ob-metaflow-stubs 6.0.10.12__py2.py3-none-any.whl → 6.0.10.13__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +1024 -1024
- metaflow-stubs/cards.pyi +5 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +5 -5
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +5 -5
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +4 -4
- metaflow-stubs/meta_files.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +3 -3
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -2
- metaflow-stubs/metaflow_current.pyi +44 -44
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +5 -5
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/hf_hub_card.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +5 -5
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +6 -6
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/packaging_sys/__init__.pyi +6 -6
- metaflow-stubs/packaging_sys/backend.pyi +4 -4
- metaflow-stubs/packaging_sys/distribution_support.pyi +4 -4
- metaflow-stubs/packaging_sys/tar_backend.pyi +6 -6
- metaflow-stubs/packaging_sys/utils.pyi +2 -2
- metaflow-stubs/packaging_sys/v1.pyi +3 -3
- metaflow-stubs/parameters.pyi +4 -4
- metaflow-stubs/plugins/__init__.pyi +12 -12
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +4 -4
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +4 -4
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +4 -4
- metaflow-stubs/plugins/argo/exit_hooks.pyi +3 -3
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +4 -4
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +4 -4
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +3 -3
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +3 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +168 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/json_viewer.pyi +119 -0
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +3 -3
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +4 -4
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +3 -3
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
- metaflow-stubs/plugins/optuna/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/parsers.pyi +2 -2
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +4 -4
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +3 -3
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +3 -3
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +35 -35
- metaflow-stubs/runner/deployer_impl.pyi +3 -3
- metaflow-stubs/runner/metaflow_runner.pyi +5 -5
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +3 -3
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_options.pyi +3 -3
- metaflow-stubs/user_configs/config_parameters.pyi +7 -7
- metaflow-stubs/user_decorators/__init__.pyi +2 -2
- metaflow-stubs/user_decorators/common.pyi +2 -2
- metaflow-stubs/user_decorators/mutable_flow.pyi +5 -5
- metaflow-stubs/user_decorators/mutable_step.pyi +4 -4
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +5 -5
- metaflow-stubs/user_decorators/user_step_decorator.pyi +5 -5
- {ob_metaflow_stubs-6.0.10.12.dist-info → ob_metaflow_stubs-6.0.10.13.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.10.13.dist-info/RECORD +266 -0
- ob_metaflow_stubs-6.0.10.12.dist-info/RECORD +0 -265
- {ob_metaflow_stubs-6.0.10.12.dist-info → ob_metaflow_stubs-6.0.10.13.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.10.12.dist-info → ob_metaflow_stubs-6.0.10.13.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
|
-
# MF version: 2.18.
|
|
4
|
-
# Generated on 2025-
|
|
3
|
+
# MF version: 2.18.10.1+obcheckpoint(0.2.8);ob(v1) #
|
|
4
|
+
# Generated on 2025-10-02T16:55:23.853861 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
@@ -39,19 +39,19 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
-
from . import events as events
|
|
43
|
-
from . import cards as cards
|
|
44
42
|
from . import tuple_util as tuple_util
|
|
43
|
+
from . import cards as cards
|
|
45
44
|
from . import metaflow_git as metaflow_git
|
|
45
|
+
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
51
|
from .plugins.parsers import yaml_parser as yaml_parser
|
|
52
|
+
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
52
53
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
53
54
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
54
|
-
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
55
55
|
from . import client as client
|
|
56
56
|
from .client.core import namespace as namespace
|
|
57
57
|
from .client.core import get_namespace as get_namespace
|
|
@@ -170,149 +170,57 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
170
170
|
...
|
|
171
171
|
|
|
172
172
|
@typing.overload
|
|
173
|
-
def
|
|
173
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
174
174
|
"""
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
> Examples
|
|
178
|
-
|
|
179
|
-
- Saving Checkpoints
|
|
180
|
-
|
|
181
|
-
```python
|
|
182
|
-
@checkpoint
|
|
183
|
-
@step
|
|
184
|
-
def train(self):
|
|
185
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
186
|
-
for i in range(self.epochs):
|
|
187
|
-
# some training logic
|
|
188
|
-
loss = model.train(self.dataset)
|
|
189
|
-
if i % 10 == 0:
|
|
190
|
-
model.save(
|
|
191
|
-
current.checkpoint.directory,
|
|
192
|
-
)
|
|
193
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
194
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
195
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
196
|
-
name="epoch_checkpoint",
|
|
197
|
-
metadata={
|
|
198
|
-
"epoch": i,
|
|
199
|
-
"loss": loss,
|
|
200
|
-
}
|
|
201
|
-
)
|
|
202
|
-
```
|
|
203
|
-
|
|
204
|
-
- Using Loaded Checkpoints
|
|
175
|
+
Specifies the number of times the task corresponding
|
|
176
|
+
to a step needs to be retried.
|
|
205
177
|
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
@step
|
|
210
|
-
def train(self):
|
|
211
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
212
|
-
# saved a checkpoint
|
|
213
|
-
checkpoint_path = None
|
|
214
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
215
|
-
print("Loaded checkpoint from the previous attempt")
|
|
216
|
-
checkpoint_path = current.checkpoint.directory
|
|
178
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
179
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
180
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
217
181
|
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
```
|
|
182
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
183
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
184
|
+
ensuring that the flow execution can continue.
|
|
222
185
|
|
|
223
186
|
|
|
224
187
|
Parameters
|
|
225
188
|
----------
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
will be loaded at the start of the task.
|
|
231
|
-
- "none": Do not load any checkpoint
|
|
232
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
233
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
234
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
235
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
236
|
-
|
|
237
|
-
temp_dir_root : str, default: None
|
|
238
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
189
|
+
times : int, default 3
|
|
190
|
+
Number of times to retry this task.
|
|
191
|
+
minutes_between_retries : int, default 2
|
|
192
|
+
Number of minutes between retries.
|
|
239
193
|
"""
|
|
240
194
|
...
|
|
241
195
|
|
|
242
196
|
@typing.overload
|
|
243
|
-
def
|
|
197
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
244
198
|
...
|
|
245
199
|
|
|
246
200
|
@typing.overload
|
|
247
|
-
def
|
|
201
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
248
202
|
...
|
|
249
203
|
|
|
250
|
-
def
|
|
204
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
251
205
|
"""
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
> Examples
|
|
255
|
-
|
|
256
|
-
- Saving Checkpoints
|
|
257
|
-
|
|
258
|
-
```python
|
|
259
|
-
@checkpoint
|
|
260
|
-
@step
|
|
261
|
-
def train(self):
|
|
262
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
263
|
-
for i in range(self.epochs):
|
|
264
|
-
# some training logic
|
|
265
|
-
loss = model.train(self.dataset)
|
|
266
|
-
if i % 10 == 0:
|
|
267
|
-
model.save(
|
|
268
|
-
current.checkpoint.directory,
|
|
269
|
-
)
|
|
270
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
271
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
272
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
273
|
-
name="epoch_checkpoint",
|
|
274
|
-
metadata={
|
|
275
|
-
"epoch": i,
|
|
276
|
-
"loss": loss,
|
|
277
|
-
}
|
|
278
|
-
)
|
|
279
|
-
```
|
|
280
|
-
|
|
281
|
-
- Using Loaded Checkpoints
|
|
206
|
+
Specifies the number of times the task corresponding
|
|
207
|
+
to a step needs to be retried.
|
|
282
208
|
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
@step
|
|
287
|
-
def train(self):
|
|
288
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
289
|
-
# saved a checkpoint
|
|
290
|
-
checkpoint_path = None
|
|
291
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
292
|
-
print("Loaded checkpoint from the previous attempt")
|
|
293
|
-
checkpoint_path = current.checkpoint.directory
|
|
209
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
210
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
211
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
294
212
|
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
```
|
|
213
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
214
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
215
|
+
ensuring that the flow execution can continue.
|
|
299
216
|
|
|
300
217
|
|
|
301
218
|
Parameters
|
|
302
219
|
----------
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
will be loaded at the start of the task.
|
|
308
|
-
- "none": Do not load any checkpoint
|
|
309
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
310
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
311
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
312
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
313
|
-
|
|
314
|
-
temp_dir_root : str, default: None
|
|
315
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
220
|
+
times : int, default 3
|
|
221
|
+
Number of times to retry this task.
|
|
222
|
+
minutes_between_retries : int, default 2
|
|
223
|
+
Number of minutes between retries.
|
|
316
224
|
"""
|
|
317
225
|
...
|
|
318
226
|
|
|
@@ -445,101 +353,122 @@ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
445
353
|
"""
|
|
446
354
|
...
|
|
447
355
|
|
|
448
|
-
|
|
356
|
+
@typing.overload
|
|
357
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
449
358
|
"""
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
Parameters
|
|
454
|
-
----------
|
|
455
|
-
gpu : int
|
|
456
|
-
Number of GPUs to use.
|
|
457
|
-
gpu_type : str
|
|
458
|
-
Type of Nvidia GPU to use.
|
|
459
|
-
queue_timeout : int
|
|
460
|
-
Time to keep the job in NVCF's queue.
|
|
359
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
360
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
461
361
|
"""
|
|
462
362
|
...
|
|
463
363
|
|
|
464
364
|
@typing.overload
|
|
465
|
-
def
|
|
365
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
366
|
+
...
|
|
367
|
+
|
|
368
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
466
369
|
"""
|
|
467
|
-
|
|
468
|
-
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
|
|
370
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
371
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
372
|
+
"""
|
|
373
|
+
...
|
|
374
|
+
|
|
375
|
+
@typing.overload
|
|
376
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
377
|
+
"""
|
|
378
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
473
379
|
|
|
474
380
|
|
|
475
381
|
Parameters
|
|
476
382
|
----------
|
|
477
|
-
|
|
478
|
-
|
|
479
|
-
If not specified, the exception is not stored.
|
|
480
|
-
print_exception : bool, default True
|
|
481
|
-
Determines whether or not the exception is printed to
|
|
482
|
-
stdout when caught.
|
|
383
|
+
vars : Dict[str, str], default {}
|
|
384
|
+
Dictionary of environment variables to set.
|
|
483
385
|
"""
|
|
484
386
|
...
|
|
485
387
|
|
|
486
388
|
@typing.overload
|
|
487
|
-
def
|
|
389
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
488
390
|
...
|
|
489
391
|
|
|
490
392
|
@typing.overload
|
|
491
|
-
def
|
|
393
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
492
394
|
...
|
|
493
395
|
|
|
494
|
-
def
|
|
396
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
495
397
|
"""
|
|
496
|
-
Specifies
|
|
497
|
-
|
|
498
|
-
The decorator will create an optional artifact, specified by `var`, which
|
|
499
|
-
contains the exception raised. You can use it to detect the presence
|
|
500
|
-
of errors, indicating that all happy-path artifacts produced by the step
|
|
501
|
-
are missing.
