : int
|
|
693
|
+
Time to keep the job in NVCF's queue.
|
|
694
|
+
"""
|
|
695
|
+
...
|
|
696
|
+
|
|
768
697
|
@typing.overload
|
|
769
|
-
def
|
|
698
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
770
699
|
"""
|
|
771
|
-
|
|
700
|
+
Enables checkpointing for a step.
|
|
772
701
|
|
|
773
|
-
|
|
774
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
702
|
+
> Examples
|
|
775
703
|
|
|
776
|
-
|
|
777
|
-
|
|
778
|
-
python
|
|
779
|
-
|
|
780
|
-
|
|
704
|
+
- Saving Checkpoints
|
|
705
|
+
|
|
706
|
+
```python
|
|
707
|
+
@checkpoint
|
|
708
|
+
@step
|
|
709
|
+
def train(self):
|
|
710
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
711
|
+
for i in range(self.epochs):
|
|
712
|
+
# some training logic
|
|
713
|
+
loss = model.train(self.dataset)
|
|
714
|
+
if i % 10 == 0:
|
|
715
|
+
model.save(
|
|
716
|
+
current.checkpoint.directory,
|
|
717
|
+
)
|
|
718
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
719
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
720
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
721
|
+
name="epoch_checkpoint",
|
|
722
|
+
metadata={
|
|
723
|
+
"epoch": i,
|
|
724
|
+
"loss": loss,
|
|
725
|
+
}
|
|
726
|
+
)
|
|
781
727
|
```
|
|
782
|
-
|
|
728
|
+
|
|
729
|
+
- Using Loaded Checkpoints
|
|
730
|
+
|
|
731
|
+
```python
|
|
732
|
+
@retry(times=3)
|
|
733
|
+
@checkpoint
|
|
734
|
+
@step
|
|
735
|
+
def train(self):
|
|
736
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
737
|
+
# saved a checkpoint
|
|
738
|
+
checkpoint_path = None
|
|
739
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
740
|
+
print("Loaded checkpoint from the previous attempt")
|
|
741
|
+
checkpoint_path = current.checkpoint.directory
|
|
742
|
+
|
|
743
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
744
|
+
for i in range(self.epochs):
|
|
745
|
+
...
|
|
783
746
|
```
|
|
784
|
-
which executes the flow on the desired system using the
|
|
785
|
-
requirements specified in `@resources`.
|
|
786
747
|
|
|
787
748
|
|
|
788
749
|
Parameters
|
|
789
750
|
----------
|
|
790
|
-
|
|
791
|
-
|
|
792
|
-
|
|
793
|
-
|
|
794
|
-
|
|
795
|
-
|
|
796
|
-
|
|
797
|
-
|
|
798
|
-
|
|
799
|
-
|
|
800
|
-
|
|
751
|
+
load_policy : str, default: "fresh"
|
|
752
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
753
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
754
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
755
|
+
will be loaded at the start of the task.
|
|
756
|
+
- "none": Do not load any checkpoint
|
|
757
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
758
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
759
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
760
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
761
|
+
|
|
762
|
+
temp_dir_root : str, default: None
|
|
763
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
801
764
|
"""
|
|
802
765
|
...
|
|
803
766
|
|
|
804
767
|
@typing.overload
|
|
805
|
-
def
|
|
768
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
806
769
|
...
|
|
807
770
|
|
|
808
771
|
@typing.overload
|
|
809
|
-
def
|
|
772
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
810
773
|
...
|
|
811
774
|
|
|
812
|
-
def
|
|
775
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
813
776
|
"""
|
|
814
|
-
|
|
777
|
+
Enables checkpointing for a step.
|
|
815
778
|
|
|
816
|
-
|
|
817
|
-
independently of the specific compute layer (`@batch`, `@kubernetes`).
|
|
779
|
+
> Examples
|
|
818
780
|
|
|
819
|
-
|
|
820
|
-
|
|
821
|
-
python
|
|
822
|
-
|
|
823
|
-
|
|
781
|
+
- Saving Checkpoints
|
|
782
|
+
|
|
783
|
+
```python
|
|
784
|
+
@checkpoint
|
|
785
|
+
@step
|
|
786
|
+
def train(self):
|
|
787
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
788
|
+
for i in range(self.epochs):
|
|
789
|
+
# some training logic
|
|
790
|
+
loss = model.train(self.dataset)
|
|
791
|
+
if i % 10 == 0:
|
|
792
|
+
model.save(
|
|
793
|
+
current.checkpoint.directory,
|
|
794
|
+
)
|
|
795
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
796
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
797
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
798
|
+
name="epoch_checkpoint",
|
|
799
|
+
metadata={
|
|
800
|
+
"epoch": i,
|
|
801
|
+
"loss": loss,
|
|
802
|
+
}
|
|
803
|
+
)
|
|
824
804
|
```
|
|
825
|
-
|
|
805
|
+
|
|
806
|
+
- Using Loaded Checkpoints
|
|
807
|
+
|
|
808
|
+
```python
|
|
809
|
+
@retry(times=3)
|
|
810
|
+
@checkpoint
|
|
811
|
+
@step
|
|
812
|
+
def train(self):
|
|
813
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
814
|
+
# saved a checkpoint
|
|
815
|
+
checkpoint_path = None
|
|
816
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
817
|
+
print("Loaded checkpoint from the previous attempt")
|
|
818
|
+
checkpoint_path = current.checkpoint.directory
|
|
819
|
+
|
|
820
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
821
|
+
for i in range(self.epochs):
|
|
822
|
+
...
|
|
826
823
|
```
|
|
827
|
-
which executes the flow on the desired system using the
|
|
828
|
-
requirements specified in `@resources`.
|
|
829
824
|
|
|
830
825
|
|
|
831
826
|
Parameters
|
|
832
827
|
----------
|
|
833
|
-
|
|
834
|
-
|
|
835
|
-
|
|
836
|
-
|
|
837
|
-
|
|
838
|
-
|
|
839
|
-
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
|
|
843
|
-
|
|
828
|
+
load_policy : str, default: "fresh"
|
|
829
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
830
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
831
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
832
|
+
will be loaded at the start of the task.
|
|
833
|
+
- "none": Do not load any checkpoint
|
|
834
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
835
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
836
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
837
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
838
|
+
|
|
839
|
+
temp_dir_root : str, default: None
|
|
840
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
844
841
|
"""
|
|
845
842
|
...
|
|
846
843
|
|
|
847
|
-
|
|
844
|
+
@typing.overload
|
|
845
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
848
846
|
"""
|
|
849
|
-
|
|
850
|
-
|
|
851
|
-
|
|
852
|
-
|
|
853
|
-
|
|
854
|
-
|
|
855
|
-
|
|
856
|
-
|
|
857
|
-
|
|
858
|
-
|
|
859
|
-
|
|
860
|
-
|
|
861
|
-
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
|
|
865
|
-
|
|
866
|
-
|
|
867
|
-
|
|
868
|
-
|
|
869
|
-
|
|
870
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
871
|
-
image_pull_secrets: List[str], default []
|
|
872
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
873
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
874
|
-
in Kubernetes.
|
|
875
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
876
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
877
|
-
secrets : List[str], optional, default None
|
|
878
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
879
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
880
|
-
in Metaflow configuration.
|
|
881
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
882
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
883
|
-
Can be passed in as a comma separated string of values e.g.
|
|
884
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
885
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
886
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
887
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
888
|
-
gpu : int, optional, default None
|
|
889
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
890
|
-
the scheduled node should not have GPUs.
|
|
891
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
892
|
-
The vendor of the GPUs to be used for this step.
|
|
893
|
-
tolerations : List[Dict[str,str]], default []
|
|
894
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
895
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
896
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
897
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
898
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
899
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
900
|
-
use_tmpfs : bool, default False
|
|
901
|
-
This enables an explicit tmpfs mount for this step.
|
|
902
|
-
tmpfs_tempdir : bool, default True
|
|
903
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
904
|
-
tmpfs_size : int, optional, default: None
|
|
905
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
906
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
907
|
-
memory allocated for this step.
|
|
908
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
909
|
-
Path to tmpfs mount for this step.
|
|
910
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
911
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
912
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
913
|
-
shared_memory: int, optional
|
|
914
|
-
Shared memory size (in MiB) required for this step
|
|
915
|
-
port: int, optional
|
|
916
|
-
Port number to specify in the Kubernetes job object
|
|
917
|
-
compute_pool : str, optional, default None
|
|
918
|
-
Compute pool to be used for for this step.
|
|
919
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
920
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
921
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
922
|
-
Only applicable when @parallel is used.
|
|
923
|
-
qos: str, default: Burstable
|
|
924
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
925
|
-
|
|
926
|
-
security_context: Dict[str, Any], optional, default None
|
|
927
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
928
|
-
- privileged: bool, optional, default None
|
|
929
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
930
|
-
- run_as_user: int, optional, default None
|
|
931
|
-
- run_as_group: int, optional, default None
|
|
932
|
-
- run_as_non_root: bool, optional, default None
|
|
933
|
-
"""
|
|
934
|
-
...
