ob-metaflow-stubs 6.0.10.10__py2.py3-none-any.whl → 6.0.10.12__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ob-metaflow-stubs might be problematic. Click here for more details.
- metaflow-stubs/__init__.pyi +988 -987
- metaflow-stubs/cards.pyi +2 -2
- metaflow-stubs/cli.pyi +2 -2
- metaflow-stubs/cli_components/__init__.pyi +2 -2
- metaflow-stubs/cli_components/utils.pyi +2 -2
- metaflow-stubs/client/__init__.pyi +2 -2
- metaflow-stubs/client/core.pyi +6 -6
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +2 -2
- metaflow-stubs/flowspec.pyi +3 -3
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +13 -6
- metaflow-stubs/meta_files.pyi +2 -2
- metaflow-stubs/metadata_provider/__init__.pyi +2 -2
- metaflow-stubs/metadata_provider/heartbeat.pyi +2 -2
- metaflow-stubs/metadata_provider/metadata.pyi +3 -3
- metaflow-stubs/metadata_provider/util.pyi +2 -2
- metaflow-stubs/metaflow_config.pyi +2 -2
- metaflow-stubs/metaflow_current.pyi +76 -76
- metaflow-stubs/metaflow_git.pyi +2 -2
- metaflow-stubs/mf_extensions/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/__init__.pyi +6 -0
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/cards/hf_hub_card.pyi +93 -0
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +6 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +4 -4
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_state_machine.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/_vendor/spinner/spinners.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_cli.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/app_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/capsule.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/click_importer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/code_package/code_packager.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/cli_generator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/config_utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/schema_export.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/typed_configs.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/config/unified_config.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/dependencies.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/deployer.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/experimental/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/perimeters.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/apps/core/utils.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/aws/assume_role_decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/async_cards.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/baker.pyi +4 -4
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/docker_environment.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/fast_bakery/fast_bakery.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/kubernetes/pod_killer.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/constants.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/exceptions.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/status_card.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +3 -3
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +2 -2
- metaflow-stubs/mf_extensions/outerbounds/toplevel/s3_proxy.pyi +2 -2
- metaflow-stubs/multicore_utils.pyi +2 -2
- metaflow-stubs/ob_internal.pyi +2 -2
- metaflow-stubs/packaging_sys/__init__.pyi +7 -7
- metaflow-stubs/packaging_sys/backend.pyi +2 -2
- metaflow-stubs/packaging_sys/distribution_support.pyi +5 -5
- metaflow-stubs/packaging_sys/tar_backend.pyi +5 -5
- metaflow-stubs/packaging_sys/utils.pyi +2 -2
- metaflow-stubs/packaging_sys/v1.pyi +3 -3
- metaflow-stubs/parameters.pyi +4 -4
- metaflow-stubs/plugins/__init__.pyi +12 -11
- metaflow-stubs/plugins/airflow/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +2 -2
- metaflow-stubs/plugins/airflow/exception.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +2 -2
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +2 -2
- metaflow-stubs/plugins/argo/__init__.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_client.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_events.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +3 -3
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +4 -4
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/argo/exit_hooks.pyi +3 -3
- metaflow-stubs/plugins/aws/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_client.pyi +2 -2
- metaflow-stubs/plugins/aws/aws_utils.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +2 -2
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +5 -5
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +3 -3
- metaflow-stubs/plugins/azure/__init__.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_credential.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/azure/azure_utils.pyi +2 -2
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +2 -2
- metaflow-stubs/plugins/azure/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/cards/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_client.pyi +2 -2
- metaflow-stubs/plugins/cards/card_creator.pyi +2 -2
- metaflow-stubs/plugins/cards/card_datastore.pyi +2 -2
- metaflow-stubs/plugins/cards/card_decorator.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +3 -3
- metaflow-stubs/plugins/cards/card_modules/card.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/components.pyi +4 -4
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +2 -2
- metaflow-stubs/plugins/cards/card_resolver.pyi +2 -2
- metaflow-stubs/plugins/cards/component_serializer.pyi +2 -2
- metaflow-stubs/plugins/cards/exception.pyi +2 -2
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/local.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3.pyi +4 -4
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +2 -2
- metaflow-stubs/plugins/debug_logger.pyi +2 -2
- metaflow-stubs/plugins/debug_monitor.pyi +2 -2
- metaflow-stubs/plugins/environment_decorator.pyi +2 -2
- metaflow-stubs/plugins/events_decorator.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/__init__.pyi +2 -2
- metaflow-stubs/plugins/exit_hook/exit_hook_decorator.pyi +2 -2
- metaflow-stubs/plugins/frameworks/__init__.pyi +2 -2
- metaflow-stubs/plugins/frameworks/pytorch.pyi +2 -2
- metaflow-stubs/plugins/gcp/__init__.pyi +2 -2
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +3 -3
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_utils.pyi +2 -2
- metaflow-stubs/plugins/gcp/includefile_support.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/__init__.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +3 -3
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +2 -2
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +2 -2
- metaflow-stubs/plugins/ollama/__init__.pyi +3 -3
- metaflow-stubs/plugins/optuna/__init__.pyi +2 -2
- metaflow-stubs/plugins/parallel_decorator.pyi +2 -2
- metaflow-stubs/plugins/parsers.pyi +25 -0
- metaflow-stubs/plugins/perimeters.pyi +2 -2
- metaflow-stubs/plugins/project_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/__init__.pyi +3 -3
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_environment.pyi +3 -3
- metaflow-stubs/plugins/pypi/parsers.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +2 -2
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +2 -2
- metaflow-stubs/plugins/pypi/utils.pyi +2 -2
- metaflow-stubs/plugins/resources_decorator.pyi +2 -2
- metaflow-stubs/plugins/retry_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_func.pyi +2 -2
- metaflow-stubs/plugins/secrets/secrets_spec.pyi +2 -2
- metaflow-stubs/plugins/secrets/utils.pyi +2 -2
- metaflow-stubs/plugins/snowflake/__init__.pyi +2 -2
- metaflow-stubs/plugins/storage_executor.pyi +2 -2
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/plugins/torchtune/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/__init__.pyi +2 -2
- metaflow-stubs/plugins/uv/uv_environment.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +2 -2
- metaflow-stubs/pylint_wrapper.pyi +2 -2
- metaflow-stubs/runner/__init__.pyi +2 -2
- metaflow-stubs/runner/deployer.pyi +33 -33
- metaflow-stubs/runner/deployer_impl.pyi +2 -2
- metaflow-stubs/runner/metaflow_runner.pyi +4 -4
- metaflow-stubs/runner/nbdeploy.pyi +2 -2
- metaflow-stubs/runner/nbrun.pyi +2 -2
- metaflow-stubs/runner/subprocess_manager.pyi +2 -2
- metaflow-stubs/runner/utils.pyi +3 -3
- metaflow-stubs/system/__init__.pyi +2 -2
- metaflow-stubs/system/system_logger.pyi +2 -2
- metaflow-stubs/system/system_monitor.pyi +2 -2
- metaflow-stubs/tagging_util.pyi +2 -2
- metaflow-stubs/tuple_util.pyi +2 -2
- metaflow-stubs/user_configs/__init__.pyi +2 -2
- metaflow-stubs/user_configs/config_options.pyi +3 -3
- metaflow-stubs/user_configs/config_parameters.pyi +5 -5
- metaflow-stubs/user_decorators/__init__.pyi +2 -2
- metaflow-stubs/user_decorators/common.pyi +2 -2
- metaflow-stubs/user_decorators/mutable_flow.pyi +4 -4
- metaflow-stubs/user_decorators/mutable_step.pyi +5 -5
- metaflow-stubs/user_decorators/user_flow_decorator.pyi +5 -5
- metaflow-stubs/user_decorators/user_step_decorator.pyi +5 -5
- {ob_metaflow_stubs-6.0.10.10.dist-info → ob_metaflow_stubs-6.0.10.12.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.10.12.dist-info/RECORD +265 -0
- ob_metaflow_stubs-6.0.10.10.dist-info/RECORD +0 -262
- {ob_metaflow_stubs-6.0.10.10.dist-info → ob_metaflow_stubs-6.0.10.12.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.10.10.dist-info → ob_metaflow_stubs-6.0.10.12.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
######################################################################################################
|
|
2
2
|
# Auto-generated Metaflow stub file #
|
|
3
|
-
# MF version: 2.18.
|
|
4
|
-
# Generated on 2025-09-
|
|
3
|
+
# MF version: 2.18.9.1+obcheckpoint(0.2.8);ob(v1) #
|
|
4
|
+
# Generated on 2025-09-30T17:31:30.391243 #
|
|
5
5
|
######################################################################################################
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
@@ -39,17 +39,18 @@ from .user_decorators.user_step_decorator import UserStepDecorator as UserStepDe
|
|
|
39
39
|
from .user_decorators.user_step_decorator import StepMutator as StepMutator
|
|
40
40
|
from .user_decorators.user_step_decorator import user_step_decorator as user_step_decorator
|
|
41
41
|
from .user_decorators.user_flow_decorator import FlowMutator as FlowMutator
|
|
42
|
-
from . import
|
|
42
|
+
from . import events as events
|
|
43
43
|
from . import cards as cards
|
|
44
|
+
from . import tuple_util as tuple_util
|
|
44
45
|
from . import metaflow_git as metaflow_git
|
|
45
|
-
from . import events as events
|
|
46
46
|
from . import runner as runner
|
|
47
47
|
from . import plugins as plugins
|
|
48
48
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
|
49
49
|
from . import includefile as includefile
|
|
50
50
|
from .includefile import IncludeFile as IncludeFile
|
|
51
|
-
from .plugins.
|
|
51
|
+
from .plugins.parsers import yaml_parser as yaml_parser
|
|
52
52
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
|
53
|
+
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
|
53
54
|
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
|
54
55
|
from . import client as client
|
|
55
56
|
from .client.core import namespace as namespace
|
|
@@ -169,21 +170,149 @@ def step(f: typing.Union[typing.Callable[[FlowSpecDerived], None], typing.Callab
|
|
|
169
170
|
...
|
|
170
171
|
|
|
171
172
|
@typing.overload
|
|
172
|
-
def
|
|
173
|
+
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
173
174
|
"""
|
|
174
|
-
|
|
175
|
-
|
|
175
|
+
Enables checkpointing for a step.
|
|
176
|
+
|
|
177
|
+
> Examples
|
|
178
|
+
|
|
179
|
+
- Saving Checkpoints
|
|
180
|
+
|
|
181
|
+
```python
|
|
182
|
+
@checkpoint
|
|
183
|
+
@step
|
|
184
|
+
def train(self):
|
|
185
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
186
|
+
for i in range(self.epochs):
|
|
187
|
+
# some training logic
|
|
188
|
+
loss = model.train(self.dataset)
|
|
189
|
+
if i % 10 == 0:
|
|
190
|
+
model.save(
|
|
191
|
+
current.checkpoint.directory,
|
|
192
|
+
)
|
|
193
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
194
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
195
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
196
|
+
name="epoch_checkpoint",
|
|
197
|
+
metadata={
|
|
198
|
+
"epoch": i,
|
|
199
|
+
"loss": loss,
|
|
200
|
+
}
|
|
201
|
+
)
|
|
202
|
+
```
|
|
203
|
+
|
|
204
|
+
- Using Loaded Checkpoints
|
|
205
|
+
|
|
206
|
+
```python
|
|
207
|
+
@retry(times=3)
|
|
208
|
+
@checkpoint
|
|
209
|
+
@step
|
|
210
|
+
def train(self):
|
|
211
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
212
|
+
# saved a checkpoint
|
|
213
|
+
checkpoint_path = None
|
|
214
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
215
|
+
print("Loaded checkpoint from the previous attempt")
|
|
216
|
+
checkpoint_path = current.checkpoint.directory
|
|
217
|
+
|
|
218
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
219
|
+
for i in range(self.epochs):
|
|
220
|
+
...
|
|
221
|
+
```
|
|
222
|
+
|
|
223
|
+
|
|
224
|
+
Parameters
|
|
225
|
+
----------
|
|
226
|
+
load_policy : str, default: "fresh"
|
|
227
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
228
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
229
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
230
|
+
will be loaded at the start of the task.
|
|
231
|
+
- "none": Do not load any checkpoint
|
|
232
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
233
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
234
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
235
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
236
|
+
|
|
237
|
+
temp_dir_root : str, default: None
|
|
238
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
176
239
|
"""
|
|
177
240
|
...
|
|
178
241
|
|
|
179
242
|
@typing.overload
|
|
180
|
-
def
|
|
243
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
181
244
|
...
|
|
182
245
|
|
|
183
|
-
|
|
246
|
+
@typing.overload
|
|
247
|
+
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
248
|
+
...
|
|
249
|
+
|
|
250
|
+
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
184
251
|
"""
|
|
185
|
-
|
|
186
|
-
|
|
252
|
+
Enables checkpointing for a step.
