oafuncs 0.0.98.15__py3-none-any.whl → 0.0.98.17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,18 +1,4 @@
1
- #!/usr/bin/env python
2
- # coding=utf-8
3
- """
4
- Author: Liu Kun && 16031215@qq.com
5
- Date: 2025-04-25 16:22:52
6
- LastEditors: Liu Kun && 16031215@qq.com
7
- LastEditTime: 2025-04-25 16:22:52
8
- FilePath: \\Python\\My_Funcs\\OAFuncs\\oafuncs\\_script\\data_interp.py
9
- Description:
10
- EditPlatform: vscode
11
- ComputerInfo: XPS 15 9510
12
- SystemInfo: Windows 11
13
- Python Version: 3.12
14
- """
15
-
1
+ import importlib.util
16
2
  from typing import List, Union
17
3
 
18
4
  import numpy as np
@@ -20,6 +6,85 @@ from scipy.interpolate import griddata
20
6
 
21
7
  from oafuncs.oa_tool import PEx
22
8
 
9
+ # 检查 pykdtree 是否可用
10
+ _has_pykdtree = importlib.util.find_spec("pykdtree.kdtree") is not None
11
+
12
+
13
+ def _fill_nan_nearest(arr: np.ndarray) -> np.ndarray:
14
+ """
15
+ 用最近邻填充 NaN(只支持2D数组)
16
+ """
17
+ # 基础检查:如果输入为None,直接返回None
18
+ if arr is None:
19
+ return None
20
+
21
+ # 确保是2D ndarray
22
+ arr = np.asarray(arr)
23
+ if arr.ndim != 2:
24
+ raise ValueError(f"_fill_nan_nearest 只支持2D数组,但输入的维度是 {arr.ndim}")
25
+
26
+ # 保存原始dtype并转为float
27
+ orig_dtype = arr.dtype
28
+ arr = arr.astype(float, copy=True) # 使用copy=True确保不修改原数据
29
+
30
+ # 检查是否有NaN需要填充
31
+ mask = np.isnan(arr)
32
+ if not mask.any():
33
+ return arr.copy()
34
+
35
+ try:
36
+ valid = np.array(np.where(~mask)).T
37
+ invalid = np.array(np.where(mask)).T
38
+
39
+ # 如果有效点为空,直接返回原数据
40
+ if valid.shape[0] == 0:
41
+ return arr.copy()
42
+
43
+ # 使用KDTree进行最近邻填充
44
+ if _has_pykdtree:
45
+ from pykdtree.kdtree import KDTree
46
+
47
+ tree = KDTree(valid)
48
+ _, idx = tree.query(invalid, k=1)
49
+ filled = arr.copy()
50
+ filled[tuple(invalid.T)] = arr[tuple(valid[idx.flatten()].T)]
51
+ else:
52
+ # 备用方法:使用scipy的distance_transform_edt
53
+ from scipy.ndimage import distance_transform_edt
54
+
55
+ idx = distance_transform_edt(mask, return_distances=False, return_indices=True)
56
+ filled = arr[tuple(idx)]
57
+
58
+ return filled.astype(orig_dtype)
59
+ except Exception as e:
60
+ import warnings
61
+
62
+ warnings.warn(f"Error in _fill_nan_nearest: {e}, shape={arr.shape}")
63
+ return arr.copy() # 发生异常返回原始数据
64
+
65
+
66
+ def _data_clip(data: np.ndarray, data_min, data_max) -> np.ndarray:
67
+ """
68
+ 将数据裁剪至 [data_min, data_max],超出或 NaN 用最近邻填补。
69
+ 支持 1~4D。
70
+ """
71
+ arr = np.array(data, copy=True) # 使用副本避免修改原数据
72
+ ndims = arr.ndim
73
+ if ndims != 2:
74
+ raise ValueError(f"_data_clip 只支持1~4维数组,但输入的维度是 {ndims}")
75
+ dtype = arr.dtype
76
+
77
+ # 检查是否需要裁剪
78
+ mask = np.isnan(arr) | (arr < data_min) | (arr > data_max)
79
+ if not np.any(mask):
80
+ return arr.astype(dtype)
81
+
82
+ # 将超出范围的值设为NaN
83
+ arr[mask] = np.nan
84
+
85
+ return _fill_nan_nearest(arr).astype(dtype)
86
+
87
+
23
88
 
