oafuncs 0.0.98.50__py3-none-any.whl → 0.0.98.52__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- oafuncs/_script/email.py +2 -33
 - oafuncs/_script/process_roms.py +620 -0
 - oafuncs/oa_linux.py +53 -4
 - oafuncs/oa_model/roms.py +42 -0
 - oafuncs/oa_tool.py +4 -4
 - {oafuncs-0.0.98.50.dist-info → oafuncs-0.0.98.52.dist-info}/METADATA +1 -1
 - {oafuncs-0.0.98.50.dist-info → oafuncs-0.0.98.52.dist-info}/RECORD +10 -10
 - oafuncs/oa_model/roms/__init__.py +0 -20
 - oafuncs/oa_model/roms/test.py +0 -19
 - {oafuncs-0.0.98.50.dist-info → oafuncs-0.0.98.52.dist-info}/WHEEL +0 -0
 - {oafuncs-0.0.98.50.dist-info → oafuncs-0.0.98.52.dist-info}/licenses/LICENSE.txt +0 -0
 - {oafuncs-0.0.98.50.dist-info → oafuncs-0.0.98.52.dist-info}/top_level.txt +0 -0
 
    
        oafuncs/_script/email.py
    CHANGED
    
    | 
         @@ -1,9 +1,8 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            from rich import print
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
     | 
    
         
            -
            __all__ = ["send"]
         
     | 
| 
       4 
3 
     | 
    
         | 
| 
       5 
4 
     | 
    
         | 
| 
       6 
     | 
    
         
            -
            def _send_message( 
     | 
| 
      
 5 
     | 
    
         
            +
            def _send_message(msg_from, password, msg_to, title, content):
         
     | 
| 
       7 
6 
     | 
    
         
             
                from email.header import Header
         
     | 
| 
       8 
7 
     | 
    
         
             
                from email.mime.multipart import MIMEMultipart
         
     | 
| 
       9 
8 
     | 
    
         
             
                from email.mime.text import MIMEText
         
     | 
| 
         @@ -30,18 +29,6 @@ def _send_message(title, content, msg_to, msg_from, password): 
     | 
|
| 
       30 
29 
     | 
    
         
             
                # 设置邮件接受者
         
     | 
| 
       31 
30 
     | 
    
         
             
                msg["To"] = msg_to
         
     | 
| 
       32 
31 
     | 
    
         | 
| 
       33 
     | 
    
         
            -
                # # 添加html内容
         
     | 
| 
       34 
     | 
    
         
            -
                # content = """
         
     | 
| 
       35 
     | 
    
         
            -
                # <h2>我是正文中的标题</h2>
         
     | 
| 
       36 
     | 
    
         
            -
                # <p>邮件正文描述性文字1</p>
         
     | 
| 
       37 
     | 
    
         
            -
                # <p>邮件正文描述性文字2</p>
         
     | 
| 
       38 
     | 
    
         
            -
                # <img src='https://www.baidu.com/img/bd_logo1.png'>
         
     | 
| 
       39 
     | 
    
         
            -
                # <center>百度图片</center>
         
     | 
| 
       40 
     | 
    
         
            -
                # <a href='https://www.baidu.com'>百度一下</a>
         
     | 
| 
       41 
     | 
    
         
            -
                # """
         
     | 
| 
       42 
     | 
    
         
            -
                # html = MIMEText(content, 'html', 'utf-8')
         
     | 
| 
       43 
     | 
    
         
            -
                # msg.attach(html)
         
     | 
| 
       44 
     | 
    
         
            -
             
     | 
| 
       45 
32 
     | 
    
         
             
                # or
         
     | 
| 
       46 
33 
     | 
    
         
             
                # content = '发送内容'
         
     | 
| 
       47 
34 
     | 
    
         
             
                msg.attach(MIMEText(content, "plain", "utf-8"))
         
     | 
| 
         @@ -54,26 +41,8 @@ def _send_message(title, content, msg_to, msg_from, password): 
     | 
|
| 
       54 
41 
     | 
    
         
             
                print("发送内容为:\n{}\n\n".format(content))
         
     | 
| 
       55 
42 
     | 
    
         | 
| 
       56 
43 
     | 
    
         | 
| 
       57 
     | 
    
         
            -
            def send(title="Title", content=None, send_to: str = "email@qq.com", msg_from='must@qq.com', password='email_not_qq_pwd'):
         
     | 
| 
       58 
     | 
    
         
            -
                """
         
     | 
| 
       59 
     | 
    
         
            -
                Description: 发送邮件
         
     | 
| 
       60 
     | 
    
         
            -
             
     | 
| 
       61 
     | 
    
         
            -
                Args:
         
     | 
| 
       62 
     | 
    
         
            -
                    title: 邮件标题
         
     | 
| 
       63 
     | 
    
         
            -
                    content: 邮件内容
         
     | 
| 
       64 
     | 
    
         
            -
                    send_to: 发送对象
         
     | 
| 
       65 
     | 
    
         
            -
             
     | 
| 
       66 
     | 
    
         
            -
                Returns:
         
     | 
| 
       67 
     | 
    
         
            -
                    None
         
     | 
| 
       68 
44 
     | 
    
         | 
| 
       69 
     | 
    
         
            -
                Example:
         
     | 
| 
       70 
     | 
    
         
            -
                    send(title='Title', content='Content', '123@qq.com')
         
     | 
| 
       71 
     | 
    
         
            -
                """
         
     | 
| 
       72 
     | 
    
         
            -
                if content is None or send_to=='email@qq.com' or msg_from=='must@qq.com' or password=='email_not_qq_pwd':
         
     | 
| 
       73 
     | 
    
         
            -
                    return
         
     | 
| 
       74 
     | 
    
         
            -
                else:
         
     | 
| 
       75 
     | 
    
         
            -
                    _send_message(title, content, send_to, msg_from, password)
         
     | 
| 
       76 
45 
     | 
    
         | 
| 
       77 
46 
     | 
    
         | 
| 
       78 
47 
     | 
    
         
             
            if __name__ == "__main__":
         
     | 
| 
       79 
     | 
    
         
            -
                 
     | 
| 
      
 48 
     | 
    
         
            +
                pass
         
     | 
| 
         @@ -0,0 +1,620 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            #!/usr/bin/env python3
         
     | 
| 
      
 2 
     | 
    
         
            +
            """
         
     | 
| 
      
 3 
     | 
    
         
            +
            process_roms_uv_fixed.py
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            ROMS -> lon/lat remapping with correct u/v handling following Fortran workflow:
         
     | 
| 
      
 6 
     | 
    
         
            +
              - Average u/v to rho points (pad both ends then average)
         
     | 
| 
      
 7 
     | 
    
         
            +
              - Vertical interpolate on SOURCE rho depths to standard target depths (spline fallback linear)
         
     | 
| 
      
 8 
     | 
    
         
            +
              - Horizontal remap each target level to output lon/lat (xESMF)
         
     | 
| 
      
 9 
     | 
    
         
            +
            Robust Cs handling, no silent NaN propagation, endpoint handling like Fortran splint.
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
            Usage: edit __main__ input_nc/output_nc/varnames/target_lon/target_lat/target_depth.
         
     | 
| 
      
 12 
     | 
    
         
            +
            Dependencies: numpy, xarray, scipy, xesmf
         
     | 
| 
      
 13 
     | 
    
         
            +
            """
         
     | 
| 
      
 14 
     | 
    
         
            +
             
     | 
| 
      
 15 
     | 
    
         
            +
            from typing import Optional, Sequence, Dict, Any, Tuple
         
     | 
| 
      
 16 
     | 
    
         
            +
            import numpy as np
         
     | 
| 
      
 17 
     | 
    
         
            +
            import xarray as xr
         
     | 
| 
      
 18 
     | 
    
         
            +
            from scipy.interpolate import interp1d, CubicSpline
         
     | 
| 
      
 19 
     | 
    
         
            +
            from rich import print
         
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
            # Verbose toggles
         
     | 
| 
      
 22 
     | 
    
         
            +
            VERBOSE = True
         
     | 
| 
      
 23 
     | 
    
         
            +
            VERBOSE_DEBUG = False
         
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 26 
     | 
    
         
            +
            # Utilities
         
     | 
| 
      
 27 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 28 
     | 
    
         
            +
            def safe_nanmin(a):
         
     | 
| 
      
 29 
     | 
    
         
            +
                a = np.asarray(a)
         
     | 
| 
      
 30 
     | 
    
         
            +
                if np.isfinite(a).any():
         
     | 
| 
      
 31 
     | 
    
         
            +
                    return np.nanmin(a)
         
     | 
| 
      
 32 
     | 
    
         
            +
                return np.nan
         
     | 
| 
      
 33 
     | 
    
         
            +
             
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
            def safe_nanmax(a):
         
     | 
| 
      
 36 
     | 
    
         
            +
                a = np.asarray(a)
         
     | 
| 
      
 37 
     | 
    
         
            +
                if np.isfinite(a).any():
         
     | 
| 
      
 38 
     | 
    
         
            +
                    return np.nanmax(a)
         
     | 
| 
      
 39 
     | 
    
         
            +
                return np.nan
         
     | 
| 
      
 40 
     | 
    
         
            +
             
     | 
| 
      
 41 
     | 
    
         
            +
             
     | 
| 
      
 42 
     | 
    
         
            +
            def avg_to_rho_axis_padboth(arr: np.ndarray, axis: int) -> np.ndarray:
         
     | 
| 
      
 43 
     | 
    
         
            +
                """
         
     | 
| 
      
 44 
     | 
    
         
            +
                Pad both ends with edge values and average adjacent pairs along axis.
         
     | 
| 
      
 45 
     | 
    
         
            +
                Input length n -> output length n+1. Works for N-D arrays.
         
     | 
| 
      
 46 
     | 
    
         
            +
                """
         
     | 
| 
      
 47 
     | 
    
         
            +
                arr = np.asarray(arr)
         
     | 
| 
      
 48 
     | 
    
         
            +
                if arr.size == 0:
         
     | 
| 
      
 49 
     | 
    
         
            +
                    return arr
         
     | 
| 
      
 50 
     | 
    
         
            +
                arr = arr.astype(np.float64, copy=False)
         
     | 
| 
      
 51 
     | 
    
         
            +
                axis = axis if axis >= 0 else arr.ndim + axis
         
     | 
| 
      
 52 
     | 
    
         
            +
                pad = [(0, 0)] * arr.ndim
         
     | 
| 
      
 53 
     | 
    
         
            +
                pad[axis] = (1, 1)
         
     | 
| 
      
 54 
     | 
    
         
            +
                arr_pad = np.pad(arr, pad, mode='edge')
         
     | 
| 
      
 55 
     | 
    
         
            +
                # average adjacent pairs
         
     | 
| 
      
 56 
     | 
    
         
            +
                slic_l = [slice(None)] * arr.ndim
         
     | 
| 
      
 57 
     | 
    
         
            +
                slic_r = [slice(None)] * arr.ndim
         
     | 
| 
      
 58 
     | 
    
         
            +
                slic_l[axis] = slice(0, arr_pad.shape[axis] - 1)
         
     | 
| 
      
 59 
     | 
    
         
            +
                slic_r[axis] = slice(1, arr_pad.shape[axis])
         
     | 
| 
      
 60 
     | 
    
         
            +
                left = arr_pad[tuple(slic_l)]
         
     | 
| 
      
 61 
     | 
    
         
            +
                right = arr_pad[tuple(slic_r)]
         
     | 
| 
      
 62 
     | 
    
         
            +
                out = 0.5 * (left + right)
         
     | 
| 
      
 63 
     | 
    
         
            +
                return np.ascontiguousarray(out)
         
     | 
| 
      
 64 
     | 
    
         
            +
             
     | 
| 
      
 65 
     | 
    
         
            +
             
     | 
| 
      
 66 
     | 
    
         
            +
            def _need_periodic(lon1d: np.ndarray, tol: float = 1.0) -> bool:
         
     | 
| 
      
 67 
     | 
    
         
            +
                lon1d = np.asarray(lon1d, dtype=np.float64)
         
     | 
| 
      
 68 
     | 
    
         
            +
                if lon1d.size == 0:
         
     | 
| 
      
 69 
     | 
    
         
            +
                    return False
         
     | 
| 
      
 70 
     | 
    
         
            +
                span = np.nanmax(lon1d) - np.nanmin(lon1d)
         
     | 
| 
      
 71 
     | 
    
         
            +
                return span > (360 - tol)
         
     | 
| 
      
 72 
     | 
    
         
            +
             
     | 
| 
      
 73 
     | 
    
         
            +
             
     | 
| 
      
 74 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 75 
     | 
    
         
            +
            # Vertical stretching helpers (Cs)
         
     | 
| 
      
 76 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 77 
     | 
    
         
            +
            def _compute_C_from_vstretching(s: np.ndarray, theta_s: float, theta_b: float, vstretching: int) -> np.ndarray:
         
     | 
| 
      
 78 
     | 
    
         
            +
                s = np.asarray(s, dtype=np.float64)
         
     | 
| 
      
 79 
     | 
    
         
            +
                vstretching = int(vstretching)
         
