oafuncs 0.0.98.17__py3-none-any.whl → 0.0.98.19__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- oafuncs/_script/data_interp.py +0 -84
- oafuncs/oa_data.py +1 -6
- {oafuncs-0.0.98.17.dist-info → oafuncs-0.0.98.19.dist-info}/METADATA +1 -1
- {oafuncs-0.0.98.17.dist-info → oafuncs-0.0.98.19.dist-info}/RECORD +7 -7
- {oafuncs-0.0.98.17.dist-info → oafuncs-0.0.98.19.dist-info}/WHEEL +0 -0
- {oafuncs-0.0.98.17.dist-info → oafuncs-0.0.98.19.dist-info}/licenses/LICENSE.txt +0 -0
- {oafuncs-0.0.98.17.dist-info → oafuncs-0.0.98.19.dist-info}/top_level.txt +0 -0
oafuncs/_script/data_interp.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1
|
-
import importlib.util
|
2
1
|
from typing import List, Union
|
3
2
|
|
4
3
|
import numpy as np
|
@@ -6,85 +5,6 @@ from scipy.interpolate import griddata
|
|
6
5
|
|
7
6
|
from oafuncs.oa_tool import PEx
|
8
7
|
|
9
|
-
# 检查 pykdtree 是否可用
|
10
|
-
_has_pykdtree = importlib.util.find_spec("pykdtree.kdtree") is not None
|
11
|
-
|
12
|
-
|
13
|
-
def _fill_nan_nearest(arr: np.ndarray) -> np.ndarray:
|
14
|
-
"""
|
15
|
-
用最近邻填充 NaN(只支持2D数组)
|
16
|
-
"""
|
17
|
-
# 基础检查:如果输入为None,直接返回None
|
18
|
-
if arr is None:
|
19
|
-
return None
|
20
|
-
|
21
|
-
# 确保是2D ndarray
|
22
|
-
arr = np.asarray(arr)
|
23
|
-
if arr.ndim != 2:
|
24
|
-
raise ValueError(f"_fill_nan_nearest 只支持2D数组,但输入的维度是 {arr.ndim}")
|
25
|
-
|
26
|
-
# 保存原始dtype并转为float
|
27
|
-
orig_dtype = arr.dtype
|
28
|
-
arr = arr.astype(float, copy=True) # 使用copy=True确保不修改原数据
|
29
|
-
|
30
|
-
# 检查是否有NaN需要填充
|
31
|
-
mask = np.isnan(arr)
|
32
|
-
if not mask.any():
|
33
|
-
return arr.copy()
|
34
|
-
|
35
|
-
try:
|
36
|
-
valid = np.array(np.where(~mask)).T
|
37
|
-
invalid = np.array(np.where(mask)).T
|
38
|
-
|
39
|
-
# 如果有效点为空,直接返回原数据
|
40
|
-
if valid.shape[0] == 0:
|
41
|
-
return arr.copy()
|
42
|
-
|
43
|
-
# 使用KDTree进行最近邻填充
|
44
|
-
if _has_pykdtree:
|
45
|
-
from pykdtree.kdtree import KDTree
|
46
|
-
|
47
|
-
tree = KDTree(valid)
|
48
|
-
_, idx = tree.query(invalid, k=1)
|
49
|
-
filled = arr.copy()
|
50
|
-
filled[tuple(invalid.T)] = arr[tuple(valid[idx.flatten()].T)]
|
51
|
-
else:
|
52
|
-
# 备用方法:使用scipy的distance_transform_edt
|
53
|
-
from scipy.ndimage import distance_transform_edt
|
54
|
-
|
55
|
-
idx = distance_transform_edt(mask, return_distances=False, return_indices=True)
|
56
|
-
filled = arr[tuple(idx)]
|