24
89
  def _interp_single_worker(*args):
25
90
  """
@@ -39,12 +104,9 @@ def _interp_single_worker(*args):
39
104
  result = griddata(valid_points, valid_data, target_points, method=interpolation_method)
40
105
  result = result.reshape(target_shape)
41
106
 
42
- # 检查插值结果中是否仍有 NaN,如果有,用最近邻插值填充
43
- if np.any(np.isnan(result)):
44
- # 使用最近邻方法填充剩余的 NaN
45
- nan_mask = np.isnan(result)
46
- result_nn = griddata(valid_points, valid_data, target_points[nan_mask.ravel()], method="nearest")
47
- result.ravel()[nan_mask.ravel()] = result_nn
107
+ # 第二步:用data_clip裁剪并填充
108
+ data_min, data_max = np.nanmin(data_slice), np.nanmax(data_slice)
109
+ result = _data_clip(result, data_min, data_max)
48
110
 
49
111
  return result
50
112
 
@@ -111,13 +173,13 @@ def interp_2d_func(
111
173
 
112
174
  t, z, y, x = new_src_data.shape
113
175
 
114
- paras = []
176
+ params = []
115
177
  target_shape = target_y_coordinates.shape
116
178
  for t_index in range(t):
117
179
  for z_index in range(z):
118
- paras.append((new_src_data[t_index, z_index], origin_points, target_points, interpolation_method, target_shape))
180
+ params.append((new_src_data[t_index, z_index], origin_points, target_points, interpolation_method, target_shape))
119
181
 
120
182
  with PEx() as excutor:
121
- result = excutor.run(_interp_single_worker, paras)
183
+ result = excutor.run(_interp_single_worker, params)
122
184
 