|
|
398
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
502
399
|
|
|
503
400
|
|
|
504
401
|
Parameters
|
|
505
402
|
----------
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
If not specified, the exception is not stored.
|
|
509
|
-
print_exception : bool, default True
|
|
510
|
-
Determines whether or not the exception is printed to
|
|
511
|
-
stdout when caught.
|
|
403
|
+
vars : Dict[str, str], default {}
|
|
404
|
+
Dictionary of environment variables to set.
|
|
512
405
|
"""
|
|
513
406
|
...
|
|
514
407
|
|
|
515
408
|
@typing.overload
|
|
516
|
-
def
|
|
409
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
517
410
|
"""
|
|
518
|
-
Specifies
|
|
519
|
-
|
|
411
|
+
Specifies the Conda environment for the step.
|
|
412
|
+
|
|
413
|
+
Information in this decorator will augment any
|
|
414
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
415
|
+
you can use `@conda_base` to set packages required by all
|
|
416
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
520
417
|
|
|
521
418
|
|
|
522
419
|
Parameters
|
|
523
420
|
----------
|
|
524
|
-
|
|
525
|
-
|
|
526
|
-
|
|
527
|
-
|
|
421
|
+
packages : Dict[str, str], default {}
|
|
422
|
+
Packages to use for this step. The key is the name of the package
|
|
423
|
+
and the value is the version to use.
|
|
424
|
+
libraries : Dict[str, str], default {}
|
|
425
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
426
|
+
python : str, optional, default None
|
|
427
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
428
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
429
|
+
disabled : bool, default False
|
|
430
|
+
If set to True, disables @conda.
|
|
528
431
|
"""
|
|
529
432
|
...
|
|
530
433
|
|
|
531
434
|
@typing.overload
|
|
532
|
-
def
|
|
435
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
533
436
|
...
|
|
534
437
|
|
|
535
438
|
@typing.overload
|
|
536
|
-
def
|
|
439
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
537
440
|
...
|
|
538
441
|
|
|
539
|
-
def
|
|
442
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
540
443
|
"""
|
|
541
|
-
Specifies
|
|
542
|
-
|
|
444
|
+
Specifies the Conda environment for the step.
|
|
445
|
+
|
|
446
|
+
Information in this decorator will augment any
|
|
447
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
448
|
+
you can use `@conda_base` to set packages required by all
|
|
449
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
450
|
+
|
|
451
|
+
|
|
452
|
+
Parameters
|
|
453
|
+
----------
|
|
454
|
+
packages : Dict[str, str], default {}
|
|
455
|
+
Packages to use for this step. The key is the name of the package
|
|
456
|
+
and the value is the version to use.
|
|
457
|
+
libraries : Dict[str, str], default {}
|
|
458
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
459
|
+
python : str, optional, default None
|
|
460
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
461
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
462
|
+
disabled : bool, default False
|
|
463
|
+
If set to True, disables @conda.
|
|
464
|
+
"""
|
|
465
|
+
...
|
|
466
|
+
|
|
467
|
+
@typing.overload
|
|
468
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
469
|
+
"""
|
|
470
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
471
|
+
the execution of a step.
|
|
543
472
|
|
|
544
473
|
|
|
545
474
|
Parameters
|
|
@@ -551,13 +480,100 @@ def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None],
|
|
|
551
480
|
"""
|
|
552
481
|
...
|
|
553
482
|
|
|
554
|
-
|
|
483
|
+
@typing.overload
|
|
484
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
485
|
+
...
|
|
486
|
+
|
|
487
|
+
@typing.overload
|
|
488
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
489
|
+
...
|
|
490
|
+
|
|
491
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
555
492
|
"""
|
|
556
|
-
|
|
557
|
-
|
|
558
|
-
|
|
493
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
494
|
+
the execution of a step.
|
|
495
|
+
|
|
496
|
+
|
|
497
|
+
Parameters
|
|
498
|
+
----------
|
|
499
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
500
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
501
|
+
role : str, optional, default: None
|
|
502
|
+
Role to use for fetching secrets
|
|
503
|
+
"""
|
|
504
|
+
...
|
|
505
|
+
|
|
506
|
+
@typing.overload
|
|
507
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
508
|
+
"""
|
|
509
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
510
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
511
|
+
"""
|
|
512
|
+
...
|
|
513
|
+
|
|
514
|
+
@typing.overload
|
|
515
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
516
|
+
...
|
|
517
|
+
|
|
518
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
519
|
+
"""
|
|
520
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
521
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
522
|
+
"""
|
|
523
|
+
...
|
|
524
|
+
|
|
525
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
526
|
+
"""
|
|
527
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
528
|
+
|
|
529
|
+
User code call
|
|
530
|
+
--------------
|
|
531
|
+
@vllm(
|
|
532
|
+
model="...",
|
|
533
|
+
...
|
|
534
|
+
)
|
|
535
|
+
|
|
536
|
+
Valid backend options
|
|
537
|
+
---------------------
|
|
538
|
+
- 'local': Run as a separate process on the local task machine.
|
|
539
|
+
|
|
540
|
+
Valid model options
|
|
541
|
+
-------------------
|
|
542
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
543
|
+
|
|
544
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
545
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
559
546
|
|
|
560
547
|
|
|
548
|
+
Parameters
|
|
549
|
+
----------
|
|
550
|
+
model: str
|
|
551
|
+
HuggingFace model identifier to be served by vLLM.
|
|
552
|
+
backend: str
|
|
553
|
+
Determines where and how to run the vLLM process.
|
|
554
|
+
openai_api_server: bool
|
|
555
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
556
|
+
Default is False (uses native engine).
|
|
557
|
+
Set to True for backward compatibility with existing code.
|
|
558
|
+
debug: bool
|
|
559
|
+
Whether to turn on verbose debugging logs.
|
|
560
|
+
card_refresh_interval: int
|
|
561
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
562
|
+
Only used when openai_api_server=True.
|
|
563
|
+
max_retries: int
|
|
564
|
+
Maximum number of retries checking for vLLM server startup.
|
|
565
|
+
Only used when openai_api_server=True.
|
|
566
|
+
retry_alert_frequency: int
|
|
567
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
568
|
+
Only used when openai_api_server=True.
|
|
569
|
+
engine_args : dict
|
|
570
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
571
|
+
For example, `tensor_parallel_size=2`.
|
|
572
|
+
"""
|
|
573
|
+
...
|
|
574
|
+
|
|
575
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
576
|
+
"""
|
|
561
577
|
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
562
578
|
for S3 read and write requests.
|
|
563
579
|
|
|
@@ -616,327 +632,136 @@ def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode
|
|
|
616
632
|
...
|
|
617
633
|
|
|
618
634
|
@typing.overload
|
|
619
|
-
def
|
|
620
|
-
"""
|
|
621
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
622
|
-
|
|
623
|
-
|
|
624
|
-
Parameters
|
|
625
|
-
----------
|
|
626
|
-
vars : Dict[str, str], default {}
|
|
627
|
-
Dictionary of environment variables to set.
|
|
628
|
-
"""
|
|
629
|
-
...
|
|
630
|
-
|
|
631
|
-
@typing.overload
|
|
632
|
-
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
633
|
-
...
|
|
634
|
-
|
|
635
|
-
@typing.overload
|
|
636
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
637
|
-
...
|
|
638
|
-
|
|
639
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
640
|
-
"""
|
|
641
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
642
|
-
|
|
643
|
-
|
|
644
|
-
Parameters
|
|
645
|
-
----------
|
|
646
|
-
vars : Dict[str, str], default {}
|
|
647
|
-
Dictionary of environment variables to set.
|
|
648
|
-
"""
|
|
649
|
-
...
|
|
650
|
-
|
|
651
|
-
@typing.overload
|
|
652
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
635
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
653
636
|
"""
|
|
654
|
-
|
|
655
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
637
|
+
Internal decorator to support Fast bakery
|
|
656
638
|
"""
|
|
657
639
|
...
|
|
658
640
|
|
|
659
641
|
@typing.overload
|
|
660
|
-
def
|
|
642
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
661
643
|
...
|
|
662
644
|
|
|
663
|
-
def
|
|
645
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
664
646
|
"""
|
|
665
|
-
|
|
666
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
647
|
+
Internal decorator to support Fast bakery
|
|
667
648
|
"""
|
|
668
649
|
...
|
|
669
650
|
|
|
670
|
-
|
|
671
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
651
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
672
652
|
"""
|
|
673
|
-
|
|
674
|
-
to a step needs to be retried.
|
|
653
|
+
Decorator that helps cache, version, and store models/datasets from the Hugging Face Hub.
|
|
675
654
|
|
|
676
|
-
|
|
677
|
-
|
|
678
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
655
|
+
Examples
|
|
656
|
+
--------
|
|
679
657
|
|
|
680
|
-
|
|
681
|
-
|
|
682
|
-
|
|
658
|
+
```python
|
|
659
|
+
# **Usage: creating references to models from the Hugging Face Hub that may be loaded in downstream steps**
|
|
660
|
+
@huggingface_hub
|
|
661
|
+
@step
|
|
662
|
+
def pull_model_from_huggingface(self):
|
|
663
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
664
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
665
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
666
|
+
# value of the function is a reference to the model in the backend storage.
|
|
667
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
683
668
|
|
|
669
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
670
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
671
|
+
repo_id=self.model_id,
|
|
672
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
673
|
+
)
|
|
674
|
+
self.next(self.train)
|
|
684
675
|
|
|
685
|
-
|
|
686
|
-
|
|
687
|
-
|
|
688
|
-
|
|
689
|
-
|
|
690
|
-
|
|
691
|
-
|
|
692
|
-
|
|
693
|
-
|
|
694
|
-
|
|
695
|
-
|
|
696
|
-
|
|
697
|
-
|
|
698
|
-
@typing.overload
|
|
699
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
700
|
-
...
|
|
701
|
-
|
|
702
|
-
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
703
|
-
"""
|
|
704
|
-
Specifies the number of times the task corresponding
|
|
705
|
-
to a step needs to be retried.
|
|
676
|
+
# **Usage: explicitly loading models at runtime from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
677
|
+
@huggingface_hub
|
|
678
|
+
@step
|
|
679
|
+
def run_training(self):
|
|
680
|
+
# Temporary directory (auto-cleaned on exit)
|
|
681
|
+
with current.huggingface_hub.load(
|
|
682
|
+
repo_id="google-bert/bert-base-uncased",
|
|
683
|
+
allow_patterns=["*.bin"],
|
|
684
|
+
) as local_path:
|
|
685
|
+
# Use files under local_path
|
|
686
|
+
train_model(local_path)
|
|
687
|
+
...