|
|
935
|
-
|
|
936
|
-
@typing.overload
|
|
937
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
938
|
-
"""
|
|
939
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
940
|
-
to inject a card and render simple markdown content.
|
|
941
|
-
"""
|
|
942
|
-
...
|
|
943
|
-
|
|
944
|
-
@typing.overload
|
|
945
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
946
|
-
...
|
|
947
|
-
|
|
948
|
-
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
949
|
-
"""
|
|
950
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
951
|
-
to inject a card and render simple markdown content.
|
|
952
|
-
"""
|
|
953
|
-
...
|
|
954
|
-
|
|
955
|
-
def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
956
|
-
"""
|
|
957
|
-
`@coreweave_s3_proxy` is a CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
958
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
959
|
-
a Neo Cloud like CoreWeave. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
847
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
848
|
+
to inject a card and render simple markdown content.
|
|
849
|
+
"""
|
|
850
|
+
...
|
|
851
|
+
|
|
852
|
+
@typing.overload
|
|
853
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
854
|
+
...
|
|
855
|
+
|
|
856
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
857
|
+
"""
|
|
858
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
859
|
+
to inject a card and render simple markdown content.
|
|
860
|
+
"""
|
|
861
|
+
...
|
|
862
|
+
|
|
863
|
+
def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
864
|
+
"""
|
|
865
|
+
`@coreweave_s3_proxy` is a CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
866
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
867
|
+
a Neo Cloud like CoreWeave. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
960
868
|
|
|
961
869
|
|
|
962
870
|
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
@@ -1016,641 +924,482 @@ def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_m
|
|
|
1016
924
|
"""
|
|
1017
925
|
...
|
|
1018
926
|
|
|
1019
|
-
|
|
1020
|
-
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
927
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1021
928
|
"""
|
|
1022
|
-
Specifies
|
|
929
|
+
Specifies that this step should execute on DGX cloud.
|
|
1023
930
|
|
|
1024
|
-
This decorator is useful if this step may hang indefinitely.
|
|
1025
931
|
|
|
1026
|
-
|
|
1027
|
-
|
|
1028
|
-
|
|
932
|
+
Parameters
|
|
933
|
+
----------
|
|
934
|
+
gpu : int
|
|
935
|
+
Number of GPUs to use.
|
|
936
|
+
gpu_type : str
|
|
937
|
+
Type of Nvidia GPU to use.
|
|
938
|
+
"""
|
|
939
|
+
...
|
|
940
|
+
|
|
941
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
942
|
+
"""
|
|
943
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
1029
944
|
|
|
1030
|
-
|
|
1031
|
-
|
|
945
|
+
User code call
|
|
946
|
+
--------------
|
|
947
|
+
@vllm(
|
|
948
|
+
model="...",
|
|
949
|
+
...
|
|
950
|
+
)
|
|
951
|
+
|
|
952
|
+
Valid backend options
|
|
953
|
+
---------------------
|
|
954
|
+
- 'local': Run as a separate process on the local task machine.
|
|
955
|
+
|
|
956
|
+
Valid model options
|
|
957
|
+
-------------------
|
|
958
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
959
|
+
|
|
960
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
961
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
1032
962
|
|
|
1033
963
|
|
|
1034
964
|
Parameters
|
|
1035
965
|
----------
|
|
1036
|
-
|
|
1037
|
-
|
|
1038
|
-
|
|
1039
|
-
|
|
1040
|
-
|
|
1041
|
-
|
|
966
|
+
model: str
|
|
967
|
+
HuggingFace model identifier to be served by vLLM.
|
|
968
|
+
backend: str
|
|
969
|
+
Determines where and how to run the vLLM process.
|
|
970
|
+
openai_api_server: bool
|
|
971
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
972
|
+
Default is False (uses native engine).
|
|
973
|
+
Set to True for backward compatibility with existing code.
|
|
974
|
+
debug: bool
|
|
975
|
+
Whether to turn on verbose debugging logs.
|
|
976
|
+
card_refresh_interval: int
|
|
977
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
978
|
+
Only used when openai_api_server=True.
|
|
979
|
+
max_retries: int
|
|
980
|
+
Maximum number of retries checking for vLLM server startup.
|
|
981
|
+
Only used when openai_api_server=True.
|
|
982
|
+
retry_alert_frequency: int
|
|
983
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
984
|
+
Only used when openai_api_server=True.
|
|
985
|
+
engine_args : dict
|
|
986
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
987
|
+
For example, `tensor_parallel_size=2`.
|
|
1042
988
|
"""
|
|
1043
989
|
...
|
|
1044
990
|
|
|
1045
991
|
@typing.overload
|
|
1046
|
-
def
|
|
992
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
993
|
+
"""
|
|
994
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
995
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
996
|
+
"""
|
|
1047
997
|
...
|
|
1048
998
|
|
|
1049
999
|
@typing.overload
|
|
1050
|
-
def
|
|
1000
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1051
1001
|
...
|
|
1052
1002
|
|
|
1053
|
-
def
|
|
1003
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1054
1004
|
"""
|
|
1055
|
-
|
|
1056
|
-
|
|
1057
|
-
This decorator is useful if this step may hang indefinitely.
|
|
1058
|
-
|
|
1059
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1060
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1061
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1062
|
-
|
|
1063
|
-
Note that all the values specified in parameters are added together so if you specify
|
|
1064
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
1065
|
-
|
|
1066
|
-
|
|
1067
|
-
Parameters
|
|
1068
|
-
----------
|
|
1069
|
-
seconds : int, default 0
|
|
1070
|
-
Number of seconds to wait prior to timing out.
|
|
1071
|
-
minutes : int, default 0
|
|
1072
|
-
Number of minutes to wait prior to timing out.
|
|
1073
|
-
hours : int, default 0
|
|
1074
|
-
Number of hours to wait prior to timing out.
|
|
1005
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
1006
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1075
1007
|
"""
|
|
1076
1008
|
...
|
|
1077
1009
|
|
|
1078
1010
|
@typing.overload
|
|
1079
|
-
def
|
|
1011
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1080
1012
|
"""
|
|
1081
|
-
|
|
1013
|
+
Enables loading / saving of models within a step.
|
|
1082
1014
|
|
|
1083
|
-
|
|
1015
|
+
> Examples
|
|
1016
|
+
- Saving Models
|
|
1017
|
+
```python
|
|
1018
|
+
@model
|
|
1019
|
+
@step
|
|
1020
|
+
def train(self):
|
|
1021
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
1022
|
+
self.my_model = current.model.save(
|
|
1023
|
+
path_to_my_model,
|
|
1024
|
+
label="my_model",
|
|
1025
|
+
metadata={
|
|
1026
|
+
"epochs": 10,
|
|
1027
|
+
"batch-size": 32,
|
|
1028
|
+
"learning-rate": 0.001,
|
|
1029
|
+
}
|
|
1030
|
+
)
|
|
1031
|
+
self.next(self.test)
|
|
1032
|
+
|
|
1033
|
+
@model(load="my_model")
|
|
1034
|
+
@step
|
|
1035
|
+
def test(self):
|
|
1036
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
1037
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
1038
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
1039
|
+
self.next(self.end)
|
|
1040
|
+
```
|
|
1041
|
+
|
|
1042
|
+
- Loading models
|
|
1043
|
+
```python
|
|
1044
|
+
@step
|
|
1045
|
+
def train(self):
|
|
1046
|
+
# current.model.load returns the path to the model loaded
|
|
1047
|
+
checkpoint_path = current.model.load(
|
|
1048
|
+
self.checkpoint_key,
|
|
1049
|
+
)
|
|
1050
|
+
model_path = current.model.load(
|
|
1051
|
+
self.model,
|
|
1052
|
+
)
|
|
1053
|
+
self.next(self.test)
|
|
1054
|
+
```
|
|
1084
1055
|
|
|
1085
1056
|
|
|
1086
1057
|
Parameters
|
|
1087
1058
|
----------
|
|
1088
|
-
|
|
1089
|
-
|
|
1090
|
-
|
|
1091
|
-
If
|
|
1092
|
-
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
|
-
|
|
1059
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
1060
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
1061
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
1062
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
1063
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
1064
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
1065
|
+
|
|
1066
|
+
temp_dir_root : str, default: None
|
|
1067
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
1096
1068
|
"""
|
|
1097
1069
|
...
|
|
1098
1070
|
|
|
1099
1071
|
@typing.overload
|
|
1100
|
-
def
|
|
1072
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1101
1073
|
...
|
|
1102
1074
|
|
|
1103
1075
|
@typing.overload
|
|
1104
|
-
def
|
|
1076
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1105
1077
|
...
|
|
1106
1078
|
|
|
1107
|
-
def
|
|
1108
|
-
"""
|
|
1109
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1110
|
-
|
|
1111
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1112
|
-
|
|
1113
|
-
|
|
1114
|
-
Parameters
|
|
1115
|
-
----------
|
|
1116
|
-
type : str, default 'default'
|
|
1117
|
-
Card type.