57
|
-
|
58
|
-
return filled.astype(orig_dtype)
|
59
|
-
except Exception as e:
|
60
|
-
import warnings
|
61
|
-
|
62
|
-
warnings.warn(f"Error in _fill_nan_nearest: {e}, shape={arr.shape}")
|
63
|
-
return arr.copy() # 发生异常返回原始数据
|
64
|
-
|
65
|
-
|
66
|
-
def _data_clip(data: np.ndarray, data_min, data_max) -> np.ndarray:
|
67
|
-
"""
|
68
|
-
将数据裁剪至 [data_min, data_max],超出或 NaN 用最近邻填补。
|
69
|
-
支持 1~4D。
|
70
|
-
"""
|
71
|
-
arr = np.array(data, copy=True) # 使用副本避免修改原数据
|
72
|
-
ndims = arr.ndim
|
73
|
-
if ndims != 2:
|
74
|
-
raise ValueError(f"_data_clip 只支持1~4维数组,但输入的维度是 {ndims}")
|
75
|
-
dtype = arr.dtype
|
76
|
-
|
77
|
-
# 检查是否需要裁剪
|
78
|
-
mask = np.isnan(arr) | (arr < data_min) | (arr > data_max)
|
79
|
-
if not np.any(mask):
|
80
|
-
return arr.astype(dtype)
|
81
|
-
|
82
|
-
# 将超出范围的值设为NaN
|
83
|
-
arr[mask] = np.nan
|
84
|
-
|
85
|
-
return _fill_nan_nearest(arr).astype(dtype)
|
86
|
-
|
87
|
-
|
88
8
|
|
89
9
|
def _interp_single_worker(*args):
|
90
10
|
"""
|
@@ -104,10 +24,6 @@ def _interp_single_worker(*args):
|
|
104
24
|
result = griddata(valid_points, valid_data, target_points, method=interpolation_method)
|
105
25
|
result = result.reshape(target_shape)
|
106
26
|
|
107
|
-
# 第二步:用data_clip裁剪并填充
|
108
|
-
data_min, data_max = np.nanmin(data_slice), np.nanmax(data_slice)
|
109
|
-
result = _data_clip(result, data_min, data_max)
|
110
|
-
|
111
27
|
return result
|
112
28
|
|
113
29
|
|
oafuncs/oa_data.py
CHANGED
@@ -23,7 +23,7 @@ from rich import print
|
|
23
23
|
from scipy.interpolate import interp1d
|
24
24
|
|
25
25
|
|
26
|
-
__all__ = ["interp_along_dim", "interp_2d", "ensure_list", "mask_shapefile"
|
26
|
+
__all__ = ["interp_along_dim", "interp_2d", "ensure_list", "mask_shapefile"]
|
27
27
|
|
28
28
|
|
29
29
|
def ensure_list(input_value: Any) -> List[str]:
|
@@ -114,11 +114,6 @@ def interp_along_dim(
|
|
114
114
|
return np.apply_along_axis(apply_interp_extrap, interpolation_axis, source_data)
|
115
115
|
|
116
116
|
|
117
|
-
def data_clip(data: np.ndarray, data_min: float, data_max: float) -> np.ndarray:
|
118
|
-
from ._script.data_interp import _data_clip
|
119
|
-
_data_clip(data, data_min, data_max)
|
120
|
-
|
121
|
-
|
122
117
|
def interp_2d(
|
123
118
|
target_x_coordinates: Union[np.ndarray, List[float]],
|
124
119
|
target_y_coordinates: Union[np.ndarray, List[float]],
|