|
|
253
|
+
|
|
254
|
+
> Examples
|
|
255
|
+
|
|
256
|
+
- Saving Checkpoints
|
|
257
|
+
|
|
258
|
+
```python
|
|
259
|
+
@checkpoint
|
|
260
|
+
@step
|
|
261
|
+
def train(self):
|
|
262
|
+
model = create_model(self.parameters, checkpoint_path = None)
|
|
263
|
+
for i in range(self.epochs):
|
|
264
|
+
# some training logic
|
|
265
|
+
loss = model.train(self.dataset)
|
|
266
|
+
if i % 10 == 0:
|
|
267
|
+
model.save(
|
|
268
|
+
current.checkpoint.directory,
|
|
269
|
+
)
|
|
270
|
+
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
271
|
+
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
272
|
+
self.latest_checkpoint = current.checkpoint.save(
|
|
273
|
+
name="epoch_checkpoint",
|
|
274
|
+
metadata={
|
|
275
|
+
"epoch": i,
|
|
276
|
+
"loss": loss,
|
|
277
|
+
}
|
|
278
|
+
)
|
|
279
|
+
```
|
|
280
|
+
|
|
281
|
+
- Using Loaded Checkpoints
|
|
282
|
+
|
|
283
|
+
```python
|
|
284
|
+
@retry(times=3)
|
|
285
|
+
@checkpoint
|
|
286
|
+
@step
|
|
287
|
+
def train(self):
|
|
288
|
+
# Assume that the task has restarted and the previous attempt of the task
|
|
289
|
+
# saved a checkpoint
|
|
290
|
+
checkpoint_path = None
|
|
291
|
+
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
292
|
+
print("Loaded checkpoint from the previous attempt")
|
|
293
|
+
checkpoint_path = current.checkpoint.directory
|
|
294
|
+
|
|
295
|
+
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
296
|
+
for i in range(self.epochs):
|
|
297
|
+
...
|
|
298
|
+
```
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
Parameters
|
|
302
|
+
----------
|
|
303
|
+
load_policy : str, default: "fresh"
|
|
304
|
+
The policy for loading the checkpoint. The following policies are supported:
|
|
305
|
+
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
306
|
+
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
307
|
+
will be loaded at the start of the task.
|
|
308
|
+
- "none": Do not load any checkpoint
|
|
309
|
+
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
310
|
+
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
311
|
+
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
312
|
+
created within the task will be loaded when the task is retries execution on failure.
|
|
313
|
+
|
|
314
|
+
temp_dir_root : str, default: None
|
|
315
|
+
The root directory under which `current.checkpoint.directory` will be created.
|
|
187
316
|
"""
|
|
188
317
|
...
|
|
189
318
|
|
|
@@ -316,36 +445,19 @@ def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
316
445
|
"""
|
|
317
446
|
...
|
|
318
447
|
|
|
319
|
-
|
|
320
|
-
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
321
|
-
"""
|
|
322
|
-
Specifies environment variables to be set prior to the execution of a step.
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
Parameters
|
|
326
|
-
----------
|
|
327
|
-
vars : Dict[str, str], default {}
|
|
328
|
-
Dictionary of environment variables to set.
|
|
329
|
-
"""
|
|
330
|
-
...
|
|
331
|
-
|
|
332
|
-
@typing.overload
|
|
333
|
-
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
334
|
-
...
|
|
335
|
-
|
|
336
|
-
@typing.overload
|
|
337
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
338
|
-
...
|
|
339
|
-
|
|
340
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
448
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
341
449
|
"""
|
|
342
|
-
Specifies
|
|
450
|
+
Specifies that this step should execute on DGX cloud.
|
|
343
451
|
|
|
344
452
|
|
|
345
453
|
Parameters
|
|
346
454
|
----------
|
|
347
|
-
|
|
348
|
-
|
|
455
|
+
gpu : int
|
|
456
|
+
Number of GPUs to use.
|
|
457
|
+
gpu_type : str
|
|
458
|
+
Type of Nvidia GPU to use.
|
|
459
|
+
queue_timeout : int
|
|
460
|
+
Time to keep the job in NVCF's queue.
|
|
349
461
|
"""
|
|
350
462
|
...
|
|
351
463
|
|
|
@@ -400,233 +512,54 @@ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
|
400
512
|
"""
|
|
401
513
|
...
|
|
402
514
|
|
|
403
|
-
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
404
|
-
"""
|
|
405
|
-
Specifies that this step should execute on DGX cloud.
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
Parameters
|
|
409
|
-
----------
|
|
410
|
-
gpu : int
|
|
411
|
-
Number of GPUs to use.
|
|
412
|
-
gpu_type : str
|
|
413
|
-
Type of Nvidia GPU to use.
|
|
414
|
-
queue_timeout : int
|
|
415
|
-
Time to keep the job in NVCF's queue.
|
|
416
|
-
"""
|
|
417
|
-
...
|
|
418
|
-
|
|
419
515
|
@typing.overload
|
|
420
|
-
def
|
|
516
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
421
517
|
"""
|
|
422
|
-
Specifies
|
|
423
|
-
|
|
424
|
-
|
|
425
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
|
426
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
427
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
428
|
-
|
|
429
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
430
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
|
431
|
-
ensuring that the flow execution can continue.
|
|
518
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
519
|
+
the execution of a step.
|
|
432
520
|
|
|
433
521
|
|
|
434
522
|
Parameters
|
|
435
523
|
----------
|
|
436
|
-
|
|
437
|
-
|
|
438
|
-
|
|
439
|
-
|
|
524
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
525
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
526
|
+
role : str, optional, default: None
|
|
527
|
+
Role to use for fetching secrets
|
|
440
528
|
"""
|
|
441
529
|
...
|
|
442
530
|
|
|
443
531
|
@typing.overload
|
|
444
|
-
def
|
|
532
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
445
533
|
...
|
|
446
534
|
|
|
447
535
|
@typing.overload
|
|
448
|
-
def
|
|
536
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
449
537
|
...
|
|
450
538
|
|
|
451
|
-
def
|
|
539
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None):
|
|
452
540
|
"""
|
|
453
|
-
Specifies
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
|
457
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
458
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
|
459
|
-
|
|
460
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
461
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
|
462
|
-
ensuring that the flow execution can continue.
|
|
541
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
|
542
|
+
the execution of a step.
|
|
463
543
|
|
|
464
544
|
|
|
465
545
|
Parameters
|
|
466
546
|
----------
|
|
467
|
-
|
|
468
|
-
|
|
469
|
-
|
|
470
|
-
|
|
547
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
|
548
|
+
List of secret specs, defining how the secrets are to be retrieved
|
|
549
|
+
role : str, optional, default: None
|
|
550
|
+
Role to use for fetching secrets
|
|
471
551
|
"""
|
|
472
552
|
...
|
|
473
553
|
|
|
474
|
-
|
|
475
|
-
def checkpoint(*, load_policy: str = 'fresh', temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
554
|
+
def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
476
555
|
"""
|
|
477
|
-
|
|
556
|
+
`@nebius_s3_proxy` is a Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
557
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
558
|
+
a Neo Cloud like Nebius. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
478
559
|
|
|
479
|
-
> Examples
|
|
480
560
|
|
|
481
|
-
|
|
482
|
-
|
|
483
|
-
```python
|
|
484
|
-
@checkpoint
|
|
485
|
-
@step
|
|
486
|
-
def train(self):
|
|
487
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
488
|
-
for i in range(self.epochs):
|
|
489
|
-
# some training logic
|
|
490
|
-
loss = model.train(self.dataset)
|
|
491
|
-
if i % 10 == 0:
|
|
492
|
-
model.save(
|
|
493
|
-
current.checkpoint.directory,
|
|
494
|
-
)
|
|
495
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
496
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
497
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
498
|
-
name="epoch_checkpoint",
|
|
499
|
-
metadata={
|
|
500
|
-
"epoch": i,
|
|
501
|
-
"loss": loss,
|
|
502
|
-
}
|
|
503
|
-
)
|
|
504
|
-
```
|
|
505
|
-
|
|
506
|
-
- Using Loaded Checkpoints
|
|
507
|
-
|
|
508
|
-
```python
|
|
509
|
-
@retry(times=3)
|
|
510
|
-
@checkpoint
|
|
511
|
-
@step
|
|
512
|
-
def train(self):
|
|
513
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
514
|
-
# saved a checkpoint
|
|
515
|
-
checkpoint_path = None
|
|
516
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
517
|
-
print("Loaded checkpoint from the previous attempt")
|
|
518
|
-
checkpoint_path = current.checkpoint.directory
|
|
519
|
-
|
|
520
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
521
|
-
for i in range(self.epochs):
|
|
522
|
-
...
|
|
523
|
-
```
|
|
524
|
-
|
|
525
|
-
|
|
526
|
-
Parameters
|
|
527
|
-
----------
|
|
528
|
-
load_policy : str, default: "fresh"
|
|
529
|
-
The policy for loading the checkpoint. The following policies are supported:
|
|
530
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
531
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
532
|
-
will be loaded at the start of the task.
|
|
533
|
-
- "none": Do not load any checkpoint
|
|
534
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
535
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
536
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
537
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
538
|
-
|
|
539
|
-
temp_dir_root : str, default: None
|
|
540
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
541
|
-
"""
|
|
542
|
-
...
|
|
543
|
-
|
|
544
|
-
@typing.overload
|
|
545
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
546
|
-
...
|
|
547
|
-
|
|
548
|
-
@typing.overload
|
|
549
|
-
def checkpoint(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
550
|
-
...
|
|
551
|
-
|
|
552
|
-
def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load_policy: str = 'fresh', temp_dir_root: str = None):
|
|
553
|
-
"""
|
|
554
|
-
Enables checkpointing for a step.
|
|
555
|
-
|
|
556
|
-
> Examples
|
|
557
|
-
|
|
558
|
-
- Saving Checkpoints
|
|
559
|
-
|
|
560
|
-
```python
|
|
561
|
-
@checkpoint
|
|
562
|
-
@step
|
|
563
|
-
def train(self):
|
|
564
|
-
model = create_model(self.parameters, checkpoint_path = None)
|
|
565
|
-
for i in range(self.epochs):
|
|
566
|
-
# some training logic
|
|
567
|
-
loss = model.train(self.dataset)
|
|
568
|
-
if i % 10 == 0:
|
|
569
|
-
model.save(
|
|
570
|
-
current.checkpoint.directory,
|
|
571
|
-
)
|
|
572
|
-
# saves the contents of the `current.checkpoint.directory` as a checkpoint
|
|
573
|
-
# and returns a reference dictionary to the checkpoint saved in the datastore
|
|
574
|
-
self.latest_checkpoint = current.checkpoint.save(
|
|
575
|
-
name="epoch_checkpoint",
|
|
576
|
-
metadata={
|
|
577
|
-
"epoch": i,
|
|
578
|
-
"loss": loss,
|
|
579
|
-
}
|
|
580
|
-
)
|
|
581
|
-
```
|
|
582
|
-
|
|
583
|
-
- Using Loaded Checkpoints
|
|
584
|
-
|
|
585
|
-
```python
|
|
586
|
-
@retry(times=3)
|
|
587
|
-
@checkpoint
|
|
588
|
-
@step
|
|
589
|
-
def train(self):
|
|
590
|
-
# Assume that the task has restarted and the previous attempt of the task
|
|
591
|
-
# saved a checkpoint
|
|
592
|
-
checkpoint_path = None
|
|
593
|
-
if current.checkpoint.is_loaded: # Check if a checkpoint is loaded
|
|
594
|
-
print("Loaded checkpoint from the previous attempt")
|
|
595
|
-
checkpoint_path = current.checkpoint.directory
|
|
596
|
-
|
|
597
|
-
model = create_model(self.parameters, checkpoint_path = checkpoint_path)
|
|
598
|
-
for i in range(self.epochs):
|
|
599
|
-
...
|
|
600
|
-
```
|
|
601
|
-
|
|
602
|
-
|
|
603
|
-
Parameters
|
|
604
|
-
----------
|
|
605
|
-
load_policy : str, default: "fresh"
|
|
606
|
-
The policy for loading the checkpoint. The following policies are supported:
|
|
607
|
-
- "eager": Loads the the latest available checkpoint within the namespace.
|
|
608
|
-
With this mode, the latest checkpoint written by any previous task (can be even a different run) of the step
|
|
609
|
-
will be loaded at the start of the task.
|
|
610
|
-
- "none": Do not load any checkpoint
|
|
611
|
-
- "fresh": Loads the lastest checkpoint created within the running Task.
|
|
612
|
-
This mode helps loading checkpoints across various retry attempts of the same task.
|
|
613
|
-
With this mode, no checkpoint will be loaded at the start of a task but any checkpoints
|
|
614
|
-
created within the task will be loaded when the task is retries execution on failure.