|
|
1118
|
-
id : str, optional, default None
|
|
1119
|
-
If multiple cards are present, use this id to identify this card.
|
|
1120
|
-
options : Dict[str, Any], default {}
|
|
1121
|
-
Options passed to the card. The contents depend on the card type.
|
|
1122
|
-
timeout : int, default 45
|
|
1123
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
1124
|
-
"""
|
|
1125
|
-
...
|
|
1126
|
-
|
|
1127
|
-
def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1128
|
-
"""
|
|
1129
|
-
`@nebius_s3_proxy` is a Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1130
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
1131
|
-
a Neo Cloud like Nebius. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
1132
|
-
|
|
1133
|
-
|
|
1134
|
-
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
1135
|
-
for S3 read and write requests.
|
|
1136
|
-
|
|
1137
|
-
This decorator requires an integration in the Outerbounds platform that
|
|
1138
|
-
points to an external bucket. It affects S3 operations performed via
|
|
1139
|
-
Metaflow's `get_aws_client` and `S3` within a `@step`.
|
|
1140
|
-
|
|
1141
|
-
Read operations
|
|
1142
|
-
---------------
|
|
1143
|
-
All read operations pass through the proxy. If an object does not already
|
|
1144
|
-
exist in the external bucket, it is cached there. For example, if code reads
|
|
1145
|
-
from buckets `FOO` and `BAR` using the `S3` interface, objects from both
|
|
1146
|
-
buckets are cached in the external bucket.
|
|
1147
|
-
|
|
1148
|
-
During task execution, all S3‑related read requests are routed through the
|
|
1149
|
-
proxy:
|
|
1150
|
-
- If the object is present in the external object store, the proxy
|
|
1151
|
-
streams it directly from there without accessing the requested origin
|
|
1152
|
-
bucket.
|
|
1153
|
-
- If the object is not present in the external storage, the proxy
|
|
1154
|
-
fetches it from the requested bucket, caches it in the external
|
|
1155
|
-
storage, and streams the response from the origin bucket.
|
|
1156
|
-
|
|
1157
|
-
Warning
|
|
1158
|
-
-------
|
|
1159
|
-
All READ operations (e.g., GetObject, HeadObject) pass through the external
|
|
1160
|
-
bucket regardless of the bucket specified in user code. Even
|
|
1161
|
-
`S3(run=self)` and `S3(s3root="mybucketfoo")` requests go through the
|
|
1162
|
-
external bucket cache.
|
|
1163
|
-
|
|
1164
|
-
Write operations
|
|
1165
|
-
----------------
|
|
1166
|
-
Write behavior is controlled by the `write_mode` parameter, which determines
|
|
1167
|
-
whether writes also persist objects in the cache.
|
|
1168
|
-
|
|
1169
|
-
`write_mode` values:
|
|
1170
|
-
- `origin-and-cache`: objects are written both to the cache and to their
|
|
1171
|
-
intended origin bucket.
|
|
1172
|
-
- `origin`: objects are written only to their intended origin bucket.
|
|
1173
|
-
|
|
1174
|
-
|
|
1175
|
-
Parameters
|
|
1176
|
-
----------
|
|
1177
|
-
integration_name : str, optional
|
|
1178
|
-
[Outerbounds integration name](https://docs.outerbounds.com/outerbounds/configuring-secrets/#integrations-view)
|
|
1179
|
-
that holds the configuration for the external, S3‑compatible object
|
|
1180
|
-
storage bucket. If not specified, the only available S3 proxy
|
|
1181
|
-
integration in the namespace is used (fails if multiple exist).
|
|
1182
|
-
write_mode : str, optional
|
|
1183
|
-
Controls whether writes also go to the external bucket.
|
|
1184
|
-
- `origin` (default)
|
|
1185
|
-
- `origin-and-cache`
|
|
1186
|
-
debug : bool, optional
|
|
1187
|
-
Enables debug logging for proxy operations.
|
|
1188
|
-
"""
|
|
1189
|
-
...
|
|
1190
|
-
|
|
1191
|
-
@typing.overload
|
|
1192
|
-
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1193
|
-
"""
|
|
1194
|
-
Specifies that the step will success under all circumstances.
|
|
1195
|
-
|
|
1196
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
1197
|
-
contains the exception raised. You can use it to detect the presence
|
|
1198
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
1199
|
-
are missing.
|
|
1200
|
-
|
|
1201
|
-
|
|
1202
|
-
Parameters
|
|
1203
|
-
----------
|
|
1204
|
-
var : str, optional, default None
|
|
1205
|
-
Name of the artifact in which to store the caught exception.
|
|
1206
|
-
If not specified, the exception is not stored.
|
|
1207
|
-
print_exception : bool, default True
|
|
1208
|
-
Determines whether or not the exception is printed to
|
|
1209
|
-
stdout when caught.
|
|
1210
|
-
"""
|
|
1211
|
-
...
|
|
1212
|
-
|
|
1213
|
-
@typing.overload
|
|
1214
|
-
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1215
|
-
...
|
|
1216
|
-
|
|
1217
|
-
@typing.overload
|
|
1218
|
-
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1219
|
-
...
|
|
1220
|
-
|
|
1221
|
-
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
1079
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
|
1222
1080
|
"""
|
|
1223
|
-
|
|
1224
|
-
|
|
1225
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
1226
|
-
contains the exception raised. You can use it to detect the presence
|
|
1227
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
1228
|
-
are missing.
|
|
1229
|
-
|
|
1081
|
+
Enables loading / saving of models within a step.
|
|
1230
1082
|
|
|
1231
|
-
|
|
1232
|
-
|
|
1233
|
-
|
|
1234
|
-
|
|
1235
|
-
|
|
1236
|
-
|
|
1237
|
-
|
|
1238
|
-
|
|
1239
|
-
|
|
1240
|
-
|
|
1241
|
-
|
|
1242
|
-
|
|
1243
|
-
|
|
1244
|
-
|
|
1083
|
+
> Examples
|
|
1084
|
+
- Saving Models
|
|
1085
|
+
```python
|
|
1086
|
+
@model
|
|
1087
|
+
@step
|
|
1088
|
+
def train(self):
|
|
1089
|
+
# current.model.save returns a dictionary reference to the model saved
|
|
1090
|
+
self.my_model = current.model.save(
|
|
1091
|
+
path_to_my_model,
|
|
1092
|
+
label="my_model",
|
|
1093
|
+
metadata={
|
|
1094
|
+
"epochs": 10,
|
|
1095
|
+
"batch-size": 32,
|
|
1096
|
+
"learning-rate": 0.001,
|
|
1097
|
+
}
|
|
1098
|
+
)
|
|
1099
|
+
self.next(self.test)
|
|
1245
1100
|
|
|
1101
|
+
@model(load="my_model")
|
|
1102
|
+
@step
|
|
1103
|
+
def test(self):
|
|
1104
|
+
# `current.model.loaded` returns a dictionary of the loaded models
|
|
1105
|
+
# where the key is the name of the artifact and the value is the path to the model
|
|
1106
|
+
print(os.listdir(current.model.loaded["my_model"]))
|
|
1107
|
+
self.next(self.end)
|
|
1108
|
+
```
|
|
1246
1109
|
|
|
1247
|
-
|
|
1248
|
-
|
|
1249
|
-
|
|
1250
|
-
|
|
1251
|
-
|
|
1252
|
-
|
|
1253
|
-
|
|
1254
|
-
|
|
1255
|
-
|
|
1256
|
-
|
|
1257
|
-
|
|
1258
|
-
|
|
1259
|
-
|
|
1260
|
-
Specifies that this step should execute on DGX cloud.
|
|
1110
|
+
- Loading models
|
|
1111
|
+
```python
|
|
1112
|
+
@step
|
|
1113
|
+
def train(self):
|
|
1114
|
+
# current.model.load returns the path to the model loaded
|
|
1115
|
+
checkpoint_path = current.model.load(
|
|
1116
|
+
self.checkpoint_key,
|
|
1117
|
+
)
|
|
1118
|
+
model_path = current.model.load(
|
|
1119
|
+
self.model,
|
|
1120
|
+
)
|
|
1121
|
+
self.next(self.test)
|
|
1122
|
+
```
|
|
1261
1123
|
|
|
1262
1124
|
|
|
1263
1125
|
Parameters
|
|
1264
1126
|
----------
|
|
1265
|
-
|
|
1266
|
-
|
|
1267
|
-
|
|
1268
|
-
|
|
1269
|
-
|
|
1270
|
-
|
|
1271
|
-
|
|
1272
|
-
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1273
|
-
"""
|
|
1274
|
-
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
1275
|
-
|
|
1276
|
-
User code call
|
|
1277
|
-
--------------
|
|
1278
|
-
@ollama(
|
|
1279
|
-
models=[...],
|
|
1280
|
-
...
|
|
1281
|
-
)
|
|
1282
|
-
|
|
1283
|
-
Valid backend options
|
|
1284
|
-
---------------------
|
|
1285
|
-
- 'local': Run as a separate process on the local task machine.