123
185
  return np.squeeze(np.array(result).reshape(t, z, *target_shape))
@@ -0,0 +1,98 @@
1
+ from typing import List, Union
2
+
3
+ import numpy as np
4
+ from scipy.interpolate import RectBivariateSpline
5
+
6
+ from oafuncs.oa_tool import PEx
7
+ from oafuncs.oa_data import data_clip
8
+ from oafuncs._script.data_interp import _fill_nan_nearest
9
+
10
+
11
+ def _interp_single_worker(*args):
12
+ """
13
+ 单slice插值worker,参数为(data_slice, sx, sy, tx, ty, interpolation_method, data_min, data_max)
14
+ """
15
+ # 兼容PEx调用方式:args为tuple或list
16
+ if len(args) == 1 and isinstance(args[0], (tuple, list)):
17
+ args = args[0]
18
+ data_slice, sx, sy, tx, ty, interpolation_method, data_min, data_max = args
19
+ # 处理nan
20
+ if np.isnan(data_slice).any():
21
+ mask = np.isnan(data_slice)
22
+ if mask.any():
23
+ data_slice = _fill_nan_nearest(data_slice)
24
+ x1d = np.unique(sx[0, :])
25
+ y1d = np.unique(sy[:, 0])
26
+ if sx.shape != (len(y1d), len(x1d)) or sy.shape != (len(y1d), len(x1d)):
27
+ from scipy.interpolate import griddata
28
+
29
+ grid_points = np.column_stack((sx.ravel(), sy.ravel()))
30
+ grid_values = data_slice.ravel()
31
+ data_slice = griddata(grid_points, grid_values, (x1d[None, :], y1d[:, None]), method="linear")
32
+ if interpolation_method == "linear":
33
+ kx = ky = 1
34
+ else:
35
+ kx = ky = 3
36
+ interp_func = RectBivariateSpline(y1d, x1d, data_slice, kx=kx, ky=ky)
37
+ out = interp_func(ty[:, 0], tx[0, :])
38
+ # 优化裁剪逻辑:超出范围的点设为nan,再用fill_nan_nearest填充
39
+ arr = np.asarray(out)
40
+ arr = data_clip(arr,data_min,data_max)
41
+ return arr
42
+
43
+
44
+ def interp_2d_geo(
45
+ target_x_coordinates: Union[np.ndarray, List[float]],
46
+ target_y_coordinates: Union[np.ndarray, List[float]],
47
+ source_x_coordinates: Union[np.ndarray, List[float]],
48
+ source_y_coordinates: Union[np.ndarray, List[float]],
49
+ source_data: np.ndarray,
50
+ interpolation_method: str = "cubic",
51
+ ) -> np.ndarray:
52
+ """
53
+ 更平滑的二维插值,采用RectBivariateSpline实现bicubic效果,接口与interp_2d兼容。
54
+ 支持输入2D/3D/4D数据,最后两维为空间。
55
+ interpolation_method: "cubic"(默认,bicubic),"linear"(双线性)
56
+ 插值后自动裁剪并用最近邻填充超限和NaN,范围取原始数据的nanmin/nanmax
57
+ """
58
+ # 保证输入为ndarray
59
+ tx = np.asarray(target_x_coordinates)
60
+ ty = np.asarray(target_y_coordinates)
61
+ sx = np.asarray(source_x_coordinates)
62
+ sy = np.asarray(source_y_coordinates)
63
+ data = np.asarray(source_data)
64
+
65
+ if ty.ndim == 1:
66
+ tx, ty = np.meshgrid(tx, ty)
67
+ if sy.ndim == 1:
68
+ sx, sy = np.meshgrid(sx, sy)
69
+
70
+ if sx.shape != data.shape[-2:] or sy.shape != data.shape[-2:]:
71
+ raise ValueError("Shape of source_data does not match shape of source_x_coordinates or source_y_coordinates.")
72
+
73
+ data_dims = data.ndim
74
+ if data_dims < 2:
75
+ raise ValueError("Source data must have at least 2 dimensions.")
76
+ elif data_dims > 4:
77
+ raise ValueError("Source data has more than 4 dimensions, not supported.")
78
+
79
+ num_dims_to_add = 4 - data_dims
80
+ new_shape = (1,) * num_dims_to_add + data.shape
81
+ data4d = data.reshape(new_shape)
82
+ t, z, ny, nx = data4d.shape
83
+
84
+ data_min, data_max = np.nanmin(data), np.nanmax(data)
85
+ target_shape = ty.shape
86
+
87
+ # 并行参数准备
88
+ params = []
89
+ for ti in range(t):
90
+ for zi in range(z):
91
+ params.append((data4d[ti, zi], sx, sy, tx, ty, interpolation_method, data_min, data_max))
92
+
93
+ with PEx() as excutor:
94
+ result = excutor.run(_interp_single_worker, params)
95
+
96
+ result = np.array(result).reshape(t, z, *target_shape)
97
+ result = np.squeeze(result)
98
+ return result
oafuncs/oa_data.py CHANGED
@@ -23,7 +23,7 @@ from rich import print
23
23
  from scipy.interpolate import interp1d
24
24
 
25
25
 
26
- __all__ = ["interp_along_dim", "interp_2d", "ensure_list", "mask_shapefile"]
26
+ __all__ = ["interp_along_dim", "interp_2d", "ensure_list", "mask_shapefile", "data_clip"]
27
27
 
28
28
 
29
29
  def ensure_list(input_value: Any) -> List[str]:
@@ -114,7 +114,9 @@ def interp_along_dim(
114
114
  return np.apply_along_axis(apply_interp_extrap, interpolation_axis, source_data)
115
115
 
116
116
 
117
-
117
+ def data_clip(data: np.ndarray, data_min: float, data_max: float) -> np.ndarray:
118
+ from ._script.data_interp import _data_clip
119
+ _data_clip(data, data_min, data_max)
118
120
 