     | 
| 
      
 80 
     | 
    
         
            +
                theta_s = float(theta_s)
         
     | 
| 
      
 81 
     | 
    
         
            +
                theta_b = float(theta_b)
         
     | 
| 
      
 82 
     | 
    
         
            +
                if vstretching == 1:
         
     | 
| 
      
 83 
     | 
    
         
            +
                    return (1 - theta_b) * (np.sinh(theta_s * s) / np.sinh(theta_s)) + \
         
     | 
| 
      
 84 
     | 
    
         
            +
                           theta_b * (-0.5 + 0.5 * np.tanh(theta_s * (s + 0.5)) / np.tanh(0.5 * theta_s))
         
     | 
| 
      
 85 
     | 
    
         
            +
                elif vstretching == 2:
         
     | 
| 
      
 86 
     | 
    
         
            +
                    Csur = (1 - np.cosh(theta_s * s)) / (np.cosh(theta_s) - 1)
         
     | 
| 
      
 87 
     | 
    
         
            +
                    Cbot = -1 + (1 - np.sinh(theta_b * (s + 1))) / np.sinh(theta_b)
         
     | 
| 
      
 88 
     | 
    
         
            +
                    alpha, beta = 3.0, 3.0
         
     | 
| 
      
 89 
     | 
    
         
            +
                    Cweight = (s + 1) ** alpha * (1 + (alpha / beta) * (1 - (s + 1) ** beta))
         
     | 
| 
      
 90 
     | 
    
         
            +
                    return Cweight * Csur + (1 - Cweight) * Cbot
         
     | 
| 
      
 91 
     | 
    
         
            +
                else:
         
     | 
| 
      
 92 
     | 
    
         
            +
                    # 4
         
     | 
| 
      
 93 
     | 
    
         
            +
                    Ctemp = (1 - np.cosh(theta_s * s)) / (np.cosh(theta_s) - 1)
         
     | 
| 
      
 94 
     | 
    
         
            +
                    denom = (1 - np.exp(-theta_b))
         
     | 
| 
      
 95 
     | 
    
         
            +
                    denom = denom if denom != 0 else 1e-12
         
     | 
| 
      
 96 
     | 
    
         
            +
                    return (np.exp(theta_b * Ctemp) - 1) / denom
         
     | 
| 
      
 97 
     | 
    
         
            +
             
     | 
| 
      
 98 
     | 
    
         
            +
             
     | 
| 
      
 99 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 100 
     | 
    
         
            +
            # Compute source z (vectorized), validate Cs
         
     | 
| 
      
 101 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 102 
     | 
    
         
            +
            def get_roms_depths(ds: xr.Dataset, is_w: bool = False, time_index: Optional[int] = None,
         
     | 
| 
      
 103 
     | 
    
         
            +
                                eps: float = 1e-8) -> xr.DataArray:
         
     | 
| 
      
 104 
     | 
    
         
            +
                vtransform = int(getattr(ds, 'Vtransform', ds.attrs.get('Vtransform', 2)))
         
     | 
| 
      
 105 
     | 
    
         
            +
                vstretching = int(getattr(ds, 'Vstretching', ds.attrs.get('Vstretching', 4)))
         
     | 
| 
      
 106 
     | 
    
         
            +
                theta_s = float(ds.attrs.get('theta_s', getattr(ds, 'theta_s', 5.0)))
         
     | 
| 
      
 107 
     | 
    
         
            +
                theta_b = float(ds.attrs.get('theta_b', getattr(ds, 'theta_b', 0.4)))
         
     | 
| 
      
 108 
     | 
    
         
            +
             
     | 
| 
      
 109 
     | 
    
         
            +
                h = ds['h'].astype('f8').values
         
     | 
| 
      
 110 
     | 
    
         
            +
                if 'mask_rho' in ds.variables:
         
     | 
| 
      
 111 
     | 
    
         
            +
                    mask_rho = ds['mask_rho'].astype('f8').values
         
     | 
| 
      
 112 
     | 
    
         
            +
                    h = h.copy()
         
     | 
| 
      
 113 
     | 
    
         
            +
                    h[mask_rho == 0] = np.nan
         
     | 
| 
      
 114 
     | 
    
         
            +
             
     | 
| 
      
 115 
     | 
    
         
            +
                hc = None
         
     | 
| 
      
 116 
     | 
    
         
            +
                if 'hc' in ds.variables:
         
     | 
| 
      
 117 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 118 
     | 
    
         
            +
                        hc = float(np.array(ds['hc'].values))
         
     | 
| 
      
 119 
     | 
    
         
            +
                    except Exception:
         
     | 
| 
      
 120 
     | 
    
         
            +
                        hc = None
         
     | 
| 
      
 121 
     | 
    
         
            +
                if hc is None:
         
     | 
| 
      
 122 
     | 
    
         
            +
                    hc = float(ds.attrs.get('hc', 1.0))
         
     | 
| 
      
 123 
     | 
    
         
            +
                hc = float(hc)
         
     | 
| 
      
 124 
     | 
    
         
            +
             
     | 
| 
      
 125 
     | 
    
         
            +
                # zeta
         
     | 
| 
      
 126 
     | 
    
         
            +
                if 'zeta' in ds.variables:
         
     | 
| 
      
 127 
     | 
    
         
            +
                    zeta_da = ds['zeta']
         
     | 
| 
      
 128 
     | 
    
         
            +
                    if 'ocean_time' in zeta_da.dims:
         
     | 
| 
      
 129 
     | 
    
         
            +
                        if time_index is None:
         
     | 
| 
      
 130 
     | 
    
         
            +
                            zeta = zeta_da.astype('f8').values
         
     | 
| 
      
 131 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 132 
     | 
    
         
            +
                            zeta = zeta_da.isel(ocean_time=int(time_index)).astype('f8').values
         
     | 
| 
      
 133 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 134 
     | 
    
         
            +
                        zeta = zeta_da.astype('f8').values
         
     | 
| 
      
 135 
     | 
    
         
            +
                else:
         
     | 
| 
      
 136 
     | 
    
         
            +
                    if time_index is None and 'ocean_time' in ds.dims:
         
     | 
| 
      
 137 
     | 
    
         
            +
                        ntime = int(ds.sizes.get('ocean_time', 1))
         
     | 
| 
      
 138 
     | 
    
         
            +
                        zeta = np.zeros((ntime,) + h.shape, dtype=np.float64)
         
     | 
| 
      
 139 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 140 
     | 
    
         
            +
                        zeta = np.zeros_like(h, dtype=np.float64)
         
     | 
| 
      
 141 
     | 
    
         
            +
             
     | 
| 
      
 142 
     | 
    
         
            +
                if is_w:
         
     | 
| 
      
 143 
     | 
    
         
            +
                    Ns = int(ds.sizes.get('s_w', 0))
         
     | 
| 
      
 144 
     | 
    
         
            +
                    sc_name, Cs_name = 'sc_w', 'Cs_w'
         
     | 
| 
      
 145 
     | 
    
         
            +
                    s_dim = 's_w'
         
     | 
| 
      
 146 
     | 
    
         
            +
                else:
         
     | 
| 
      
 147 
     | 
    
         
            +
                    Ns = int(ds.sizes.get('s_rho', 0))
         
     | 
| 
      
 148 
     | 
    
         
            +
                    sc_name, Cs_name = 'sc_r', 'Cs_r'
         
     | 
| 
      
 149 
     | 
    
         
            +
                    s_dim = 's_rho'
         
     | 
| 
      
 150 
     | 
    
         
            +
             
     | 
| 
      
 151 
     | 
    
         
            +
                if sc_name in ds.variables:
         
     | 
| 
      
 152 
     | 
    
         
            +
                    s = np.asarray(ds[sc_name].values, dtype=np.float64).ravel()
         
     | 
| 
      
 153 
     | 
    
         
            +
                else:
         
     | 
| 
      
 154 
     | 
    
         
            +
                    if is_w:
         
     | 
| 
      
 155 
     | 
    
         
            +
                        s = (np.arange(0, Ns) - Ns) / float(Ns)
         
     | 
| 
      
 156 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 157 
     | 
    
         
            +
                        s = (np.arange(1, Ns + 1) - Ns - 0.5) / float(Ns)
         
     | 
| 
      
 158 
     | 
    
         
            +
             
     | 
| 
      
 159 
     | 
    
         
            +
                # Cs read + validate
         
     | 
| 
      
 160 
     | 
    
         
            +
                if Cs_name in ds.variables:
         
     | 
| 
      
 161 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 162 
     | 
    
         
            +
                        C_read = np.asarray(ds[Cs_name].values, dtype=np.float64).ravel()
         
     | 
| 
      
 163 
     | 
    
         
            +
                    except Exception:
         
     | 
| 
      
 164 
     | 
    
         
            +
                        C_read = None
         
     | 
| 
      
 165 
     | 
    
         
            +
                else:
         
     | 
| 
      
 166 
     | 
    
         
            +
                    C_read = None
         
     | 
| 
      
 167 
     | 
    
         
            +
             
     | 
| 
      
 168 
     | 
    
         
            +
                if C_read is None:
         
     | 
| 
      
 169 
     | 
    
         
            +
                    C = _compute_C_from_vstretching(s, theta_s, theta_b, vstretching)
         
     | 
| 
      
 170 
     | 
    
         
            +
                else:
         
     | 
| 
      
 171 
     | 
    
         
            +
                    cmin = safe_nanmin(C_read)
         
     | 
| 
      
 172 
     | 
    
         
            +
                    cmax = safe_nanmax(C_read)
         
     | 
| 
      
 173 
     | 
    
         
            +
                    if (not np.isfinite(cmin)) or (not np.isfinite(cmax)) or (cmax > 5.0) or (cmin < -50.0):
         
     | 
| 
      
 174 
     | 
    
         
            +
                        if VERBOSE:
         
     | 
| 
      
 175 
     | 
    
         
            +
                            print(f"[get_roms_depths] Cs suspicious (min={cmin}, max={cmax}), recomputing")
         
     | 
| 
      
 176 
     | 
    
         
            +
                        C = _compute_C_from_vstretching(s, theta_s, theta_b, vstretching)
         
     | 
| 
      
 177 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 178 
     | 
    
         
            +
                        C = C_read
         
     | 
| 
      
 179 
     | 
    
         
            +
             
     | 
| 
      
 180 
     | 
    
         
            +
                s = np.asarray(s, dtype=np.float64).ravel()
         
     | 
| 
      
 181 
     | 
    
         
            +
                C = np.asarray(C, dtype=np.float64).ravel()
         
     | 
| 
      
 182 
     | 
    
         
            +
             
     | 
| 
      
 183 
     | 
    
         
            +
                # prepare h arr
         
     | 
| 
      
 184 
     | 
    
         
            +
                h_arr = np.asarray(h, dtype=np.float64).copy()
         
     | 
| 
      
 185 
     | 
    
         
            +
                h_arr[~np.isfinite(h_arr)] = np.nan
         
     | 
| 
      
 186 
     | 
    
         
            +
                h_arr[h_arr <= 0] = np.nan
         
     | 
| 
      
 187 
     | 
    
         
            +
             
     | 
| 
      
 188 
     | 
    
         
            +
                s3 = s[:, None, None]
         
     | 
| 
      
 189 
     | 
    
         
            +
                C3 = C[:, None, None]
         
     | 
| 
      
 190 
     | 
    
         
            +
                h3 = h_arr[None, :, :]
         
     | 
| 
      
 191 
     | 
    
         
            +
             
     | 
| 
      
 192 
     | 
    
         
            +
                if zeta.ndim == 3:
         
     | 
| 
      
 193 
     | 
    
         
            +
                    zeta3 = zeta[:, None, :, :]
         
     | 
| 
      
 194 
     | 
    
         
            +
                    if vtransform == 1:
         
     | 
| 
      
 195 
     | 
    
         
            +
                        Zo = hc * s3 + (h3 - hc) * C3
         
     | 
| 
      
 196 
     | 
    
         
            +
                        denom_safe = np.where(np.abs(h3) > eps, h3, np.nan)
         
     | 
| 
      
 197 
     | 
    
         
            +
                        z = Zo[None, ...] + zeta3 * (1.0 + Zo[None, ...] / denom_safe[None, ...])
         
     | 
| 
      
 198 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 199 
     | 
    
         
            +
                        denom_safe = np.where(np.abs(hc + h3) > eps, (hc + h3), np.nan)
         
     | 
| 
      
 200 
     | 
    
         
            +
                        Zo = (hc * s3 + h3 * C3) / denom_safe
         
     | 
| 
      
 201 
     | 
    
         
            +
                        z = zeta3 + (zeta3 + h3[None, ...]) * Zo[None, ...]
         