|
|
1286
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
1287
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
1288
|
-
|
|
1289
|
-
Valid model options
|
|
1290
|
-
-------------------
|
|
1291
|
-
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
1292
|
-
|
|
1127
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
|
1128
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
|
1129
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by `current.checkpoint` / `current.model` / `current.huggingface_hub`.
|
|
1130
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
|
1131
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
|
1132
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
|
1293
1133
|
|
|
1294
|
-
|
|
1295
|
-
|
|
1296
|
-
models: list[str]
|
|
1297
|
-
List of Ollama containers running models in sidecars.
|
|
1298
|
-
backend: str
|
|
1299
|
-
Determines where and how to run the Ollama process.
|
|
1300
|
-
force_pull: bool
|
|
1301
|
-
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
1302
|
-
cache_update_policy: str
|
|
1303
|
-
Cache update policy: "auto", "force", or "never".
|
|
1304
|
-
force_cache_update: bool
|
|
1305
|
-
Simple override for "force" cache update policy.
|
|
1306
|
-
debug: bool
|
|
1307
|
-
Whether to turn on verbose debugging logs.
|
|
1308
|
-
circuit_breaker_config: dict
|
|
1309
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
1310
|
-
timeout_config: dict
|
|
1311
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
1134
|
+
temp_dir_root : str, default: None
|
|
1135
|
+
The root directory under which `current.model.loaded` will store loaded models
|
|
1312
1136
|
"""
|
|
1313
1137
|
...
|
|
1314
1138
|
|
|
1315
|
-
|
|
1316
|
-
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1139
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1317
1140
|
"""
|
|
1318
|
-
Specifies
|
|
1319
|
-
|
|
1320
|
-
Information in this decorator will augment any
|
|
1321
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
1322
|
-
you can use `@pypi_base` to set packages required by all
|
|
1323
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1141
|
+
Specifies that this step should execute on Kubernetes.
|
|
1324
1142
|
|
|
1325
1143
|
|
|
1326
1144
|
Parameters
|
|
1327
1145
|
----------
|
|
1328
|
-
|
|
1329
|
-
|
|
1330
|
-
|
|
1331
|
-
|
|
1332
|
-
|
|
1333
|
-
|
|
1334
|
-
|
|
1335
|
-
|
|
1336
|
-
|
|
1337
|
-
|
|
1338
|
-
|
|
1339
|
-
|
|
1340
|
-
|
|
1341
|
-
|
|
1342
|
-
|
|
1343
|
-
|
|
1344
|
-
|
|
1345
|
-
|
|
1346
|
-
|
|
1347
|
-
|
|
1348
|
-
|
|
1349
|
-
|
|
1350
|
-
|
|
1351
|
-
|
|
1352
|
-
|
|
1353
|
-
|
|
1146
|
+
cpu : int, default 1
|
|
1147
|
+
Number of CPUs required for this step. If `@resources` is
|
|
1148
|
+
also present, the maximum value from all decorators is used.
|
|
1149
|
+
memory : int, default 4096
|
|
1150
|
+
Memory size (in MB) required for this step. If
|
|
1151
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
1152
|
+
used.
|
|
1153
|
+
disk : int, default 10240
|
|
1154
|
+
Disk size (in MB) required for this step. If
|
|
1155
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
1156
|
+
used.
|
|
1157
|
+
image : str, optional, default None
|
|
1158
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
1159
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
1160
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
1161
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
1162
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
1163
|
+
image_pull_secrets: List[str], default []
|
|
1164
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
1165
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
1166
|
+
in Kubernetes.
|
|
1167
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
1168
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
1169
|
+
secrets : List[str], optional, default None
|
|
1170
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
1171
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
1172
|
+
in Metaflow configuration.
|
|
1173
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
1174
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
1175
|
+
Can be passed in as a comma separated string of values e.g.
|
|
1176
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
1177
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
1178
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
1179
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
1180
|
+
gpu : int, optional, default None
|
|
1181
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
1182
|
+
the scheduled node should not have GPUs.
|
|
1183
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
1184
|
+
The vendor of the GPUs to be used for this step.
|
|
1185
|
+
tolerations : List[Dict[str,str]], default []
|
|
1186
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
1187
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
1188
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
1189
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
1190
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
1191
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
1192
|
+
use_tmpfs : bool, default False
|
|
1193
|
+
This enables an explicit tmpfs mount for this step.
|
|
1194
|
+
tmpfs_tempdir : bool, default True
|
|
1195
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
1196
|
+
tmpfs_size : int, optional, default: None
|
|
1197
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
1198
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
1199
|
+
memory allocated for this step.
|
|
1200
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
1201
|
+
Path to tmpfs mount for this step.
|
|
1202
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
1203
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
1204
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
1205
|
+
shared_memory: int, optional
|
|
1206
|
+
Shared memory size (in MiB) required for this step
|
|
1207
|
+
port: int, optional
|
|
1208
|
+
Port number to specify in the Kubernetes job object
|
|
1209
|
+
compute_pool : str, optional, default None
|
|
1210
|
+
Compute pool to be used for for this step.
|
|
1211
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
1212
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
1213
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
1214
|
+
Only applicable when @parallel is used.
|
|
1215
|
+
qos: str, default: Burstable
|
|
1216
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
1354
1217
|
|
|
1355
|
-
|
|
1356
|
-
|
|
1357
|
-
|
|
1358
|
-
|
|
1359
|
-
|
|
1360
|
-
|
|
1361
|
-
|
|
1362
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1218
|
+
security_context: Dict[str, Any], optional, default None
|
|
1219
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
1220
|
+
- privileged: bool, optional, default None
|
|
1221
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
1222
|
+
- run_as_user: int, optional, default None
|
|
1223
|
+
- run_as_group: int, optional, default None
|
|
1224
|
+
- run_as_non_root: bool, optional, default None
|
|
1363
1225
|
"""
|
|
1364
1226
|
...
|
|
1365
1227
|
|
|
1366
1228
|
@typing.overload
|
|
1367
|
-
def
|
|
1229
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1368
1230
|
"""
|
|
1369
|
-
|
|
1370
|
-
|
|
1371
|
-
> Examples
|
|
1372
|
-
|
|
1373
|
-
- Saving Checkpoints
|
|
1374
|
-
|
|
1375
|
-
```python
|
|
1376
|
-
@checkpoint
|
|
1377
|
-
@step
|
|
1378
|
-
def train(self):
|
|
1379
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
1380
|
-
for i in range(self.epochs):
|
|
1381
|
-
# some training logic
|
|
1382
|
-
loss = model.train(self.dataset)
|
|
1383
|
-
if i % 10 == 0:
|
|
1384
|
-
model.save(
|
|
1385
|
-
current.checkpoint.directory,
|
|
1386
|
-
)
|
|
1387
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1388
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1389
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
1390
|
-
name="epoch_checkpoint",
|
|
1391
|
-
metadata={
|
|
1392
|
-
"epoch": i,
|
|
1393
|
-
"loss": loss,
|
|
1394
|
-
}
|
|
1395
|
-
)
|
|
1396
|
-
```
|
|
1231
|
+
Specifies a timeout for your step.
|
|
1397
1232
|
|
|
1398
|
-
|
|
1233
|
+
This decorator is useful if this step may hang indefinitely.
|
|
1399
1234
|
|
|
1400
|
-
|
|
1401
|
-
|
|
1402
|
-
|
|
1403
|
-
@step
|
|
1404
|
-
def train(self):
|
|
1405
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
1406
|
-
# saved a checkpoint
|
|
1407
|
-
checkpoint_path = None
|
|
1408
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1409
|
-
print("Loaded checkpoint from the previous attempt")
|
|
1410
|
-
checkpoint_path = current.checkpoint.directory
|
|
1235
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1236
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1237
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1411
1238
|
|
|
1412
|
-
|
|
1413
|
-
|
|
1414
|
-
...
|
|
1415
|
-
```
|
|
1239
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
1240
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
1416
1241
|
|
|
1417
1242
|
|
|
1418
1243
|
Parameters
|
|
1419
1244
|
----------
|
|
1420
|
-
|
|
1421
|
-
|
|
1422
|
-
|
|
1423
|
-
|
|
1424
|
-
|
|
1425
|
-
|
|
1426
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1427
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1428
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1429
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
1430
|
-
|
|
1431
|
-
temp_dir_root : str, default: None
|
|
1432
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
1245
|
+
seconds : int, default 0
|
|
1246
|
+
Number of seconds to wait prior to timing out.
|
|
1247
|
+
minutes : int, default 0
|
|
1248
|
+
Number of minutes to wait prior to timing out.
|
|
1249
|
+
hours : int, default 0
|
|
1250
|
+
Number of hours to wait prior to timing out.
|
|
1433
1251
|
"""
|
|
1434
1252
|
...
|
|
1435
1253
|
|
|
1436
1254
|
@typing.overload
|
|
1437
|
-
def
|
|
1438
|
-
...