|
|
615
|
-
|
|
616
|
-
temp_dir_root : str, default: None
|
|
617
|
-
The root directory under which `current.checkpoint.directory` will be created.
|
|
618
|
-
"""
|
|
619
|
-
...
|
|
620
|
-
|
|
621
|
-
def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
622
|
-
"""
|
|
623
|
-
`@nebius_s3_proxy` is a Nebius-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
624
|
-
It exists to make it easier for users to know that this decorator should only be used with
|
|
625
|
-
a Neo Cloud like Nebius. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
626
|
-
|
|
627
|
-
|
|
628
|
-
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
629
|
-
for S3 read and write requests.
|
|
561
|
+
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
562
|
+
for S3 read and write requests.
|
|
630
563
|
|
|
631
564
|
This decorator requires an integration in the Outerbounds platform that
|
|
632
565
|
points to an external bucket. It affects S3 operations performed via
|
|
@@ -682,268 +615,188 @@ def nebius_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode
|
|
|
682
615
|
"""
|
|
683
616
|
...
|
|
684
617
|
|
|
685
|
-
|
|
618
|
+
@typing.overload
|
|
619
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
686
620
|
"""
|
|
687
|
-
Specifies
|
|
621
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
688
622
|
|
|
689
623
|
|
|
690
624
|
Parameters
|
|
691
625
|
----------
|
|
692
|
-
|
|
693
|
-
|
|
694
|
-
also present, the maximum value from all decorators is used.
|
|
695
|
-
memory : int, default 4096
|
|
696
|
-
Memory size (in MB) required for this step. If
|
|
697
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
698
|
-
used.
|
|
699
|
-
disk : int, default 10240
|
|
700
|
-
Disk size (in MB) required for this step. If
|
|
701
|
-
`@resources` is also present, the maximum value from all decorators is
|
|
702
|
-
used.
|
|
703
|
-
image : str, optional, default None
|
|
704
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
|
705
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
706
|
-
not, a default Docker image mapping to the current version of Python is used.
|
|
707
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
708
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
709
|
-
image_pull_secrets: List[str], default []
|
|
710
|
-
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
711
|
-
Kubernetes image pull secrets to use when pulling container images
|
|
712
|
-
in Kubernetes.
|
|
713
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
714
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
|
715
|
-
secrets : List[str], optional, default None
|
|
716
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
717
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
718
|
-
in Metaflow configuration.
|
|
719
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
|
720
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
|
721
|
-
Can be passed in as a comma separated string of values e.g.
|
|
722
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
723
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
724
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
725
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
726
|
-
gpu : int, optional, default None
|
|
727
|
-
Number of GPUs required for this step. A value of zero implies that
|
|
728
|
-
the scheduled node should not have GPUs.
|
|
729
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
730
|
-
The vendor of the GPUs to be used for this step.
|
|
731
|
-
tolerations : List[Dict[str,str]], default []
|
|
732
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
733
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
734
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
735
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
|
736
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
737
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
738
|
-
use_tmpfs : bool, default False
|
|
739
|
-
This enables an explicit tmpfs mount for this step.
|
|
740
|
-
tmpfs_tempdir : bool, default True
|
|
741
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
742
|
-
tmpfs_size : int, optional, default: None
|
|
743
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
744
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
745
|
-
memory allocated for this step.
|
|
746
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
|
747
|
-
Path to tmpfs mount for this step.
|
|
748
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
|
749
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
750
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
751
|
-
shared_memory: int, optional
|
|
752
|
-
Shared memory size (in MiB) required for this step
|
|
753
|
-
port: int, optional
|
|
754
|
-
Port number to specify in the Kubernetes job object
|
|
755
|
-
compute_pool : str, optional, default None
|
|
756
|
-
Compute pool to be used for for this step.
|
|
757
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
|
758
|
-
hostname_resolution_timeout: int, default 10 * 60
|
|
759
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
760
|
-
Only applicable when @parallel is used.
|
|
761
|
-
qos: str, default: Burstable
|
|
762
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
763
|
-
|
|
764
|
-
security_context: Dict[str, Any], optional, default None
|
|
765
|
-
Container security context. Applies to the task container. Allows the following keys:
|
|
766
|
-
- privileged: bool, optional, default None
|
|
767
|
-
- allow_privilege_escalation: bool, optional, default None
|
|
768
|
-
- run_as_user: int, optional, default None
|
|
769
|
-
- run_as_group: int, optional, default None
|
|
770
|
-
- run_as_non_root: bool, optional, default None
|
|
626
|
+
vars : Dict[str, str], default {}
|
|
627
|
+
Dictionary of environment variables to set.
|
|
771
628
|
"""
|
|
772
629
|
...
|
|
773
630
|
|
|
774
|
-
|
|
631
|
+
@typing.overload
|
|
632
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
633
|
+
...
|
|
634
|
+
|
|
635
|
+
@typing.overload
|
|
636
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
637
|
+
...
|
|
638
|
+
|
|
639
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
|
775
640
|
"""
|
|
776
|
-
|
|
777
|
-
for S3 read and write requests.
|
|
778
|
-
|
|
779
|
-
This decorator requires an integration in the Outerbounds platform that
|
|
780
|
-
points to an external bucket. It affects S3 operations performed via
|
|
781
|
-
Metaflow's `get_aws_client` and `S3` within a `@step`.
|
|
782
|
-
|
|
783
|
-
Read operations
|
|
784
|
-
---------------
|
|
785
|
-
All read operations pass through the proxy. If an object does not already
|
|
786
|
-
exist in the external bucket, it is cached there. For example, if code reads
|
|
787
|
-
from buckets `FOO` and `BAR` using the `S3` interface, objects from both
|
|
788
|
-
buckets are cached in the external bucket.
|
|
789
|
-
|
|
790
|
-
During task execution, all S3‑related read requests are routed through the
|
|
791
|
-
proxy:
|
|
792
|
-
- If the object is present in the external object store, the proxy
|
|
793
|
-
streams it directly from there without accessing the requested origin
|
|
794
|
-
bucket.
|
|
795
|
-
- If the object is not present in the external storage, the proxy
|
|
796
|
-
fetches it from the requested bucket, caches it in the external
|
|
797
|
-
storage, and streams the response from the origin bucket.
|
|
798
|
-
|
|
799
|
-
Warning
|
|
800
|
-
-------
|
|
801
|
-
All READ operations (e.g., GetObject, HeadObject) pass through the external
|
|
802
|
-
bucket regardless of the bucket specified in user code. Even
|
|
803
|
-
`S3(run=self)` and `S3(s3root="mybucketfoo")` requests go through the
|
|
804
|
-
external bucket cache.
|
|
805
|
-
|
|
806
|
-
Write operations
|
|
807
|
-
----------------
|
|
808
|
-
Write behavior is controlled by the `write_mode` parameter, which determines
|
|
809
|
-
whether writes also persist objects in the cache.
|
|
810
|
-
|
|
811
|
-
`write_mode` values:
|
|
812
|
-
- `origin-and-cache`: objects are written both to the cache and to their
|
|
813
|
-
intended origin bucket.
|
|
814
|
-
- `origin`: objects are written only to their intended origin bucket.
|
|
641
|
+
Specifies environment variables to be set prior to the execution of a step.
|
|
815
642
|
|
|
816
643
|
|
|
817
644
|
Parameters
|
|
818
645
|
----------
|
|
819
|
-
|
|
820
|
-
|
|
821
|
-
that holds the configuration for the external, S3‑compatible object
|
|
822
|
-
storage bucket. If not specified, the only available S3 proxy
|
|
823
|
-
integration in the namespace is used (fails if multiple exist).
|
|
824
|
-
write_mode : str, optional
|
|
825
|
-
Controls whether writes also go to the external bucket.
|
|
826
|
-
- `origin` (default)
|
|
827
|
-
- `origin-and-cache`
|
|
828
|
-
debug : bool, optional
|
|
829
|
-
Enables debug logging for proxy operations.
|
|
646
|
+
vars : Dict[str, str], default {}
|
|
647
|
+
Dictionary of environment variables to set.
|
|
830
648
|
"""
|
|
831
649
|
...
|
|
832
650
|
|
|
833
|
-
|
|
651
|
+
@typing.overload
|
|
652
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
834
653
|
"""
|
|
835
|
-
Decorator
|
|
654
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
655
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
656
|
+
"""
|
|
657
|
+
...
|
|
658
|
+
|
|
659
|
+
@typing.overload
|
|
660
|
+
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
661
|
+
...
|
|
662
|
+
|
|
663
|
+
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
664
|
+
"""
|
|
665
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
666
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
667
|
+
"""
|
|
668
|
+
...
|
|
669
|
+
|
|
670
|
+
@typing.overload
|
|
671
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
672
|
+
"""
|
|
673
|
+
Specifies the number of times the task corresponding
|
|
674
|
+
to a step needs to be retried.
|
|
836
675
|
|
|
837
|
-
|
|
838
|
-
|
|
676
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
677
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
678
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
839
679
|
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
|
|
843
|
-
@step
|
|
844
|
-
def pull_model_from_huggingface(self):
|
|
845
|
-
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
846
|
-
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
847
|
-
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
848
|
-
# value of the function is a reference to the model in the backend storage.
|
|
849
|
-
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
680
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
681
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
682
|
+
ensuring that the flow execution can continue.
|
|
850
683
|
|
|
851
|
-
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
852
|
-
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
853
|
-
repo_id=self.model_id,
|
|
854
|
-
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
855
|
-
)
|
|
856
|
-
self.next(self.train)
|
|
857
684
|
|
|
858
|
-
|
|
859
|
-
|
|
860
|
-
|
|
861
|
-
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
|
|
865
|
-
|
|
866
|
-
|
|
867
|
-
|
|
868
|
-
|
|
869
|
-
|
|
685
|
+
Parameters
|
|
686
|
+
----------
|
|
687
|
+
times : int, default 3
|
|
688
|
+
Number of times to retry this task.
|
|
689
|
+
minutes_between_retries : int, default 2
|
|
690
|
+
Number of minutes between retries.
|
|
691
|
+
"""
|
|
692
|
+
...
|
|
693
|
+
|
|
694
|
+
@typing.overload
|
|
695
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
696
|
+
...
|
|
697
|
+
|
|
698
|
+
@typing.overload
|
|
699
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
700
|
+
...
|
|
701
|
+
|
|
702
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
|
703
|
+
"""
|
|
704
|
+
Specifies the number of times the task corresponding
|
|
705
|
+
to a step needs to be retried.
|
|
870
706
|
|
|
871
|
-
|
|
707
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
|
708
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
|
709
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
|
872
710
|
|
|
873
|
-
|
|
874
|
-
|
|
875
|
-
|
|
876
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
711
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
|
712
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
|
713
|
+
ensuring that the flow execution can continue.
|
|
877
714
|
|
|
878
|
-
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora", "/my-lora-directory")])
|
|
879
|
-
@step
|
|
880
|
-
def finetune_model(self):
|
|
881
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
882
|
-
# path_to_model will be /my-directory
|
|
883
715
|
|
|
716
|
+
Parameters
|
|
717
|
+
----------
|
|
718
|
+
times : int, default 3
|
|
719
|
+
Number of times to retry this task.
|
|
720
|
+
minutes_between_retries : int, default 2
|
|
721
|
+
Number of minutes between retries.
|
|
722
|
+
"""
|
|
723
|
+
...
|
|
724
|
+
|
|
725
|
+
@typing.overload
|
|
726
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
727
|
+
"""
|
|
728
|
+
Specifies a timeout for your step.
|
|
884
729
|
|
|
885
|
-
|
|
886
|
-
# except for `local_dir`
|
|
887
|
-
@huggingface_hub(load=[
|
|
888
|
-
{
|
|
889
|
-
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
890
|
-
},
|
|
891
|
-
{
|
|
892
|
-
"repo_id": "myorg/mistral-lora",
|
|
893
|
-
"repo_type": "model",
|
|
894
|
-
},
|
|
895
|
-
])
|
|
896
|
-
@step
|
|
897
|
-
def finetune_model(self):
|
|
898
|
-
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
899
|
-
# path_to_model will be /my-directory
|
|
900
|
-
```
|
|
730
|
+
This decorator is useful if this step may hang indefinitely.
|
|
901
731
|
|
|
732
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
733
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
734
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
902
735
|
|
|
903
|
-
|
|
904
|
-
|
|
905
|
-
temp_dir_root : str, optional
|
|
906
|
-
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
736
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
737
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
907
738
|
|
|
908
|
-
cache_scope : str, optional
|
|
909
|
-
The scope of the cache. Can be `checkpoint` / `flow` / `global`.
|
|
910
|
-
- `checkpoint` (default): All repos are stored like objects saved by `@checkpoint`.
|
|
911
|
-
i.e., the cached path is derived from the namespace, flow, step, and Metaflow foreach iteration.