     | 
| 
      
 202 
     | 
    
         
            +
                    time_dim = 'ocean_time'
         
     | 
| 
      
 203 
     | 
    
         
            +
                else:
         
     | 
| 
      
 204 
     | 
    
         
            +
                    zeta3 = zeta[None, :, :]
         
     | 
| 
      
 205 
     | 
    
         
            +
                    if vtransform == 1:
         
     | 
| 
      
 206 
     | 
    
         
            +
                        Zo = hc * s3 + (h3 - hc) * C3
         
     | 
| 
      
 207 
     | 
    
         
            +
                        denom_safe = np.where(np.abs(h3) > eps, h3, np.nan)
         
     | 
| 
      
 208 
     | 
    
         
            +
                        z = Zo + zeta3 * (1.0 + Zo / denom_safe)
         
     | 
| 
      
 209 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 210 
     | 
    
         
            +
                        denom_safe = np.where(np.abs(hc + h3) > eps, (hc + h3), np.nan)
         
     | 
| 
      
 211 
     | 
    
         
            +
                        Zo = (hc * s3 + h3 * C3) / denom_safe
         
     | 
| 
      
 212 
     | 
    
         
            +
                        z = zeta3 + (zeta3 + h3) * Zo
         
     | 
| 
      
 213 
     | 
    
         
            +
                    time_dim = None
         
     | 
| 
      
 214 
     | 
    
         
            +
             
     | 
| 
      
 215 
     | 
    
         
            +
                # bounds
         
     | 
| 
      
 216 
     | 
    
         
            +
                if z.ndim == 4:
         
     | 
| 
      
 217 
     | 
    
         
            +
                    zeta_b = zeta3; h_b = h3[None, ...]
         
     | 
| 
      
 218 
     | 
    
         
            +
                else:
         
     | 
| 
      
 219 
     | 
    
         
            +
                    zeta_b = zeta3; h_b = h3
         
     | 
| 
      
 220 
     | 
    
         
            +
                z_max_allowed = zeta_b
         
     | 
| 
      
 221 
     | 
    
         
            +
                z_min_allowed = zeta_b - h_b
         
     | 
| 
      
 222 
     | 
    
         
            +
                z = np.where((z <= (z_max_allowed + 1e-6)) & (z >= (z_min_allowed - 1e-6)), z, np.nan)
         
     | 
| 
      
 223 
     | 
    
         
            +
                z = np.where(np.abs(z) >= 2e4, np.nan, z)
         
     | 
| 
      
 224 
     | 
    
         
            +
             
     | 
| 
      
 225 
     | 
    
         
            +
                # build DataArray
         
     | 
| 
      
 226 
     | 
    
         
            +
                if time_dim is not None:
         
     | 
| 
      
 227 
     | 
    
         
            +
                    dims = (time_dim, s_dim, 'eta_rho', 'xi_rho')
         
     | 
| 
      
 228 
     | 
    
         
            +
                    coords = {time_dim: ds['ocean_time'] if 'ocean_time' in ds.coords else np.arange(z.shape[0])}
         
     | 
| 
      
 229 
     | 
    
         
            +
                else:
         
     | 
| 
      
 230 
     | 
    
         
            +
                    dims = (s_dim, 'eta_rho', 'xi_rho')
         
     | 
| 
      
 231 
     | 
    
         
            +
                    coords = {}
         
     | 
| 
      
 232 
     | 
    
         
            +
                coords[s_dim] = s
         
     | 
| 
      
 233 
     | 
    
         
            +
                coords['eta_rho'] = ds['eta_rho'] if 'eta_rho' in ds.coords else np.arange(h_arr.shape[0])
         
     | 
| 
      
 234 
     | 
    
         
            +
                coords['xi_rho'] = ds['xi_rho'] if 'xi_rho' in ds.coords else np.arange(h_arr.shape[1])
         
     | 
| 
      
 235 
     | 
    
         
            +
             
     | 
| 
      
 236 
     | 
    
         
            +
                z_da = xr.DataArray(data=z, dims=dims, coords=coords)
         
     | 
| 
      
 237 
     | 
    
         
            +
                if VERBOSE:
         
     | 
| 
      
 238 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 239 
     | 
    
         
            +
                        if time_dim is not None:
         
     | 
| 
      
 240 
     | 
    
         
            +
                            zk = z_da.isel({time_dim: 0})
         
     | 
| 
      
 241 
     | 
    
         
            +
                            print(f"[get_roms_depths] sample z min/max (time0): {safe_nanmin(zk.values):.3f}/{safe_nanmax(zk.values):.3f}")
         
     | 
| 
      
 242 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 243 
     | 
    
         
            +
                            print(f"[get_roms_depths] sample z min/max: {safe_nanmin(z):.3f}/{safe_nanmax(z):.3f}")
         
     | 
| 
      
 244 
     | 
    
         
            +
                    except Exception:
         
     | 
| 
      
 245 
     | 
    
         
            +
                        pass
         
     | 
| 
      
 246 
     | 
    
         
            +
                return z_da
         
     | 
| 
      
 247 
     | 
    
         
            +
             
     | 
| 
      
 248 
     | 
    
         
            +
             
     | 
| 
      
 249 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 250 
     | 
    
         
            +
            # vertical interpolation per-column with Fortran endpoint policy
         
     | 
| 
      
 251 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 252 
     | 
    
         
            +
            def vertical_interp_with_endpoints(depths: np.ndarray, data: np.ndarray, target_depth: Sequence[float],
         
     | 
| 
      
 253 
     | 
    
         
            +
                                               allow_extrapolation: bool = False, cubic_min_points: int = 4) -> np.ndarray:
         
     | 
| 
      
 254 
     | 
    
         
            +
                """
         
     | 
| 
      
 255 
     | 
    
         
            +
                Column-wise interpolation similar to Fortran spline+splint behavior:
         
     | 
| 
      
 256 
     | 
    
         
            +
                  - if n_valid >= cubic_min_points: cubic spline; for target outside source range assign endpoint value
         
     | 
| 
      
 257 
     | 
    
         
            +
                  - elif n_valid >=2: linear interpolation; for outside assign endpoint value
         
     | 
| 
      
 258 
     | 
    
         
            +
                  - else: NaN
         
     | 
| 
      
 259 
     | 
    
         
            +
                depths: (Ns, eta, xi)
         
     | 
| 
      
 260 
     | 
    
         
            +
                data:   (Ns, eta, xi)
         
     | 
| 
      
 261 
     | 
    
         
            +
                target_depth: 1D (negative depths)
         
     | 
| 
      
 262 
     | 
    
         
            +
                """
         
     | 
| 
      
 263 
     | 
    
         
            +
                depths = np.asarray(depths, dtype=np.float64)
         
     | 
| 
      
 264 
     | 
    
         
            +
                data = np.asarray(data, dtype=np.float64)
         
     | 
| 
      
 265 
     | 
    
         
            +
                target_depth = np.asarray(target_depth, dtype=np.float64)
         
     | 
| 
      
 266 
     | 
    
         
            +
                nt = len(target_depth)
         
     | 
| 
      
 267 
     | 
    
         
            +
                eta = data.shape[1]
         
     | 
| 
      
 268 
     | 
    
         
            +
                xi = data.shape[2]
         
     | 
| 
      
 269 
     | 
    
         
            +
                out = np.full((nt, eta, xi), np.nan, dtype=np.float64)
         
     | 
| 
      
 270 
     | 
    
         
            +
             
     | 
| 
      
 271 
     | 
    
         
            +
                # compute h_actual to mask deeper than local depth
         
     | 
| 
      
 272 
     | 
    
         
            +
                if np.isfinite(depths).any():
         
     | 
| 
      
 273 
     | 
    
         
            +
                    h_actual = np.abs(np.nanmin(depths, axis=0))
         
     | 
| 
      
 274 
     | 
    
         
            +
                else:
         
     | 
| 
      
 275 
     | 
    
         
            +
                    h_actual = np.zeros((eta, xi), dtype=np.float64)
         
     | 
| 
      
 276 
     | 
    
         
            +
                h_actual = np.where(np.isfinite(h_actual), h_actual, 0.0)
         
     | 
| 
      
 277 
     | 
    
         
            +
             
     | 
| 
      
 278 
     | 
    
         
            +
                for i in range(eta):
         
     | 
| 
      
 279 
     | 
    
         
            +
                    for j in range(xi):
         
     | 
| 
      
 280 
     | 
    
         
            +
                        dcol = depths[:, i, j]
         
     | 
| 
      
 281 
     | 
    
         
            +
                        vcol = data[:, i, j]
         
     | 
| 
      
 282 
     | 
    
         
            +
                        ok = np.isfinite(dcol) & np.isfinite(vcol)
         
     | 
| 
      
 283 
     | 
    
         
            +
                        n_ok = int(ok.sum())
         
     | 
| 
      
 284 
     | 
    
         
            +
                        if n_ok < 2:
         
     | 
| 
      
 285 
     | 
    
         
            +
                            continue
         
     | 
| 
      
 286 
     | 
    
         
            +
                        d_valid = dcol[ok]
         
     | 
| 
      
 287 
     | 
    
         
            +
                        v_valid = vcol[ok]
         
     | 
| 
      
 288 
     | 
    
         
            +
                        # sort ascending depth for interp
         
     | 
| 
      
 289 
     | 
    
         
            +
                        order = np.argsort(d_valid)
         
     | 
| 
      
 290 
     | 
    
         
            +
                        d_valid = d_valid[order]
         
     | 
| 
      
 291 
     | 
    
         
            +
                        v_valid = v_valid[order]
         
     | 
| 
      
 292 
     | 
    
         
            +
                        # unique depths
         
     | 
| 
      
 293 
     | 
    
         
            +
                        d_u, idx = np.unique(d_valid, return_index=True)
         
     | 
| 
      
 294 
     | 
    
         
            +
                        v_u = v_valid[idx]
         
     | 
| 
      
 295 
     | 
    
         
            +
                        if d_u.size < 2:
         
     | 
| 
      
 296 
     | 
    
         
            +
                            continue
         
     | 
| 
      
 297 
     | 
    
         
            +
                        try:
         
     | 
| 
      
 298 
     | 
    
         
            +
                            if d_u.size >= cubic_min_points:
         
     | 
| 
      
 299 
     | 
    
         
            +
                                cs = CubicSpline(d_u, v_u, extrapolate=False)
         
     | 
| 
      
 300 
     | 
    
         
            +
                                y = cs(target_depth)
         
     | 
| 
      
 301 
     | 
    
         
            +
                                # handle endpoints: where target < d_u[0] -> assign v_u[0]; where > d_u[-1] -> v_u[-1]
         
     | 
| 
      
 302 
     | 
    
         
            +
                                left_mask = target_depth < d_u[0]
         
     | 
| 
      
 303 
     | 
    
         
            +
                                right_mask = target_depth > d_u[-1]
         
     | 
| 
      
 304 
     | 
    
         
            +
                                if left_mask.any():
         
     | 
| 
      
 305 
     | 
    
         
            +
                                    y[left_mask] = v_u[0]
         
     | 
| 
      
 306 
     | 
    
         
            +
                                if right_mask.any():
         
     | 
| 
      
 307 
     | 
    
         
            +
                                    y[right_mask] = v_u[-1]
         
     | 
| 
      
 308 
     | 
    
         
            +
                                out[:, i, j] = y
         
     | 
| 
      
 309 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 310 
     | 
    
         
            +
                                f = interp1d(d_u, v_u, bounds_error=False, fill_value=np.nan, assume_sorted=True)
         
     | 
| 
      
 311 
     | 
    
         
            +
                                y = f(target_depth)
         
     | 
| 
      
 312 
     | 
    
         
            +
                                # fill outside with endpoints
         
     | 
| 
      
 313 
     | 
    
         
            +
                                left_mask = target_depth < d_u[0]
         
     | 
| 
      
 314 
     | 
    
         
            +
                                right_mask = target_depth > d_u[-1]
         
     | 
| 
      
 315 
     | 
    
         
            +
                                if left_mask.any():
         
     | 
| 
      
 316 
     | 
    
         
            +
                                    y[left_mask] = v_u[0]
         
     | 
| 
      
 317 
     | 
    
         
            +
                                if right_mask.any():
         
     | 
| 
      
 318 
     | 
    
         
            +
                                    y[right_mask] = v_u[-1]
         
     | 
| 
      
 319 
     | 
    
         
            +
                                out[:, i, j] = y
         
     | 
| 
      
 320 
     | 
    
         
            +
                        except Exception:
         
     | 
| 
      
 321 
     | 
    
         
            +
                            # fallback linear
         
     | 
| 
      
 322 
     | 
    
         
            +
                            try:
         
     | 
| 
      
 323 
     | 
    
         
            +
                                f = interp1d(d_u, v_u, bounds_error=False, fill_value=np.nan, assume_sorted=True)
         
     | 
| 
      
 324 
     | 
    
         
            +
                                y = f(target_depth)
         
     | 
| 
      
 325 
     | 
    
         
            +
                                left_mask = target_depth < d_u[0]
         
     | 
| 
      
 326 
     | 
    
         
            +
                                right_mask = target_depth > d_u[-1]
         
     | 
| 
      
 327 
     | 
    
         
            +
                                if left_mask.any():
         
     | 
| 
      
 328 
     | 
    
         
            +
                                    y[left_mask] = v_u[0]
         
     | 
| 
      
 329 
     | 
    
         
            +
                                if right_mask.any():
         
     | 
| 
      
 330 
     | 
    
         
            +
                                    y[right_mask] = v_u[-1]
         
