oafuncs 0.0.98.16__py3-none-any.whl → 0.0.98.17__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- oafuncs/_script/data_interp.py +72 -35
- oafuncs/_script/data_interp_geo.py +4 -53
- {oafuncs-0.0.98.16.dist-info → oafuncs-0.0.98.17.dist-info}/METADATA +1 -1
- {oafuncs-0.0.98.16.dist-info → oafuncs-0.0.98.17.dist-info}/RECORD +7 -7
- {oafuncs-0.0.98.16.dist-info → oafuncs-0.0.98.17.dist-info}/WHEEL +0 -0
- {oafuncs-0.0.98.16.dist-info → oafuncs-0.0.98.17.dist-info}/licenses/LICENSE.txt +0 -0
- {oafuncs-0.0.98.16.dist-info → oafuncs-0.0.98.17.dist-info}/top_level.txt +0 -0
oafuncs/_script/data_interp.py
CHANGED
@@ -2,51 +2,88 @@ import importlib.util
|
|
2
2
|
from typing import List, Union
|
3
3
|
|
4
4
|
import numpy as np
|
5
|
-
from oafuncs.oa_tool import PEx
|
6
5
|
from scipy.interpolate import griddata
|
7
6
|
|
7
|
+
from oafuncs.oa_tool import PEx
|
8
|
+
|
9
|
+
# 检查 pykdtree 是否可用
|
8
10
|
_has_pykdtree = importlib.util.find_spec("pykdtree.kdtree") is not None
|
9
11
|
|
10
12
|
|
11
|
-
def _fill_nan_nearest(arr):
|
12
|
-
"""
|
13
|
+
def _fill_nan_nearest(arr: np.ndarray) -> np.ndarray:
|
14
|
+
"""
|
15
|
+
用最近邻填充 NaN(只支持2D数组)
|
16
|
+
"""
|
17
|
+
# 基础检查:如果输入为None,直接返回None
|
18
|
+
if arr is None:
|
19
|
+
return None
|
20
|
+
|
21
|
+
# 确保是2D ndarray
|
22
|
+
arr = np.asarray(arr)
|
23
|
+
if arr.ndim != 2:
|
24
|
+
raise ValueError(f"_fill_nan_nearest 只支持2D数组,但输入的维度是 {arr.ndim}")
|
25
|
+
|
26
|
+
# 保存原始dtype并转为float
|
27
|
+
orig_dtype = arr.dtype
|
28
|
+
arr = arr.astype(float, copy=True) # 使用copy=True确保不修改原数据
|
29
|
+
|
30
|
+
# 检查是否有NaN需要填充
|
13
31
|
mask = np.isnan(arr)
|
14
32
|
if not mask.any():
|
15
|
-
return arr
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
return arr
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
33
|
+
return arr.copy()
|
34
|
+
|
35
|
+
try:
|
36
|
+
valid = np.array(np.where(~mask)).T
|
37
|
+
invalid = np.array(np.where(mask)).T
|
38
|
+
|
39
|
+
# 如果有效点为空,直接返回原数据
|
40
|
+
if valid.shape[0] == 0:
|
41
|
+
return arr.copy()
|
42
|
+
|
43
|
+
# 使用KDTree进行最近邻填充
|
44
|
+
if _has_pykdtree:
|
45
|
+
from pykdtree.kdtree import KDTree
|
46
|
+
|
47
|
+
tree = KDTree(valid)
|
48
|
+
_, idx = tree.query(invalid, k=1)
|
49
|
+
filled = arr.copy()
|
50
|
+
filled[tuple(invalid.T)] = arr[tuple(valid[idx.flatten()].T)]
|
51
|
+
else:
|
52
|
+
# 备用方法:使用scipy的distance_transform_edt
|
53
|
+
from scipy.ndimage import distance_transform_edt
|
54
|
+
|
55
|
+
idx = distance_transform_edt(mask, return_distances=False, return_indices=True)
|
56
|
+
filled = arr[tuple(idx)]
|
57
|
+
|
58
|
+
return filled.astype(orig_dtype)
|
59
|
+
except Exception as e:
|
60
|
+
import warnings
|
61
|
+
|
62
|
+
warnings.warn(f"Error in _fill_nan_nearest: {e}, shape={arr.shape}")
|
63
|
+
return arr.copy() # 发生异常返回原始数据
|
64
|
+
|
65
|
+
|
66
|
+
def _data_clip(data: np.ndarray, data_min, data_max) -> np.ndarray:
|
39
67
|
"""
|
40
|
-
|
68
|
+
将数据裁剪至 [data_min, data_max],超出或 NaN 用最近邻填补。
|
69
|
+
支持 1~4D。
|
41
70
|
"""
|
42
|
-
arr = np.