@@ -1,6 +1,6 @@
|
|
1
1
|
oafuncs/__init__.py,sha256=T_-VtnWWllV3Q91twT5Yt2sUapeA051QbPNnBxmg9nw,1456
|
2
2
|
oafuncs/oa_cmap.py,sha256=DimWT4Bg7uE5Lx8hSw1REp7whpsR2pFRStAwk1cowEM,11494
|
3
|
-
oafuncs/oa_data.py,sha256=
|
3
|
+
oafuncs/oa_data.py,sha256=y11xxaVNZ6_eveVjSG4PisRXYpKr_FFsBBh0mj_ss2g,8436
|
4
4
|
oafuncs/oa_date.py,sha256=WhM6cyD4G3IeghjLTHhAMtlvJbA7kwQG2sHnxdTgyso,6303
|
5
5
|
oafuncs/oa_draw.py,sha256=Wj2QBgyIPpV_dxaDrH10jqj_puK9ZM9rd-si-3VrsrE,17631
|
6
6
|
oafuncs/oa_file.py,sha256=j9gXJgPOJsliu4IOUc4bc-luW4yBvQyNCEmMyDVjUwQ,16404
|
@@ -11,7 +11,7 @@ oafuncs/oa_tool.py,sha256=rpPkLqWhqMmqlCc5wjL8qMTg3gThCkSrYJckbX_0iJc,8631
|
|
11
11
|
oafuncs/_data/hycom.png,sha256=MadKs6Gyj5n9-TOu7L4atQfTXtF9dvN9w-tdU9IfygI,10945710
|
12
12
|
oafuncs/_data/oafuncs.png,sha256=o3VD7wm-kwDea5E98JqxXl04_78cBX7VcdUt7uQXGiU,3679898
|
13
13
|
oafuncs/_script/cprogressbar.py,sha256=UIgGcLFs-6IgWlITuBLaQqrpt4OAK3Mst5RlCiNfZdQ,15772
|
14
|
-
oafuncs/_script/data_interp.py,sha256=
|
14
|
+
oafuncs/_script/data_interp.py,sha256=KJ-p-UN3Op1MmtCoN4KdjFVHFE3GNHrTD3vBjzaYSjQ,4688
|
15
15
|
oafuncs/_script/data_interp_geo.py,sha256=X89KxLYhpltWi0Sf96gIhBL3r1M5aExd_JCmgBmmvUc,3742
|
16
16
|
oafuncs/_script/email.py,sha256=lL4HGKrr524-g0xLlgs-4u7x4-u7DtgNoD9AL8XJKj4,3058
|
17
17
|
oafuncs/_script/netcdf_merge.py,sha256=9hCyxfeUHnBzs50_0v0jzVfxpMxTX4dNTo0pmsp_T6g,4226
|
@@ -39,8 +39,8 @@ oafuncs/oa_sign/__init__.py,sha256=QKqTFrJDFK40C5uvk48GlRRbGFzO40rgkYwu6dYxatM,5
|
|
39
39
|
oafuncs/oa_sign/meteorological.py,sha256=8091SHo2L8kl4dCFmmSH5NGVHDku5i5lSiLEG5DLnOQ,6489
|
40
40
|
oafuncs/oa_sign/ocean.py,sha256=xrW-rWD7xBWsB5PuCyEwQ1Q_RDKq2KCLz-LOONHgldU,5932
|
41
41
|
oafuncs/oa_sign/scientific.py,sha256=a4JxOBgm9vzNZKpJ_GQIQf7cokkraV5nh23HGbmTYKw,5064
|
42
|
-
oafuncs-0.0.98.
|
43
|
-
oafuncs-0.0.98.
|
44
|
-
oafuncs-0.0.98.
|
45
|
-
oafuncs-0.0.98.
|
46
|
-
oafuncs-0.0.98.
|
42
|
+
oafuncs-0.0.98.19.dist-info/licenses/LICENSE.txt,sha256=rMtLpVg8sKiSlwClfR9w_Dd_5WubTQgoOzE2PDFxzs4,1074
|
43
|
+
oafuncs-0.0.98.19.dist-info/METADATA,sha256=PJ_1BA6QOeA2QHSb61jwOFA2pDD2H4QT--m3tf_f44I,4273
|
44
|
+
oafuncs-0.0.98.19.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
|
45
|
+
oafuncs-0.0.98.19.dist-info/top_level.txt,sha256=bgC35QkXbN4EmPHEveg_xGIZ5i9NNPYWqtJqaKqTPsQ,8
|
46
|
+
oafuncs-0.0.98.19.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|