     | 
| 
      
 331 
     | 
    
         
            +
                                out[:, i, j] = y
         
     | 
| 
      
 332 
     | 
    
         
            +
                            except Exception:
         
     | 
| 
      
 333 
     | 
    
         
            +
                                if VERBOSE_DEBUG:
         
     | 
| 
      
 334 
     | 
    
         
            +
                                    print(f"[vertical_interp] interpolation failed at col {i},{j}")
         
     | 
| 
      
 335 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 336 
     | 
    
         
            +
                        # ensure target deeper than local bathymetry get NaN
         
     | 
| 
      
 337 
     | 
    
         
            +
                        deeper = np.abs(target_depth) > h_actual[i, j]
         
     | 
| 
      
 338 
     | 
    
         
            +
                        if np.isfinite(h_actual[i, j]) and deeper.any():
         
     | 
| 
      
 339 
     | 
    
         
            +
                            out[deeper, i, j] = np.nan
         
     | 
| 
      
 340 
     | 
    
         
            +
             
     | 
| 
      
 341 
     | 
    
         
            +
                if VERBOSE_DEBUG:
         
     | 
| 
      
 342 
     | 
    
         
            +
                    print("[vertical_interp] done; out nan_frac=", np.isnan(out).mean())
         
     | 
| 
      
 343 
     | 
    
         
            +
                return out
         
     | 
| 
      
 344 
     | 
    
         
            +
             
     | 
| 
      
 345 
     | 
    
         
            +
             
     | 
| 
      
 346 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 347 
     | 
    
         
            +
            # xESMF regridder helpers
         
     | 
| 
      
 348 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 349 
     | 
    
         
            +
            def _make_src_dataset_for_grid(ds: xr.Dataset, grid: str) -> xr.Dataset:
         
     | 
| 
      
 350 
     | 
    
         
            +
                # grid: 'rho','u','v'
         
     | 
| 
      
 351 
     | 
    
         
            +
                if grid == 'rho':
         
     | 
| 
      
 352 
     | 
    
         
            +
                    lon2, lat2 = ds['lon_rho'].values, ds['lat_rho'].values
         
     | 
| 
      
 353 
     | 
    
         
            +
                    dims = ('eta_rho', 'xi_rho')
         
     | 
| 
      
 354 
     | 
    
         
            +
                elif grid == 'u':
         
     | 
| 
      
 355 
     | 
    
         
            +
                    lon2, lat2 = ds['lon_u'].values, ds['lat_u'].values
         
     | 
| 
      
 356 
     | 
    
         
            +
                    dims = ('eta_u', 'xi_u')
         
     | 
| 
      
 357 
     | 
    
         
            +
                elif grid == 'v':
         
     | 
| 
      
 358 
     | 
    
         
            +
                    lon2, lat2 = ds['lon_v'].values, ds['lat_v'].values
         
     | 
| 
      
 359 
     | 
    
         
            +
                    dims = ('eta_v', 'xi_v')
         
     | 
| 
      
 360 
     | 
    
         
            +
                else:
         
     | 
| 
      
 361 
     | 
    
         
            +
                    raise ValueError("Unknown grid")
         
     | 
| 
      
 362 
     | 
    
         
            +
                return xr.Dataset({'lon': (dims, lon2), 'lat': (dims, lat2)})
         
     | 
| 
      
 363 
     | 
    
         
            +
             
     | 
| 
      
 364 
     | 
    
         
            +
             
     | 
| 
      
 365 
     | 
    
         
            +
            def _make_dst_dataset(target_lon: Sequence[float], target_lat: Sequence[float]) -> xr.Dataset:
         
     | 
| 
      
 366 
     | 
    
         
            +
                return xr.Dataset({'lon': (('lon',), np.asarray(target_lon, dtype=np.float64)),
         
     | 
| 
      
 367 
     | 
    
         
            +
                                   'lat': (('lat',), np.asarray(target_lat, dtype=np.float64))})
         
     | 
| 
      
 368 
     | 
    
         
            +
             
     | 
| 
      
 369 
     | 
    
         
            +
             
     | 
| 
      
 370 
     | 
    
         
            +
            def _make_regridder_safe(src_ds: xr.Dataset, dst_ds: xr.Dataset, method: str, fname: str, periodic: bool, reuse: bool):
         
     | 
| 
      
 371 
     | 
    
         
            +
                try:
         
     | 
| 
      
 372 
     | 
    
         
            +
                    import xesmf as xe
         
     | 
| 
      
 373 
     | 
    
         
            +
                except Exception as e:
         
     | 
| 
      
 374 
     | 
    
         
            +
                    raise ImportError("xesmf required. Install: conda install --solver=classic -c conda-forge xesmf esmpy. Error: " + str(e))
         
     | 
| 
      
 375 
     | 
    
         
            +
                try:
         
     | 
| 
      
 376 
     | 
    
         
            +
                    reb = xe.Regridder(src_ds, dst_ds, method=method, periodic=periodic, filename=fname, reuse_weights=reuse)
         
     | 
| 
      
 377 
     | 
    
         
            +
                except OSError:
         
     | 
| 
      
 378 
     | 
    
         
            +
                    reb = xe.Regridder(src_ds, dst_ds, method=method, periodic=periodic, reuse_weights=False)
         
     | 
| 
      
 379 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 380 
     | 
    
         
            +
                        reb.to_netcdf(fname)
         
     | 
| 
      
 381 
     | 
    
         
            +
                    except Exception:
         
     | 
| 
      
 382 
     | 
    
         
            +
                        pass
         
     | 
| 
      
 383 
     | 
    
         
            +
                return reb
         
     | 
| 
      
 384 
     | 
    
         
            +
             
     | 
| 
      
 385 
     | 
    
         
            +
             
     | 
| 
      
 386 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 387 
     | 
    
         
            +
            # Main processing function (implements Fortran logic for u/v)
         
     | 
| 
      
 388 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 389 
     | 
    
         
            +
            def process_roms_file(input_nc: str, output_nc: str, varnames: Sequence[str],
         
     | 
| 
      
 390 
     | 
    
         
            +
                                  target_lon: Sequence[float], target_lat: Sequence[float], target_depth: Sequence[float],
         
     | 
| 
      
 391 
     | 
    
         
            +
                                  overwrite_weights: bool = False):
         
     | 
| 
      
 392 
     | 
    
         
            +
                ds = xr.open_dataset(input_nc, decode_cf=True, mask_and_scale=True)
         
     | 
| 
      
 393 
     | 
    
         
            +
                times = np.asarray(ds['ocean_time'].values) if 'ocean_time' in ds.dims else np.array([0])
         
     | 
| 
      
 394 
     | 
    
         
            +
             
     | 
| 
      
 395 
     | 
    
         
            +
                # dst ds for xESMF
         
     | 
| 
      
 396 
     | 
    
         
            +
                dst_ds = _make_dst_dataset(target_lon, target_lat)
         
     | 
| 
      
 397 
     | 
    
         
            +
                periodic = _need_periodic(np.asarray(target_lon))
         
     | 
| 
      
 398 
     | 
    
         
            +
             
     | 
| 
      
 399 
     | 
    
         
            +
                # create rho regridder (final remap uses rho grid)
         
     | 
| 
      
 400 
     | 
    
         
            +
                src_rho = _make_src_dataset_for_grid(ds, 'rho')
         
     | 
| 
      
 401 
     | 
    
         
            +
                fname_rho = f"weights_bilin_rho_{src_rho['lon'].shape[0]}x{src_rho['lon'].shape[1]}_dst{len(target_lat)}x{len(target_lon)}.nc"
         
     | 
| 
      
 402 
     | 
    
         
            +
                reb_rho = _make_regridder_safe(src_rho, dst_ds, method='bilinear', fname=fname_rho, periodic=periodic, reuse=not overwrite_weights)
         
     | 
| 
      
 403 
     | 
    
         
            +
                reb_mask_rho = _make_regridder_safe(src_rho, dst_ds, method='nearest_s2d', fname=fname_rho.replace('.nc', '_mask.nc'), periodic=periodic, reuse=not overwrite_weights)
         
     | 
| 
      
 404 
     | 
    
         
            +
             
     | 
| 
      
 405 
     | 
    
         
            +
                interp_results = {}
         
     | 
| 
      
 406 
     | 
    
         
            +
             
     | 
| 
      
 407 
     | 
    
         
            +
                for var in varnames:
         
     | 
| 
      
 408 
     | 
    
         
            +
                    if VERBOSE:
         
     | 
| 
      
 409 
     | 
    
         
            +
                        print(f"**[main]** processing {var}")
         
     | 
| 
      
 410 
     | 
    
         
            +
                    
         
     | 
| 
      
 411 
     | 
    
         
            +
                    if var not in ds.variables:
         
     | 
| 
      
 412 
     | 
    
         
            +
                        raise RuntimeError(f"{var} not found in dataset")
         
     | 
| 
      
 413 
     | 
    
         
            +
                    
         
     | 
| 
      
 414 
     | 
    
         
            +
                    is_w_kind = True if 's_w' in ds[var].dims else False
         
     | 
| 
      
 415 
     | 
    
         
            +
                    is_rho_kind = True if 's_rho' in ds[var].dims or 'eta_rho' in ds[var].dims or 'xi_rho' in ds[var].dims else False
         
     | 
| 
      
 416 
     | 
    
         
            +
                    is_u_kind = True if 'eta_u' in ds[var].dims or 'xi_u' in ds[var].dims else False
         
     | 
| 
      
 417 
     | 
    
         
            +
                    is_v_kind = True if 'eta_v' in ds[var].dims or 'xi_v' in ds[var].dims else False
         
     | 
| 
      
 418 
     | 
    
         
            +
             
     | 
| 
      
 419 
     | 
    
         
            +
                    if is_u_kind:
         
     | 
| 
      
 420 
     | 
    
         
            +
                        u_da = ds[var].astype('f8')
         
     | 
| 
      
 421 
     | 
    
         
            +
                        u_vals = np.where(np.isfinite(u_da.values), u_da.values, np.nan)  # (time, s_rho, eta_u, xi_u)
         
     | 
| 
      
 422 
     | 
    
         
            +
                        # average to rho grid:
         
     | 
| 
      
 423 
     | 
    
         
            +
                        u_rho = avg_to_rho_axis_padboth(u_vals, axis=-1)  # -> shape (time, s, eta_u, xi_u+1) ; eta_u == eta_rho
         
     | 
| 
      
 424 
     | 
    
         
            +
                        eta_rho_len = ds.sizes['eta_rho']; xi_rho_len = ds.sizes['xi_rho']
         
     | 
| 
      
 425 
     | 
    
         
            +
                        if u_rho.shape[-2] != eta_rho_len or u_rho.shape[-1] != xi_rho_len:
         
     | 
| 
      
 426 
     | 
    
         
            +
                            raise RuntimeError(f"u_rho shape mismatch {u_rho.shape[-2:]} vs rho ({eta_rho_len},{xi_rho_len})")
         
     | 
| 
      
 427 
     | 
    
         
            +
                        # 旋转到东向分量(如果有angle)
         
     | 
| 
      
 428 
     | 
    
         
            +
                        angle = ds['angle'].values if 'angle' in ds.variables else np.zeros((eta_rho_len, xi_rho_len))
         
     | 
| 
      
 429 
     | 
    
         
            +
                        nt = u_rho.shape[0]; ns = u_rho.shape[1]
         
     | 
| 
      
 430 
     | 
    
         
            +
                        u_east = np.full_like(u_rho, np.nan)
         
     | 
| 
      
 431 
     | 
    
         
            +
                        for t in range(nt):
         
     | 
| 
      
 432 
     | 
    
         
            +
                            print(f'Processing time step {t+1}/{nt} for variable {var} (u-component)')
         
     | 
| 
      
 433 
     | 
    
         
            +
                            for k in range(ns):
         
     | 
| 
      
 434 
     | 
    
         
            +
                                print(f'  Processing vertical level {k+1}/{ns} for variable {var} (u-component)')
         
     | 
| 
      
 435 
     | 
    
         
            +
                                ur = u_rho[t, k, :, :]
         
     | 
| 
      
 436 
     | 
    
         
            +
                                ang = angle
         
     | 
| 
      
 437 
     | 
    
         
            +
                                if ang.shape != ur.shape:
         
     | 
| 
      
 438 
     | 
    
         
            +
                                    ang = np.broadcast_to(angle, ur.shape)
         
     | 
| 
      
 439 
     | 
    
         
            +
                                cosA = np.cos(ang)
         
     | 
| 
      
 440 
     | 
    
         
            +
                                sinA = np.sin(ang)
         
     | 
| 
      
 441 
     | 
    
         
            +
                                # 只处理u分量(东向)
         
     | 
| 
      
 442 
     | 
    
         
            +
                                u_east[t, k, :, :] = ur * cosA
         
     | 
| 
      
 443 
     | 
    
         
            +
                        # vertical interpolation ON SOURCE (rho) grid using z_rho
         
     | 
| 
      
 444 
     | 
    
         
            +
                        if 'z_rho' in ds.variables:
         
     | 
| 
      
 445 
     | 
    
         
            +
                            z_rho_da = ds['z_rho'].astype('f8')
         