|
71
|
+
arr = np.array(data, copy=True) # 使用副本避免修改原数据
|
72
|
+
ndims = arr.ndim
|
73
|
+
if ndims != 2:
|
74
|
+
raise ValueError(f"_data_clip 只支持1~4维数组,但输入的维度是 {ndims}")
|
75
|
+
dtype = arr.dtype
|
76
|
+
|
77
|
+
# 检查是否需要裁剪
|
43
78
|
mask = np.isnan(arr) | (arr < data_min) | (arr > data_max)
|
44
|
-
if np.any(mask):
|
45
|
-
arr
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
79
|
+
if not np.any(mask):
|
80
|
+
return arr.astype(dtype)
|
81
|
+
|
82
|
+
# 将超出范围的值设为NaN
|
83
|
+
arr[mask] = np.nan
|
84
|
+
|
85
|
+
return _fill_nan_nearest(arr).astype(dtype)
|
86
|
+
|
50
87
|
|
51
88
|
|
52
89
|
def _interp_single_worker(*args):
|
@@ -1,54 +1,11 @@
|
|
1
|
-
#!/usr/bin/env python
|
2
|
-
# coding=utf-8
|
3
|
-
"""
|
4
|
-
Author: Liu Kun && 16031215@qq.com
|
5
|
-
Date: 2025-04-26 11:54:21
|
6
|
-
LastEditors: Liu Kun && 16031215@qq.com
|
7
|
-
LastEditTime: 2025-04-26 11:54:22
|
8
|
-
FilePath: \\Python\\My_Funcs\\OAFuncs\\oafuncs\\_script\\data_interp_geo.py
|
9
|
-
Description:
|
10
|
-
EditPlatform: vscode
|
11
|
-
ComputerInfo: XPS 15 9510
|
12
|
-
SystemInfo: Windows 11
|
13
|
-
Python Version: 3.12
|
14
|
-
"""
|
15
|
-
|
16
|
-
import importlib.util
|
17
1
|
from typing import List, Union
|
18
2
|
|
19
3
|
import numpy as np
|
20
4
|
from scipy.interpolate import RectBivariateSpline
|
21
5
|
|
22
6
|
from oafuncs.oa_tool import PEx
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
def fill_nan_nearest(arr):
|
28
|
-
"""用最近邻插值填充 NaN,优先用pykdtree加速"""
|
29
|
-
mask = np.isnan(arr)
|
30
|
-
if not mask.any():
|
31
|
-
return arr
|
32
|
-
if _has_pykdtree:
|
33
|
-
from pykdtree.kdtree import KDTree
|
34
|
-
|
35
|
-
valid_idx = np.array(np.where(~mask)).T
|
36
|
-
nan_idx = np.array(np.where(mask)).T
|
37
|
-
if len(valid_idx) == 0:
|
38
|
-
# 全是nan,直接返回
|
39
|
-
return arr
|
40
|
-
tree = KDTree(valid_idx)
|
41
|
-
dist, idx = tree.query(nan_idx, k=1)
|
42
|
-
filled = arr.copy()
|
43
|
-
# idx shape: (n_nan, 1),valid_idx shape: (n_valid, ndim)
|
44
|
-
# valid_idx[idx].T shape: (ndim, n_nan)
|
45
|
-
filled[tuple(nan_idx.T)] = arr[tuple(valid_idx[idx.flatten()].T)]
|
46
|
-
return filled
|
47
|
-
else:
|
48
|
-
from scipy.ndimage import distance_transform_edt
|
49
|
-
|
50
|
-
idx = distance_transform_edt(mask, return_distances=False, return_indices=True)
|
51
|
-
return arr[tuple(idx)]
|
7
|
+
from oafuncs.oa_data import data_clip
|
8
|
+
from oafuncs._script.data_interp import _fill_nan_nearest
|
52
9
|
|
53
10
|
|
54
11
|
def _interp_single_worker(*args):
|
@@ -63,7 +20,7 @@ def _interp_single_worker(*args):
|
|
63
20
|
if np.isnan(data_slice).any():
|
64
21
|
mask = np.isnan(data_slice)
|
65
22
|
if mask.any():