|
|
912
|
-
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
913
739
|
|
|
914
|
-
|
|
915
|
-
|
|
916
|
-
|
|
740
|
+
Parameters
|
|
741
|
+
----------
|
|
742
|
+
seconds : int, default 0
|
|
743
|
+
Number of seconds to wait prior to timing out.
|
|
744
|
+
minutes : int, default 0
|
|
745
|
+
Number of minutes to wait prior to timing out.
|
|
746
|
+
hours : int, default 0
|
|
747
|
+
Number of hours to wait prior to timing out.
|
|
748
|
+
"""
|
|
749
|
+
...
|
|
750
|
+
|
|
751
|
+
@typing.overload
|
|
752
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
753
|
+
...
|
|
754
|
+
|
|
755
|
+
@typing.overload
|
|
756
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
757
|
+
...
|
|
758
|
+
|
|
759
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
|
760
|
+
"""
|
|
761
|
+
Specifies a timeout for your step.
|
|
917
762
|
|
|
918
|
-
|
|
919
|
-
i.e., the base path of the cache is static and all repos are stored under it.
|
|
920
|
-
When to use this mode:
|
|
921
|
-
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
922
|
-
- Each caching scope comes with its own trade-offs:
|
|
923
|
-
- `checkpoint`:
|
|
924
|
-
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
925
|
-
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
926
|
-
- `flow`:
|
|
927
|
-
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
928
|
-
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
929
|
-
- It doesn't promote cache reuse across flows.
|
|
930
|
-
- `global`:
|
|
931
|
-
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
932
|
-
- It promotes cache reuse across flows.
|
|
933
|
-
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
763
|
+
This decorator is useful if this step may hang indefinitely.
|
|
934
764
|
|
|
935
|
-
|
|
936
|
-
|
|
765
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
766
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
767
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
937
768
|
|
|
938
|
-
|
|
769
|
+
Note that all the values specified in parameters are added together so if you specify
|
|
770
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
939
771
|
|
|
940
|
-
- If repo (model/dataset) is not found in the datastore:
|
|
941
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
942
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
943
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
944
772
|
|
|
945
|
-
|
|
946
|
-
|
|
773
|
+
Parameters
|
|
774
|
+
----------
|
|
775
|
+
seconds : int, default 0
|
|
776
|
+
Number of seconds to wait prior to timing out.
|
|
777
|
+
minutes : int, default 0
|
|
778
|
+
Number of minutes to wait prior to timing out.
|
|
779
|
+
hours : int, default 0
|
|
780
|
+
Number of hours to wait prior to timing out.
|
|
781
|
+
"""
|
|
782
|
+
...
|
|
783
|
+
|
|
784
|
+
@typing.overload
|
|
785
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
786
|
+
"""
|
|
787
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
788
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
789
|
+
"""
|
|
790
|
+
...
|
|
791
|
+
|
|
792
|
+
@typing.overload
|
|
793
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
794
|
+
...
|
|
795
|
+
|
|
796
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
797
|
+
"""
|
|
798
|
+
Decorator prototype for all step decorators. This function gets specialized
|
|
799
|
+
and imported for all decorators types by _import_plugin_decorators().
|
|
947
800
|
"""
|
|
948
801
|
...
|
|
949
802
|
|
|
@@ -964,13 +817,72 @@ def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepF
|
|
|
964
817
|
"""
|
|
965
818
|
...
|
|
966
819
|
|
|
967
|
-
def
|
|
820
|
+
def nvct(*, gpu: int, gpu_type: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
968
821
|
"""
|
|
969
|
-
|
|
970
|
-
|
|
971
|
-
|
|
822
|
+
Specifies that this step should execute on DGX cloud.
|
|
823
|
+
|
|
824
|
+
|
|
825
|
+
Parameters
|
|
826
|
+
----------
|
|
827
|
+
gpu : int
|
|
828
|
+
Number of GPUs to use.
|
|
829
|
+
gpu_type : str
|
|
830
|
+
Type of Nvidia GPU to use.
|
|
831
|
+
"""
|
|
832
|
+
...
|
|
833
|
+
|
|
834
|
+
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
835
|
+
"""
|
|
836
|
+
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
837
|
+
|
|
838
|
+
User code call
|
|
839
|
+
--------------
|
|
840
|
+
@vllm(
|
|
841
|
+
model="...",
|
|
842
|
+
...
|
|
843
|
+
)
|
|
844
|
+
|
|
845
|
+
Valid backend options
|
|
846
|
+
---------------------
|
|
847
|
+
- 'local': Run as a separate process on the local task machine.
|
|
848
|
+
|
|
849
|
+
Valid model options
|
|
850
|
+
-------------------
|
|
851
|
+
Any HuggingFace model identifier, e.g. 'meta-llama/Llama-3.2-1B'
|
|
852
|
+
|
|
853
|
+
NOTE: vLLM's OpenAI-compatible server serves ONE model per server instance.
|
|
854
|
+
If you need multiple models, you must create multiple @vllm decorators.
|
|
972
855
|
|
|
973
856
|
|
|
857
|
+
Parameters
|
|
858
|
+
----------
|
|
859
|
+
model: str
|
|
860
|
+
HuggingFace model identifier to be served by vLLM.
|
|
861
|
+
backend: str
|
|
862
|
+
Determines where and how to run the vLLM process.
|
|
863
|
+
openai_api_server: bool
|
|
864
|
+
Whether to use OpenAI-compatible API server mode (subprocess) instead of native engine.
|
|
865
|
+
Default is False (uses native engine).
|
|
866
|
+
Set to True for backward compatibility with existing code.
|
|
867
|
+
debug: bool
|
|
868
|
+
Whether to turn on verbose debugging logs.
|
|
869
|
+
card_refresh_interval: int
|
|
870
|
+
Interval in seconds for refreshing the vLLM status card.
|
|
871
|
+
Only used when openai_api_server=True.
|
|
872
|
+
max_retries: int
|
|
873
|
+
Maximum number of retries checking for vLLM server startup.
|
|
874
|
+
Only used when openai_api_server=True.
|
|
875
|
+
retry_alert_frequency: int
|
|
876
|
+
Frequency of alert logs for vLLM server startup retries.
|
|
877
|
+
Only used when openai_api_server=True.
|
|
878
|
+
engine_args : dict
|
|
879
|
+
Additional keyword arguments to pass to the vLLM engine.
|
|
880
|
+
For example, `tensor_parallel_size=2`.
|
|
881
|
+
"""
|
|
882
|
+
...
|
|
883
|
+
|
|
884
|
+
def s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
885
|
+
"""
|
|
974
886
|
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
975
887
|
for S3 read and write requests.
|
|
976
888
|
|
|
@@ -1028,25 +940,6 @@ def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_m
|
|
|
1028
940
|
"""
|
|
1029
941
|
...
|
|
1030
942
|
|
|
1031
|
-
@typing.overload
|
|
1032
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1033
|
-
"""
|
|
1034
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
1035
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
1036
|
-
"""
|
|
1037
|
-
...
|
|
1038
|
-
|
|
1039
|
-
@typing.overload
|
|
1040
|
-
def app_deploy(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1041
|
-
...
|
|
1042
|
-
|
|
1043
|
-
def app_deploy(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1044
|
-
"""
|
|
1045
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
1046
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
1047
|
-
"""
|
|
1048
|
-
...
|
|
1049
|
-
|
|
1050
943
|
@typing.overload
|
|
1051
944
|
def resources(*, cpu: int = 1, gpu: typing.Optional[int] = None, disk: typing.Optional[int] = None, memory: int = 4096, shared_memory: typing.Optional[int] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1052
945
|
"""
|
|
@@ -1127,112 +1020,218 @@ def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None]
|
|
|
1127
1020
|
...
|
|
1128
1021
|
|
|
1129
1022
|
@typing.overload
|
|
1130
|
-
def
|
|
1023
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1131
1024
|
"""
|
|
1132
|
-
|
|
1025
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1026
|
+
to inject a card and render simple markdown content.
|
|
1027
|
+
"""
|
|
1028
|
+
...
|
|
1029
|
+
|
|
1030
|
+
@typing.overload
|
|
1031
|
+
def test_append_card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1032
|
+
...
|
|
1033
|
+
|
|
1034
|
+
def test_append_card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1035
|
+
"""
|
|
1036
|
+
A simple decorator that demonstrates using CardDecoratorInjector
|
|
1037
|
+
to inject a card and render simple markdown content.
|
|
1038
|
+
"""
|
|
1039
|
+
...
|
|
1040
|
+
|
|
1041
|
+
@typing.overload
|
|
1042
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1043
|
+
"""
|
|
1044
|
+
Specifies the Conda environment for the step.
|
|
1133
1045
|
|
|
1134
1046
|
Information in this decorator will augment any
|
|
1135
|
-
attributes set in the `@
|
|
1136
|
-
you can use `@
|
|
1137
|
-
steps and use `@
|
|
1047
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1048
|
+
you can use `@conda_base` to set packages required by all
|
|
1049
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
1138
1050
|
|
|
1139
1051
|
|
|
1140
1052
|
Parameters
|
|
1141
1053
|
----------
|
|
1142
|
-
packages : Dict[str, str], default
|
|
1054
|
+
packages : Dict[str, str], default {}
|
|
1143
1055
|
Packages to use for this step. The key is the name of the package
|
|
1144
1056
|
and the value is the version to use.
|
|
1145
|
-
|
|
1057
|
+
libraries : Dict[str, str], default {}
|
|
1058
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1059
|
+
python : str, optional, default None
|
|
1146
1060
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1147
1061
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1062
|
+
disabled : bool, default False
|
|
1063
|
+
If set to True, disables @conda.
|
|
1148
1064
|
"""
|
|
1149
1065
|
...
|
|
1150
1066
|
|
|
1151
1067
|
@typing.overload
|
|
1152
|
-
def
|
|
1068
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1153
1069
|
...
|
|
1154
1070
|
|
|
1155
1071
|
@typing.overload
|
|
1156
|
-
def
|
|
1072
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1157
1073
|
...
|
|
1158
1074
|
|
|
1159
|
-
def
|
|
1075
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1160
1076
|
"""
|
|
1161
|
-
Specifies the
|
|
1077
|
+
Specifies the Conda environment for the step.
|
|
1162
1078
|
|
|
1163
1079
|
Information in this decorator will augment any
|
|
1164
|
-
attributes set in the `@
|
|
1165
|
-
you can use `@
|
|
1166
|
-
steps and use `@
|
|
1080
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
|
1081
|
+
you can use `@conda_base` to set packages required by all
|
|
1082
|
+
steps and use `@conda` to specify step-specific overrides.
|
|
1167
1083
|
|
|
1168
1084
|
|
|
1169
1085
|
Parameters
|
|
1170
1086
|
----------
|
|
1171
|
-
packages : Dict[str, str], default
|
|
1087
|
+
packages : Dict[str, str], default {}
|
|
1172
1088
|
Packages to use for this step. The key is the name of the package
|
|
1173
1089
|
and the value is the version to use.
|
|
1174
|
-
|
|
1090
|
+
libraries : Dict[str, str], default {}
|
|
1091
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1092
|
+
python : str, optional, default None
|
|
1175
1093
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1176
1094
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1095
|
+
disabled : bool, default False
|
|
1096
|
+
If set to True, disables @conda.
|
|
1177
1097
|
"""
|
|
1178
1098
|
...
|
|
1179
1099
|
|
|
1180
1100
|
@typing.overload
|
|
1181
|
-
def
|
|
1101
|
+
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1182
1102
|
"""
|
|
1183
|
-
|
|
1184
|
-
|
|
1185
|
-
This decorator is useful if this step may hang indefinitely.
|
|
1186
|
-
|
|
1187
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1188
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1189
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1190
|
-
|
|
1191
|
-
Note that all the values specified in parameters are added together so if you specify
|
|
1192
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
|
1193
|
-
|
|
1103
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1194
1104
|
|
|
1195
|
-
|
|
1196
|
-
|
|
1197
|
-
|
|
1198
|
-
|
|
1199
|
-
|
|
1200
|
-
|
|
1201
|
-
|
|
1202
|
-
|
|
1105
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1106
|
+
|
|
1107
|
+
|
|
1108
|
+
Parameters
|
|
1109
|
+
----------
|
|
1110
|
+
type : str, default 'default'
|
|
1111
|
+
Card type.
|
|
1112
|
+
id : str, optional, default None
|
|
1113
|
+
If multiple cards are present, use this id to identify this card.
|
|
1114
|
+
options : Dict[str, Any], default {}
|
|
1115
|
+
Options passed to the card. The contents depend on the card type.
|
|
1116
|
+
timeout : int, default 45
|
|
1117
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1203
1118
|
"""
|
|
1204
1119
|
...
|
|
1205
1120
|
|
|
1206
1121
|
@typing.overload
|
|
1207
|
-
def
|
|
1122
|
+
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1208
1123
|
...