     | 
| 
      
 446 
     | 
    
         
            +
                            z_rho = np.where(np.isfinite(z_rho_da.values), z_rho_da.values, np.nan)
         
     | 
| 
      
 447 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 448 
     | 
    
         
            +
                            z_rho = get_roms_depths(ds, is_w=is_w_kind).values
         
     | 
| 
      
 449 
     | 
    
         
            +
                        res_u_time = []
         
     | 
| 
      
 450 
     | 
    
         
            +
                        for t in range(nt):
         
     | 
| 
      
 451 
     | 
    
         
            +
                            print(f'Processing time step {t+1}/{nt} for variable {var} (vertical interpolation)')
         
     | 
| 
      
 452 
     | 
    
         
            +
                            zcol = z_rho[t] if z_rho.ndim == 4 else z_rho
         
     | 
| 
      
 453 
     | 
    
         
            +
                            ue_src = u_east[t]
         
     | 
| 
      
 454 
     | 
    
         
            +
                            ue_vert = vertical_interp_with_endpoints(zcol, ue_src, target_depth)
         
     | 
| 
      
 455 
     | 
    
         
            +
                            levels_u = []
         
     | 
| 
      
 456 
     | 
    
         
            +
                            for k in range(ue_vert.shape[0]):
         
     | 
| 
      
 457 
     | 
    
         
            +
                                da_u = xr.DataArray(ue_vert[k], dims=('eta_rho', 'xi_rho'),
         
     | 
| 
      
 458 
     | 
    
         
            +
                                                    coords={'eta_rho': ds['eta_rho'], 'xi_rho': ds['xi_rho'],
         
     | 
| 
      
 459 
     | 
    
         
            +
                                                            'lon': (('eta_rho', 'xi_rho'), ds['lon_rho'].values),
         
     | 
| 
      
 460 
     | 
    
         
            +
                                                            'lat': (('eta_rho', 'xi_rho'), ds['lat_rho'].values)})
         
     | 
| 
      
 461 
     | 
    
         
            +
                                ru = reb_rho(da_u)
         
     | 
| 
      
 462 
     | 
    
         
            +
                                if 'mask_rho' in ds.variables:
         
     | 
| 
      
 463 
     | 
    
         
            +
                                    da_mask_src = xr.DataArray(ds['mask_rho'].astype(np.float64).values, dims=('eta_rho', 'xi_rho'),
         
     | 
| 
      
 464 
     | 
    
         
            +
                                                               coords={'eta_rho': ds['eta_rho'], 'xi_rho': ds['xi_rho'],
         
     | 
| 
      
 465 
     | 
    
         
            +
                                                                       'lon': (('eta_rho', 'xi_rho'), ds['lon_rho'].values),
         
     | 
| 
      
 466 
     | 
    
         
            +
                                                                       'lat': (('eta_rho', 'xi_rho'), ds['lat_rho'].values)})
         
     | 
| 
      
 467 
     | 
    
         
            +
                                    mask_dst = reb_mask_rho(da_mask_src)
         
     | 
| 
      
 468 
     | 
    
         
            +
                                    ru = ru.where(mask_dst >= 0.5, np.nan)
         
     | 
| 
      
 469 
     | 
    
         
            +
                                levels_u.append(ru.values)
         
     | 
| 
      
 470 
     | 
    
         
            +
                            res_u_time.append(np.array(levels_u))
         
     | 
| 
      
 471 
     | 
    
         
            +
                        interp_results[var] = np.array(res_u_time)
         
     | 
| 
      
 472 
     | 
    
         
            +
             
     | 
| 
      
 473 
     | 
    
         
            +
                    elif is_v_kind:
         
     | 
| 
      
 474 
     | 
    
         
            +
                        v_da = ds[var].astype('f8')
         
     | 
| 
      
 475 
     | 
    
         
            +
                        v_vals = np.where(np.isfinite(v_da.values), v_da.values, np.nan)  # (time, s_rho, eta_v, xi_v)
         
     | 
| 
      
 476 
     | 
    
         
            +
                        v_rho = avg_to_rho_axis_padboth(v_vals, axis=-2)  # -> shape (time, s, eta_v+1, xi_v) ; xi_v == xi_rho
         
     | 
| 
      
 477 
     | 
    
         
            +
                        eta_rho_len = ds.sizes['eta_rho']; xi_rho_len = ds.sizes['xi_rho']
         
     | 
| 
      
 478 
     | 
    
         
            +
                        if v_rho.shape[-2] != eta_rho_len or v_rho.shape[-1] != xi_rho_len:
         
     | 
| 
      
 479 
     | 
    
         
            +
                            raise RuntimeError(f"v_rho shape mismatch {v_rho.shape[-2:]} vs rho ({eta_rho_len},{xi_rho_len})")
         
     | 
| 
      
 480 
     | 
    
         
            +
                        # 旋转到北向分量(如果有angle)
         
     | 
| 
      
 481 
     | 
    
         
            +
                        angle = ds['angle'].values if 'angle' in ds.variables else np.zeros((eta_rho_len, xi_rho_len))
         
     | 
| 
      
 482 
     | 
    
         
            +
                        nt = v_rho.shape[0]; ns = v_rho.shape[1]
         
     | 
| 
      
 483 
     | 
    
         
            +
                        v_north = np.full_like(v_rho, np.nan)
         
     | 
| 
      
 484 
     | 
    
         
            +
                        for t in range(nt):
         
     | 
| 
      
 485 
     | 
    
         
            +
                            print(f'Processing time step {t+1}/{nt} for variable {var} (v-component)')
         
     | 
| 
      
 486 
     | 
    
         
            +
                            for k in range(ns):
         
     | 
| 
      
 487 
     | 
    
         
            +
                                print(f'  Processing vertical level {k+1}/{ns} for variable {var} (v-component)')
         
     | 
| 
      
 488 
     | 
    
         
            +
                                vr = v_rho[t, k, :, :]
         
     | 
| 
      
 489 
     | 
    
         
            +
                                ang = angle
         
     | 
| 
      
 490 
     | 
    
         
            +
                                if ang.shape != vr.shape:
         
     | 
| 
      
 491 
     | 
    
         
            +
                                    ang = np.broadcast_to(angle, vr.shape)
         
     | 
| 
      
 492 
     | 
    
         
            +
                                cosA = np.cos(ang)
         
     | 
| 
      
 493 
     | 
    
         
            +
                                sinA = np.sin(ang)
         
     | 
| 
      
 494 
     | 
    
         
            +
                                # 只处理v分量(北向)
         
     | 
| 
      
 495 
     | 
    
         
            +
                                v_north[t, k, :, :] = vr * cosA
         
     | 
| 
      
 496 
     | 
    
         
            +
                        if 'z_rho' in ds.variables:
         
     | 
| 
      
 497 
     | 
    
         
            +
                            z_rho_da = ds['z_rho'].astype('f8')
         
     | 
| 
      
 498 
     | 
    
         
            +
                            z_rho = np.where(np.isfinite(z_rho_da.values), z_rho_da.values, np.nan)
         
     | 
| 
      
 499 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 500 
     | 
    
         
            +
                            z_rho = get_roms_depths(ds, is_w=is_w_kind).values
         
     | 
| 
      
 501 
     | 
    
         
            +
                        res_v_time = []
         
     | 
| 
      
 502 
     | 
    
         
            +
                        for t in range(nt):
         
     | 
| 
      
 503 
     | 
    
         
            +
                            print(f'Processing time step {t+1}/{nt} for variable {var} (vertical interpolation)')
         
     | 
| 
      
 504 
     | 
    
         
            +
                            zcol = z_rho[t] if z_rho.ndim == 4 else z_rho
         
     | 
| 
      
 505 
     | 
    
         
            +
                            vn_src = v_north[t]
         
     | 
| 
      
 506 
     | 
    
         
            +
                            vn_vert = vertical_interp_with_endpoints(zcol, vn_src, target_depth)
         
     | 
| 
      
 507 
     | 
    
         
            +
                            levels_v = []
         
     | 
| 
      
 508 
     | 
    
         
            +
                            for k in range(vn_vert.shape[0]):
         
     | 
| 
      
 509 
     | 
    
         
            +
                                da_v = xr.DataArray(vn_vert[k], dims=('eta_rho', 'xi_rho'),
         
     | 
| 
      
 510 
     | 
    
         
            +
                                                    coords={'eta_rho': ds['eta_rho'], 'xi_rho': ds['xi_rho'],
         
     | 
| 
      
 511 
     | 
    
         
            +
                                                            'lon': (('eta_rho', 'xi_rho'), ds['lon_rho'].values),
         
     | 
| 
      
 512 
     | 
    
         
            +
                                                            'lat': (('eta_rho', 'xi_rho'), ds['lat_rho'].values)})
         
     | 
| 
      
 513 
     | 
    
         
            +
                                rv = reb_rho(da_v)
         
     | 
| 
      
 514 
     | 
    
         
            +
                                if 'mask_rho' in ds.variables:
         
     | 
| 
      
 515 
     | 
    
         
            +
                                    da_mask_src = xr.DataArray(ds['mask_rho'].astype(np.float64).values, dims=('eta_rho', 'xi_rho'),
         
     | 
| 
      
 516 
     | 
    
         
            +
                                                               coords={'eta_rho': ds['eta_rho'], 'xi_rho': ds['xi_rho'],
         
     | 
| 
      
 517 
     | 
    
         
            +
                                                                       'lon': (('eta_rho', 'xi_rho'), ds['lon_rho'].values),
         
     | 
| 
      
 518 
     | 
    
         
            +
                                                                       'lat': (('eta_rho', 'xi_rho'), ds['lat_rho'].values)})
         
     | 
| 
      
 519 
     | 
    
         
            +
                                    mask_dst = reb_mask_rho(da_mask_src)
         
     | 
| 
      
 520 
     | 
    
         
            +
                                    rv = rv.where(mask_dst >= 0.5, np.nan)
         
     | 
| 
      
 521 
     | 
    
         
            +
                                levels_v.append(rv.values)
         
     | 
| 
      
 522 
     | 
    
         
            +
                            res_v_time.append(np.array(levels_v))
         
     | 
| 
      
 523 
     | 
    
         
            +
                        interp_results[var] = np.array(res_v_time)
         
     | 
| 
      
 524 
     | 
    
         
            +
                        
         
     | 
| 
      
 525 
     | 
    
         
            +
                    elif is_rho_kind:
         
     | 
| 
      
 526 
     | 
    
         
            +
                        # scalar processing: temp/salt/zeta (vertical-first -> horizontal remap)
         
     | 
| 
      
 527 
     | 
    
         
            +
                        da = ds[var].astype('f8')
         
     | 
| 
      
 528 
     | 
    
         
            +
                        vals = np.where(np.isfinite(da.values), da.values, np.nan)
         
     | 
| 
      
 529 
     | 
    
         
            +
                        if da.ndim == 4:
         
     | 
| 
      
 530 
     | 
    
         
            +
                            nt = vals.shape[0]
         
     | 
| 
      
 531 
     | 
    
         
            +
                            out_time = []
         
     | 
| 
      
 532 
     | 
    
         
            +
                            for t in range(nt):
         
     | 
| 
      
 533 
     | 
    
         
            +
                                print(f'Processing time step {t+1}/{nt} for variable {var} (vertical interpolation)')
         
     | 
| 
      
 534 
     | 
    
         
            +
                                src = vals[t]
         
     | 
| 
      
 535 
     | 
    
         
            +
                                if is_w_kind and 'z_w' in ds.variables:
         
     | 
| 
      
 536 
     | 
    
         
            +
                                    zsrc = np.where(np.isfinite(ds['z_w'].values), ds['z_w'].values, np.nan)
         
     | 
| 
      
 537 
     | 
    
         
            +
                                    zcol = zsrc[t] if zsrc.ndim == 4 else zsrc
         
     | 
| 
      
 538 
     | 
    
         
            +
                                elif not is_w_kind and 'z_rho' in ds.variables:
         
     | 
| 
      
 539 
     | 
    
         
            +
                                    zsrc = np.where(np.isfinite(ds['z_rho'].values), ds['z_rho'].values, np.nan)
         
     | 
| 
      
 540 
     | 
    
         
            +
                                    zcol = zsrc[t] if zsrc.ndim == 4 else zsrc
         
     | 
| 
      
 541 
     | 
    
         
            +
                                else:
         
     | 
| 
      
 542 
     | 
    
         
            +
                                    zcol = get_roms_depths(ds, is_w=is_w_kind, time_index=t).values
         
     | 
| 
      
 543 
     | 
    
         
            +
                                vert = vertical_interp_with_endpoints(zcol, src, target_depth)
         
     | 
| 
      
 544 
     | 
    
         
            +
                                levels = []
         
     | 
| 
      
 545 
     | 
    
         
            +
                                for k in range(vert.shape[0]):
         
     | 
| 
      
 546 
     | 
    
         
            +
                                    print(f'  Processing vertical level {k+1}/{vert.shape[0]} for variable {var} (vertical interpolation)')
         
     | 
| 
      
 547 
     | 
    
         
            +
                                    da_l = xr.DataArray(vert[k], dims=('eta_rho', 'xi_rho'),
         