|
66
|
-
data_slice =
|
23
|
+
data_slice = _fill_nan_nearest(data_slice)
|
67
24
|
x1d = np.unique(sx[0, :])
|
68
25
|
y1d = np.unique(sy[:, 0])
|
69
26
|
if sx.shape != (len(y1d), len(x1d)) or sy.shape != (len(y1d), len(x1d)):
|
@@ -80,13 +37,7 @@ def _interp_single_worker(*args):
|
|
80
37
|
out = interp_func(ty[:, 0], tx[0, :])
|
81
38
|
# 优化裁剪逻辑:超出范围的点设为nan,再用fill_nan_nearest填充
|
82
39
|
arr = np.asarray(out)
|
83
|
-
|
84
|
-
if np.any(mask):
|
85
|
-
arr = np.where(mask, np.nan, arr)
|
86
|
-
arr = fill_nan_nearest(arr)
|
87
|
-
# 最后再填充nan(极端情况)
|
88
|
-
if np.any(np.isnan(arr)):
|
89
|
-
arr = fill_nan_nearest(arr)
|
40
|
+
arr = data_clip(arr,data_min,data_max)
|
90
41
|
return arr
|
91
42
|
|
92
43
|
|
@@ -11,8 +11,8 @@ oafuncs/oa_tool.py,sha256=rpPkLqWhqMmqlCc5wjL8qMTg3gThCkSrYJckbX_0iJc,8631
|
|
11
11
|
oafuncs/_data/hycom.png,sha256=MadKs6Gyj5n9-TOu7L4atQfTXtF9dvN9w-tdU9IfygI,10945710
|
12
12
|
oafuncs/_data/oafuncs.png,sha256=o3VD7wm-kwDea5E98JqxXl04_78cBX7VcdUt7uQXGiU,3679898
|
13
13
|
oafuncs/_script/cprogressbar.py,sha256=UIgGcLFs-6IgWlITuBLaQqrpt4OAK3Mst5RlCiNfZdQ,15772
|
14
|
-
oafuncs/_script/data_interp.py,sha256=
|
15
|
-
oafuncs/_script/data_interp_geo.py,sha256=
|
14
|
+
oafuncs/_script/data_interp.py,sha256=_k8EMSiFxutrqEVTLsL4mEPE6ssYq8bzmBlksCZ9nAE,7428
|
15
|
+
oafuncs/_script/data_interp_geo.py,sha256=X89KxLYhpltWi0Sf96gIhBL3r1M5aExd_JCmgBmmvUc,3742
|
16
16
|
oafuncs/_script/email.py,sha256=lL4HGKrr524-g0xLlgs-4u7x4-u7DtgNoD9AL8XJKj4,3058
|
17
17
|
oafuncs/_script/netcdf_merge.py,sha256=9hCyxfeUHnBzs50_0v0jzVfxpMxTX4dNTo0pmsp_T6g,4226
|
18
18
|
oafuncs/_script/netcdf_modify.py,sha256=sGRUYNhfGgf9JV70rnBzw3bzuTRSXzBTL_RMDnDPeLQ,4552
|
@@ -39,8 +39,8 @@ oafuncs/oa_sign/__init__.py,sha256=QKqTFrJDFK40C5uvk48GlRRbGFzO40rgkYwu6dYxatM,5
|
|
39
39
|
oafuncs/oa_sign/meteorological.py,sha256=8091SHo2L8kl4dCFmmSH5NGVHDku5i5lSiLEG5DLnOQ,6489
|
40
40
|
oafuncs/oa_sign/ocean.py,sha256=xrW-rWD7xBWsB5PuCyEwQ1Q_RDKq2KCLz-LOONHgldU,5932
|
41
41
|
oafuncs/oa_sign/scientific.py,sha256=a4JxOBgm9vzNZKpJ_GQIQf7cokkraV5nh23HGbmTYKw,5064
|
42
|
-
oafuncs-0.0.98.
|
43
|
-
oafuncs-0.0.98.
|
44
|
-
oafuncs-0.0.98.
|
45
|
-
oafuncs-0.0.98.
|
46
|
-
oafuncs-0.0.98.
|
42
|
+
oafuncs-0.0.98.17.dist-info/licenses/LICENSE.txt,sha256=rMtLpVg8sKiSlwClfR9w_Dd_5WubTQgoOzE2PDFxzs4,1074
|
43
|
+
oafuncs-0.0.98.17.dist-info/METADATA,sha256=8-0Gp7bgVD7qR4sfSQtKmoCl5yV8f7YBnEROZV28oJY,4273
|
44
|
+
oafuncs-0.0.98.17.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
|
45
|
+
oafuncs-0.0.98.17.dist-info/top_level.txt,sha256=bgC35QkXbN4EmPHEveg_xGIZ5i9NNPYWqtJqaKqTPsQ,8
|
46
|
+
oafuncs-0.0.98.17.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|