|
|
706
688
|
|
|
707
|
-
|
|
708
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
709
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
689
|
+
# **Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
710
690
|
|
|
711
|
-
|
|
712
|
-
|
|
713
|
-
|
|
691
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
692
|
+
@step
|
|
693
|
+
def pull_model_from_huggingface(self):
|
|
694
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
714
695
|
|
|
696
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora", "/my-lora-directory")])
|
|
697
|
+
@step
|
|
698
|
+
def finetune_model(self):
|
|
699
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
700
|
+
# path_to_model will be /my-directory
|
|
715
701
|
|
|
716
|
-
Parameters
|
|
717
|
-
----------
|
|
718
|
-
times : int, default 3
|
|
719
|
-
Number of times to retry this task.
|
|
720
|
-
minutes_between_retries : int, default 2
|
|
721
|
-
Number of minutes between retries.
|
|
722
|
-
"""
|
|
723
|
-
...
|
|
724
|
-
|
|
725
|
-
@typing.overload
|
|
726
|
-
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
727
|
-
"""
|
|
728
|
-
Specifies a timeout for your step.
|
|
729
702
|
|
|
730
|
-
|
|
731
|
-
|
|
732
|
-
|
|
733
|
-
|
|
734
|
-
|
|
735
|
-
|
|
736
|
-
|
|
737
|
-
|
|
738
|
-
|
|
739
|
-
|
|
740
|
-
|
|
741
|
-
|
|
742
|
-
|
|
743
|
-
|
|
744
|
-
|
|
745
|
-
|
|
746
|
-
hours : int, default 0
|
|
747
|
-
Number of hours to wait prior to timing out.
|
|
748
|
-
"""
|
|
749
|
-
...
|
|
750
|
-
|
|
751
|
-
@typing.overload
|
|
752
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
753
|
-
...
|
|
754
|
-
|
|
755
|
-
@typing.overload
|
|
756
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
757
|
-
...
|
|
758
|
-
|
|
759
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
760
|
-
"""
|
|
761
|
-
Specifies a timeout for your step.
|
|
762
|
-
|
|
763
|
-
This decorator is useful if this step may hang indefinitely.
|
|
764
|
-
|
|
765
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
766
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
767
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
768
|
-
|
|
769
|
-
Note that all the values specified in parameters are added together so if you specify
|
|
770
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
771
|
-
|
|
772
|
-
|
|
773
|
-
Parameters
|
|
774
|
-
----------
|
|
775
|
-
seconds : int, default 0
|
|
776
|
-
Number of seconds to wait prior to timing out.
|
|
777
|
-
minutes : int, default 0
|
|
778
|
-
Number of minutes to wait prior to timing out.
|
|
779
|
-
hours : int, default 0
|
|
780
|
-
Number of hours to wait prior to timing out.
|
|
781
|
-
"""
|
|
782
|
-
...
|
|
783
|
-
|
|
784
|
-
@typing.overload
|
|
785
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
786
|
-
"""
|
|
787
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
788
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
789
|
-
"""
|
|
790
|
-
...
|
|
791
|
-
|
|
792
|
-
@typing.overload
|
|
793
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
794
|
-
...
|
|
795
|
-
|
|
796
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
797
|
-
"""
|
|
798
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
799
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
800
|
-
"""
|
|
801
|
-
...
|
|
802
|
-
|
|
803
|
-
@typing.overload
|
|
804
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
805
|
-
"""
|
|
806
|
-
Internal decorator to support Fast bakery
|
|
807
|
-
"""
|
|
808
|
-
...
|
|
809
|
-
|
|
810
|
-
@typing.overload
|
|
811
|
-
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
812
|
-
...
|
|
813
|
-
|
|
814
|
-
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
815
|
-
"""
|
|
816
|
-
Internal decorator to support Fast bakery
|
|
817
|
-
"""
|
|
818
|
-
...
|
|
819
|
-
|
|
820
|
-
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
821
|
-
"""
|
|
822
|
-
Specifies that this step should execute on DGX cloud.
|
|
823
|
-
|
|
824
|
-
|
|
825
|
-
Parameters
|
|
826
|
-
----------
|
|
827
|
-
gpu : int
|
|
828
|
-
Number of GPUs to use.
|
|
829
|
-
gpu_type : str
|
|
830
|
-
Type of Nvidia GPU to use.
|
|
831
|
-
"""
|
|
832
|
-
...
|
|
833
|
-
|
|
834
|
-
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
835
|
-
"""
|
|
836
|
-
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
837
|
-
|
|
838
|
-
User code call
|
|
839
|
-
--------------
|
|
840
|
-
@vllm(
|
|
841
|
-
model="...",
|
|
842
|
-
...
|
|
843
|
-
)
|
|
844
|
-
|
|
845
|
-
Valid backend options
|
|
846
|
-
---------------------
|
|
847
|
-
- 'local': Run as a separate process on the local task machine.
|
|
848
|
-
|
|
849
|
-
Valid model options
|
|
850
|
-
-------------------
|
|
851
|
-
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
852
|
-
|
|
853
|
-
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
854
|
-
If you need multiple models, you must create multiple @vllm decorators.
|
|
703
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
704
|
+
# except for `local_dir`
|
|
705
|
+
@huggingface_hub(load=[
|
|
706
|
+
{
|
|
707
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
708
|
+
},
|
|
709
|
+
{
|
|
710
|
+
"repo_id": "myorg/mistral-lora",
|
|
711
|
+
"repo_type": "model",
|
|
712
|
+
},
|
|
713
|
+
])
|
|
714
|
+
@step
|
|
715
|
+
def finetune_model(self):
|
|
716
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
717
|
+
# path_to_model will be /my-directory
|
|
718
|
+
```
|
|
855
719
|
|
|
856
720
|
|
|
857
721
|
Parameters
|
|
858
722
|
----------
|
|
859
|
-
|
|
860
|
-
|
|
861
|
-
backend: str
|
|
862
|
-
Determines where and how to run the vLLM process.
|
|
863
|
-
openai_api_server: bool
|
|
864
|
-
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
865
|
-
Default is False (uses native engine).
|
|
866
|
-
Set to True for backward compatibility with existing code.
|
|
867
|
-
debug: bool
|
|
868
|
-
Whether to turn on verbose debugging logs.
|
|
869
|
-
card_refresh_interval: int
|
|
870
|
-
Interval in seconds for refreshing the vLLM status card.
|
|
871
|
-
Only used when openai_api_server=True.
|
|
872
|
-
max_retries: int
|
|
873
|
-
Maximum number of retries checking for vLLM server startup.
|
|
874
|
-
Only used when openai_api_server=True.
|
|
875
|
-
retry_alert_frequency: int
|
|
876
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
877
|
-
Only used when openai_api_server=True.
|
|
878
|
-
engine_args : dict
|
|
879
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
880
|
-
For example, `tensor_parallel_size=2`.
|
|
881
|
-
"""
|
|
882
|
-
...
|
|
883
|
-
|
|
884
|
-
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
885
|
-
"""
|
|
886
|
-
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
887
|
-
for S3 read and write requests.
|
|
888
|
-
|
|
889
|
-
This decorator requires an integration in the Outerbounds platform that
|
|
890
|
-
points to an external bucket. It affects S3 operations performed via
|
|
891
|
-
Metaflow's `get_aws_client` and `S3` within a `@step`.
|
|
723
|
+
temp_dir_root : str, optional
|
|
724
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
892
725
|
|
|
893
|
-
|
|
894
|
-
|
|
895
|
-
|
|
896
|
-
|
|
897
|
-
|
|
898
|
-
buckets are cached in the external bucket.
|
|
726
|
+
cache_scope : str, optional
|
|
727
|
+
The scope of the cache. Can be `checkpoint` / `flow` / `global`.
|
|
728
|
+
- `checkpoint` (default): All repos are stored like objects saved by `@checkpoint`.
|
|
729
|
+
i.e., the cached path is derived from the namespace, flow, step, and Metaflow foreach iteration.
|
|
730
|
+
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
899
731
|
|
|
900
|
-
|
|
901
|
-
|
|
902
|
-
|
|
903
|
-
streams it directly from there without accessing the requested origin
|
|
904
|
-
bucket.
|
|
905
|
-
- If the object is not present in the external storage, the proxy
|
|
906
|
-
fetches it from the requested bucket, caches it in the external
|
|
907
|
-
storage, and streams the response from the origin bucket.
|
|
732
|
+
- `flow`: All repos are cached under the flow, regardless of namespace.
|
|
733
|
+
i.e., the cached path is derived solely from the flow name.
|
|
734
|
+
When to use this mode: (1) Multiple users are executing the same flow and want shared access to the repos cached by the decorator. (2) Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
908
735
|
|
|
909
|
-
|
|
910
|
-
|
|
911
|
-
|
|
912
|
-
|
|
913
|
-
|
|
914
|
-
|
|
736
|
+
- `global`: All repos are cached under a globally static path.
|
|
737
|
+
i.e., the base path of the cache is static and all repos are stored under it.
|
|
738
|
+
When to use this mode:
|
|
739
|
+
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
740
|
+
- Each caching scope comes with its own trade-offs:
|
|
741
|
+
- `checkpoint`:
|
|
742
|
+
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
743
|
+
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
744
|
+
- `flow`:
|
|
745
|
+
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
746
|
+
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
747
|
+
- It doesn't promote cache reuse across flows.
|
|
748
|
+
- `global`:
|
|
749
|
+
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
750
|
+
- It promotes cache reuse across flows.
|
|
751
|
+
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
915
752
|
|
|
916
|
-
|
|
917
|
-
|
|
918
|
-
Write behavior is controlled by the `write_mode` parameter, which determines
|
|
919
|
-
whether writes also persist objects in the cache.
|
|
753
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
754
|
+
The list of repos (models/datasets) to load.
|
|
920
755
|
|
|
921
|
-
|
|
922
|
-
- `origin-and-cache`: objects are written both to the cache and to their
|
|
923
|
-
intended origin bucket.
|
|
924
|
-
- `origin`: objects are written only to their intended origin bucket.
|
|
756
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
925
757
|
|
|
758
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
759
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
760
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
761
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
926
762
|
|
|
927
|
-
|
|
928
|
-
|
|
929
|
-
integration_name : str, optional
|
|
930
|
-
[Outerbounds integration name](https://docs.outerbounds.com/outerbounds/configuring-secrets/#integrations-view)
|
|
931
|
-
that holds the configuration for the external, S3‑compatible object
|
|
932
|
-
storage bucket. If not specified, the only available S3 proxy
|
|
933
|
-
integration in the namespace is used (fails if multiple exist).
|
|
934
|
-
write_mode : str, optional
|
|
935
|
-
Controls whether writes also go to the external bucket.