     | 
| 
      
 548 
     | 
    
         
            +
                                                        coords={'eta_rho': ds['eta_rho'], 'xi_rho': ds['xi_rho'],
         
     | 
| 
      
 549 
     | 
    
         
            +
                                                                'lon': (('eta_rho', 'xi_rho'), ds['lon_rho'].values),
         
     | 
| 
      
 550 
     | 
    
         
            +
                                                                'lat': (('eta_rho', 'xi_rho'), ds['lat_rho'].values)})
         
     | 
| 
      
 551 
     | 
    
         
            +
                                    rt = reb_rho(da_l)
         
     | 
| 
      
 552 
     | 
    
         
            +
                                    if 'mask_rho' in ds.variables:
         
     | 
| 
      
 553 
     | 
    
         
            +
                                        da_mask_src = xr.DataArray(ds['mask_rho'].astype(np.float64).values, dims=('eta_rho','xi_rho'),
         
     | 
| 
      
 554 
     | 
    
         
            +
                                                                   coords={'eta_rho': ds['eta_rho'], 'xi_rho': ds['xi_rho'],
         
     | 
| 
      
 555 
     | 
    
         
            +
                                                                           'lon': (('eta_rho','xi_rho'), ds['lon_rho'].values),
         
     | 
| 
      
 556 
     | 
    
         
            +
                                                                           'lat': (('eta_rho','xi_rho'), ds['lat_rho'].values)})
         
     | 
| 
      
 557 
     | 
    
         
            +
                                        mask_dst = reb_mask_rho(da_mask_src)
         
     | 
| 
      
 558 
     | 
    
         
            +
                                        rt = rt.where(mask_dst >= 0.5, np.nan)
         
     | 
| 
      
 559 
     | 
    
         
            +
                                    levels.append(rt.values)
         
     | 
| 
      
 560 
     | 
    
         
            +
                                out_time.append(np.array(levels))
         
     | 
| 
      
 561 
     | 
    
         
            +
                            interp_results[var] = np.array(out_time)
         
     | 
| 
      
 562 
     | 
    
         
            +
                        elif da.ndim == 3:
         
     | 
| 
      
 563 
     | 
    
         
            +
                            nt = vals.shape[0]
         
     | 
| 
      
 564 
     | 
    
         
            +
                            out = []
         
     | 
| 
      
 565 
     | 
    
         
            +
                            for t in range(nt):
         
     | 
| 
      
 566 
     | 
    
         
            +
                                print(f'Processing time step {t+1}/{nt} for variable {var} (horizontal remap)')
         
     | 
| 
      
 567 
     | 
    
         
            +
                                da_l = xr.DataArray(vals[t], dims=('eta_rho', 'xi_rho'),
         
     | 
| 
      
 568 
     | 
    
         
            +
                                                    coords={'eta_rho': ds['eta_rho'], 'xi_rho': ds['xi_rho'],
         
     | 
| 
      
 569 
     | 
    
         
            +
                                                            'lon': (('eta_rho','xi_rho'), ds['lon_rho'].values),
         
     | 
| 
      
 570 
     | 
    
         
            +
                                                            'lat': (('eta_rho','xi_rho'), ds['lat_rho'].values)})
         
     | 
| 
      
 571 
     | 
    
         
            +
                                rt = reb_rho(da_l)
         
     | 
| 
      
 572 
     | 
    
         
            +
                                if 'mask_rho' in ds.variables:
         
     | 
| 
      
 573 
     | 
    
         
            +
                                    da_mask_src = xr.DataArray(ds['mask_rho'].astype(np.float64).values, dims=('eta_rho','xi_rho'),
         
     | 
| 
      
 574 
     | 
    
         
            +
                                                               coords={'eta_rho': ds['eta_rho'], 'xi_rho': ds['xi_rho'],
         
     | 
| 
      
 575 
     | 
    
         
            +
                                                                       'lon': (('eta_rho','xi_rho'), ds['lon_rho'].values),
         
     | 
| 
      
 576 
     | 
    
         
            +
                                                                       'lat': (('eta_rho','xi_rho'), ds['lat_rho'].values)})
         
     | 
| 
      
 577 
     | 
    
         
            +
                                    mask_dst = reb_mask_rho(da_mask_src)
         
     | 
| 
      
 578 
     | 
    
         
            +
                                    rt = rt.where(mask_dst >= 0.5, np.nan)
         
     | 
| 
      
 579 
     | 
    
         
            +
                                out.append(rt.values)
         
     | 
| 
      
 580 
     | 
    
         
            +
                            interp_results[var] = np.array(out)
         
     | 
| 
      
 581 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 582 
     | 
    
         
            +
                            raise ValueError(f"Unsupported variable dims for {var}")
         
     | 
| 
      
 583 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 584 
     | 
    
         
            +
                        raise ValueError(f"Unknown grid type for variable {var}")
         
     | 
| 
      
 585 
     | 
    
         
            +
             
     | 
| 
      
 586 
     | 
    
         
            +
                # write netcdf output - simple writer for (time,depth,lat,lon) or (time,lat,lon)
         
     | 
| 
      
 587 
     | 
    
         
            +
                times_out = times
         
     | 
| 
      
 588 
     | 
    
         
            +
                data_vars = {}
         
     | 
| 
      
 589 
     | 
    
         
            +
                coords = {'time': ('time', times_out), 'lat': ('lat', target_lat), 'lon': ('lon', target_lon)}
         
     | 
| 
      
 590 
     | 
    
         
            +
                if target_depth is not None:
         
     | 
| 
      
 591 
     | 
    
         
            +
                    coords['depth'] = ('depth', target_depth)
         
     | 
| 
      
 592 
     | 
    
         
            +
             
     | 
| 
      
 593 
     | 
    
         
            +
                for vname, arr in interp_results.items():
         
     | 
| 
      
 594 
     | 
    
         
            +
                    a = np.asarray(arr)
         
     | 
| 
      
 595 
     | 
    
         
            +
                    if a.ndim == 4:
         
     | 
| 
      
 596 
     | 
    
         
            +
                        data_vars[vname] = (('time', 'depth', 'lat', 'lon'), a)
         
     | 
| 
      
 597 
     | 
    
         
            +
                    elif a.ndim == 3:
         
     | 
| 
      
 598 
     | 
    
         
            +
                        data_vars[vname] = (('time', 'lat', 'lon'), a)
         
     | 
| 
      
 599 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 600 
     | 
    
         
            +
                        raise ValueError(f"Unexpected ndim for output {vname}: {a.ndim}")
         
     | 
| 
      
 601 
     | 
    
         
            +
             
     | 
| 
      
 602 
     | 
    
         
            +
                ds_out = xr.Dataset(data_vars=data_vars, coords=coords)
         
     | 
| 
      
 603 
     | 
    
         
            +
                encoding = {name: {'zlib': True, 'complevel': 4} for name in data_vars.keys()}
         
     | 
| 
      
 604 
     | 
    
         
            +
                ds_out.to_netcdf(output_nc, encoding=encoding)
         
     | 
| 
      
 605 
     | 
    
         
            +
                if VERBOSE:
         
     | 
| 
      
 606 
     | 
    
         
            +
                    print(f"[main] wrote {output_nc} variables: {list(data_vars.keys())}")
         
     | 
| 
      
 607 
     | 
    
         
            +
             
     | 
| 
      
 608 
     | 
    
         
            +
             
     | 
| 
      
 609 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 610 
     | 
    
         
            +
            # __main__ example
         
     | 
| 
      
 611 
     | 
    
         
            +
            # -------------------------
         
     | 
| 
      
 612 
     | 
    
         
            +
            if __name__ == "__main__":
         
     | 
| 
      
 613 
     | 
    
         
            +
                input_nc = "./2024090100/nwa_his_0001.nc"
         
     | 
| 
      
 614 
     | 
    
         
            +
                output_nc = "roms_interp.nc"
         
     | 
| 
      
 615 
     | 
    
         
            +
                varnames = ['temp', 'zeta', 'w', 'u', 'v', 'salt']
         
     | 
| 
      
 616 
     | 
    
         
            +
                target_lon = np.linspace(108, 140, 641)
         
     | 
| 
      
 617 
     | 
    
         
            +
                target_lat = np.linspace(15, 40, 501)
         
     | 
| 
      
 618 
     | 
    
         
            +
                target_depth = [-5, -10, -20, -30, -50, -75, -100, -125, -150, -200,
         
     | 
| 
      
 619 
     | 
    
         
            +
                                -250, -300, -400, -500, -600, -700, -800, -900, -1000]
         
     | 
| 
      
 620 
     | 
    
         
            +
                process_roms_file(input_nc, output_nc, varnames, target_lon, target_lat, target_depth, overwrite_weights=False)
         
     | 
    
        oafuncs/oa_linux.py
    CHANGED
    
    | 
         @@ -2,7 +2,7 @@ from rich import print 
     | 
|
| 
       2 
2 
     | 
    
         
             
            import time
         
     | 
| 
       3 
3 
     | 
    
         
             
            import os
         
     | 
| 
       4 
4 
     | 
    
         | 
| 
       5 
     | 
    
         
            -
            __all__ = ["os_command", "get_queue_node", "query_queue", "running_jobs", "submit_job"]
         
     | 
| 
      
 5 
     | 
    
         
            +
            __all__ = ["os_command", "get_queue_node", "query_queue", "running_jobs", "submit_job", "get_job_status"]
         
     | 
| 
       6 
6 
     | 
    
         | 
| 
       7 
7 
     | 
    
         | 
| 
       8 
8 
     | 
    
         
             
            # 负责执行命令并返回输出
         
     | 
| 
         @@ -21,6 +21,7 @@ def os_command(cmd): 
     | 
|
| 
       21 
21 
     | 
    
         
             
                    return None
         
     | 
| 
       22 
22 
     | 
    
         
             
                return result.stdout
         
     | 
| 
       23 
23 
     | 
    
         | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
       24 
25 
     | 
    
         
             
            # 返回“队列名:节点数”的字典
         
     | 
| 
       25 
26 
     | 
    
         
             
            def get_queue_node():
         
     | 
| 
       26 
27 
     | 
    
         
             
                import re
         
     | 
| 
         @@ -50,6 +51,7 @@ def get_queue_node(): 
     | 
|
| 
       50 
51 
     | 
    
         | 
| 
       51 
52 
     | 
    
         
             
                return queue_node_dict
         
     | 
| 
       52 
53 
     | 
    
         | 
| 
      
 54 
     | 
    
         
            +
             
     | 
| 
       53 
55 
     | 
    
         
             
            def query_queue(need_node=1, queue_list =['dcu','bigmem','cpu_parallel','cpu_single']):
         
     | 
| 
       54 
56 
     | 
    
         
             
                queue_dict = get_queue_node()
         
     | 
| 
       55 
57 
     | 
    
         
             
                hs = None
         
     | 
| 
         @@ -65,6 +67,7 @@ def query_queue(need_node=1, queue_list =['dcu','bigmem','cpu_parallel','cpu_sin 
     | 
|
| 
       65 
67 
     | 
    
         
             
                            break
         
     | 
| 
       66 
68 
     | 
    
         
             
                return hs
         
     | 
| 
       67 
69 
     | 
    
         | 
| 
      
 70 
     | 
    
         
            +
             
     | 
| 
       68 
71 
     | 
    
         
             
            def running_jobs():
         
     | 
| 
       69 
72 
     | 
    
         
             
                # 通过qstat判断任务状态,是否还在进行中
         
     | 
| 
       70 
73 
     | 
    
         
             
                # status = os.popen('qstat').read()
         
     | 
| 
         @@ -73,6 +76,41 @@ def running_jobs(): 
     | 
|
| 
       73 
76 
     | 
    