|
|
1209
1124
|
|
|
1210
1125
|
@typing.overload
|
|
1211
|
-
def
|
|
1126
|
+
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1212
1127
|
...
|
|
1213
1128
|
|
|
1214
|
-
def
|
|
1129
|
+
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
1215
1130
|
"""
|
|
1216
|
-
|
|
1131
|
+
Creates a human-readable report, a Metaflow Card, after this step completes.
|
|
1217
1132
|
|
|
1218
|
-
|
|
1133
|
+
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1219
1134
|
|
|
1220
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
|
1221
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
|
1222
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
|
1223
1135
|
|
|
1224
|
-
|
|
1225
|
-
|
|
1136
|
+
Parameters
|
|
1137
|
+
----------
|
|
1138
|
+
type : str, default 'default'
|
|
1139
|
+
Card type.
|
|
1140
|
+
id : str, optional, default None
|
|
1141
|
+
If multiple cards are present, use this id to identify this card.
|
|
1142
|
+
options : Dict[str, Any], default {}
|
|
1143
|
+
Options passed to the card. The contents depend on the card type.
|
|
1144
|
+
timeout : int, default 45
|
|
1145
|
+
Interrupt reporting if it takes more than this many seconds.
|
|
1146
|
+
"""
|
|
1147
|
+
...
|
|
1148
|
+
|
|
1149
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', image_pull_secrets: typing.List[str] = [], service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[typing.Dict[str, str]] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable', security_context: typing.Optional[typing.Dict[str, typing.Any]] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1150
|
+
"""
|
|
1151
|
+
Specifies that this step should execute on Kubernetes.
|
|
1226
1152
|
|
|
1227
1153
|
|
|
1228
1154
|
Parameters
|
|
1229
1155
|
----------
|
|
1230
|
-
|
|
1231
|
-
Number of
|
|
1232
|
-
|
|
1233
|
-
|
|
1234
|
-
|
|
1235
|
-
|
|
1156
|
+
cpu : int, default 1
|
|
1157
|
+
Number of CPUs required for this step. If `@resources` is
|
|
1158
|
+
also present, the maximum value from all decorators is used.
|
|
1159
|
+
memory : int, default 4096
|
|
1160
|
+
Memory size (in MB) required for this step. If
|
|
1161
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
1162
|
+
used.
|
|
1163
|
+
disk : int, default 10240
|
|
1164
|
+
Disk size (in MB) required for this step. If
|
|
1165
|
+
`@resources` is also present, the maximum value from all decorators is
|
|
1166
|
+
used.
|
|
1167
|
+
image : str, optional, default None
|
|
1168
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
|
1169
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
|
1170
|
+
not, a default Docker image mapping to the current version of Python is used.
|
|
1171
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
|
1172
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
|
1173
|
+
image_pull_secrets: List[str], default []
|
|
1174
|
+
The default is extracted from METAFLOW_KUBERNETES_IMAGE_PULL_SECRETS.
|
|
1175
|
+
Kubernetes image pull secrets to use when pulling container images
|
|
1176
|
+
in Kubernetes.
|
|
1177
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
|
1178
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
|
1179
|
+
secrets : List[str], optional, default None
|
|
1180
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
|
1181
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
|
1182
|
+
in Metaflow configuration.
|
|
1183
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
|
1184
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
|
1185
|
+
Can be passed in as a comma separated string of values e.g.
|
|
1186
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
|
1187
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
|
1188
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
|
1189
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
|
1190
|
+
gpu : int, optional, default None
|
|
1191
|
+
Number of GPUs required for this step. A value of zero implies that
|
|
1192
|
+
the scheduled node should not have GPUs.
|
|
1193
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
|
1194
|
+
The vendor of the GPUs to be used for this step.
|
|
1195
|
+
tolerations : List[Dict[str,str]], default []
|
|
1196
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
|
1197
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
|
1198
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
|
1199
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
|
1200
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
|
1201
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
|
1202
|
+
use_tmpfs : bool, default False
|
|
1203
|
+
This enables an explicit tmpfs mount for this step.
|
|
1204
|
+
tmpfs_tempdir : bool, default True
|
|
1205
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
|
1206
|
+
tmpfs_size : int, optional, default: None
|
|
1207
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
|
1208
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
|
1209
|
+
memory allocated for this step.
|
|
1210
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
|
1211
|
+
Path to tmpfs mount for this step.
|
|
1212
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
|
1213
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
|
1214
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
|
1215
|
+
shared_memory: int, optional
|
|
1216
|
+
Shared memory size (in MiB) required for this step
|
|
1217
|
+
port: int, optional
|
|
1218
|
+
Port number to specify in the Kubernetes job object
|
|
1219
|
+
compute_pool : str, optional, default None
|
|
1220
|
+
Compute pool to be used for for this step.
|
|
1221
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
|
1222
|
+
hostname_resolution_timeout: int, default 10 * 60
|
|
1223
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
|
1224
|
+
Only applicable when @parallel is used.
|
|
1225
|
+
qos: str, default: Burstable
|
|
1226
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
|
1227
|
+
|
|
1228
|
+
security_context: Dict[str, Any], optional, default None
|
|
1229
|
+
Container security context. Applies to the task container. Allows the following keys:
|
|
1230
|
+
- privileged: bool, optional, default None
|
|
1231
|
+
- allow_privilege_escalation: bool, optional, default None
|
|
1232
|
+
- run_as_user: int, optional, default None
|
|
1233
|
+
- run_as_group: int, optional, default None
|
|
1234
|
+
- run_as_non_root: bool, optional, default None
|
|
1236
1235
|
"""
|
|
1237
1236
|
...
|
|
1238
1237
|
|
|
@@ -1279,233 +1278,286 @@ def ollama(*, models: list, backend: str, force_pull: bool, cache_update_policy:
|
|
|
1279
1278
|
"""
|
|
1280
1279
|
...
|
|
1281
1280
|
|
|
1282
|
-
|
|
1283
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], role: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1281
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, cache_scope: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1284
1282
|
"""
|
|
1285
|
-
|
|
1286
|
-
the execution of a step.
|
|
1283
|
+
Decorator that helps cache, version, and store models/datasets from the Hugging Face Hub.
|
|
1287
1284
|
|
|
1285
|
+
Examples
|
|
1286
|
+
--------
|
|
1288
1287
|
|
|
1289
|
-
|
|
1290
|
-
|
|
1291
|
-
|
|
1292
|
-
|
|
1293
|
-
|
|
1294
|
-
|
|
1295
|
-
|
|
1296
|
-
|
|
1297
|
-
|
|
1298
|
-
|
|
1299
|
-
|
|
1300
|
-
|
|
1301
|
-
|
|
1302
|
-
|
|
1303
|
-
|
|
1304
|
-
|
|
1305
|
-
|
|
1306
|
-
|
|
1307
|
-
|
|
1308
|
-
|
|
1309
|
-
|
|
1288
|
+
```python
|
|
1289
|
+
# **Usage: creating references to models from the Hugging Face Hub that may be loaded in downstream steps**
|
|
1290
|
+
@huggingface_hub
|
|
1291
|
+
@step
|
|
1292
|
+
def pull_model_from_huggingface(self):
|
|
1293
|
+
# `current.huggingface_hub.snapshot_download` downloads the model from the Hugging Face Hub
|
|
1294
|
+
# and saves it in the backend storage based on the model's `repo_id`. If there exists a model
|
|
1295
|
+
# with the same `repo_id` in the backend storage, it will not download the model again. The return
|
|
1296
|
+
# value of the function is a reference to the model in the backend storage.
|
|
1297
|
+
# This reference can be used to load the model in the subsequent steps via `@model(load=["llama_model"])`
|
|
1298
|
+
|
|
1299
|
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
1300
|
+
self.llama_model = current.huggingface_hub.snapshot_download(
|
|
1301
|
+
repo_id=self.model_id,
|
|
1302
|
+
allow_patterns=["*.safetensors", "*.json", "tokenizer.*"],
|
|
1303
|
+
)
|
|
1304
|
+
self.next(self.train)
|
|
1305
|
+
|
|
1306
|
+
# **Usage: explicitly loading models at runtime from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
1307
|
+
@huggingface_hub
|
|
1308
|
+
@step
|
|
1309
|
+
def run_training(self):
|
|
1310
|
+
# Temporary directory (auto-cleaned on exit)
|
|
1311
|
+
with current.huggingface_hub.load(
|
|
1312
|
+
repo_id="google-bert/bert-base-uncased",
|
|
1313
|
+
allow_patterns=["*.bin"],
|
|
1314
|
+
) as local_path:
|
|
1315
|
+
# Use files under local_path
|
|
1316
|
+
train_model(local_path)
|
|
1317
|
+
...
|
|
1318
|
+
|
|
1319
|
+
# **Usage: loading models directly from the Hugging Face Hub or from cache (from Metaflow's datastore)**
|
|
1320
|
+
|
|
1321
|
+
@huggingface_hub(load=["mistralai/Mistral-7B-Instruct-v0.1"])
|
|
1322
|
+
@step
|
|
1323
|
+
def pull_model_from_huggingface(self):
|
|
1324
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1325
|
+
|
|
1326
|
+
@huggingface_hub(load=[("mistralai/Mistral-7B-Instruct-v0.1", "/my-directory"), ("myorg/mistral-lora", "/my-lora-directory")])
|
|
1327
|
+
@step
|
|
1328
|
+
def finetune_model(self):
|
|
1329
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1330
|
+
# path_to_model will be /my-directory
|
|
1331
|
+
|
|
1332
|
+
|
|
1333
|
+
# Takes all the arguments passed to `snapshot_download`
|
|
1334
|
+
# except for `local_dir`
|
|
1335
|
+
@huggingface_hub(load=[
|
|
1336
|
+
{
|
|
1337
|
+
"repo_id": "mistralai/Mistral-7B-Instruct-v0.1",
|
|
1338
|
+
},
|
|
1339
|
+
{
|
|
1340
|
+
"repo_id": "myorg/mistral-lora",
|
|
1341
|
+
"repo_type": "model",
|
|
1342
|
+
},
|
|
1343
|
+
])
|
|
1344
|
+
@step
|
|
1345
|
+
def finetune_model(self):
|
|
1346
|
+
path_to_model = current.huggingface_hub.loaded["mistralai/Mistral-7B-Instruct-v0.1"]
|
|
1347
|
+
# path_to_model will be /my-directory
|
|
1348
|
+
```
|
|
1310
1349
|
|
|
1311
1350
|
|
|
1312
1351
|
Parameters
|
|
1313
1352
|
----------
|
|
1314
|
-
|
|
1315
|
-
|
|
1316
|
-
|
|
1317
|
-
|
|
1318
|
-
|
|
1319
|
-
|
|
1320
|
-
|
|
1321
|
-
|
|
1322
|
-
|
|
1323
|
-
|
|
1324
|
-
|
|
1353
|
+
temp_dir_root : str, optional
|
|
1354
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
|
1355
|
+
|
|
1356
|
+
cache_scope : str, optional
|
|
1357
|
+
The scope of the cache. Can be `checkpoint` / `flow` / `global`.
|
|
1358
|
+
- `checkpoint` (default): All repos are stored like objects saved by `@checkpoint`.
|
|
1359
|
+
i.e., the cached path is derived from the namespace, flow, step, and Metaflow foreach iteration.
|
|
1360
|
+
Any repo downloaded under this scope will only be retrieved from the cache when the step runs under the same namespace in the same flow (at the same foreach index).
|
|
1361
|
+
|
|
1362
|
+
- `flow`: All repos are cached under the flow, regardless of namespace.
|
|
1363
|
+
i.e., the cached path is derived solely from the flow name.
|
|
1364
|
+
When to use this mode: (1) Multiple users are executing the same flow and want shared access to the repos cached by the decorator. (2) Multiple versions of a flow are deployed, all needing access to the same repos cached by the decorator.
|
|
1365
|
+
|
|
1366
|
+
- `global`: All repos are cached under a globally static path.
|
|
1367
|
+
i.e., the base path of the cache is static and all repos are stored under it.
|
|
1368
|
+
When to use this mode:
|
|
1369
|
+
- All repos from the Hugging Face Hub need to be shared by users across all flow executions.
|
|
1370
|
+
- Each caching scope comes with its own trade-offs:
|
|
1371
|
+
- `checkpoint`:
|
|
1372
|
+
- Has explicit control over when caches are populated (controlled by the same flow that has the `@huggingface_hub` decorator) but ends up hitting the Hugging Face Hub more often if there are many users/namespaces/steps.
|
|
1373
|
+
- Since objects are written on a `namespace/flow/step` basis, the blast radius of a bad checkpoint is limited to a particular flow in a namespace.
|
|
1374
|
+
- `flow`:
|
|
1375
|
+
- Has less control over when caches are populated (can be written by any execution instance of a flow from any namespace) but results in more cache hits.