|
|
936
|
-
- `origin` (default)
|
|
937
|
-
- `origin-and-cache`
|
|
938
|
-
debug : bool, optional
|
|
939
|
-
Enables debug logging for proxy operations.
|
|
763
|
+
- If repo is found in the datastore:
|
|
764
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
940
765
|
"""
|
|
941
766
|
...
|
|
942
767
|
|
|
@@ -1019,134 +844,7 @@ def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None]
|
|
|
1019
844
|
"""
|
|
1020
845
|
...
|
|
1021
846
|
|
|
1022
|
-
|
|
1023
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1024
|
-
"""
|
|
1025
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1026
|
-
to inject a card and render simple markdown content.
|
|
1027
|
-
"""
|
|
1028
|
-
...
|
|
1029
|
-
|
|
1030
|
-
@typing.overload
|
|
1031
|
-
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1032
|
-
...
|
|
1033
|
-
|
|
1034
|
-
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1035
|
-
"""
|
|
1036
|
-
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1037
|
-
to inject a card and render simple markdown content.
|
|
1038
|
-
"""
|
|
1039
|
-
...
|
|
1040
|
-
|
|
1041
|
-
@typing.overload
|
|
1042
|
-
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1043
|
-
"""
|
|
1044
|
-
Specifies the Conda environment for the step.
|
|
1045
|
-
|
|
1046
|
-
Information in this decorator will augment any
|
|
1047
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1048
|
-
you can use `@conda_base` to set packages required by all
|
|
1049
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
1050
|
-
|
|
1051
|
-
|
|
1052
|
-
Parameters
|
|
1053
|
-
----------
|
|
1054
|
-
packages : Dict[str, str], default {}
|
|
1055
|
-
Packages to use for this step. The key is the name of the package
|
|
1056
|
-
and the value is the version to use.
|
|
1057
|
-
libraries : Dict[str, str], default {}
|
|
1058
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1059
|
-
python : str, optional, default None
|
|
1060
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1061
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1062
|
-
disabled : bool, default False
|
|
1063
|
-
If set to True, disables @conda.
|
|
1064
|
-
"""
|
|
1065
|
-
...
|
|
1066
|
-
|
|
1067
|
-
@typing.overload
|
|
1068
|
-
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1069
|
-
...
|
|
1070
|
-
|
|
1071
|
-
@typing.overload
|
|
1072
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1073
|
-
...
|
|
1074
|
-
|
|
1075
|
-
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1076
|
-
"""
|
|
1077
|
-
Specifies the Conda environment for the step.
|
|
1078
|
-
|
|
1079
|
-
Information in this decorator will augment any
|
|
1080
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1081
|
-
you can use `@conda_base` to set packages required by all
|
|
1082
|
-
steps and use `@conda` to specify step-specific overrides.
|
|
1083
|
-
|
|
1084
|
-
|
|
1085
|
-
Parameters
|
|
1086
|
-
----------
|
|
1087
|
-
packages : Dict[str, str], default {}
|
|
1088
|
-
Packages to use for this step. The key is the name of the package
|
|
1089
|
-
and the value is the version to use.
|
|
1090
|
-
libraries : Dict[str, str], default {}
|
|
1091
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1092
|
-
python : str, optional, default None
|
|
1093
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1094
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1095
|
-
disabled : bool, default False
|
|
1096
|
-
If set to True, disables @conda.
|
|
1097
|
-
"""
|
|
1098
|
-
...
|
|
1099
|
-
|
|
1100
|
-
@typing.overload
|
|
1101
|
-
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1102
|
-
"""
|
|
1103
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1104
|
-
|
|
1105
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1106
|
-
|
|
1107
|
-
|
|
1108
|
-
Parameters
|
|
1109
|
-
----------
|
|
1110
|
-
type : str, default 'default'
|
|
1111
|
-
Card type.
|
|
1112
|
-
id : str, optional, default None
|
|
1113
|
-
If multiple cards are present, use this id to identify this card.
|
|
1114
|
-
options : Dict[str, Any], default {}
|
|
1115
|
-
Options passed to the card. The contents depend on the card type.
|
|
1116
|
-
timeout : int, default 45
|
|
1117
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
1118
|
-
"""
|
|
1119
|
-
...
|
|
1120
|
-
|
|
1121
|
-
@typing.overload
|
|
1122
|
-
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1123
|
-
...
|
|
1124
|
-
|
|
1125
|
-
@typing.overload
|
|
1126
|
-
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1127
|
-
...
|
|
1128
|
-
|
|
1129
|
-
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
1130
|
-
"""
|
|
1131
|
-
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1132
|
-
|
|
1133
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1134
|
-
|
|
1135
|
-
|
|
1136
|
-
Parameters
|
|
1137
|
-
----------
|
|
1138
|
-
type : str, default 'default'
|
|
1139
|
-
Card type.
|
|
1140
|
-
id : str, optional, default None
|
|
1141
|
-
If multiple cards are present, use this id to identify this card.
|
|
1142
|
-
options : Dict[str, Any], default {}
|
|
1143
|
-
Options passed to the card. The contents depend on the card type.
|
|
1144
|
-
timeout : int, default 45
|
|
1145
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
1146
|
-
"""
|
|
1147
|
-
...
|
|
1148
|
-
|
|
1149
|
-
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
847
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1150
848
|
"""
|
|
1151
849
|
Specifies that this step should execute on Kubernetes.
|
|
1152
850
|
|
|
@@ -1235,171 +933,202 @@ def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: ty
|
|
|
1235
933
|
"""
|
|
1236
934
|
...
|
|
1237
935
|
|
|
1238
|
-
|
|
936
|
+
@typing.overload
|
|
937
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1239
938
|
"""
|
|
1240
|
-
|
|
939
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
940
|
+
to inject a card and render simple markdown content.
|
|
941
|
+
"""
|
|
942
|
+
...
|
|
943
|
+
|
|
944
|
+
@typing.overload
|
|
945
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
946
|
+
...
|
|
947
|
+
|
|
948
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
949
|
+
"""
|
|
950
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
951
|
+
to inject a card and render simple markdown content.
|
|
952
|
+
"""
|
|
953
|
+
...
|
|
954
|
+
|
|
955
|
+
def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
956
|
+
"""
|
|
957
|
+
`@coreweave_s3_proxy` is a CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
958
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
959
|
+
a Neo Cloud like CoreWeave. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
1241
960
|
|
|
1242
|
-
User code call
|
|
1243
|
-
--------------
|
|
1244
|
-
@ollama(
|
|
1245
|
-
models=[...],
|
|
1246
|
-
...
|
|
1247
|
-
)
|
|
1248
961
|
|
|
1249
|
-
|
|
1250
|
-
|
|
1251
|
-
- 'local': Run as a separate process on the local task machine.
|
|
1252
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
1253
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
962
|
+
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
963
|
+
for S3 read and write requests.
|
|
1254
964
|
|
|
1255
|
-
|
|
1256
|
-
|
|
1257
|
-
|
|
965
|
+
This decorator requires an integration in the Outerbounds platform that
|
|
966
|
+
points to an external bucket. It affects S3 operations performed via
|
|
967
|
+
Metaflow's `get_aws_client` and `S3` within a `@step`.
|
|
968
|
+
|
|
969
|
+
Read operations
|
|
970
|
+
---------------
|
|
971
|
+
All read operations pass through the proxy. If an object does not already
|
|
972
|
+
exist in the external bucket, it is cached there. For example, if code reads
|
|
973
|
+
from buckets `FOO` and `BAR` using the `S3` interface, objects from both
|
|
974
|
+
buckets are cached in the external bucket.
|
|
975
|
+
|
|
976
|
+
During task execution, all S3‑related read requests are routed through the
|
|
977
|
+
proxy:
|
|
978
|
+
- If the object is present in the external object store, the proxy
|
|
979
|
+
streams it directly from there without accessing the requested origin
|
|
980
|
+
bucket.
|
|
981
|
+
- If the object is not present in the external storage, the proxy
|
|
982
|
+
fetches it from the requested bucket, caches it in the external
|
|
983
|
+
storage, and streams the response from the origin bucket.
|
|
984
|
+
|
|
985
|
+
Warning
|
|
986
|
+
-------
|
|
987
|
+
All READ operations (e.g., GetObject, HeadObject) pass through the external
|
|
988
|
+
bucket regardless of the bucket specified in user code. Even
|
|
989
|
+
`S3(run=self)` and `S3(s3root="mybucketfoo")` requests go through the
|
|
990
|
+
external bucket cache.
|
|
991
|
+
|
|
992
|
+
Write operations
|
|
993
|
+
----------------
|
|
994
|
+
Write behavior is controlled by the `write_mode` parameter, which determines
|
|
995
|
+
whether writes also persist objects in the cache.
|
|
996
|
+
|
|
997
|
+
`write_mode` values:
|
|
998
|
+
- `origin-and-cache`: objects are written both to the cache and to their
|
|
999
|
+
intended origin bucket.
|
|
1000
|
+
- `origin`: objects are written only to their intended origin bucket.
|
|
1258
1001
|
|
|
1259
1002
|
|
|
1260
1003
|
Parameters
|
|
1261
1004
|
----------
|
|
1262
|
-
|
|
1263
|
-
|
|
1264
|
-
|
|
1265
|
-
|
|
1266
|
-
|
|
1267
|
-
|
|
1268
|
-
|
|
1269
|
-
|
|
1270
|
-
|
|
1271
|
-
|
|
1272
|
-
|
|
1273
|
-
Whether to turn on verbose debugging logs.
|
|
1274
|
-
circuit_breaker_config: dict
|
|
1275
|
-
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
1276
|
-
timeout_config: dict
|
|
1277
|
-
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
1005
|
+
integration_name : str, optional
|
|
1006
|
+
[Outerbounds integration name](https://docs.outerbounds.com/outerbounds/configuring-secrets/#integrations-view)
|
|
1007
|
+
that holds the configuration for the external, S3‑compatible object
|
|
1008
|
+
storage bucket. If not specified, the only available S3 proxy
|
|
1009
|
+
integration in the namespace is used (fails if multiple exist).
|
|
1010
|
+
write_mode : str, optional
|
|
1011
|
+
Controls whether writes also go to the external bucket.
|
|
1012
|
+
- `origin` (default)
|
|
1013
|
+
- `origin-and-cache`
|
|
1014
|
+
debug : bool, optional
|
|
1015
|
+
Enables debug logging for proxy operations.
|
|
1278
1016
|
"""
|
|
1279
1017
|
...
|
|
1280
1018
|
|
|
1281
|
-
|
|
1019
|
+
@typing.overload
|
|
1020
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1282
1021
|
"""
|
|
1283
|
-
|
|
1022
|
+
Specifies a timeout for your step.
|
|
1284
1023
|
|
|
1285
|
-
|
|
1286
|
-
--------
|
|
1024
|
+
This decorator is useful if this step may hang indefinitely.