         
             
                ids = [job.split()[0] for job in Jobs if job != '']
         
     | 
| 
       74 
77 
     | 
    
         
             
                return ids
         
     | 
| 
       75 
78 
     | 
    
         | 
| 
      
 79 
     | 
    
         
            +
             
     | 
| 
      
 80 
     | 
    
         
            +
            def get_job_status(jobid):
         
     | 
| 
      
 81 
     | 
    
         
            +
                """
         
     | 
| 
      
 82 
     | 
    
         
            +
                获取指定任务ID的ST状态(如R/PD/S等)
         
     | 
| 
      
 83 
     | 
    
         
            +
                :param jobid: 任务ID(整数或字符串格式均可)
         
     | 
| 
      
 84 
     | 
    
         
            +
                :return: 任务的ST状态字符串,未找到任务返回None
         
     | 
| 
      
 85 
     | 
    
         
            +
                """
         
     | 
| 
      
 86 
     | 
    
         
            +
                import re  # 复用正则模块,内部导入避免依赖冲突
         
     | 
| 
      
 87 
     | 
    
         
            +
                jobid_str = str(jobid).strip()
         
     | 
| 
      
 88 
     | 
    
         
            +
                if not jobid_str.isdigit():
         
     | 
| 
      
 89 
     | 
    
         
            +
                    print(f'⚠️  输入的任务ID {jobid} 格式无效,需为纯数字')
         
     | 
| 
      
 90 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 91 
     | 
    
         
            +
                
         
     | 
| 
      
 92 
     | 
    
         
            +
                # 执行squeue命令精准匹配目标任务(避免多ID混淆)
         
     | 
| 
      
 93 
     | 
    
         
            +
                cmd = f'squeue | grep -w {jobid_str}'
         
     | 
| 
      
 94 
     | 
    
         
            +
                output = os_command(cmd)
         
     | 
| 
      
 95 
     | 
    
         
            +
                
         
     | 
| 
      
 96 
     | 
    
         
            +
                if not output:
         
     | 
| 
      
 97 
     | 
    
         
            +
                    print(f'❌ 未找到任务ID {jobid_str} 的相关信息(可能已完成或输入错误)')
         
     | 
| 
      
 98 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 99 
     | 
    
         
            +
                
         
     | 
| 
      
 100 
     | 
    
         
            +
                # 解析输出中的ST状态(匹配JOBID后的第五个字段,处理多空格分隔)
         
     | 
| 
      
 101 
     | 
    
         
            +
                # 正则匹配逻辑:忽略前置空格 → 匹配JOBID → 匹配后续任意字符 → 捕获ST状态(单个大写字母/字母组合)
         
     | 
| 
      
 102 
     | 
    
         
            +
                pattern = r'\s*\d+\s+\S+\s+\S+\s+\S+\s+(\S+)'
         
     | 
| 
      
 103 
     | 
    
         
            +
                match = re.search(pattern, output)
         
     | 
| 
      
 104 
     | 
    
         
            +
                if match:
         
     | 
| 
      
 105 
     | 
    
         
            +
                    st_status = match.group(1)
         
     | 
| 
      
 106 
     | 
    
         
            +
                    print(f'✅ 任务ID {jobid_str} 的ST状态:{st_status}')
         
     | 
| 
      
 107 
     | 
    
         
            +
                    return st_status
         
     | 
| 
      
 108 
     | 
    
         
            +
                else:
         
     | 
| 
      
 109 
     | 
    
         
            +
                    print(f'❌ 无法解析任务ID {jobid_str} 的ST状态,命令输出:{output.strip()}')
         
     | 
| 
      
 110 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 111 
     | 
    
         
            +
             
     | 
| 
      
 112 
     | 
    
         
            +
             
     | 
| 
      
 113 
     | 
    
         
            +
             
     | 
| 
       76 
114 
     | 
    
         
             
            def submit_job(working_dir=None, script_tmp='run.slurm', script_run='run.slurm', need_node=1, queue_tmp='<queue_name>', queue_list=['dcu', 'bigmem', 'cpu_parallel', 'cpu_single'], max_job=38, wait=False): 
         
     | 
| 
       77 
115 
     | 
    
         
             
                '''提交任务到集群,并返回任务ID'''
         
     | 
| 
       78 
116 
     | 
    
         
             
                from .oa_file import replace_content
         
     | 
| 
         @@ -106,22 +144,33 @@ def submit_job(working_dir=None, script_tmp='run.slurm', script_run='run.slurm', 
     | 
|
| 
       106 
144 
     | 
    
         
             
                                    time.sleep(30)
         
     | 
| 
       107 
145 
     | 
    
         
             
                                else:
         
     | 
| 
       108 
146 
     | 
    
         
             
                                    print(f'提交任务成功,{content_sub.strip()}')
         
     | 
| 
      
 147 
     | 
    
         
            +
                                    # time_s = time.time()
         
     | 
| 
       109 
148 
     | 
    
         
             
                                    job_id = content_sub.strip().split()[-1]
         
     | 
| 
       110 
     | 
    
         
            -
                                     
     | 
| 
      
 149 
     | 
    
         
            +
                                    print(f'等待60秒后,继续检查任务状态!')
         
     | 
| 
      
 150 
     | 
    
         
            +
                                    time.sleep(60)
         
     | 
| 
      
 151 
     | 
    
         
            +
                                    job_st =  get_job_status(job_id)
         
     | 
| 
      
 152 
     | 
    
         
            +
                                    # if job_st == 'PD' and (time.time()-time_s) > 60:
         
     | 
| 
      
 153 
     | 
    
         
            +
                                    if job_st == 'PD':
         
     | 
| 
      
 154 
     | 
    
         
            +
                                        os_command(f'scancel {job_id}')
         
     | 
| 
      
 155 
     | 
    
         
            +
                                        print(f'因作业{job_id}处于PD状态,取消!')
         
     | 
| 
      
 156 
     | 
    
         
            +
                                    else:
         
     | 
| 
      
 157 
     | 
    
         
            +
                                        break
         
     | 
| 
       111 
158 
     | 
    
         
             
                        else:
         
     | 
| 
       112 
159 
     | 
    
         
             
                            print('没有足够的计算资源,等待30秒后重试!')
         
     | 
| 
       113 
160 
     | 
    
         
             
                            time.sleep(30)
         
     | 
| 
       114 
161 
     | 
    
         
             
                    else:
         
     | 
| 
       115 
162 
     | 
    
         
             
                        print(f'当前系统任务数:{len(running_job)},等待60秒后重试!')
         
     | 
| 
       116 
163 
     | 
    
         
             
                        time.sleep(60)
         
     | 
| 
       117 
     | 
    
         
            -
                 
     | 
| 
      
 164 
     | 
    
         
            +
                
         
     | 
| 
      
 165 
     | 
    
         
            +
                print(f'等待10秒后,继续查询任务或进行下一个操作!')
         
     | 
| 
       118 
166 
     | 
    
         
             
                time.sleep(10)
         
     | 
| 
       119 
167 
     | 
    
         | 
| 
       120 
168 
     | 
    
         
             
                if wait:
         
     | 
| 
       121 
169 
     | 
    
         
             
                    while True:
         
     | 
| 
       122 
170 
     | 
    
         
             
                        if job_id in running_jobs():
         
     | 
| 
       123 
171 
     | 
    
         
             
                            print(f'Time: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')
         
     | 
| 
       124 
     | 
    
         
            -
                            print(f'任务{job_id}正在队列中...')
         
     | 
| 
      
 172 
     | 
    
         
            +
                            # print(f'任务{job_id}正在队列中...')
         
     | 
| 
      
 173 
     | 
    
         
            +
                            get_job_status(job_id)
         
     | 
| 
       125 
174 
     | 
    
         
             
                            time.sleep(60)
         
     | 
| 
       126 
175 
     | 
    
         
             
                        else:
         
     | 
| 
       127 
176 
     | 
    
         
             
                            print(f'任务{job_id}已完成!')
         
     | 
    
        oafuncs/oa_model/roms.py
    ADDED
    
    | 
         @@ -0,0 +1,42 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from typing import Sequence
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            __all__ = ['interp']
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            def interp(input_nc: str, output_nc: str, varnames: Sequence[str],
         
     | 
| 
      
 7 
     | 
    
         
            +
                                  target_lon: Sequence[float], target_lat: Sequence[float], target_depth: Sequence[float],
         
     | 
| 
      
 8 
     | 
    
         
            +
                                  overwrite_weights: bool = False):
         
     | 
| 
      
 9 
     | 
    
         
            +
                """
         
     | 
| 
      
 10 
     | 
    
         
            +
                Perform vertical interpolation and horizontal remapping of ROMS model data.
         
     | 
| 
      
 11 
     | 
    
         
            +
                
         
     | 
| 
      
 12 
     | 
    
         
            +
                Parameters
         
     | 
| 
      
 13 
     | 
    
         
            +
                ----------
         
     | 
| 
      
 14 
     | 
    
         
            +
                input_nc : str
         
     | 
| 
      
 15 
     | 
    
         
            +
                    Path to the input ROMS NetCDF file.
         
     | 
| 
      
 16 
     | 
    
         
            +
                output_nc : str
         
     | 
| 
      
 17 
     | 
    
         
            +
                    Path to the output NetCDF file.
         
     | 
| 
      
 18 
     | 
    
         
            +
                varnames : Sequence[str]
         
     | 
| 
      
 19 
     | 
    
         
            +
                    List of variable names to process.
         
     | 
| 
      
 20 
     | 
    
         
            +
                target_lon : Sequence[float]
         
     | 
| 
      
 21 
     | 
    
         
            +
                    Target longitudes for horizontal remapping.
         
     | 
| 
      
 22 
     | 
    
         
            +
                target_lat : Sequence[float]
         
     | 
| 
      
 23 
     | 
    
         
            +
                    Target latitudes for horizontal remapping.
         
     | 
| 
      
 24 
     | 
    
         
            +
                target_depth : Sequence[float]
         
     | 
| 
      
 25 
     | 
    
         
            +
                    Target depths for vertical interpolation. Should be negative values (e.g., -5 for 5m depth).
         
     | 
| 
      
 26 
     | 
    
         
            +
                overwrite_weights : bool, optional
         
     | 
| 
      
 27 
     | 
    
         
            +
                    Whether to overwrite existing regridding weights files. Default is False.
         
     | 
| 
      
 28 
     | 
    
         
            +
                
         
     | 
| 
      
 29 
     | 
    
         
            +
                Examples
         
     | 
| 
      
 30 
     | 
    
         
            +
                --------
         
     | 
| 
      
 31 
     | 
    
         
            +
                input_nc = "./2024090100/nwa_his_0001.nc"
         
     | 
| 
      
 32 
     | 
    
         
            +
                output_nc = "roms_interp.nc"
         
     | 
| 
      
 33 
     | 
    
         
            +
                varnames = ['temp', 'zeta', 'w', 'u', 'v', 'salt']
         
     | 
| 
      
 34 
     | 
    
         
            +
                target_lon = np.linspace(108, 140, 641)
         
     | 
| 
      
 35 
     | 
    
         
            +
                target_lat = np.linspace(15, 40, 501)
         
     | 
| 
      
 36 
     | 
    
         
            +
                target_depth = [-5, -10, -20, -30, -50, -75, -100, -125, -150, -200,
         
     | 
| 
      
 37 
     | 
    
         
            +
                                -250, -300, -400, -500, -600, -700, -800, -900, -1000]
         
     | 
| 
      
 38 
     | 
    
         
            +
                """
         
     | 
| 
      
 39 
     | 
    
         
            +
                
         
     | 
| 
      
 40 
     | 
    
         
            +
                from oafuncs._script.process_roms import process_roms_file
         
     | 
| 
      
 41 
     | 
    
         
            +
                process_roms_file(input_nc, output_nc, varnames, target_lon, target_lat, target_depth,
         
     | 
| 
      
 42 
     | 
    
         
            +
                                  overwrite_weights=overwrite_weights)
         
     | 
    
        oafuncs/oa_tool.py
    CHANGED
    
    | 
         @@ -118,7 +118,7 @@ class PEx(ParallelExecutor): 
     | 
|
| 
       118 
118 
     | 
    
         | 
| 
       119 
119 
     | 
    
         | 
| 
       120 
120 
     | 
    
         | 
| 
       121 
     | 
    
         
            -
            def email( 
     | 
| 
      
 121 
     | 
    
         
            +
            def email(email_from, email_pwd, email_to, title = None, content = None) -> None:
         
     | 
| 
       122 
122 
     | 
    
         
             
                """
         
     | 
| 
       123 
123 
     | 
    
         
             
                Send an email using the specified title, content, and recipient.
         
     | 
| 
       124 
124 
     | 
    
         | 
| 
         @@ -127,10 +127,10 @@ def email(title: str = "Title", content: Optional[str] = None, send_to: str = "e 
     | 
|
| 
       127 
127 
     | 
    
         
             
                    content (Optional[str]): The content of the email. Defaults to None.
         
     | 
| 
       128 
128 
     | 
    
         
             
                    send_to (str): The recipient's email address. Defaults to "10001@qq.com".
         
     | 
| 
       129 
129 
     | 
    
         
             
                """
         
     | 
| 
       130 
     | 
    
         
            -
                from ._script.email import  
     | 
| 
      
 130 
     | 
    
         
            +
                from ._script.email import _send_message
         
     | 
| 
       131 
131 
     | 
    
         | 
| 
       132 
     | 
    
         
            -
                print(f"[green]Sending email to { 
     | 
| 
       133 
     | 
    
         
            -
                 
     | 
| 
      
 132 
     | 
    
         
            +
                print(f"[green]Sending email to {email_to} with title: {title}[/green]")
         
     | 
| 
      
 133 
     | 
    
         
            +
                _send_message(email_from, email_pwd, email_to, title, content)
         
     | 
| 
       134 
134 
     | 
    
         | 
| 
       135 
135 
     | 
    
         | 
| 
       136 
136 
     | 
    
         
             
            def pbar(
         
     | 
| 
         @@ -6,21 +6,22 @@ oafuncs/oa_draw.py,sha256=zal0Y3RPpN0TCGN4Gw9qLtjQdT6V0ZqpSUBFVOPL0x4,13952 
     | 
|
| 
       6 
6 
     | 
    