|
|
1376
|
+
- The blast radius of a bad checkpoint is limited to all runs of a particular flow.
|
|
1377
|
+
- It doesn't promote cache reuse across flows.
|
|
1378
|
+
- `global`:
|
|
1379
|
+
- Has no control over when caches are populated (can be written by any flow execution) but has the highest cache hit rate.
|
|
1380
|
+
- It promotes cache reuse across flows.
|
|
1381
|
+
- The blast radius of a bad checkpoint spans every flow that could be using a particular repo.
|
|
1325
1382
|
|
|
1326
|
-
|
|
1383
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
|
1384
|
+
The list of repos (models/datasets) to load.
|
|
1327
1385
|
|
|
1386
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
|
1328
1387
|
|
|
1329
|
-
|
|
1330
|
-
|
|
1331
|
-
|
|
1332
|
-
|
|
1333
|
-
|
|
1334
|
-
If
|
|
1335
|
-
|
|
1336
|
-
Options passed to the card. The contents depend on the card type.
|
|
1337
|
-
timeout : int, default 45
|
|
1338
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
1388
|
+
- If repo (model/dataset) is not found in the datastore:
|
|
1389
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
|
1390
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
|
1391
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
|
1392
|
+
|
|
1393
|
+
- If repo is found in the datastore:
|
|
1394
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
|
1339
1395
|
"""
|
|
1340
1396
|
...
|
|
1341
1397
|
|
|
1342
|
-
|
|
1343
|
-
def card(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1344
|
-
...
|
|
1345
|
-
|
|
1346
|
-
@typing.overload
|
|
1347
|
-
def card(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1348
|
-
...
|
|
1349
|
-
|
|
1350
|
-
def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45):
|
|
1398
|
+
def coreweave_s3_proxy(*, integration_name: typing.Optional[str] = None, write_mode: typing.Optional[str] = None, debug: typing.Optional[bool] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1351
1399
|
"""
|
|
1352
|
-
|
|
1400
|
+
`@coreweave_s3_proxy` is a CoreWeave-specific S3 Proxy decorator for routing S3 requests through a local proxy service.
|
|
1401
|
+
It exists to make it easier for users to know that this decorator should only be used with
|
|
1402
|
+
a Neo Cloud like CoreWeave. The underlying mechanics of the decorator is the same as the `@s3_proxy`:
|
|
1353
1403
|
|
|
1354
|
-
Note that you may add multiple `@card` decorators in a step with different parameters.
|
|
1355
1404
|
|
|
1405
|
+
Set up an S3 proxy that caches objects in an external, S3‑compatible bucket
|
|
1406
|
+
for S3 read and write requests.
|
|
1356
1407
|
|
|
1357
|
-
|
|
1358
|
-
|
|
1359
|
-
|
|
1360
|
-
Card type.
|
|
1361
|
-
id : str, optional, default None
|
|
1362
|
-
If multiple cards are present, use this id to identify this card.
|
|
1363
|
-
options : Dict[str, Any], default {}
|
|
1364
|
-
Options passed to the card. The contents depend on the card type.
|
|
1365
|
-
timeout : int, default 45
|
|
1366
|
-
Interrupt reporting if it takes more than this many seconds.
|
|
1367
|
-
"""
|
|
1368
|
-
...
|
|
1369
|
-
|
|
1370
|
-
def vllm(*, model: str, backend: str, openai_api_server: bool, debug: bool, card_refresh_interval: int, max_retries: int, retry_alert_frequency: int, engine_args: dict) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1371
|
-
"""
|
|
1372
|
-
This decorator is used to run vllm APIs as Metaflow task sidecars.
|
|
1408
|
+
This decorator requires an integration in the Outerbounds platform that
|
|
1409
|
+
points to an external bucket. It affects S3 operations performed via
|
|
1410
|
+
Metaflow's `get_aws_client` and `S3` within a `@step`.
|
|
1373
1411
|
|
|
1374
|
-
|
|
1375
|
-
|
|
1376
|
-
|
|
1377
|
-
|
|
1378
|
-
|
|
1379
|
-
|
|
1412
|
+
Read operations
|
|
1413
|
+
---------------
|
|
1414
|
+
All read operations pass through the proxy. If an object does not already
|
|
1415
|
+
exist in the external bucket, it is cached there. For example, if code reads
|
|
1416
|
+
from buckets `FOO` and `BAR` using the `S3` interface, objects from both
|
|
1417
|
+
buckets are cached in the external bucket.
|
|
1380
1418
|
|
|
1381
|
-
|
|
1382
|
-
|
|
1383
|
-
|
|
1419
|
+
During task execution, all S3‑related read requests are routed through the
|
|
1420
|
+
proxy:
|
|
1421
|
+
- If the object is present in the external object store, the proxy
|
|
1422
|
+
streams it directly from there without accessing the requested origin
|
|
1423
|
+
bucket.
|
|
1424
|
+
- If the object is not present in the external storage, the proxy
|
|
1425
|
+
fetches it from the requested bucket, caches it in the external
|
|
1426
|
+
storage, and streams the response from the origin bucket.
|
|
1384
1427
|
|
|
1385
|
-
|
|
1386
|
-
|
|
1387
|
-
|
|
1428
|
+
Warning
|
|
1429
|
+
-------
|
|
1430
|
+
All READ operations (e.g., GetObject, HeadObject) pass through the external
|
|
1431
|
+
bucket regardless of the bucket specified in user code. Even
|
|
1432
|
+
`S3(run=self)` and `S3(s3root="mybucketfoo")` requests go through the
|
|
1433
|
+
external bucket cache.
|
|
1388
1434
|
|
|
1389
|
-
|
|
1390
|
-
|
|
1435
|
+
Write operations
|
|
1436
|
+
----------------
|
|
1437
|
+
Write behavior is controlled by the `write_mode` parameter, which determines
|
|
1438
|
+
whether writes also persist objects in the cache.
|
|
1439
|
+
|
|
1440
|
+
`write_mode` values:
|
|
1441
|
+
- `origin-and-cache`: objects are written both to the cache and to their
|
|
1442
|
+
intended origin bucket.
|
|
1443
|
+
- `origin`: objects are written only to their intended origin bucket.
|
|
1391
1444
|
|
|
1392
1445
|
|
|
1393
1446
|
Parameters
|
|
1394
1447
|
----------
|
|
1395
|
-
|
|
1396
|
-
|
|
1397
|
-
|
|
1398
|
-
|
|
1399
|
-
|
|
1400
|
-
|
|
1401
|
-
|
|
1402
|
-
|
|
1403
|
-
|
|
1404
|
-
|
|
1405
|
-
|
|
1406
|
-
Interval in seconds for refreshing the vLLM status card.
|
|
1407
|
-
Only used when openai_api_server=True.
|
|
1408
|
-
max_retries: int
|
|
1409
|
-
Maximum number of retries checking for vLLM server startup.
|
|
1410
|
-
Only used when openai_api_server=True.
|
|
1411
|
-
retry_alert_frequency: int
|
|
1412
|
-
Frequency of alert logs for vLLM server startup retries.
|
|
1413
|
-
Only used when openai_api_server=True.
|
|
1414
|
-
engine_args : dict
|
|
1415
|
-
Additional keyword arguments to pass to the vLLM engine.
|
|
1416
|
-
For example, `tensor_parallel_size=2`.
|
|
1448
|
+
integration_name : str, optional
|
|
1449
|
+
[Outerbounds integration name](https://docs.outerbounds.com/outerbounds/configuring-secrets/#integrations-view)
|
|
1450
|
+
that holds the configuration for the external, S3‑compatible object
|
|
1451
|
+
storage bucket. If not specified, the only available S3 proxy
|
|
1452
|
+
integration in the namespace is used (fails if multiple exist).
|
|
1453
|
+
write_mode : str, optional
|
|
1454
|
+
Controls whether writes also go to the external bucket.
|
|
1455
|
+
- `origin` (default)
|
|
1456
|
+
- `origin-and-cache`
|
|
1457
|
+
debug : bool, optional
|
|
1458
|
+
Enables debug logging for proxy operations.
|
|
1417
1459
|
"""
|
|
1418
1460
|
...
|
|
1419
1461
|
|
|
1420
1462
|
@typing.overload
|
|
1421
|
-
def
|
|
1463
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
|
1422
1464
|
"""
|
|
1423
|
-
Specifies the
|
|
1465
|
+
Specifies the PyPI packages for the step.
|
|
1424
1466
|
|
|
1425
1467
|
Information in this decorator will augment any
|
|
1426
|
-
attributes set in the `@
|
|
1427
|
-
you can use `@
|
|
1428
|
-
steps and use `@
|
|
1468
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
1469
|
+
you can use `@pypi_base` to set packages required by all
|
|
1470
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1429
1471
|
|
|
1430
1472
|
|
|
1431
1473
|
Parameters
|
|
1432
1474
|
----------
|
|
1433
|
-
packages : Dict[str, str], default {}
|
|
1475
|
+
packages : Dict[str, str], default: {}
|
|
1434
1476
|
Packages to use for this step. The key is the name of the package
|
|
1435
1477
|
and the value is the version to use.
|
|
1436
|
-
|
|
1437
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1438
|
-
python : str, optional, default None
|
|
1478
|
+
python : str, optional, default: None
|
|
1439
1479
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1440
1480
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1441
|
-
disabled : bool, default False
|
|
1442
|
-
If set to True, disables @conda.
|
|
1443
1481
|
"""
|
|
1444
1482
|
...
|
|
1445
1483
|
|
|
1446
1484
|
@typing.overload
|
|
1447
|
-
def
|
|
1485
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
|
1448
1486
|
...
|
|
1449
1487
|
|
|
1450
1488
|
@typing.overload
|
|
1451
|
-
def
|
|
1489
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
|
1452
1490
|
...
|
|
1453
1491
|
|
|
1454
|
-
def
|
|
1492
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1455
1493
|
"""
|
|
1456
|
-
Specifies the
|
|
1494
|
+
Specifies the PyPI packages for the step.
|
|
1457
1495
|
|
|
1458
1496
|
Information in this decorator will augment any
|
|
1459
|
-
attributes set in the `@
|
|
1460
|
-
you can use `@
|
|
1461
|
-
steps and use `@
|
|
1497
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
|
1498
|
+
you can use `@pypi_base` to set packages required by all
|
|
1499
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1462
1500
|
|
|
1463
1501
|
|
|
1464
1502
|
Parameters
|
|
1465
1503
|
----------
|
|
1466
|
-
packages : Dict[str, str], default {}
|
|
1504
|
+
packages : Dict[str, str], default: {}
|
|
1467
1505
|
Packages to use for this step. The key is the name of the package
|
|
1468
1506
|
and the value is the version to use.
|
|
1469
|
-
|
|
1470
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1471
|
-
python : str, optional, default None
|
|
1507
|
+
python : str, optional, default: None
|
|
1472
1508
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1473
1509
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1474
|
-
disabled : bool, default False
|
|
1475
|
-
If set to True, disables @conda.
|
|
1476
1510
|
"""
|
|
1477
1511
|
...
|
|
1478
1512
|
|
|
1479
1513
|
@typing.overload
|
|
1480
|
-
def
|
|
1514
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1481
1515
|
"""
|
|
1482
|
-
|
|
1483
|
-
|
|
1516
|
+
Specifies the times when the flow should be run when running on a
|
|
1517
|
+
production scheduler.
|
|
1518
|
+
|
|
1519
|
+
|
|
1520
|
+
Parameters
|
|
1521
|
+
----------
|
|
1522
|
+
hourly : bool, default False
|
|
1523
|
+
Run the workflow hourly.
|
|
1524
|
+
daily : bool, default True
|
|
1525
|
+
Run the workflow daily.
|
|
1526
|
+
weekly : bool, default False
|
|
1527
|
+
Run the workflow weekly.
|
|
1528
|
+
cron : str, optional, default None
|
|
1529
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1530
|
+
specified by this expression.
|
|
1531
|
+
timezone : str, optional, default None
|
|
1532
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1533
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1484
1534
|
"""
|
|
1485
1535
|
...
|
|
1486
1536
|
|
|
1487
1537
|
@typing.overload
|
|
1488
|
-
def
|
|
1489
|
-
...
|
|
1490
|
-
|
|
1491
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
|
1492
|
-
"""
|
|
1493
|
-
Decorator prototype for all step decorators. This function gets specialized
|
|
1494
|
-
and imported for all decorators types by _import_plugin_decorators().
|
|
1495
|
-
"""
|
|
1538
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1496
1539
|
...
|
|
1497
1540
|
|
|
1498
|
-
def
|
|
1541
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
|
1499
1542
|
"""
|
|
1500
|
-
Specifies
|
|
1543
|
+
Specifies the times when the flow should be run when running on a
|
|
1544
|
+
production scheduler.