|
|
1287
1025
|
|
|
1288
|
-
|
|
1289
|
-
|
|
1290
|
-
|
|
1291
|
-
@step
|
|
1292
|
-
def pull_model_from_huggingface(self):
|
|
1293
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
1294
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
1295
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
1296
|
-
# value of the function is a reference to the model in the backend storage.
|
|
1297
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
1026
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1027
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1028
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1298
1029
|
|
|
1299
|
-
|
|
1300
|
-
|
|
1301
|
-
repo_id=self.model_id,
|
|
1302
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
1303
|
-
)
|
|
1304
|
-
self.next(self.train)
|
|
1030
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
1031
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
1305
1032
|
|
|
1306
|
-
# **Usage: explicitly loading models at runtime from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
1307
|
-
@huggingface_hub
|
|
1308
|
-
@step
|
|
1309
|
-
def run_training(self):
|
|
1310
|
-
# Temporary directory (auto-cleaned on exit)
|
|
1311
|
-
with current.huggingface_hub.load(
|
|
1312
|
-
repo_id="google-bert/bert-base-uncased",
|
|
1313
|
-
allow_patterns=["*.bin"],
|
|
1314
|
-
) as local_path:
|
|
1315
|
-
# Use files under local_path
|
|
1316
|
-
train_model(local_path)
|
|
1317
|
-
...
|
|
1318
|
-
|
|
1319
|
-
# **Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
1320
1033
|
|
|
1321
|
-
|
|
1322
|
-
|
|
1323
|
-
|
|
1324
|
-
|
|
1034
|
+
Parameters
|
|
1035
|
+
----------
|
|
1036
|
+
seconds : int, default 0
|
|
1037
|
+
Number of seconds to wait prior to timing out.
|
|
1038
|
+
minutes : int, default 0
|
|
1039
|
+
Number of minutes to wait prior to timing out.
|
|
1040
|
+
hours : int, default 0
|
|
1041
|
+
Number of hours to wait prior to timing out.
|
|
1042
|
+
"""
|
|
1043
|
+
...
|
|
1044
|
+
|
|
1045
|
+
@typing.overload
|
|
1046
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1047
|
+
...
|
|
1048
|
+
|
|
1049
|
+
@typing.overload
|
|
1050
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1051
|
+
...
|
|
1052
|
+
|
|
1053
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
1054
|
+
"""
|
|
1055
|
+
Specifies a timeout for your step.
|
|
1325
1056
|
|
|
1326
|
-
|
|
1327
|
-
@step
|
|
1328
|
-
def finetune_model(self):
|
|
1329
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1330
|
-
# path_to_model will be /my-directory
|
|
1057
|
+
This decorator is useful if this step may hang indefinitely.
|
|
1331
1058
|
|
|
1059
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1060
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1061
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1332
1062
|
|
|
1333
|
-
|
|
1334
|
-
|
|
1335
|
-
@huggingface_hub(load=[
|
|
1336
|
-
{
|
|
1337
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
1338
|
-
},
|
|
1339
|
-
{
|
|
1340
|
-
"repo_id": "myorg/mistral-lora",
|
|
1341
|
-
"repo_type": "model",
|
|
1342
|
-
},
|
|
1343
|
-
])
|
|
1344
|
-
@step
|
|
1345
|
-
def finetune_model(self):
|
|
1346
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1347
|
-
# path_to_model will be /my-directory
|
|
1348
|
-
```
|
|
1063
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
1064
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
1349
1065
|
|
|
1350
1066
|
|
|
1351
1067
|
Parameters
|
|
1352
1068
|
----------
|
|
1353
|
-
|
|
1354
|
-
|
|
1069
|
+
seconds : int, default 0
|
|
1070
|
+
Number of seconds to wait prior to timing out.
|
|
1071
|
+
minutes : int, default 0
|
|
1072
|
+
Number of minutes to wait prior to timing out.
|
|
1073
|
+
hours : int, default 0
|
|
1074
|
+
Number of hours to wait prior to timing out.
|
|
1075
|
+
"""
|
|
1076
|
+
...
|
|
1077
|
+
|
|
1078
|
+
@typing.overload
|
|
1079
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1080
|
+
"""
|
|
1081
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1355
1082
|
|
|
1356
|
-
|
|
1357
|
-
The scope of the cache. Can be `checkpoint` / `flow` / `global`.
|
|
1358
|
-
- `checkpoint` (default): All repos are stored like objects saved by `@checkpoint`.
|
|
1359
|
-
i.e., the cached path is derived from the namespace, flow, step, and Metaflow foreach iteration.
|
|
1360
|
-
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
1083
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1361
1084
|
|
|
1362
|
-
- `flow`: All repos are cached under the flow, regardless of namespace.
|
|
1363
|
-
i.e., the cached path is derived solely from the flow name.
|
|
1364
|
-
When to use this mode: (1) Multiple users are executing the same flow and want shared access to the repos cached by the decorator. (2) Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
1365
1085
|
|
|
1366
|
-
|
|
1367
|
-
|
|
1368
|
-
|
|
1369
|
-
|
|
1370
|
-
|
|
1371
|
-
|
|
1372
|
-
|
|
1373
|
-
|
|
1374
|
-
|
|
1375
|
-
|
|
1376
|
-
|
|
1377
|
-
|
|
1378
|
-
|
|
1379
|
-
|
|
1380
|
-
|
|
1381
|
-
|
|
1382
|
-
|
|
1383
|
-
|
|
1384
|
-
|
|
1086
|
+
Parameters
|
|
1087
|
+
----------
|
|
1088
|
+
type : str, default 'default'
|
|
1089
|
+
Card type.
|
|
1090
|
+
id : str, optional, default None
|
|
1091
|
+
If multiple cards are present, use this id to identify this card.
|
|
1092
|
+
options : Dict[str, Any], default {}
|
|
1093
|
+
Options passed to the card. The contents depend on the card type.
|
|
1094
|
+
timeout : int, default 45
|
|
1095
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1096
|
+
"""
|
|
1097
|
+
...
|
|
1098
|
+
|
|
1099
|
+
@typing.overload
|
|
1100
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1101
|
+
...
|
|
1102
|
+
|
|
1103
|
+
@typing.overload
|
|
1104
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1105
|
+
...
|
|
1106
|
+
|
|
1107
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
1108
|
+
"""
|
|
1109
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1385
1110
|
|
|
1386
|
-
|
|
1111
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1387
1112
|
|
|
1388
|
-
- If repo (model/dataset) is not found in the datastore:
|
|
1389
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
1390
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
1391
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
1392
1113
|
|
|
1393
|
-
|
|
1394
|
-
|
|
1114
|
+
Parameters
|
|
1115
|
+
----------
|
|
1116
|
+
type : str, default 'default'
|
|
1117
|
+
Card type.
|
|
1118
|
+
id : str, optional, default None
|
|
1119
|
+
If multiple cards are present, use this id to identify this card.
|
|
1120
|
+
options : Dict[str, Any], default {}
|
|
1121
|
+
Options passed to the card. The contents depend on the card type.
|
|
1122
|
+
timeout : int, default 45
|
|
1123
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1395
1124
|
"""
|
|
1396
1125
|
...
|
|
1397
1126
|
|
|
1398
|
-
def
|
|
1127
|
+
def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1399
1128
|
"""
|
|
1400
|
-
`@
|
|
1129
|
+
`@nebius_s3_proxy` is a Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1401
1130
|
It exists to make it easier for users to know that this decorator should only be used with
|
|
1402
|
-
a Neo Cloud like
|
|
1131
|
+
a Neo Cloud like Nebius. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
1403
1132
|
|
|
1404
1133
|
|
|
1405
1134
|
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
@@ -1459,54 +1188,403 @@ def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_m
|
|
|
1459
1188
|
"""
|
|
1460
1189
|
...
|
|
1461
1190
|
|
|
1462
|
-
@typing.overload
|
|
1463
|
-
def
|
|
1191
|
+
@typing.overload
|
|
1192
|
+
def catch(*, var: typing.Optional[str] = None, print_exception: bool = True) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1193
|
+
"""
|
|
1194
|
+
Specifies that the step will success under all circumstances.
|
|
1195
|
+
|
|
1196
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
1197
|
+
contains the exception raised. You can use it to detect the presence
|
|
1198
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
1199
|
+
are missing.
|
|
1200
|
+
|
|
1201
|
+
|
|
1202
|
+
Parameters
|
|
1203
|
+
----------
|
|
1204
|
+
var : str, optional, default None
|
|
1205
|
+
Name of the artifact in which to store the caught exception.
|
|
1206
|
+
If not specified, the exception is not stored.
|
|
1207
|
+
print_exception : bool, default True
|
|
1208
|
+
Determines whether or not the exception is printed to
|
|
1209
|
+
stdout when caught.
|
|
1210
|
+
"""
|
|
1211
|
+
...
|
|
1212
|
+
|
|
1213
|
+
@typing.overload
|
|
1214
|
+
def catch(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1215
|
+
...
|
|
1216
|
+
|
|
1217
|
+
@typing.overload
|
|
1218
|
+
def catch(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1219
|
+
...
|
|
1220
|
+
|
|
1221
|
+
def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, var: typing.Optional[str] = None, print_exception: bool = True):
|
|
1222
|
+
"""
|
|
1223
|
+
Specifies that the step will success under all circumstances.
|
|
1224
|
+
|
|
1225
|
+
The decorator will create an optional artifact, specified by `var`, which
|
|
1226
|
+
contains the exception raised. You can use it to detect the presence
|
|
1227
|
+
of errors, indicating that all happy-path artifacts produced by the step
|
|
1228
|
+
are missing.
|
|
1229
|
+
|
|
1230
|
+
|
|
1231
|
+
Parameters
|
|
1232
|
+
----------
|
|
1233
|
+
var : str, optional, default None
|
|
1234
|
+
Name of the artifact in which to store the caught exception.
|
|
1235
|
+
If not specified, the exception is not stored.
|
|
1236
|
+
print_exception : bool, default True
|
|
1237
|
+
Determines whether or not the exception is printed to
|
|
1238
|
+
stdout when caught.
|
|
1239
|
+
"""
|
|
1240
|
+
...
|
|
1241
|
+
|
|
1242
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1243
|
+
"""
|
|
1244
|
+
Specifies that this step should execute on DGX cloud.
|
|
1245
|
+
|
|
1246
|
+
|
|
1247
|
+
Parameters
|
|
1248
|
+
----------
|
|
1249
|
+
gpu : int
|
|
1250
|
+
Number of GPUs to use.
|
|
1251
|
+
gpu_type : str
|
|
1252
|
+
Type of Nvidia GPU to use.
|
|
1253
|
+
queue_timeout : int
|
|
1254
|
+
Time to keep the job in NVCF's queue.