|
|
1439
|
-
|
|
1440
|
-
@typing.overload
|
|
1441
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1255
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1442
1256
|
...
|
|
1443
1257
|
|
|
1444
|
-
|
|
1445
|
-
|
|
1446
|
-
|
|
1447
|
-
|
|
1448
|
-
|
|
1449
|
-
|
|
1450
|
-
|
|
1451
|
-
|
|
1452
|
-
```python
|
|
1453
|
-
@checkpoint
|
|
1454
|
-
@step
|
|
1455
|
-
def train(self):
|
|
1456
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
1457
|
-
for i in range(self.epochs):
|
|
1458
|
-
# some training logic
|
|
1459
|
-
loss = model.train(self.dataset)
|
|
1460
|
-
if i % 10 == 0:
|
|
1461
|
-
model.save(
|
|
1462
|
-
current.checkpoint.directory,
|
|
1463
|
-
)
|
|
1464
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1465
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1466
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
1467
|
-
name="epoch_checkpoint",
|
|
1468
|
-
metadata={
|
|
1469
|
-
"epoch": i,
|
|
1470
|
-
"loss": loss,
|
|
1471
|
-
}
|
|
1472
|
-
)
|
|
1473
|
-
```
|
|
1258
|
+
@typing.overload
|
|
1259
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1260
|
+
...
|
|
1261
|
+
|
|
1262
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
1263
|
+
"""
|
|
1264
|
+
Specifies a timeout for your step.
|
|
1474
1265
|
|
|
1475
|
-
|
|
1266
|
+
This decorator is useful if this step may hang indefinitely.
|
|
1476
1267
|
|
|
1477
|
-
|
|
1478
|
-
|
|
1479
|
-
|
|
1480
|
-
@step
|
|
1481
|
-
def train(self):
|
|
1482
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
1483
|
-
# saved a checkpoint
|
|
1484
|
-
checkpoint_path = None
|
|
1485
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1486
|
-
print("Loaded checkpoint from the previous attempt")
|
|
1487
|
-
checkpoint_path = current.checkpoint.directory
|
|
1268
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1269
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1270
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1488
1271
|
|
|
1489
|
-
|
|
1490
|
-
|
|
1491
|
-
...
|
|
1492
|
-
```
|
|
1272
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
1273
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
1493
1274
|
|
|
1494
1275
|
|
|
1495
1276
|
Parameters
|
|
1496
1277
|
----------
|
|
1497
|
-
|
|
1498
|
-
|
|
1499
|
-
|
|
1500
|
-
|
|
1501
|
-
|
|
1502
|
-
|
|
1503
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1504
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1505
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1506
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
1507
|
-
|
|
1508
|
-
temp_dir_root : str, default: None
|
|
1509
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
1278
|
+
seconds : int, default 0
|
|
1279
|
+
Number of seconds to wait prior to timing out.
|
|
1280
|
+
minutes : int, default 0
|
|
1281
|
+
Number of minutes to wait prior to timing out.
|
|
1282
|
+
hours : int, default 0
|
|
1283
|
+
Number of hours to wait prior to timing out.
|
|
1510
1284
|
"""
|
|
1511
1285
|
...
|
|
1512
1286
|
|
|
1513
|
-
|
|
1287
|
+
@typing.overload
|
|
1288
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1514
1289
|
"""
|
|
1515
|
-
|
|
1516
|
-
|
|
1290
|
+
Specifies that the step will success under all circumstances.
|
|
1291
|
+
|
|
1292
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
1293
|
+
contains the exception raised. You can use it to detect the presence
|
|
1294
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
1295
|
+
are missing.
|
|
1517
1296
|
|
|
1518
1297
|
|
|
1519
1298
|
Parameters
|
|
1520
1299
|
----------
|
|
1521
|
-
|
|
1522
|
-
|
|
1523
|
-
|
|
1524
|
-
|
|
1525
|
-
|
|
1526
|
-
|
|
1527
|
-
exponential_backoff : bool
|
|
1528
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1529
|
-
pool : str
|
|
1530
|
-
the slot pool this task should run in,
|
|
1531
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1532
|
-
soft_fail : bool
|
|
1533
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1534
|
-
name : str
|
|
1535
|
-
Name of the sensor on Airflow
|
|
1536
|
-
description : str
|
|
1537
|
-
Description of sensor in the Airflow UI
|
|
1538
|
-
external_dag_id : str
|
|
1539
|
-
The dag_id that contains the task you want to wait for.
|
|
1540
|
-
external_task_ids : List[str]
|
|
1541
|
-
The list of task_ids that you want to wait for.
|
|
1542
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1543
|
-
allowed_states : List[str]
|
|
1544
|
-
Iterable of allowed states, (Default: ['success'])
|
|
1545
|
-
failed_states : List[str]
|
|
1546
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
|
1547
|
-
execution_delta : datetime.timedelta
|
|
1548
|
-
time difference with the previous execution to look at,
|
|
1549
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1550
|
-
check_existence: bool
|
|
1551
|
-
Set to True to check if the external task exists or check if
|
|
1552
|
-
the DAG to wait for exists. (Default: True)
|
|
1300
|
+
var : str, optional, default None
|
|
1301
|
+
Name of the artifact in which to store the caught exception.
|
|
1302
|
+
If not specified, the exception is not stored.
|
|
1303
|
+
print_exception : bool, default True
|
|
1304
|
+
Determines whether or not the exception is printed to
|
|
1305
|
+
stdout when caught.
|
|
1553
1306
|
"""
|
|
1554
1307
|
...
|
|
1555
1308
|
|
|
1556
|
-
|
|
1309
|
+
@typing.overload
|
|
1310
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1311
|
+
...
|
|
1312
|
+
|
|
1313
|
+
@typing.overload
|
|
1314
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1315
|
+
...
|
|
1316
|
+
|
|
1317
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
1557
1318
|
"""
|
|
1558
|
-
Specifies
|
|
1319
|
+
Specifies that the step will success under all circumstances.
|
|
1559
1320
|
|
|
1560
|
-
|
|
1561
|
-
use the
|
|
1321
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
1322
|
+
contains the exception raised. You can use it to detect the presence
|
|
1323
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
1324
|
+
are missing.
|
|
1562
1325
|
|
|
1563
1326
|
|
|
1564
1327
|
Parameters
|
|
1565
1328
|
----------
|
|
1566
|
-
|
|
1567
|
-
|
|
1568
|
-
|
|
1569
|
-
|
|
1570
|
-
|
|
1571
|
-
|
|
1572
|
-
The branch to use. If not specified, the branch is set to
|
|
1573
|
-
`user.<username>` unless `production` is set to `True`. This can
|
|
1574
|
-
also be set on the command line using `--branch` as a top-level option.
|
|
1575
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
|
1576
|
-
|
|
1577
|
-
production : bool, default False
|
|
1578
|
-
Whether or not the branch is the production branch. This can also be set on the
|
|
1579
|
-
command line using `--production` as a top-level option. It is an error to specify
|
|
1580
|
-
`production` in the decorator and on the command line.
|
|
1581
|
-
The project branch name will be:
|
|
1582
|
-
- if `branch` is specified:
|
|
1583
|
-
- if `production` is True: `prod.<branch>`
|
|
1584
|
-
- if `production` is False: `test.<branch>`
|
|
1585
|
-
- if `branch` is not specified:
|
|
1586
|
-
- if `production` is True: `prod`
|
|
1587
|
-
- if `production` is False: `user.<username>`
|
|
1329
|
+
var : str, optional, default None
|
|
1330
|
+
Name of the artifact in which to store the caught exception.
|
|
1331
|
+
If not specified, the exception is not stored.
|
|
1332
|
+
print_exception : bool, default True
|
|
1333
|
+
Determines whether or not the exception is printed to
|
|
1334
|
+
stdout when caught.
|
|
1588
1335
|
"""
|
|
1589
1336
|
...
|
|
1590
1337
|
|
|
1591
1338
|
@typing.overload
|
|
1592
|
-
def
|
|
1339
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1593
1340
|
"""
|
|
1594
|
-
|
|
1595
|
-
|
|
1341
|
+
Internal decorator to support Fast bakery
|
|
1342
|
+
"""
|
|
1343
|
+
...
|
|
1344
|
+
|
|
1345
|
+
@typing.overload
|
|
1346
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1347
|
+
...
|
|
1348
|
+
|
|
1349
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1350
|
+
"""
|
|
1351
|
+
Internal decorator to support Fast bakery
|
|
1352
|
+
"""
|
|
1353
|
+
...
|
|
1354
|
+
|
|
1355
|
+
@typing.overload
|
|
1356
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1357
|
+
"""
|
|
1358
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
1596
1359
|
|
|
1597
1360
|
|
|
1598
1361
|
Parameters
|
|
1599
1362
|
----------
|
|
1600
|
-
|
|
1601
|
-
|
|
1602
|
-
daily : bool, default True
|
|
1603
|
-
Run the workflow daily.
|
|
1604
|
-
weekly : bool, default False
|
|
1605
|
-
Run the workflow weekly.