|
|
1501
1545
|
|
|
1502
1546
|
|
|
1503
1547
|
Parameters
|
|
1504
1548
|
----------
|
|
1505
|
-
|
|
1506
|
-
|
|
1507
|
-
|
|
1508
|
-
|
|
1549
|
+
hourly : bool, default False
|
|
1550
|
+
Run the workflow hourly.
|
|
1551
|
+
daily : bool, default True
|
|
1552
|
+
Run the workflow daily.
|
|
1553
|
+
weekly : bool, default False
|
|
1554
|
+
Run the workflow weekly.
|
|
1555
|
+
cron : str, optional, default None
|
|
1556
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
1557
|
+
specified by this expression.
|
|
1558
|
+
timezone : str, optional, default None
|
|
1559
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
1560
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1509
1561
|
"""
|
|
1510
1562
|
...
|
|
1511
1563
|
|
|
@@ -1544,35 +1596,8 @@ def project(*, name: str, branch: typing.Optional[str] = None, production: bool
|
|
|
1544
1596
|
"""
|
|
1545
1597
|
...
|
|
1546
1598
|
|
|
1547
|
-
@typing.overload
|
|
1548
|
-
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1549
|
-
"""
|
|
1550
|
-
Specifies the Conda environment for all steps of the flow.
|
|
1551
|
-
|
|
1552
|
-
Use `@conda_base` to set common libraries required by all
|
|
1553
|
-
steps and use `@conda` to specify step-specific additions.
|
|
1554
|
-
|
|
1555
|
-
|
|
1556
|
-
Parameters
|
|
1557
|
-
----------
|
|
1558
|
-
packages : Dict[str, str], default {}
|
|
1559
|
-
Packages to use for this flow. The key is the name of the package
|
|
1560
|
-
and the value is the version to use.
|
|
1561
|
-
libraries : Dict[str, str], default {}
|
|
1562
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1563
|
-
python : str, optional, default None
|
|
1564
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1565
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1566
|
-
disabled : bool, default False
|
|
1567
|
-
If set to True, disables Conda.
|
|
1568
|
-
"""
|
|
1569
|
-
...
|
|
1570
|
-
|
|
1571
|
-
@typing.overload
|
|
1572
|
-
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1573
|
-
...
|
|
1574
|
-
|
|
1575
|
-
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1599
|
+
@typing.overload
|
|
1600
|
+
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1576
1601
|
"""
|
|
1577
1602
|
Specifies the Conda environment for all steps of the flow.
|
|
1578
1603
|
|
|
@@ -1596,136 +1621,29 @@ def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packa
|
|
|
1596
1621
|
...
|
|
1597
1622
|
|
|
1598
1623
|
@typing.overload
|
|
1599
|
-
def
|
|
1600
|
-
"""
|
|
1601
|
-
Specifies the PyPI packages for all steps of the flow.
|
|
1602
|
-
|
|
1603
|
-
Use `@pypi_base` to set common packages required by all
|
|
1604
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1605
|
-
|
|
1606
|
-
Parameters
|
|
1607
|
-
----------
|
|
1608
|
-
packages : Dict[str, str], default: {}
|
|
1609
|
-
Packages to use for this flow. The key is the name of the package
|
|
1610
|
-
and the value is the version to use.
|
|
1611
|
-
python : str, optional, default: None
|
|
1612
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1613
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1614
|
-
"""
|
|
1615
|
-
...
|
|
1616
|
-
|
|
1617
|
-
@typing.overload
|
|
1618
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1624
|
+
def conda_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1619
1625
|
...
|
|
1620
1626
|
|
|
1621
|
-
def
|
|
1627
|
+
def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
|
1622
1628
|
"""
|
|
1623
|
-
Specifies the
|
|
1629
|
+
Specifies the Conda environment for all steps of the flow.
|
|
1630
|
+
|
|
1631
|
+
Use `@conda_base` to set common libraries required by all
|
|
1632
|
+
steps and use `@conda` to specify step-specific additions.
|
|
1624
1633
|
|
|
1625
|
-
Use `@pypi_base` to set common packages required by all
|
|
1626
|
-
steps and use `@pypi` to specify step-specific overrides.
|
|
1627
1634
|
|
|
1628
1635
|
Parameters
|
|
1629
1636
|
----------
|
|
1630
|
-
packages : Dict[str, str], default
|
|
1637
|
+
packages : Dict[str, str], default {}
|
|
1631
1638
|
Packages to use for this flow. The key is the name of the package
|
|
1632
1639
|
and the value is the version to use.
|
|
1633
|
-
|
|
1640
|
+
libraries : Dict[str, str], default {}
|
|
1641
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
|
1642
|
+
python : str, optional, default None
|
|
1634
1643
|
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1635
1644
|
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1636
|
-
|
|
1637
|
-
|
|
1638
|
-
|
|
1639
|
-
@typing.overload
|
|
1640
|
-
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1641
|
-
"""
|
|
1642
|
-
Specifies the event(s) that this flow depends on.
|
|
1643
|
-
|
|
1644
|
-
```
|
|
1645
|
-
@trigger(event='foo')
|
|
1646
|
-
```
|
|
1647
|
-
or
|
|
1648
|
-
```
|
|
1649
|
-
@trigger(events=['foo', 'bar'])
|
|
1650
|
-
```
|
|
1651
|
-
|
|
1652
|
-
Additionally, you can specify the parameter mappings
|
|
1653
|
-
to map event payload to Metaflow parameters for the flow.
|
|
1654
|
-
```
|
|
1655
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1656
|
-
```
|
|
1657
|
-
or
|
|
1658
|
-
```
|
|
1659
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1660
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1661
|
-
```
|
|
1662
|
-
|
|
1663
|
-
'parameters' can also be a list of strings and tuples like so:
|
|
1664
|
-
```
|
|
1665
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1666
|
-
```
|
|
1667
|
-
This is equivalent to:
|
|
1668
|
-
```
|
|
1669
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1670
|
-
```
|
|
1671
|
-
|
|
1672
|
-
|
|
1673
|
-
Parameters
|
|
1674
|
-
----------
|
|
1675
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
|
1676
|
-
Event dependency for this flow.
|
|
1677
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
|
1678
|
-
Events dependency for this flow.
|
|
1679
|
-
options : Dict[str, Any], default {}
|
|
1680
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
1681
|
-
"""
|
|
1682
|
-
...
|
|
1683
|
-
|
|
1684
|
-
@typing.overload
|
|
1685
|
-
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1686
|
-
...
|
|
1687
|
-
|
|
1688
|
-
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1689
|
-
"""
|
|
1690
|
-
Specifies the event(s) that this flow depends on.
|
|
1691
|
-
|
|
1692
|
-
```
|
|
1693
|
-
@trigger(event='foo')
|
|
1694
|
-
```
|
|
1695
|
-
or
|
|
1696
|
-
```
|
|
1697
|
-
@trigger(events=['foo', 'bar'])
|
|
1698
|
-
```
|
|
1699
|
-
|
|
1700
|
-
Additionally, you can specify the parameter mappings
|
|
1701
|
-
to map event payload to Metaflow parameters for the flow.
|
|
1702
|
-
```
|
|
1703
|
-
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
1704
|
-
```
|
|
1705
|
-
or
|
|
1706
|
-
```
|
|
1707
|
-
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
1708
|
-
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
1709
|
-
```
|
|
1710
|
-
|
|
1711
|
-
'parameters' can also be a list of strings and tuples like so:
|
|
1712
|
-
```
|
|
1713
|
-
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
1714
|
-
```
|
|
1715
|
-
This is equivalent to:
|
|
1716
|
-
```
|
|
1717
|
-
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
1718
|
-
```
|
|
1719
|
-
|
|
1720
|
-
|
|
1721
|
-
Parameters
|
|
1722
|
-
----------
|
|
1723
|
-
event : Union[str, Dict[str, Any]], optional, default None
|
|
1724
|
-
Event dependency for this flow.
|
|
1725
|
-
events : List[Union[str, Dict[str, Any]]], default []
|
|
1726
|
-
Events dependency for this flow.
|
|
1727
|
-
options : Dict[str, Any], default {}
|
|
1728
|
-
Backend-specific configuration for tuning eventing behavior.
|
|
1645
|
+
disabled : bool, default False
|
|
1646
|
+
If set to True, disables Conda.
|
|
1729
1647
|
"""
|
|
1730
1648
|
...
|
|
1731
1649
|
|
|
@@ -1772,104 +1690,87 @@ def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str,
|
|
|
1772
1690
|
"""
|
|
1773
1691
|
...
|
|
1774
1692
|
|
|
1775
|
-
|
|
1776
|
-
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1693
|
+
def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, bucket_key: typing.Union[str, typing.List[str]], bucket_name: str, wildcard_match: bool, aws_conn_id: str, verify: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1777
1694
|
"""
|
|
1778
|
-
|
|
1779
|
-
|
|
1780
|
-
|
|
1781
|
-
|
|
1782
|
-
|
|
1783
|
-
or
|
|
1784
|
-
```
|
|
1785
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1786
|
-
```
|
|
1787
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1788
|
-
when upstream runs within the same namespace complete successfully
|
|
1789
|
-
|
|
1790
|
-
Additionally, you can specify project aware upstream flow dependencies
|
|
1791
|
-
by specifying the fully qualified project_flow_name.
|
|
1792
|
-
```
|
|
1793
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1794
|
-
```
|
|
1795
|
-
or
|
|
1796
|
-
```
|
|
1797
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1798
|
-
```
|
|
1799
|
-
|
|
1800
|
-
You can also specify just the project or project branch (other values will be
|
|
1801
|
-
inferred from the current project or project branch):
|
|
1802
|
-
```
|
|
1803
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1804
|
-
```
|
|
1805
|
-
|
|
1806
|
-
Note that `branch` is typically one of:
|
|
1807
|
-
- `prod`
|
|
1808
|
-
- `user.bob`
|
|
1809
|
-
- `test.my_experiment`
|
|
1810
|
-
- `prod.staging`
|
|
1695
|
+
The `@airflow_s3_key_sensor` decorator attaches a Airflow [S3KeySensor](https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/_api/airflow/providers/amazon/aws/sensors/s3/index.html#airflow.providers.amazon.aws.sensors.s3.S3KeySensor)
|
|
1696
|
+
before the start step of the flow. This decorator only works when a flow is scheduled on Airflow
|
|
1697
|
+
and is compiled using `airflow create`. More than one `@airflow_s3_key_sensor` can be
|
|
1698
|
+
added as a flow decorators. Adding more than one decorator will ensure that `start` step
|
|
1699
|
+
starts only after all sensors finish.
|
|
1811
1700
|
|
|
1812
1701
|
|
|
1813
1702
|
Parameters
|
|
1814
1703
|
----------
|
|
1815
|
-
|
|
1816
|
-
|
|
1817
|
-
|
|
1818
|
-
|
|
1819
|
-
|
|
1820
|
-
|
|
1704
|
+
timeout : int
|
|
1705
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
|
1706
|
+
poke_interval : int
|
|
1707
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
|
1708
|
+
mode : str
|
|
1709
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
|
1710
|
+
exponential_backoff : bool
|
|
1711
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
1712
|
+
pool : str
|
|
1713
|
+
the slot pool this task should run in,
|
|
1714
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
1715
|
+
soft_fail : bool
|
|
1716
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
1717
|
+
name : str
|
|
1718
|
+
Name of the sensor on Airflow
|
|
1719
|
+
description : str
|
|
1720
|
+
Description of sensor in the Airflow UI
|
|
1721
|
+
bucket_key : Union[str, List[str]]
|
|
1722
|
+
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
1723
|
+
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
1724
|
+
bucket_name : str
|
|
1725
|
+
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
1726
|
+
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
1727
|
+
wildcard_match : bool
|
|
1728
|
+
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
1729
|
+
aws_conn_id : str
|
|
1730
|
+
a reference to the s3 connection on Airflow. (Default: None)
|
|
1731
|
+
verify : bool
|
|
1732
|
+
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1821
1733
|
"""
|
|
1822
1734
|
...
|
|
1823
1735
|
|
|
1824
1736
|
@typing.overload
|
|
1825
|
-
def
|
|
1826
|
-
...
|
|
1827
|
-
|
|
1828
|
-
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
1737
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1829
1738
|
"""
|
|
1830
|
-
Specifies the
|
|
1831
|
-
|
|
1832
|
-
```
|
|
1833
|
-
@trigger_on_finish(flow='FooFlow')
|
|
1834
|
-
```
|
|
1835
|
-
or
|
|
1836
|
-
```
|
|
1837
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1838
|
-
```
|
|
1839
|
-
This decorator respects the @project decorator and triggers the flow
|
|
1840
|
-
when upstream runs within the same namespace complete successfully
|
|
1841
|
-
|
|
1842
|
-
Additionally, you can specify project aware upstream flow dependencies
|
|
1843
|
-
by specifying the fully qualified project_flow_name.