|
|
1255
|
+
"""
|
|
1256
|
+
...
|
|
1257
|
+
|
|
1258
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1259
|
+
"""
|
|
1260
|
+
Specifies that this step should execute on DGX cloud.
|
|
1261
|
+
|
|
1262
|
+
|
|
1263
|
+
Parameters
|
|
1264
|
+
----------
|
|
1265
|
+
gpu : int
|
|
1266
|
+
Number of GPUs to use.
|
|
1267
|
+
gpu_type : str
|
|
1268
|
+
Type of Nvidia GPU to use.
|
|
1269
|
+
"""
|
|
1270
|
+
...
|
|
1271
|
+
|
|
1272
|
+
def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy: str, force_cache_update: bool, debug: bool, circuit_breaker_config: dict, timeout_config: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1273
|
+
"""
|
|
1274
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
|
1275
|
+
|
|
1276
|
+
User code call
|
|
1277
|
+
--------------
|
|
1278
|
+
@ollama(
|
|
1279
|
+
models=[...],
|
|
1280
|
+
...
|
|
1281
|
+
)
|
|
1282
|
+
|
|
1283
|
+
Valid backend options
|
|
1284
|
+
---------------------
|
|
1285
|
+
- 'local': Run as a separate process on the local task machine.
|
|
1286
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
|
1287
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
|
1288
|
+
|
|
1289
|
+
Valid model options
|
|
1290
|
+
-------------------
|
|
1291
|
+
Any model here https://ollama.com/search, e.g. 'llama3.2', 'llama3.3'
|
|
1292
|
+
|
|
1293
|
+
|
|
1294
|
+
Parameters
|
|
1295
|
+
----------
|
|
1296
|
+
models: list[str]
|
|
1297
|
+
List of Ollama containers running models in sidecars.
|
|
1298
|
+
backend: str
|
|
1299
|
+
Determines where and how to run the Ollama process.
|
|
1300
|
+
force_pull: bool
|
|
1301
|
+
Whether to run `ollama pull` no matter what, or first check the remote cache in Metaflow datastore for this model key.
|
|
1302
|
+
cache_update_policy: str
|
|
1303
|
+
Cache update policy: "auto", "force", or "never".
|
|
1304
|
+
force_cache_update: bool
|
|
1305
|
+
Simple override for "force" cache update policy.
|
|
1306
|
+
debug: bool
|
|
1307
|
+
Whether to turn on verbose debugging logs.
|
|
1308
|
+
circuit_breaker_config: dict
|
|
1309
|
+
Configuration for circuit breaker protection. Keys: failure_threshold, recovery_timeout, reset_timeout.
|
|
1310
|
+
timeout_config: dict
|
|
1311
|
+
Configuration for various operation timeouts. Keys: pull, stop, health_check, install, server_startup.
|
|
1312
|
+
"""
|
|
1313
|
+
...
|
|
1314
|
+
|
|
1315
|
+
@typing.overload
|
|
1316
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1317
|
+
"""
|
|
1318
|
+
Specifies the PyPI packages for the step.
|
|
1319
|
+
|
|
1320
|
+
Information in this decorator will augment any
|
|
1321
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
1322
|
+
you can use `@pypi_base` to set packages required by all
|
|
1323
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1324
|
+
|
|
1325
|
+
|
|
1326
|
+
Parameters
|
|
1327
|
+
----------
|
|
1328
|
+
packages : Dict[str, str], default: {}
|
|
1329
|
+
Packages to use for this step. The key is the name of the package
|
|
1330
|
+
and the value is the version to use.
|
|
1331
|
+
python : str, optional, default: None
|
|
1332
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1333
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1334
|
+
"""
|
|
1335
|
+
...
|
|
1336
|
+
|
|
1337
|
+
@typing.overload
|
|
1338
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1339
|
+
...
|
|
1340
|
+
|
|
1341
|
+
@typing.overload
|
|
1342
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1343
|
+
...
|
|
1344
|
+
|
|
1345
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1346
|
+
"""
|
|
1347
|
+
Specifies the PyPI packages for the step.
|
|
1348
|
+
|
|
1349
|
+
Information in this decorator will augment any
|
|
1350
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
1351
|
+
you can use `@pypi_base` to set packages required by all
|
|
1352
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1353
|
+
|
|
1354
|
+
|
|
1355
|
+
Parameters
|
|
1356
|
+
----------
|
|
1357
|
+
packages : Dict[str, str], default: {}
|
|
1358
|
+
Packages to use for this step. The key is the name of the package
|
|
1359
|
+
and the value is the version to use.
|
|
1360
|
+
python : str, optional, default: None
|
|
1361
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1362
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1363
|
+
"""
|
|
1364
|
+
...
|
|
1365
|
+
|
|
1366
|
+
@typing.overload
|
|
1367
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1368
|
+
"""
|
|
1369
|
+
Enables checkpointing for a step.
|
|
1370
|
+
|
|
1371
|
+
> Examples
|
|
1372
|
+
|
|
1373
|
+
- Saving Checkpoints
|
|
1374
|
+
|
|
1375
|
+
```python
|
|
1376
|
+
@checkpoint
|
|
1377
|
+
@step
|
|
1378
|
+
def train(self):
|
|
1379
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
1380
|
+
for i in range(self.epochs):
|
|
1381
|
+
# some training logic
|
|
1382
|
+
loss = model.train(self.dataset)
|
|
1383
|
+
if i % 10 == 0:
|
|
1384
|
+
model.save(
|
|
1385
|
+
current.checkpoint.directory,
|
|
1386
|
+
)
|
|
1387
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1388
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1389
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
1390
|
+
name="epoch_checkpoint",
|
|
1391
|
+
metadata={
|
|
1392
|
+
"epoch": i,
|
|
1393
|
+
"loss": loss,
|
|
1394
|
+
}
|
|
1395
|
+
)
|
|
1396
|
+
```
|
|
1397
|
+
|
|
1398
|
+
- Using Loaded Checkpoints
|
|
1399
|
+
|
|
1400
|
+
```python
|
|
1401
|
+
@retry(times=3)
|
|
1402
|
+
@checkpoint
|
|
1403
|
+
@step
|
|
1404
|
+
def train(self):
|
|
1405
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1406
|
+
# saved a checkpoint
|
|
1407
|
+
checkpoint_path = None
|
|
1408
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1409
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1410
|
+
checkpoint_path = current.checkpoint.directory
|
|
1411
|
+
|
|
1412
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1413
|
+
for i in range(self.epochs):
|
|
1414
|
+
...
|
|
1415
|
+
```
|
|
1416
|
+
|
|
1417
|
+
|
|
1418
|
+
Parameters
|
|
1419
|
+
----------
|
|
1420
|
+
load_policy : str, default: "fresh"
|
|
1421
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1422
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1423
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1424
|
+
will be loaded at the start of the task.
|
|
1425
|
+
- "none": Do not load any checkpoint
|
|
1426
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1427
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1428
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1429
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1430
|
+
|
|
1431
|
+
temp_dir_root : str, default: None
|
|
1432
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1433
|
+
"""
|
|
1434
|
+
...
|
|
1435
|
+
|
|
1436
|
+
@typing.overload
|
|
1437
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1438
|
+
...
|
|
1439
|
+
|
|
1440
|
+
@typing.overload
|
|
1441
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1442
|
+
...
|
|
1443
|
+
|
|
1444
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
1445
|
+
"""
|
|
1446
|
+
Enables checkpointing for a step.
|
|
1447
|
+
|
|
1448
|
+
> Examples
|
|
1449
|
+
|
|
1450
|
+
- Saving Checkpoints
|
|
1451
|
+
|
|
1452
|
+
```python
|
|
1453
|
+
@checkpoint
|
|
1454
|
+
@step
|
|
1455
|
+
def train(self):
|
|
1456
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
1457
|
+
for i in range(self.epochs):
|
|
1458
|
+
# some training logic
|
|
1459
|
+
loss = model.train(self.dataset)
|
|
1460
|
+
if i % 10 == 0:
|
|
1461
|
+
model.save(
|
|
1462
|
+
current.checkpoint.directory,
|
|
1463
|
+
)
|
|
1464
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
1465
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
1466
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
1467
|
+
name="epoch_checkpoint",
|
|
1468
|
+
metadata={
|
|
1469
|
+
"epoch": i,
|
|
1470
|
+
"loss": loss,
|
|
1471
|
+
}
|
|
1472
|
+
)
|
|
1473
|
+
```
|
|
1474
|
+
|
|
1475
|
+
- Using Loaded Checkpoints
|
|
1476
|
+
|
|
1477
|
+
```python
|
|
1478
|
+
@retry(times=3)
|
|
1479
|
+
@checkpoint
|
|
1480
|
+
@step
|
|
1481
|
+
def train(self):
|
|
1482
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
1483
|
+
# saved a checkpoint
|
|
1484
|
+
checkpoint_path = None
|
|
1485
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
1486
|
+
print("Loaded checkpoint from the previous attempt")
|
|
1487
|
+
checkpoint_path = current.checkpoint.directory
|
|
1488
|
+
|
|
1489
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
1490
|
+
for i in range(self.epochs):
|
|
1491
|
+
...
|
|
1492
|
+
```
|
|
1493
|
+
|
|
1494
|
+
|
|
1495
|
+
Parameters
|
|
1496
|
+
----------
|
|
1497
|
+
load_policy : str, default: "fresh"
|
|
1498
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
1499
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
1500
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
1501
|
+
will be loaded at the start of the task.
|
|
1502
|
+
- "none": Do not load any checkpoint
|
|
1503
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
1504
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
1505
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
1506
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
1507
|
+
|
|
1508
|
+
temp_dir_root : str, default: None
|
|
1509
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
1510
|
+
"""
|
|
1511
|
+
...
|
|
1512
|
+
|
|
1513
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1514
|
+
"""
|
|
1515
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
|
1516
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1517
|
+
|
|
1518
|
+
|
|
1519
|
+
Parameters
|
|
1520
|
+
----------
|
|
1521
|
+
timeout : int
|
|
1522
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1523
|
+
poke_interval : int
|
|
1524
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1525
|
+
mode : str
|
|
1526
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1527
|
+
exponential_backoff : bool
|
|
1528
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1529
|
+
pool : str
|
|
1530
|
+
the slot pool this task should run in,
|
|
1531
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1532
|
+
soft_fail : bool
|
|
1533
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1534
|
+
name : str
|
|
1535
|
+
Name of the sensor on Airflow
|
|
1536
|
+
description : str
|
|
1537
|
+
Description of sensor in the Airflow UI
|
|
1538
|
+
external_dag_id : str
|
|
1539
|
+
The dag_id that contains the task you want to wait for.
|
|
1540
|
+
external_task_ids : List[str]
|
|
1541
|
+
The list of task_ids that you want to wait for.