|
|
1606
|
-
cron : str, optional, default None
|
|
1607
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1608
|
-
specified by this expression.
|
|
1609
|
-
timezone : str, optional, default None
|
|
1610
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1611
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1363
|
+
vars : Dict[str, str], default {}
|
|
1364
|
+
Dictionary of environment variables to set.
|
|
1612
1365
|
"""
|
|
1613
1366
|
...
|
|
1614
1367
|
|
|
1615
1368
|
@typing.overload
|
|
1616
|
-
def
|
|
1369
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1617
1370
|
...
|
|
1618
1371
|
|
|
1619
|
-
|
|
1372
|
+
@typing.overload
|
|
1373
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1374
|
+
...
|
|
1375
|
+
|
|
1376
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
1620
1377
|
"""
|
|
1621
|
-
Specifies
|
|
1622
|
-
production scheduler.
|
|
1378
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
1623
1379
|
|
|
1624
1380
|
|
|
1625
1381
|
Parameters
|
|
1626
1382
|
----------
|
|
1627
|
-
|
|
1628
|
-
|
|
1629
|
-
daily : bool, default True
|
|
1630
|
-
Run the workflow daily.
|
|
1631
|
-
weekly : bool, default False
|
|
1632
|
-
Run the workflow weekly.
|
|
1633
|
-
cron : str, optional, default None
|
|
1634
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1635
|
-
specified by this expression.
|
|
1636
|
-
timezone : str, optional, default None
|
|
1637
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1638
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1383
|
+
vars : Dict[str, str], default {}
|
|
1384
|
+
Dictionary of environment variables to set.
|
|
1639
1385
|
"""
|
|
1640
1386
|
...
|
|
1641
1387
|
|
|
1642
1388
|
@typing.overload
|
|
1643
|
-
def
|
|
1389
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1644
1390
|
"""
|
|
1645
|
-
Specifies the PyPI packages for
|
|
1391
|
+
Specifies the PyPI packages for the step.
|
|
1646
1392
|
|
|
1647
|
-
|
|
1393
|
+
Information in this decorator will augment any
|
|
1394
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
1395
|
+
you can use `@pypi_base` to set packages required by all
|
|
1648
1396
|
steps and use `@pypi` to specify step-specific overrides.
|
|
1649
1397
|
|
|
1398
|
+
|
|
1650
1399
|
Parameters
|
|
1651
1400
|
----------
|
|
1652
1401
|
packages : Dict[str, str], default: {}
|
|
1653
|
-
Packages to use for this
|
|
1402
|
+
Packages to use for this step. The key is the name of the package
|
|
1654
1403
|
and the value is the version to use.
|
|
1655
1404
|
python : str, optional, default: None
|
|
1656
1405
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
@@ -1659,20 +1408,27 @@ def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[s
|
|
|
1659
1408
|
...
|
|
1660
1409
|
|
|
1661
1410
|
@typing.overload
|
|
1662
|
-
def
|
|
1411
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1663
1412
|
...
|
|
1664
1413
|
|
|
1665
|
-
|
|
1414
|
+
@typing.overload
|
|
1415
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1416
|
+
...
|
|
1417
|
+
|
|
1418
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1666
1419
|
"""
|
|
1667
|
-
Specifies the PyPI packages for
|
|
1420
|
+
Specifies the PyPI packages for the step.
|
|
1668
1421
|
|
|
1669
|
-
|
|
1422
|
+
Information in this decorator will augment any
|
|
1423
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
1424
|
+
you can use `@pypi_base` to set packages required by all
|
|
1670
1425
|
steps and use `@pypi` to specify step-specific overrides.
|
|
1671
1426
|
|
|
1427
|
+
|
|
1672
1428
|
Parameters
|
|
1673
1429
|
----------
|
|
1674
1430
|
packages : Dict[str, str], default: {}
|
|
1675
|
-
Packages to use for this
|
|
1431
|
+
Packages to use for this step. The key is the name of the package
|
|
1676
1432
|
and the value is the version to use.
|
|
1677
1433
|
python : str, optional, default: None
|
|
1678
1434
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
@@ -1681,95 +1437,76 @@ def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packag
|
|
|
1681
1437
|
...
|
|
1682
1438
|
|
|
1683
1439
|
@typing.overload
|
|
1684
|
-
def
|
|
1440
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1685
1441
|
"""
|
|
1686
|
-
Specifies the
|
|
1687
|
-
|
|
1688
|
-
```
|
|
1689
|
-
@trigger(event='foo')
|
|
1690
|
-
```
|
|
1691
|
-
or
|
|
1692
|
-
```
|
|
1693
|
-
@trigger(events=['foo', 'bar'])
|
|
1694
|
-
```
|
|
1695
|
-
|
|
1696
|
-
Additionally, you can specify the parameter mappings
|
|
1697
|
-
to map event payload to Metaflow parameters for the flow.
|
|
1698
|
-
```
|
|
1699
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1700
|
-
```
|
|
1701
|
-
or
|
|
1702
|
-
```
|
|
1703
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1704
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1705
|
-
```
|
|
1442
|
+
Specifies the number of times the task corresponding
|
|
1443
|
+
to a step needs to be retried.
|
|
1706
1444
|
|
|
1707
|
-
|
|
1708
|
-
|
|
1709
|
-
|
|
1710
|
-
|
|
1711
|
-
This
|
|
1712
|
-
|
|
1713
|
-
|
|
1714
|
-
```
|
|
1445
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
1446
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
1447
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
1448
|
+
|
|
1449
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
1450
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
1451
|
+
ensuring that the flow execution can continue.
|
|
1715
1452
|
|
|
1716
1453
|
|
|
1717
1454
|
Parameters
|
|
1718
1455
|
----------
|
|
1719
|
-
|
|
1720
|
-
|
|
1721
|
-
|
|
1722
|
-
|
|
1723
|
-
options : Dict[str, Any], default {}
|
|
1724
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
1456
|
+
times : int, default 3
|
|
1457
|
+
Number of times to retry this task.
|
|
1458
|
+
minutes_between_retries : int, default 2
|
|
1459
|
+
Number of minutes between retries.
|
|
1725
1460
|
"""
|
|
1726
1461
|
...
|
|
1727
1462
|
|
|
1728
1463
|
@typing.overload
|
|
1729
|
-
def
|
|
1464
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1730
1465
|
...
|
|
1731
1466
|
|
|
1732
|
-
|
|
1467
|
+
@typing.overload
|
|
1468
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1469
|
+
...
|
|
1470
|
+
|
|
1471
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
1733
1472
|
"""
|
|
1734
|
-
Specifies the
|
|
1735
|
-
|
|
1736
|
-
```
|
|
1737
|
-
@trigger(event='foo')
|
|
1738
|
-
```
|
|
1739
|
-
or
|
|
1740
|
-
```
|
|
1741
|
-
@trigger(events=['foo', 'bar'])
|
|
1742
|
-
```
|
|
1473
|
+
Specifies the number of times the task corresponding
|
|
1474
|
+
to a step needs to be retried.
|
|
1743
1475
|
|
|
1744
|
-
|
|
1745
|
-
|
|
1746
|
-
|
|
1747
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1748
|
-
```
|
|
1749
|
-
or
|
|
1750
|
-
```
|
|
1751
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1752
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1753
|
-
```
|
|
1476
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
1477
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
1478
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
1754
1479
|
|
|
1755
|
-
|
|
1756
|
-
|
|
1757
|
-
|
|
1758
|
-
```
|
|
1759
|
-
This is equivalent to:
|
|
1760
|
-
```
|
|
1761
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1762
|
-
```
|
|
1480
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
1481
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
1482
|
+
ensuring that the flow execution can continue.
|
|
1763
1483
|
|
|
1764
1484
|
|
|
1765
1485
|
Parameters
|
|
1766
1486
|
----------
|
|
1767
|
-
|
|
1768
|
-
|
|
1769
|
-
|
|
1770
|
-
|
|
1771
|
-
|
|
1772
|
-
|
|
1487
|
+
times : int, default 3
|
|
1488
|
+
Number of times to retry this task.
|
|
1489
|
+
minutes_between_retries : int, default 2
|
|
1490
|
+
Number of minutes between retries.
|
|
1491
|
+
"""
|
|
1492
|
+
...
|
|
1493
|
+
|
|
1494
|
+
@typing.overload
|
|
1495
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1496
|
+
"""
|
|
1497
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
1498
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1499
|
+
"""
|
|
1500
|
+
...
|
|
1501
|
+
|
|
1502
|
+
@typing.overload
|
|
1503
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1504
|
+
...
|
|
1505
|
+
|
|
1506
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1507
|
+
"""
|
|
1508
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
1509
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
1773
1510
|
"""
|
|
1774
1511
|
...
|
|
1775
1512
|
|
|
@@ -1888,53 +1625,189 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1888
1625
|
...
|
|
1889
1626
|
|
|
1890
1627
|
@typing.overload
|
|
1891
|
-
def
|
|
1628
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1892
1629
|
"""
|
|
1893
|
-
Specifies the
|
|
1630
|
+
Specifies the flow(s) that this flow depends on.