|
|
1844
|
-
```
|
|
1845
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1846
|
-
```
|
|
1847
|
-
or
|
|
1848
|
-
```
|
|
1849
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1850
|
-
```
|
|
1739
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1851
1740
|
|
|
1852
|
-
|
|
1853
|
-
|
|
1854
|
-
```
|
|
1855
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1856
|
-
```
|
|
1741
|
+
Use `@pypi_base` to set common packages required by all
|
|
1742
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1857
1743
|
|
|
1858
|
-
|
|
1859
|
-
|
|
1860
|
-
|
|
1861
|
-
|
|
1862
|
-
|
|
1744
|
+
Parameters
|
|
1745
|
+
----------
|
|
1746
|
+
packages : Dict[str, str], default: {}
|
|
1747
|
+
Packages to use for this flow. The key is the name of the package
|
|
1748
|
+
and the value is the version to use.
|
|
1749
|
+
python : str, optional, default: None
|
|
1750
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1751
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1752
|
+
"""
|
|
1753
|
+
...
|
|
1754
|
+
|
|
1755
|
+
@typing.overload
|
|
1756
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1757
|
+
...
|
|
1758
|
+
|
|
1759
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
|
1760
|
+
"""
|
|
1761
|
+
Specifies the PyPI packages for all steps of the flow.
|
|
1863
1762
|
|
|
1763
|
+
Use `@pypi_base` to set common packages required by all
|
|
1764
|
+
steps and use `@pypi` to specify step-specific overrides.
|
|
1864
1765
|
|
|
1865
1766
|
Parameters
|
|
1866
1767
|
----------
|
|
1867
|
-
|
|
1868
|
-
|
|
1869
|
-
|
|
1870
|
-
|
|
1871
|
-
|
|
1872
|
-
|
|
1768
|
+
packages : Dict[str, str], default: {}
|
|
1769
|
+
Packages to use for this flow. The key is the name of the package
|
|
1770
|
+
and the value is the version to use.
|
|
1771
|
+
python : str, optional, default: None
|
|
1772
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
|
1773
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
|
1873
1774
|
"""
|
|
1874
1775
|
...
|
|
1875
1776
|
|
|
@@ -1987,97 +1888,197 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
|
1987
1888
|
"""
|
|
1988
1889
|
...
|
|
1989
1890
|
|
|
1990
|
-
|
|
1891
|
+
@typing.overload
|
|
1892
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1991
1893
|
"""
|
|
1992
|
-
|
|
1993
|
-
|
|
1994
|
-
|
|
1995
|
-
|
|
1996
|
-
|
|
1894
|
+
Specifies the flow(s) that this flow depends on.
|
|
1895
|
+
|
|
1896
|
+
```
|
|
1897
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1898
|
+
```
|
|
1899
|
+
or
|
|
1900
|
+
```
|
|
1901
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1902
|
+
```
|
|
1903
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1904
|
+
when upstream runs within the same namespace complete successfully
|
|
1905
|
+
|
|
1906
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1907
|
+
by specifying the fully qualified project_flow_name.
|
|
1908
|
+
```
|
|
1909
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1910
|
+
```
|
|
1911
|
+
or
|
|
1912
|
+
```
|
|
1913
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1914
|
+
```
|
|
1915
|
+
|
|
1916
|
+
You can also specify just the project or project branch (other values will be
|
|
1917
|
+
inferred from the current project or project branch):
|
|
1918
|
+
```
|
|
1919
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1920
|
+
```
|
|
1921
|
+
|
|
1922
|
+
Note that `branch` is typically one of:
|
|
1923
|
+
- `prod`
|
|
1924
|
+
- `user.bob`
|
|
1925
|
+
- `test.my_experiment`
|
|
1926
|
+
- `prod.staging`
|
|
1997
1927
|
|
|
1998
1928
|
|
|
1999
1929
|
Parameters
|
|
2000
1930
|
----------
|
|
2001
|
-
|
|
2002
|
-
|
|
2003
|
-
|
|
2004
|
-
|
|
2005
|
-
|
|
2006
|
-
|
|
2007
|
-
exponential_backoff : bool
|
|
2008
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
|
2009
|
-
pool : str
|
|
2010
|
-
the slot pool this task should run in,
|
|
2011
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
|
2012
|
-
soft_fail : bool
|
|
2013
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
|
2014
|
-
name : str
|
|
2015
|
-
Name of the sensor on Airflow
|
|
2016
|
-
description : str
|
|
2017
|
-
Description of sensor in the Airflow UI
|
|
2018
|
-
bucket_key : Union[str, List[str]]
|
|
2019
|
-
The key(s) being waited on. Supports full s3:// style url or relative path from root level.
|
|
2020
|
-
When it's specified as a full s3:// url, please leave `bucket_name` as None
|
|
2021
|
-
bucket_name : str
|
|
2022
|
-
Name of the S3 bucket. Only needed when bucket_key is not provided as a full s3:// url.
|
|
2023
|
-
When specified, all the keys passed to bucket_key refers to this bucket. (Default:None)
|
|
2024
|
-
wildcard_match : bool
|
|
2025
|
-
whether the bucket_key should be interpreted as a Unix wildcard pattern. (Default: False)
|
|
2026
|
-
aws_conn_id : str
|
|
2027
|
-
a reference to the s3 connection on Airflow. (Default: None)
|
|
2028
|
-
verify : bool
|
|
2029
|
-
Whether or not to verify SSL certificates for S3 connection. (Default: None)
|
|
1931
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1932
|
+
Upstream flow dependency for this flow.
|
|
1933
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1934
|
+
Upstream flow dependencies for this flow.
|
|
1935
|
+
options : Dict[str, Any], default {}
|
|
1936
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
2030
1937
|
"""
|
|
2031
1938
|
...
|
|
2032
1939
|
|
|
2033
1940
|
@typing.overload
|
|
2034
|
-
def
|
|
1941
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
1942
|
+
...
|
|
1943
|
+
|
|
1944
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
2035
1945
|
"""
|
|
2036
|
-
Specifies the
|
|
2037
|
-
|
|
1946
|
+
Specifies the flow(s) that this flow depends on.
|
|
1947
|
+
|
|
1948
|
+
```
|
|
1949
|
+
@trigger_on_finish(flow='FooFlow')
|
|
1950
|
+
```
|
|
1951
|
+
or
|
|
1952
|
+
```
|
|
1953
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
|
1954
|
+
```
|
|
1955
|
+
This decorator respects the @project decorator and triggers the flow
|
|
1956
|
+
when upstream runs within the same namespace complete successfully
|
|
1957
|
+
|
|
1958
|
+
Additionally, you can specify project aware upstream flow dependencies
|
|
1959
|
+
by specifying the fully qualified project_flow_name.
|
|
1960
|
+
```
|
|
1961
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
|
1962
|
+
```
|
|
1963
|
+
or
|
|
1964
|
+
```
|
|
1965
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
|
1966
|
+
```
|
|
1967
|
+
|
|
1968
|
+
You can also specify just the project or project branch (other values will be
|
|
1969
|
+
inferred from the current project or project branch):
|
|
1970
|
+
```
|
|
1971
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
|
1972
|
+
```
|
|
1973
|
+
|
|
1974
|
+
Note that `branch` is typically one of:
|
|
1975
|
+
- `prod`
|
|
1976
|
+
- `user.bob`
|
|
1977
|
+
- `test.my_experiment`
|
|
1978
|
+
- `prod.staging`
|
|
2038
1979
|
|
|
2039
1980
|
|
|
2040
1981
|
Parameters
|
|
2041
1982
|
----------
|
|
2042
|
-
|
|
2043
|
-
|
|
2044
|
-
|
|
2045
|
-
|
|
2046
|
-
|
|
2047
|
-
|
|
2048
|
-
cron : str, optional, default None
|
|
2049
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
2050
|
-
specified by this expression.
|
|
2051
|
-
timezone : str, optional, default None
|
|
2052
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
2053
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
1983
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
|
1984
|
+
Upstream flow dependency for this flow.
|
|
1985
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
|
1986
|
+
Upstream flow dependencies for this flow.
|
|
1987
|
+
options : Dict[str, Any], default {}
|
|
1988
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
2054
1989
|
"""
|
|
2055
1990
|
...
|
|
2056
1991
|
|
|
2057
1992
|
@typing.overload
|
|
2058
|
-
def
|
|
1993
|
+
def trigger(*, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
|
1994
|
+
"""
|
|
1995
|
+
Specifies the event(s) that this flow depends on.
|
|
1996
|
+
|
|
1997
|
+
```
|
|
1998
|
+
@trigger(event='foo')
|
|
1999
|
+
```
|
|
2000
|
+
or
|
|
2001
|
+
```
|
|
2002
|
+
@trigger(events=['foo', 'bar'])
|
|
2003
|
+
```
|
|
2004
|
+
|
|
2005
|
+
Additionally, you can specify the parameter mappings
|
|
2006
|
+
to map event payload to Metaflow parameters for the flow.
|
|
2007
|
+
```
|
|
2008
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
2009
|
+
```
|
|
2010
|
+
or
|
|
2011
|
+
```
|
|
2012
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
2013
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
2014
|
+
```
|
|
2015
|
+
|
|
2016
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
2017
|
+
```
|
|
2018
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
2019
|
+
```
|
|
2020
|
+
This is equivalent to:
|
|
2021
|
+
```
|
|
2022
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
2023
|
+
```
|
|
2024
|
+
|
|
2025
|
+
|
|
2026
|
+
Parameters
|
|
2027
|
+
----------
|
|
2028
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
2029
|
+
Event dependency for this flow.
|
|
2030
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
2031
|
+
Events dependency for this flow.
|
|
2032
|
+
options : Dict[str, Any], default {}
|
|
2033
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
2034
|
+
"""
|
|
2059
2035
|
...
|
|
2060
2036
|
|
|
2061
|
-
|
|
2037
|
+
@typing.overload
|
|
2038
|
+
def trigger(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
|
2039
|
+
...
|
|
2040
|
+
|
|
2041
|
+
def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: typing.Union[str, typing.Dict[str, typing.Any], None] = None, events: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
|
2062
2042
|
"""
|
|
2063
|
-
Specifies the
|
|
2064
|
-
|
|
2043
|
+
Specifies the event(s) that this flow depends on.
|
|
2044
|
+
|
|
2045
|
+
```
|
|
2046
|
+
@trigger(event='foo')
|
|
2047
|
+
```
|
|
2048
|
+
or
|
|
2049
|
+
```
|
|
2050
|
+
@trigger(events=['foo', 'bar'])
|
|
2051
|
+
```
|
|
2052
|
+
|
|
2053
|
+
Additionally, you can specify the parameter mappings
|
|
2054
|
+
to map event payload to Metaflow parameters for the flow.
|
|
2055
|
+
```
|
|
2056
|
+
@trigger(event={'name':'foo', 'parameters':{'flow_param': 'event_field'}})
|
|
2057
|
+
```
|
|
2058
|
+
or
|
|
2059
|
+
```
|
|
2060
|
+
@trigger(events=[{'name':'foo', 'parameters':{'flow_param_1': 'event_field_1'},
|
|
2061
|
+
{'name':'bar', 'parameters':{'flow_param_2': 'event_field_2'}])
|
|
2062
|
+
```
|
|
2063
|
+
|
|
2064
|
+
'parameters' can also be a list of strings and tuples like so:
|
|
2065
|
+
```
|
|
2066
|
+
@trigger(event={'name':'foo', 'parameters':['common_name', ('flow_param', 'event_field')]})
|
|
2067
|
+
```
|
|
2068
|
+
This is equivalent to:
|
|
2069
|
+
```
|
|
2070
|
+
@trigger(event={'name':'foo', 'parameters':{'common_name': 'common_name', 'flow_param': 'event_field'}})
|
|
2071
|
+
```
|
|
2065
2072
|
|
|
2066
2073
|
|
|
2067
2074
|
Parameters
|
|
2068
2075
|
----------
|
|
2069
|
-
|
|
2070
|
-
|
|
2071
|
-
|
|
2072
|
-
|
|
2073
|
-
|
|
2074
|
-
|
|
2075
|
-
cron : str, optional, default None
|
|
2076
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
|
2077
|
-
specified by this expression.
|
|
2078
|
-
timezone : str, optional, default None
|
|
2079
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
|
2080
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
|
2076
|
+
event : Union[str, Dict[str, Any]], optional, default None
|
|
2077
|
+
Event dependency for this flow.
|
|
2078
|
+
events : List[Union[str, Dict[str, Any]]], default []
|
|
2079
|
+
Events dependency for this flow.
|
|
2080
|
+
options : Dict[str, Any], default {}
|
|
2081
|
+
Backend-specific configuration for tuning eventing behavior.
|
|
2081
2082
|
"""
|
|
2082
2083
|
...
|
|
2083
2084
|
|