|
|
1542
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1543
|
+
allowed_states : List[str]
|
|
1544
|
+
Iterable of allowed states, (Default: ['success'])
|
|
1545
|
+
failed_states : List[str]
|
|
1546
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
|
1547
|
+
execution_delta : datetime.timedelta
|
|
1548
|
+
time difference with the previous execution to look at,
|
|
1549
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1550
|
+
check_existence: bool
|
|
1551
|
+
Set to True to check if the external task exists or check if
|
|
1552
|
+
the DAG to wait for exists. (Default: True)
|
|
1553
|
+
"""
|
|
1554
|
+
...
|
|
1555
|
+
|
|
1556
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1464
1557
|
"""
|
|
1465
|
-
Specifies
|
|
1558
|
+
Specifies what flows belong to the same project.
|
|
1466
1559
|
|
|
1467
|
-
|
|
1468
|
-
|
|
1469
|
-
you can use `@pypi_base` to set packages required by all
|
|
1470
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1560
|
+
A project-specific namespace is created for all flows that
|
|
1561
|
+
use the same `@project(name)`.
|
|
1471
1562
|
|
|
1472
1563
|
|
|
1473
1564
|
Parameters
|
|
1474
1565
|
----------
|
|
1475
|
-
|
|
1476
|
-
|
|
1477
|
-
|
|
1478
|
-
|
|
1479
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1480
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1481
|
-
"""
|
|
1482
|
-
...
|
|
1483
|
-
|
|
1484
|
-
@typing.overload
|
|
1485
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1486
|
-
...
|
|
1487
|
-
|
|
1488
|
-
@typing.overload
|
|
1489
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1490
|
-
...
|
|
1491
|
-
|
|
1492
|
-
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1493
|
-
"""
|
|
1494
|
-
Specifies the PyPI packages for the step.
|
|
1495
|
-
|
|
1496
|
-
Information in this decorator will augment any
|
|
1497
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
1498
|
-
you can use `@pypi_base` to set packages required by all
|
|
1499
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1566
|
+
name : str
|
|
1567
|
+
Project name. Make sure that the name is unique amongst all
|
|
1568
|
+
projects that use the same production scheduler. The name may
|
|
1569
|
+
contain only lowercase alphanumeric characters and underscores.
|
|
1500
1570
|
|
|
1571
|
+
branch : Optional[str], default None
|
|
1572
|
+
The branch to use. If not specified, the branch is set to
|
|
1573
|
+
`user.<username>` unless `production` is set to `True`. This can
|
|
1574
|
+
also be set on the command line using `--branch` as a top-level option.
|
|
1575
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
|
1501
1576
|
|
|
1502
|
-
|
|
1503
|
-
|
|
1504
|
-
|
|
1505
|
-
|
|
1506
|
-
|
|
1507
|
-
|
|
1508
|
-
|
|
1509
|
-
|
|
1577
|
+
production : bool, default False
|
|
1578
|
+
Whether or not the branch is the production branch. This can also be set on the
|
|
1579
|
+
command line using `--production` as a top-level option. It is an error to specify
|
|
1580
|
+
`production` in the decorator and on the command line.
|
|
1581
|
+
The project branch name will be:
|
|
1582
|
+
- if `branch` is specified:
|
|
1583
|
+
- if `production` is True: `prod.<branch>`
|
|
1584
|
+
- if `production` is False: `test.<branch>`
|
|
1585
|
+
- if `branch` is not specified:
|
|
1586
|
+
- if `production` is True: `prod`
|
|
1587
|
+
- if `production` is False: `user.<username>`
|
|
1510
1588
|
"""
|
|
1511
1589
|
...
|
|
1512
1590
|
|
|
@@ -1561,216 +1639,137 @@ def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly:
|
|
|
1561
1639
|
"""
|
|
1562
1640
|
...
|
|
1563
1641
|
|
|
1564
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1565
|
-
"""
|
|
1566
|
-
Specifies what flows belong to the same project.
|
|
1567
|
-
|
|
1568
|
-
A project-specific namespace is created for all flows that
|
|
1569
|
-
use the same `@project(name)`.
|
|
1570
|
-
|
|
1571
|
-
|
|
1572
|
-
Parameters
|
|
1573
|
-
----------
|
|
1574
|
-
name : str
|
|
1575
|
-
Project name. Make sure that the name is unique amongst all
|
|
1576
|
-
projects that use the same production scheduler. The name may
|
|
1577
|
-
contain only lowercase alphanumeric characters and underscores.
|
|
1578
|
-
|
|
1579
|
-
branch : Optional[str], default None
|
|
1580
|
-
The branch to use. If not specified, the branch is set to
|
|
1581
|
-
`user.<username>` unless `production` is set to `True`. This can
|
|
1582
|
-
also be set on the command line using `--branch` as a top-level option.
|
|
1583
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
|
1584
|
-
|
|
1585
|
-
production : bool, default False
|
|
1586
|
-
Whether or not the branch is the production branch. This can also be set on the
|
|
1587
|
-
command line using `--production` as a top-level option. It is an error to specify
|
|
1588
|
-
`production` in the decorator and on the command line.
|
|
1589
|
-
The project branch name will be:
|
|
1590
|
-
- if `branch` is specified:
|
|
1591
|
-
- if `production` is True: `prod.<branch>`
|
|
1592
|
-
- if `production` is False: `test.<branch>`
|
|
1593
|
-
- if `branch` is not specified:
|
|
1594
|
-
- if `production` is True: `prod`
|
|
1595
|
-
- if `production` is False: `user.<username>`
|
|
1596
|
-
"""
|
|
1597
|
-
...
|
|
1598
|
-
|
|
1599
1642
|
@typing.overload
|
|
1600
|
-
def
|
|
1643
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1601
1644
|
"""
|
|
1602
|
-
Specifies the
|
|
1603
|
-
|
|
1604
|
-
Use `@conda_base` to set common libraries required by all
|
|
1605
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1645
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1606
1646
|
|
|
1647
|
+
Use `@pypi_base` to set common packages required by all
|
|
1648
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1607
1649
|
|
|
1608
1650
|
Parameters
|
|
1609
1651
|
----------
|
|
1610
|
-
packages : Dict[str, str], default {}
|
|
1652
|
+
packages : Dict[str, str], default: {}
|
|
1611
1653
|
Packages to use for this flow. The key is the name of the package
|
|
1612
1654
|
and the value is the version to use.
|
|
1613
|
-
|
|
1614
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1615
|
-
python : str, optional, default None
|
|
1655
|
+
python : str, optional, default: None
|
|
1616
1656
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1617
1657
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1618
|
-
disabled : bool, default False
|
|
1619
|
-
If set to True, disables Conda.
|
|
1620
1658
|
"""
|
|
1621
1659
|
...
|
|
1622
1660
|
|
|
1623
1661
|
@typing.overload
|
|
1624
|
-
def
|
|
1662
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1625
1663
|
...
|
|
1626
1664
|
|
|
1627
|
-
def
|
|
1665
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1628
1666
|
"""
|
|
1629
|
-
Specifies the
|
|
1630
|
-
|
|
1631
|
-
Use `@conda_base` to set common libraries required by all
|
|
1632
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1667
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1633
1668
|
|
|
1669
|
+
Use `@pypi_base` to set common packages required by all
|
|
1670
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1634
1671
|
|
|
1635
1672
|
Parameters
|
|
1636
1673
|
----------
|
|
1637
|
-
packages : Dict[str, str], default {}
|
|
1674
|
+
packages : Dict[str, str], default: {}
|
|
1638
1675
|
Packages to use for this flow. The key is the name of the package
|
|
1639
1676
|
and the value is the version to use.
|
|
1640
|
-
|
|
1641
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1642
|
-
python : str, optional, default None
|
|
1677
|
+
python : str, optional, default: None
|
|
1643
1678
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1644
1679
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1645
|
-
disabled : bool, default False
|
|
1646
|
-
If set to True, disables Conda.
|
|
1647
1680
|
"""
|
|
1648
1681
|
...
|
|
1649
1682
|
|
|
1650
|
-
|
|
1683
|
+
@typing.overload
|
|
1684
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1651
1685
|
"""
|
|
1652
|
-
|
|
1653
|
-
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
|
1654
|
-
|
|
1686
|
+
Specifies the event(s) that this flow depends on.
|
|
1655
1687
|
|
|
1656
|
-
|
|
1657
|
-
|
|
1658
|
-
|
|
1659
|
-
|
|
1660
|
-
|
|
1661
|
-
|
|
1662
|
-
|
|
1663
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1664
|
-
exponential_backoff : bool
|
|
1665
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1666
|
-
pool : str
|
|
1667
|
-
the slot pool this task should run in,
|
|
1668
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1669
|
-
soft_fail : bool
|
|
1670
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1671
|
-
name : str
|
|
1672
|
-
Name of the sensor on Airflow
|
|
1673
|
-
description : str
|
|
1674
|
-
Description of sensor in the Airflow UI
|
|
1675
|
-
external_dag_id : str
|
|
1676
|
-
The dag_id that contains the task you want to wait for.
|
|
1677
|
-
external_task_ids : List[str]
|
|
1678
|
-
The list of task_ids that you want to wait for.
|
|
1679
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
|
1680
|
-
allowed_states : List[str]
|
|
1681
|
-
Iterable of allowed states, (Default: ['success'])
|
|
1682
|
-
failed_states : List[str]
|
|
1683
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
|
1684
|
-
execution_delta : datetime.timedelta
|
|
1685
|
-
time difference with the previous execution to look at,
|
|
1686
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
|
1687
|
-
check_existence: bool
|
|
1688
|
-
Set to True to check if the external task exists or check if
|
|
1689
|
-
the DAG to wait for exists. (Default: True)
|
|
1690
|
-
"""
|
|
1691
|
-
...
|
|
1692
|
-
|
|
1693
|
-
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1694
|
-
"""
|
|
1695
|
-
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1696
|
-
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1697
|
-
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1698
|
-
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1699
|
-
starts only after all sensors finish.