|
|
1894
1631
|
|
|
1895
|
-
|
|
1896
|
-
|
|
1632
|
+
```
|
|
1633
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1634
|
+
```
|
|
1635
|
+
or
|
|
1636
|
+
```
|
|
1637
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1638
|
+
```
|
|
1639
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1640
|
+
when upstream runs within the same namespace complete successfully
|
|
1641
|
+
|
|
1642
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1643
|
+
by specifying the fully qualified project_flow_name.
|
|
1644
|
+
```
|
|
1645
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1646
|
+
```
|
|
1647
|
+
or
|
|
1648
|
+
```
|
|
1649
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1650
|
+
```
|
|
1651
|
+
|
|
1652
|
+
You can also specify just the project or project branch (other values will be
|
|
1653
|
+
inferred from the current project or project branch):
|
|
1654
|
+
```
|
|
1655
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1656
|
+
```
|
|
1657
|
+
|
|
1658
|
+
Note that `branch` is typically one of:
|
|
1659
|
+
- `prod`
|
|
1660
|
+
- `user.bob`
|
|
1661
|
+
- `test.my_experiment`
|
|
1662
|
+
- `prod.staging`
|
|
1897
1663
|
|
|
1898
1664
|
|
|
1899
1665
|
Parameters
|
|
1900
1666
|
----------
|
|
1901
|
-
|
|
1902
|
-
|
|
1903
|
-
|
|
1904
|
-
|
|
1905
|
-
|
|
1906
|
-
|
|
1907
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1908
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1909
|
-
disabled : bool, default False
|
|
1910
|
-
If set to True, disables Conda.
|
|
1667
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1668
|
+
Upstream flow dependency for this flow.
|
|
1669
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1670
|
+
Upstream flow dependencies for this flow.
|
|
1671
|
+
options : Dict[str, Any], default {}
|
|
1672
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1911
1673
|
"""
|
|
1912
1674
|
...
|
|
1913
1675
|
|
|
1914
1676
|
@typing.overload
|
|
1915
|
-
def
|
|
1677
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1916
1678
|
...
|
|
1917
1679
|
|
|
1918
|
-
def
|
|
1680
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1919
1681
|
"""
|
|
1920
|
-
Specifies the
|
|
1682
|
+
Specifies the flow(s) that this flow depends on.
|
|
1921
1683
|
|
|
1922
|
-
|
|
1923
|
-
|
|
1684
|
+
```
|
|
1685
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1686
|
+
```
|
|
1687
|
+
or
|
|
1688
|
+
```
|
|
1689
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1690
|
+
```
|
|
1691
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1692
|
+
when upstream runs within the same namespace complete successfully
|
|
1693
|
+
|
|
1694
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1695
|
+
by specifying the fully qualified project_flow_name.
|
|
1696
|
+
```
|
|
1697
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1698
|
+
```
|
|
1699
|
+
or
|
|
1700
|
+
```
|
|
1701
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1702
|
+
```
|
|
1703
|
+
|
|
1704
|
+
You can also specify just the project or project branch (other values will be
|
|
1705
|
+
inferred from the current project or project branch):
|
|
1706
|
+
```
|
|
1707
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1708
|
+
```
|
|
1709
|
+
|
|
1710
|
+
Note that `branch` is typically one of:
|
|
1711
|
+
- `prod`
|
|
1712
|
+
- `user.bob`
|
|
1713
|
+
- `test.my_experiment`
|
|
1714
|
+
- `prod.staging`
|
|
1715
|
+
|
|
1716
|
+
|
|
1717
|
+
Parameters
|
|
1718
|
+
----------
|
|
1719
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1720
|
+
Upstream flow dependency for this flow.
|
|
1721
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1722
|
+
Upstream flow dependencies for this flow.
|
|
1723
|
+
options : Dict[str, Any], default {}
|
|
1724
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1725
|
+
"""
|
|
1726
|
+
...
|
|
1727
|
+
|
|
1728
|
+
@typing.overload
|
|
1729
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1730
|
+
"""
|
|
1731
|
+
Specifies the times when the flow should be run when running on a
|
|
1732
|
+
production scheduler.
|
|
1733
|
+
|
|
1734
|
+
|
|
1735
|
+
Parameters
|
|
1736
|
+
----------
|
|
1737
|
+
hourly : bool, default False
|
|
1738
|
+
Run the workflow hourly.
|
|
1739
|
+
daily : bool, default True
|
|
1740
|
+
Run the workflow daily.
|
|
1741
|
+
weekly : bool, default False
|
|
1742
|
+
Run the workflow weekly.
|
|
1743
|
+
cron : str, optional, default None
|
|
1744
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1745
|
+
specified by this expression.
|
|
1746
|
+
timezone : str, optional, default None
|
|
1747
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1748
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1749
|
+
"""
|
|
1750
|
+
...
|
|
1751
|
+
|
|
1752
|
+
@typing.overload
|
|
1753
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1754
|
+
...
|
|
1755
|
+
|
|
1756
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1757
|
+
"""
|
|
1758
|
+
Specifies the times when the flow should be run when running on a
|
|
1759
|
+
production scheduler.
|
|
1760
|
+
|
|
1761
|
+
|
|
1762
|
+
Parameters
|
|
1763
|
+
----------
|
|
1764
|
+
hourly : bool, default False
|
|
1765
|
+
Run the workflow hourly.
|
|
1766
|
+
daily : bool, default True
|
|
1767
|
+
Run the workflow daily.
|
|
1768
|
+
weekly : bool, default False
|
|
1769
|
+
Run the workflow weekly.
|
|
1770
|
+
cron : str, optional, default None
|
|
1771
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1772
|
+
specified by this expression.
|
|
1773
|
+
timezone : str, optional, default None
|
|
1774
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1775
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1776
|
+
"""
|
|
1777
|
+
...
|
|
1778
|
+
|
|
1779
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1780
|
+
"""
|
|
1781
|
+
Specifies what flows belong to the same project.
|
|
1782
|
+
|
|
1783
|
+
A project-specific namespace is created for all flows that
|
|
1784
|
+
use the same `@project(name)`.
|
|
1924
1785
|
|
|
1925
1786
|
|
|
1926
1787
|
Parameters
|
|
1927
1788
|
----------
|
|
1928
|
-
|
|
1929
|
-
|
|
1930
|
-
|
|
1931
|
-
|
|
1932
|
-
|
|
1933
|
-
|
|
1934
|
-
|
|
1935
|
-
|
|
1936
|
-
|
|
1937
|
-
|
|
1789
|
+
name : str
|
|
1790
|
+
Project name. Make sure that the name is unique amongst all
|
|
1791
|
+
projects that use the same production scheduler. The name may
|
|
1792
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
1793
|
+
|
|
1794
|
+
branch : Optional[str], default None
|
|
1795
|
+
The branch to use. If not specified, the branch is set to
|
|
1796
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
1797
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
1798
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
1799
|
+
|
|
1800
|
+
production : bool, default False
|
|
1801
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
1802
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
1803
|
+
`production` in the decorator and on the command line.
|
|
1804
|
+
The project branch name will be:
|
|
1805
|
+
- if `branch` is specified:
|
|
1806
|
+
- if `production` is True: `prod.<branch>`
|
|
1807
|
+
- if `production` is False: `test.<branch>`
|
|
1808
|
+
- if `branch` is not specified:
|
|
1809
|
+
- if `production` is True: `prod`
|
|
1810
|
+
- if `production` is False: `user.<username>`
|
|
1938
1811
|
"""
|
|
1939
1812
|
...
|
|
1940
1813
|
|
|
@@ -1982,105 +1855,232 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
|
1982
1855
|
...
|
|
1983
1856
|
|
|
1984
1857
|
@typing.overload
|
|
1985
|
-
def
|
|
1858
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1986
1859
|
"""
|
|
1987
|
-
Specifies the
|
|
1860
|
+
Specifies the event(s) that this flow depends on.
|
|
1988
1861
|
|
|
1989
1862
|
```
|
|
1990
|
-
@
|
|
1863
|
+
@trigger(event='foo')
|
|
1991
1864
|
```
|
|
1992
1865
|
or
|
|
1993
1866
|
```
|
|
1994
|
-
@
|
|
1867
|
+
@trigger(events=['foo', 'bar'])
|
|
1995
1868
|
```
|
|
1996
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1997
|
-
when upstream runs within the same namespace complete successfully
|
|
1998
1869
|
|
|
1999
|
-
Additionally, you can specify
|
|
2000
|
-
|
|
1870
|
+
Additionally, you can specify the parameter mappings
|
|
1871
|
+
to map event payload to Metaflow parameters for the flow.