         
             
            oafuncs/oa_file.py,sha256=j9NOjxPOeAJsD5Zk4ODmFdVSSgr1CHVPvM1IHXy9RQA,17546
         
     | 
| 
       7 
7 
     | 
    
         
             
            oafuncs/oa_geo.py,sha256=UbzvUqgT2QP_9B7XSJRL1HDmGu0HnLC5nSP6ZrA5WH4,7177
         
     | 
| 
       8 
8 
     | 
    
         
             
            oafuncs/oa_help.py,sha256=0J5VaZX-cB0c090KxgmktQJBc0o00FsY-4wB8l5y00k,4178
         
     | 
| 
       9 
     | 
    
         
            -
            oafuncs/oa_linux.py,sha256 
     | 
| 
      
 9 
     | 
    
         
            +
            oafuncs/oa_linux.py,sha256=x18Tie6UC3q9z_ZTnaVyilY133Yy8RWpbXrjRjVnozY,7659
         
     | 
| 
       10 
10 
     | 
    
         
             
            oafuncs/oa_nc.py,sha256=j501NlTuvrDIwNLXbMfE7nPPXdbbL7u9PGDj2l5AtnI,16277
         
     | 
| 
       11 
11 
     | 
    
         
             
            oafuncs/oa_python.py,sha256=xYMQnM0cGq9xUCtcoMpnN0LG5Rc_s94tai5nC6CNJ3E,4831
         
     | 
| 
       12 
     | 
    
         
            -
            oafuncs/oa_tool.py,sha256= 
     | 
| 
      
 12 
     | 
    
         
            +
            oafuncs/oa_tool.py,sha256=EPlaLT6qXXN5f9owYIiN6jHa7_DwE3dlKLv4ucDL6jg,8068
         
     | 
| 
       13 
13 
     | 
    
         
             
            oafuncs/_data/hycom.png,sha256=MadKs6Gyj5n9-TOu7L4atQfTXtF9dvN9w-tdU9IfygI,10945710
         
     | 
| 
       14 
14 
     | 
    
         
             
            oafuncs/_data/oafuncs.png,sha256=o3VD7wm-kwDea5E98JqxXl04_78cBX7VcdUt7uQXGiU,3679898
         
     | 
| 
       15 
15 
     | 
    
         
             
            oafuncs/_script/cprogressbar.py,sha256=BZi3MzF4q2Yl6fdZcLnW8MdpgpLeldI5NvnWMr-ZS94,16023
         
     | 
| 
       16 
16 
     | 
    
         
             
            oafuncs/_script/data_interp.py,sha256=gr1coA2N1mxzS4iv6S0C4lZpEQbuuHHNW-08RrhgPAA,4774
         
     | 
| 
       17 
     | 
    
         
            -
            oafuncs/_script/email.py,sha256= 
     | 
| 
      
 17 
     | 
    
         
            +
            oafuncs/_script/email.py,sha256=qXwn6CTzYOuhiYUf28xLA9kHJ8cvnv89plY_9xbP9jo,1143
         
     | 
| 
       18 
18 
     | 
    
         
             
            oafuncs/_script/netcdf_merge.py,sha256=tM9ePqLiEsE7eIsNM5XjEYeXwxjYOdNz5ejnEuI7xKw,6066
         
     | 
| 
       19 
19 
     | 
    
         
             
            oafuncs/_script/netcdf_modify.py,sha256=XDlAEToe_lwfAetkBSENqU5df-wnH7MGuxNTjG1gwHY,4178
         
     | 
| 
       20 
20 
     | 
    
         
             
            oafuncs/_script/netcdf_write.py,sha256=EDNycnhlrW1c6zcpmpObQeszDRX_lRxjTL-j0G4HqjI,17420
         
     | 
| 
       21 
21 
     | 
    
         
             
            oafuncs/_script/parallel.py,sha256=VMNhK3PNcZrIj-ZxcmAWuU3mIfVsfztsk2Ceqwri4e4,10069
         
     | 
| 
       22 
22 
     | 
    
         
             
            oafuncs/_script/parallel_bak.py,sha256=2ySmYZ9e_PLhhMocWCCFWCYZD3Gs_mxl0HxEzbIuQvA,8861
         
     | 
| 
       23 
23 
     | 
    
         
             
            oafuncs/_script/plot_dataset.py,sha256=3BPQnx1jBeH-xl8u-j5A93nYevLuD4v3pGGGP7WiB20,16534
         
     | 
| 
      
 24 
     | 
    
         
            +
            oafuncs/_script/process_roms.py,sha256=b6iG9PUMd3eAOQr2wH__-TNJNtCFBohI-8l3pPkqTgI,29338
         
     | 
| 
       24 
25 
     | 
    
         
             
            oafuncs/_script/replace_file_content.py,sha256=MGsfNnTs6wRrHINygroRZNjDXQ4_Zhj9ebnxYP-hazY,5609
         
     | 
| 
       25 
26 
     | 
    
         
             
            oafuncs/oa_down/User_Agent-list.txt,sha256=pHaMlElMvZ8TG4vf4BqkZYKqe0JIGkr4kCN0lM1Y9FQ,514295
         
     | 
| 
       26 
27 
     | 
    
         
             
            oafuncs/oa_down/__init__.py,sha256=IT6oTqaxuV_mC6AwBut0HtkmnVtEu1MyX0x0oS7TKoA,218
         
     | 
| 
         @@ -31,16 +32,15 @@ oafuncs/oa_down/read_proxy.py,sha256=HQpr-Mwn0Z8ICAuf63NUUY9p05E_uNWyWmOK46-73Ec 
     | 
|
| 
       31 
32 
     | 
    
         
             
            oafuncs/oa_down/test_ua.py,sha256=l8MCD6yU2W75zRPTDKUZTJhCWNF9lfk-MiSFqAqKH1M,1398
         
     | 
| 
       32 
33 
     | 
    
         
             
            oafuncs/oa_down/user_agent.py,sha256=LCVQUA60ukUqeJXgLktDHB2sh-ngk7AiX4sKj8w-X4A,416
         
     | 
| 
       33 
34 
     | 
    
         
             
            oafuncs/oa_model/__init__.py,sha256=__ImltHkP1bSsIpsmKpDE8QwwA-2Z8K7mZUHGGcRdro,484
         
     | 
| 
       34 
     | 
    
         
            -
            oafuncs/oa_model/roms 
     | 
| 
       35 
     | 
    
         
            -
            oafuncs/oa_model/roms/test.py,sha256=j3xiZdf3YtQQbNoT3Op_-GxI_zjKYtS3Hk6CTcnoBmA,425
         
     | 
| 
      
 35 
     | 
    
         
            +
            oafuncs/oa_model/roms.py,sha256=m4eGgV0nyaSKE6qxrYZQhcb1APeyK8nwVUvniB90KEE,1695
         
     | 
| 
       36 
36 
     | 
    
         
             
            oafuncs/oa_model/wrf/__init__.py,sha256=_2qUijimSlu7fsqlZunkZ4NF_FXSENwU5YmlJ9BZ6fM,473
         
     | 
| 
       37 
37 
     | 
    
         
             
            oafuncs/oa_model/wrf/little_r.py,sha256=wx9vzfGznVuaa4T6m_4N89I1a57KZSLQ382EA5iu2Io,7458
         
     | 
| 
       38 
38 
     | 
    
         
             
            oafuncs/oa_sign/__init__.py,sha256=JSx1fcWpmNhQBvX_Bmq3xysfSkkFMrjbJASxV_V6aqE,192
         
     | 
| 
       39 
39 
     | 
    
         
             
            oafuncs/oa_sign/meteorological.py,sha256=3MSjy7HTcvz2zsITkjUMr_0Y027Gas1LFE9pk99990k,6110
         
     | 
| 
       40 
40 
     | 
    
         
             
            oafuncs/oa_sign/ocean.py,sha256=3uYEzaq-27yVy23IQoqy-clhWu1I_fhPFBAQyT-OF4M,5562
         
     | 
| 
       41 
41 
     | 
    
         
             
            oafuncs/oa_sign/scientific.py,sha256=moIl2MEY4uitbXoD596JmXookXGQtQsS-8_1NBBTx84,4689
         
     | 
| 
       42 
     | 
    
         
            -
            oafuncs-0.0.98. 
     | 
| 
       43 
     | 
    
         
            -
            oafuncs-0.0.98. 
     | 
| 
       44 
     | 
    
         
            -
            oafuncs-0.0.98. 
     | 
| 
       45 
     | 
    
         
            -
            oafuncs-0.0.98. 
     | 
| 
       46 
     | 
    
         
            -
            oafuncs-0.0.98. 
     | 
| 
      
 42 
     | 
    
         
            +
            oafuncs-0.0.98.52.dist-info/licenses/LICENSE.txt,sha256=rMtLpVg8sKiSlwClfR9w_Dd_5WubTQgoOzE2PDFxzs4,1074
         
     | 
| 
      
 43 
     | 
    
         
            +
            oafuncs-0.0.98.52.dist-info/METADATA,sha256=QvH3D43Ra6GWSxGrvxu1mVBvFJ_8cFt7aC-Z8N3fNWY,4446
         
     | 
| 
      
 44 
     | 
    
         
            +
            oafuncs-0.0.98.52.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
         
     | 
| 
      
 45 
     | 
    
         
            +
            oafuncs-0.0.98.52.dist-info/top_level.txt,sha256=bgC35QkXbN4EmPHEveg_xGIZ5i9NNPYWqtJqaKqTPsQ,8
         
     | 
| 
      
 46 
     | 
    
         
            +
            oafuncs-0.0.98.52.dist-info/RECORD,,
         
     | 
| 
         @@ -1,20 +0,0 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            #!/usr/bin/env python
         
     | 
| 
       2 
     | 
    
         
            -
            # coding=utf-8
         
     | 
| 
       3 
     | 
    
         
            -
            """
         
     | 
| 
       4 
     | 
    
         
            -
            Author: Liu Kun && 16031215@qq.com
         
     | 
| 
       5 
     | 
    
         
            -
            Date: 2025-03-09 16:30:02
         
     | 
| 
       6 
     | 
    
         
            -
            LastEditors: Liu Kun && 16031215@qq.com
         
     | 
| 
       7 
     | 
    
         
            -
            LastEditTime: 2025-03-09 18:23:30
         
     | 
| 
       8 
     | 
    
         
            -
            FilePath: \\Python\\My_Funcs\\OAFuncs\\oafuncs\\oa_model\\roms\\__init__.py
         
     | 
| 
       9 
     | 
    
         
            -
            Description:
         
     | 
| 
       10 
     | 
    
         
            -
            EditPlatform: vscode
         
     | 
| 
       11 
     | 
    
         
            -
            ComputerInfo: XPS 15 9510
         
     | 
| 
       12 
     | 
    
         
            -
            SystemInfo: Windows 11
         
     | 
| 
       13 
     | 
    
         
            -
            Python Version: 3.12
         
     | 
| 
       14 
     | 
    
         
            -
            """
         
     | 
| 
       15 
     | 
    
         
            -
             
     | 
| 
       16 
     | 
    
         
            -
             
     | 
| 
       17 
     | 
    
         
            -
             
     | 
| 
       18 
     | 
    
         
            -
             
     | 
| 
       19 
     | 
    
         
            -
            # 会导致OAFuncs直接导入所有函数,不符合模块化设计
         
     | 
| 
       20 
     | 
    
         
            -
            from .test import *
         
     | 
    
        oafuncs/oa_model/roms/test.py
    DELETED
    
    | 
         @@ -1,19 +0,0 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            #!/usr/bin/env python
         
     | 
| 
       2 
     | 
    
         
            -
            # coding=utf-8
         
     | 
| 
       3 
     | 
    
         
            -
            """
         
     | 
| 
       4 
     | 
    
         
            -
            Author: Liu Kun && 16031215@qq.com
         
     | 
| 
       5 
     | 
    
         
            -
            Date: 2025-03-09 16:30:54
         
     | 
| 
       6 
     | 
    
         
            -
            LastEditors: Liu Kun && 16031215@qq.com
         
     | 
| 
       7 
     | 
    
         
            -
            LastEditTime: 2025-03-09 16:30:54
         
     | 
| 
       8 
     | 
    
         
            -
            FilePath: \\Python\\My_Funcs\\OAFuncs\\oafuncs\\oa_model\\roms\\depth.py
         
     | 
| 
       9 
     | 
    
         
            -
            Description:
         
     | 
| 
       10 
     | 
    
         
            -
            EditPlatform: vscode
         
     | 
| 
       11 
     | 
    
         
            -
            ComputerInfo: XPS 15 9510
         
     | 
| 
       12 
     | 
    
         
            -
            SystemInfo: Windows 11
         
     | 
| 
       13 
     | 
    
         
            -
            Python Version: 3.12
         
     | 
| 
       14 
     | 
    
         
            -
            """
         
     | 
| 
       15 
     | 
    
         
            -
             
     | 
| 
       16 
     | 
    
         
            -
            __all__ = ['test']
         
     | 
| 
       17 
     | 
    
         
            -
             
     | 
| 
       18 
     | 
    
         
            -
            def test():
         
     | 
| 
       19 
     | 
    
         
            -
                print('test')
         
     | 
| 
         
            File without changes
         
     | 
| 
         
            File without changes
         
     | 
| 
         
            File without changes
         
     |