|
|
1688
|
+
```
|
|
1689
|
+
@trigger(event='foo')
|
|
1690
|
+
```
|
|
1691
|
+
or
|
|
1692
|
+
```
|
|
1693
|
+
@trigger(events=['foo', 'bar'])
|
|
1694
|
+
```
|
|
1700
1695
|
|
|
1696
|
+
Additionally, you can specify the parameter mappings
|
|
1697
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1698
|
+
```
|
|
1699
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1700
|
+
```
|
|
1701
|
+
or
|
|
1702
|
+
```
|
|
1703
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1704
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1705
|
+
```
|
|
1701
1706
|
|
|
1702
|
-
|
|
1703
|
-
|
|
1704
|
-
|
|
1705
|
-
|
|
1706
|
-
|
|
1707
|
-
|
|
1708
|
-
|
|
1709
|
-
|
|
1710
|
-
exponential_backoff : bool
|
|
1711
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1712
|
-
pool : str
|
|
1713
|
-
the slot pool this task should run in,
|
|
1714
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1715
|
-
soft_fail : bool
|
|
1716
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1717
|
-
name : str
|
|
1718
|
-
Name of the sensor on Airflow
|
|
1719
|
-
description : str
|
|
1720
|
-
Description of sensor in the Airflow UI
|
|
1721
|
-
bucket_key : Union[str, List[str]]
|
|
1722
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1723
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1724
|
-
bucket_name : str
|
|
1725
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1726
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1727
|
-
wildcard_match : bool
|
|
1728
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1729
|
-
aws_conn_id : str
|
|
1730
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
|
1731
|
-
verify : bool
|
|
1732
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1733
|
-
"""
|
|
1734
|
-
...
|
|
1735
|
-
|
|
1736
|
-
@typing.overload
|
|
1737
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1738
|
-
"""
|
|
1739
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1707
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1708
|
+
```
|
|
1709
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1710
|
+
```
|
|
1711
|
+
This is equivalent to:
|
|
1712
|
+
```
|
|
1713
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1714
|
+
```
|
|
1740
1715
|
|
|
1741
|
-
Use `@pypi_base` to set common packages required by all
|
|
1742
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1743
1716
|
|
|
1744
1717
|
Parameters
|
|
1745
1718
|
----------
|
|
1746
|
-
|
|
1747
|
-
|
|
1748
|
-
|
|
1749
|
-
|
|
1750
|
-
|
|
1751
|
-
|
|
1719
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1720
|
+
Event dependency for this flow.
|
|
1721
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1722
|
+
Events dependency for this flow.
|
|
1723
|
+
options : Dict[str, Any], default {}
|
|
1724
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1752
1725
|
"""
|
|
1753
1726
|
...
|
|
1754
1727
|
|
|
1755
1728
|
@typing.overload
|
|
1756
|
-
def
|
|
1729
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1757
1730
|
...
|
|
1758
1731
|
|
|
1759
|
-
def
|
|
1732
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1760
1733
|
"""
|
|
1761
|
-
Specifies the
|
|
1734
|
+
Specifies the event(s) that this flow depends on.
|
|
1735
|
+
|
|
1736
|
+
```
|
|
1737
|
+
@trigger(event='foo')
|
|
1738
|
+
```
|
|
1739
|
+
or
|
|
1740
|
+
```
|
|
1741
|
+
@trigger(events=['foo', 'bar'])
|
|
1742
|
+
```
|
|
1743
|
+
|
|
1744
|
+
Additionally, you can specify the parameter mappings
|
|
1745
|
+
to map event payload to Metaflow parameters for the flow.
|
|
1746
|
+
```
|
|
1747
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1748
|
+
```
|
|
1749
|
+
or
|
|
1750
|
+
```
|
|
1751
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1752
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1753
|
+
```
|
|
1754
|
+
|
|
1755
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
1756
|
+
```
|
|
1757
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1758
|
+
```
|
|
1759
|
+
This is equivalent to:
|
|
1760
|
+
```
|
|
1761
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1762
|
+
```
|
|
1762
1763
|
|
|
1763
|
-
Use `@pypi_base` to set common packages required by all
|
|
1764
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1765
1764
|
|
|
1766
1765
|
Parameters
|
|
1767
1766
|
----------
|
|
1768
|
-
|
|
1769
|
-
|
|
1770
|
-
|
|
1771
|
-
|
|
1772
|
-
|
|
1773
|
-
|
|
1767
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
1768
|
+
Event dependency for this flow.
|
|
1769
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
1770
|
+
Events dependency for this flow.
|
|
1771
|
+
options : Dict[str, Any], default {}
|
|
1772
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
1774
1773
|
"""
|
|
1775
1774
|
...
|
|
1776
1775
|
|
|
@@ -1888,6 +1887,100 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1888
1887
|
"""
|
|
1889
1888
|
...
|
|
1890
1889
|
|
|
1890
|
+
@typing.overload
|
|
1891
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1892
|
+
"""
|
|
1893
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1894
|
+
|
|
1895
|
+
Use `@conda_base` to set common libraries required by all
|
|
1896
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1897
|
+
|
|
1898
|
+
|
|
1899
|
+
Parameters
|
|
1900
|
+
----------
|
|
1901
|
+
packages : Dict[str, str], default {}
|
|
1902
|
+
Packages to use for this flow. The key is the name of the package
|
|
1903
|
+
and the value is the version to use.
|
|
1904
|
+
libraries : Dict[str, str], default {}
|
|
1905
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1906
|
+
python : str, optional, default None
|
|
1907
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1908
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1909
|
+
disabled : bool, default False
|
|
1910
|
+
If set to True, disables Conda.
|
|
1911
|
+
"""
|
|
1912
|
+
...
|
|
1913
|
+
|
|
1914
|
+
@typing.overload
|
|
1915
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1916
|
+
...
|
|
1917
|
+
|
|
1918
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1919
|
+
"""
|
|
1920
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1921
|
+
|
|
1922
|
+
Use `@conda_base` to set common libraries required by all
|
|
1923
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1924
|
+
|
|
1925
|
+
|
|
1926
|
+
Parameters
|
|
1927
|
+
----------
|
|
1928
|
+
packages : Dict[str, str], default {}
|
|
1929
|
+
Packages to use for this flow. The key is the name of the package
|
|
1930
|
+
and the value is the version to use.
|
|
1931
|
+
libraries : Dict[str, str], default {}
|
|
1932
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1933
|
+
python : str, optional, default None
|
|
1934
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1935
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1936
|
+
disabled : bool, default False
|
|
1937
|
+
If set to True, disables Conda.
|
|
1938
|
+
"""
|
|
1939
|
+
...
|
|
1940
|
+
|
|
1941
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1942
|
+
"""
|
|
1943
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1944
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1945
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1946
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1947
|
+
starts only after all sensors finish.
|
|
1948
|
+
|
|
1949
|
+
|
|
1950
|
+
Parameters
|
|
1951
|
+
----------
|
|
1952
|
+
timeout : int
|
|
1953
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1954
|
+
poke_interval : int
|
|
1955
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1956
|
+
mode : str
|
|
1957
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1958
|
+
exponential_backoff : bool
|
|
1959
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1960
|
+
pool : str
|
|
1961
|
+
the slot pool this task should run in,
|
|
1962
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1963
|
+
soft_fail : bool
|
|
1964
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1965
|
+
name : str
|
|
1966
|
+
Name of the sensor on Airflow
|
|
1967
|
+
description : str
|
|
1968
|
+
Description of sensor in the Airflow UI
|
|
1969
|
+
bucket_key : Union[str, List[str]]
|
|
1970
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1971
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1972
|
+
bucket_name : str
|
|
1973
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1974
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1975
|
+
wildcard_match : bool
|
|
1976
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1977
|
+
aws_conn_id : str
|
|
1978
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1979
|
+
verify : bool
|
|
1980
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1981
|
+
"""
|
|
1982
|
+
...
|
|
1983
|
+
|
|
1891
1984
|
@typing.overload
|
|
1892
1985
|
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1893
1986
|
"""
|
|
@@ -1989,98 +2082,5 @@ def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *
|
|
|
1989
2082
|
"""
|
|
1990
2083
|
...
|
|
1991
2084
|
|
|
1992
|
-
@typing.overload
|
|
1993
|
-
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1994
|
-
"""
|
|
1995
|
-
Specifies the event(s) that this flow depends on.
|
|
1996
|
-
|
|
1997
|
-
```
|
|
1998
|
-
@trigger(event='foo')
|
|
1999
|
-
```
|
|
2000
|
-
or
|
|
2001
|
-
```
|
|
2002
|
-
@trigger(events=['foo', 'bar'])
|
|
2003
|
-
```
|
|
2004
|
-
|
|
2005
|
-
Additionally, you can specify the parameter mappings
|
|
2006
|
-
to map event payload to Metaflow parameters for the flow.
|
|
2007
|
-
```
|
|
2008
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
2009
|
-
```
|
|
2010
|
-
or
|
|
2011
|
-
```
|
|
2012
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
2013
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
2014
|
-
```
|
|
2015
|
-
|
|
2016
|
-
'parameters' can also be a list of strings and tuples like so:
|
|
2017
|
-
```
|
|
2018
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
2019
|
-
```
|
|
2020
|
-
This is equivalent to:
|
|
2021
|
-
```
|
|
2022
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
2023
|
-
```
|
|
2024
|
-
|
|
2025
|
-
|
|
2026
|
-
Parameters
|
|
2027
|
-
----------
|
|
2028
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
|
2029
|
-
Event dependency for this flow.
|
|
2030
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
|
2031
|
-
Events dependency for this flow.
|
|
2032
|
-
options : Dict[str, Any], default {}
|
|
2033
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
2034
|
-
"""
|
|
2035
|
-
...
|
|
2036
|
-
|
|
2037
|
-
@typing.overload
|
|
2038
|
-
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
2039
|
-
...
|
|
2040
|
-
|
|
2041
|
-
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
2042
|
-
"""
|
|
2043
|
-
Specifies the event(s) that this flow depends on.
|
|
2044
|
-
|
|
2045
|
-
```
|
|
2046
|
-
@trigger(event='foo')
|
|
2047
|
-
```
|
|
2048
|
-
or
|
|
2049
|
-
```
|
|
2050
|
-
@trigger(events=['foo', 'bar'])
|
|
2051
|
-
```
|
|
2052
|
-
|
|
2053
|
-
Additionally, you can specify the parameter mappings
|
|
2054
|
-
to map event payload to Metaflow parameters for the flow.
|
|
2055
|
-
```
|
|
2056
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
2057
|
-
```
|
|
2058
|
-
or
|
|
2059
|
-
```
|
|
2060
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
2061
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
2062
|
-
```
|
|
2063
|
-
|
|
2064
|
-
'parameters' can also be a list of strings and tuples like so:
|
|
2065
|
-
```
|
|
2066
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
2067
|
-
```
|
|
2068
|
-
This is equivalent to:
|
|
2069
|
-
```
|
|
2070
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
2071
|
-
```
|
|
2072
|
-
|
|
2073
|
-
|
|
2074
|
-
Parameters
|
|
2075
|
-
----------
|
|
2076
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
|
2077
|
-
Event dependency for this flow.
|
|
2078
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
|
2079
|
-
Events dependency for this flow.
|
|
2080
|
-
options : Dict[str, Any], default {}
|
|
2081
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
2082
|
-
"""
|
|
2083
|
-
...
|
|
2084
|
-
|
|
2085
2085
|
pkg_name: str
|
|
2086
2086
|
|