|
|
2001
1872
|
```
|
|
2002
|
-
@
|
|
1873
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
2003
1874
|
```
|
|
2004
1875
|
or
|
|
2005
1876
|
```
|
|
2006
|
-
@
|
|
1877
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1878
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
2007
1879
|
```
|
|
2008
1880
|
|
|
2009
|
-
|
|
2010
|
-
inferred from the current project or project branch):
|
|
1881
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
2011
1882
|
```
|
|
2012
|
-
@
|
|
1883
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1884
|
+
```
|
|
1885
|
+
This is equivalent to:
|
|
1886
|
+
```
|
|
1887
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
2013
1888
|
```
|
|
2014
|
-
|
|
2015
|
-
Note that `branch` is typically one of:
|
|
2016
|
-
- `prod`
|
|
2017
|
-
- `user.bob`
|
|
2018
|
-
- `test.my_experiment`
|
|
2019
|
-
- `prod.staging`
|
|
2020
1889
|
|
|
2021
1890
|
|
|
2022
1891
|
Parameters
|
|
2023
1892
|
----------
|
|
2024
|
-
|
|
2025
|
-
|
|
2026
|
-
|
|
2027
|
-
|
|
1893
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1894
|
+
Event dependency for this flow.
|
|
1895
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1896
|
+
Events dependency for this flow.
|
|
2028
1897
|
options : Dict[str, Any], default {}
|
|
2029
1898
|
Backend-specific configuration for tuning eventing behavior.
|
|
2030
1899
|
"""
|
|
2031
1900
|
...
|
|
2032
1901
|
|
|
2033
1902
|
@typing.overload
|
|
2034
|
-
def
|
|
1903
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
2035
1904
|
...
|
|
2036
1905
|
|
|
2037
|
-
def
|
|
1906
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
2038
1907
|
"""
|
|
2039
|
-
Specifies the
|
|
1908
|
+
Specifies the event(s) that this flow depends on.
|
|
2040
1909
|
|
|
2041
1910
|
```
|
|
2042
|
-
@
|
|
1911
|
+
@trigger(event='foo')
|
|
2043
1912
|
```
|
|
2044
1913
|
or
|
|
2045
1914
|
```
|
|
2046
|
-
@
|
|
1915
|
+
@trigger(events=['foo', 'bar'])
|
|
2047
1916
|
```
|
|
2048
|
-
This decorator respects the @project decorator and triggers the flow
|
|
2049
|
-
when upstream runs within the same namespace complete successfully
|
|
2050
1917
|
|
|
2051
|
-
Additionally, you can specify
|
|
2052
|
-
|
|
1918
|
+
Additionally, you can specify the parameter mappings
|
|
1919
|
+
to map event payload to Metaflow parameters for the flow.
|
|
2053
1920
|
```
|
|
2054
|
-
@
|
|
1921
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
2055
1922
|
```
|
|
2056
1923
|
or
|
|
2057
1924
|
```
|
|
2058
|
-
@
|
|
1925
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1926
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
2059
1927
|
```
|
|
2060
1928
|
|
|
2061
|
-
|
|
2062
|
-
inferred from the current project or project branch):
|
|
1929
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
2063
1930
|
```
|
|
2064
|
-
@
|
|
1931
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1932
|
+
```
|
|
1933
|
+
This is equivalent to:
|
|
1934
|
+
```
|
|
1935
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
2065
1936
|
```
|
|
2066
|
-
|
|
2067
|
-
Note that `branch` is typically one of:
|
|
2068
|
-
- `prod`
|
|
2069
|
-
- `user.bob`
|
|
2070
|
-
- `test.my_experiment`
|
|
2071
|
-
- `prod.staging`
|
|
2072
1937
|
|
|
2073
1938
|
|
|
2074
1939
|
Parameters
|
|
2075
1940
|
----------
|
|
2076
|
-
|
|
2077
|
-
|
|
2078
|
-
|
|
2079
|
-
|
|
1941
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1942
|
+
Event dependency for this flow.
|
|
1943
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1944
|
+
Events dependency for this flow.
|
|
2080
1945
|
options : Dict[str, Any], default {}
|
|
2081
1946
|
Backend-specific configuration for tuning eventing behavior.
|
|
2082
1947
|
"""
|
|
2083
1948
|
...
|
|
2084
1949
|
|
|
1950
|
+
@typing.overload
|
|
1951
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1952
|
+
"""
|
|
1953
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1954
|
+
|
|
1955
|
+
Use `@conda_base` to set common libraries required by all
|
|
1956
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1957
|
+
|
|
1958
|
+
|
|
1959
|
+
Parameters
|
|
1960
|
+
----------
|
|
1961
|
+
packages : Dict[str, str], default {}
|
|
1962
|
+
Packages to use for this flow. The key is the name of the package
|
|
1963
|
+
and the value is the version to use.
|
|
1964
|
+
libraries : Dict[str, str], default {}
|
|
1965
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1966
|
+
python : str, optional, default None
|
|
1967
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1968
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1969
|
+
disabled : bool, default False
|
|
1970
|
+
If set to True, disables Conda.
|
|
1971
|
+
"""
|
|
1972
|
+
...
|
|
1973
|
+
|
|
1974
|
+
@typing.overload
|
|
1975
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1976
|
+
...
|
|
1977
|
+
|
|
1978
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1979
|
+
"""
|
|
1980
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1981
|
+
|
|
1982
|
+
Use `@conda_base` to set common libraries required by all
|
|
1983
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1984
|
+
|
|
1985
|
+
|
|
1986
|
+
Parameters
|
|
1987
|
+
----------
|
|
1988
|
+
packages : Dict[str, str], default {}
|
|
1989
|
+
Packages to use for this flow. The key is the name of the package
|
|
1990
|
+
and the value is the version to use.
|
|
1991
|
+
libraries : Dict[str, str], default {}
|
|
1992
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1993
|
+
python : str, optional, default None
|
|
1994
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1995
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1996
|
+
disabled : bool, default False
|
|
1997
|
+
If set to True, disables Conda.
|
|
1998
|
+
"""
|
|
1999
|
+
...
|
|
2000
|
+
|
|
2001
|
+
@typing.overload
|
|
2002
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
2003
|
+
"""
|
|
2004
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
2005
|
+
|
|
2006
|
+
Use `@pypi_base` to set common packages required by all
|
|
2007
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
2008
|
+
|
|
2009
|
+
Parameters
|
|
2010
|
+
----------
|
|
2011
|
+
packages : Dict[str, str], default: {}
|
|
2012
|
+
Packages to use for this flow. The key is the name of the package
|
|
2013
|
+
and the value is the version to use.
|
|
2014
|
+
python : str, optional, default: None
|
|
2015
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
2016
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
2017
|
+
"""
|
|
2018
|
+
...
|
|
2019
|
+
|
|
2020
|
+
@typing.overload
|
|
2021
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
2022
|
+
...
|
|
2023
|
+
|
|
2024
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
2025
|
+
"""
|
|
2026
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
2027
|
+
|
|
2028
|
+
Use `@pypi_base` to set common packages required by all
|
|
2029
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
2030
|
+
|
|
2031
|
+
Parameters
|
|
2032
|
+
----------
|
|
2033
|
+
packages : Dict[str, str], default: {}
|
|
2034
|
+
Packages to use for this flow. The key is the name of the package
|
|
2035
|
+
and the value is the version to use.
|
|
2036
|
+
python : str, optional, default: None
|
|
2037
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
2038
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
2039
|
+
"""
|
|
2040
|
+
...
|
|
2041
|
+
|
|
2042
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
2043
|
+
"""
|
|
2044
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
2045
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
2046
|
+
|
|
2047
|
+
|
|
2048
|
+
Parameters
|
|
2049
|
+
----------
|
|
2050
|
+
timeout : int
|
|
2051
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
2052
|
+
poke_interval : int
|
|
2053
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
2054
|
+
mode : str
|
|
2055
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
2056
|
+
exponential_backoff : bool
|
|
2057
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
2058
|
+
pool : str
|
|
2059
|
+
the slot pool this task should run in,
|
|
2060
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
2061
|
+
soft_fail : bool
|
|
2062
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
2063
|
+
name : str
|
|
2064
|
+
Name of the sensor on Airflow
|
|
2065
|
+
description : str
|
|
2066
|
+
Description of sensor in the Airflow UI
|
|
2067
|
+
external_dag_id : str
|
|
2068
|
+
The dag_id that contains the task you want to wait for.
|
|
2069
|
+
external_task_ids : List[str]
|
|
2070
|
+
The list of task_ids that you want to wait for.
|
|
2071
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
2072
|
+
allowed_states : List[str]
|
|
2073
|
+
Iterable of allowed states, (Default: ['success'])
|
|
2074
|
+
failed_states : List[str]
|
|
2075
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
|
2076
|
+
execution_delta : datetime.timedelta
|
|
2077
|
+
time difference with the previous execution to look at,
|
|
2078
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
|
2079
|
+
check_existence: bool
|
|
2080
|
+
Set to True to check if the external task exists or check if
|
|
2081
|
+
the DAG to wait for exists. (Default: True)
|
|
2082
|
+
"""
|
|
2083
|
+
...
|
|
2084
|
+
|
|
2085
2085
|
pkg_name: str
|
|
2086
2086
|
|