119
121
 
120
122
  def interp_2d(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: oafuncs
3
- Version: 0.0.98.15
3
+ Version: 0.0.98.17
4
4
  Summary: Oceanic and Atmospheric Functions
5
5
  Home-page: https://github.com/Industry-Pays/OAFuncs
6
6
  Author: Kun Liu
@@ -1,6 +1,6 @@
1
1
  oafuncs/__init__.py,sha256=T_-VtnWWllV3Q91twT5Yt2sUapeA051QbPNnBxmg9nw,1456
2
2
  oafuncs/oa_cmap.py,sha256=DimWT4Bg7uE5Lx8hSw1REp7whpsR2pFRStAwk1cowEM,11494
3
- oafuncs/oa_data.py,sha256=hngaxAi_r6PsHXzSeT3DMY_QdChWjuBMPOZNFvWU388,8442
3
+ oafuncs/oa_data.py,sha256=NOp7Rmjjypb17CNjk3Ksz08R7LygCEP6K4mna9mSXa8,8626
4
4
  oafuncs/oa_date.py,sha256=WhM6cyD4G3IeghjLTHhAMtlvJbA7kwQG2sHnxdTgyso,6303
5
5
  oafuncs/oa_draw.py,sha256=Wj2QBgyIPpV_dxaDrH10jqj_puK9ZM9rd-si-3VrsrE,17631
6
6
  oafuncs/oa_file.py,sha256=j9gXJgPOJsliu4IOUc4bc-luW4yBvQyNCEmMyDVjUwQ,16404
@@ -11,7 +11,8 @@ oafuncs/oa_tool.py,sha256=rpPkLqWhqMmqlCc5wjL8qMTg3gThCkSrYJckbX_0iJc,8631
11
11
  oafuncs/_data/hycom.png,sha256=MadKs6Gyj5n9-TOu7L4atQfTXtF9dvN9w-tdU9IfygI,10945710
12
12
  oafuncs/_data/oafuncs.png,sha256=o3VD7wm-kwDea5E98JqxXl04_78cBX7VcdUt7uQXGiU,3679898
13
13
  oafuncs/_script/cprogressbar.py,sha256=UIgGcLFs-6IgWlITuBLaQqrpt4OAK3Mst5RlCiNfZdQ,15772
14
- oafuncs/_script/data_interp.py,sha256=70U-Jsoxd5g-7dEQt4IaDRuRV-M_1lEKMGOci86vSVE,5431
14
+ oafuncs/_script/data_interp.py,sha256=_k8EMSiFxutrqEVTLsL4mEPE6ssYq8bzmBlksCZ9nAE,7428
15
+ oafuncs/_script/data_interp_geo.py,sha256=X89KxLYhpltWi0Sf96gIhBL3r1M5aExd_JCmgBmmvUc,3742
15
16
  oafuncs/_script/email.py,sha256=lL4HGKrr524-g0xLlgs-4u7x4-u7DtgNoD9AL8XJKj4,3058
16
17
  oafuncs/_script/netcdf_merge.py,sha256=9hCyxfeUHnBzs50_0v0jzVfxpMxTX4dNTo0pmsp_T6g,4226
17
18
  oafuncs/_script/netcdf_modify.py,sha256=sGRUYNhfGgf9JV70rnBzw3bzuTRSXzBTL_RMDnDPeLQ,4552
@@ -38,8 +39,8 @@ oafuncs/oa_sign/__init__.py,sha256=QKqTFrJDFK40C5uvk48GlRRbGFzO40rgkYwu6dYxatM,5
38
39
  oafuncs/oa_sign/meteorological.py,sha256=8091SHo2L8kl4dCFmmSH5NGVHDku5i5lSiLEG5DLnOQ,6489
39
40
  oafuncs/oa_sign/ocean.py,sha256=xrW-rWD7xBWsB5PuCyEwQ1Q_RDKq2KCLz-LOONHgldU,5932
40
41
  oafuncs/oa_sign/scientific.py,sha256=a4JxOBgm9vzNZKpJ_GQIQf7cokkraV5nh23HGbmTYKw,5064
41
- oafuncs-0.0.98.15.dist-info/licenses/LICENSE.txt,sha256=rMtLpVg8sKiSlwClfR9w_Dd_5WubTQgoOzE2PDFxzs4,1074
42
- oafuncs-0.0.98.15.dist-info/METADATA,sha256=jTAHHAY0xOxy2z13wYD4x4JOOSfsUxrz1WVyzXNfi9o,4273
43
- oafuncs-0.0.98.15.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
44
- oafuncs-0.0.98.15.dist-info/top_level.txt,sha256=bgC35QkXbN4EmPHEveg_xGIZ5i9NNPYWqtJqaKqTPsQ,8
45
- oafuncs-0.0.98.15.dist-info/RECORD,,
42
+ oafuncs-0.0.98.17.dist-info/licenses/LICENSE.txt,sha256=rMtLpVg8sKiSlwClfR9w_Dd_5WubTQgoOzE2PDFxzs4,1074
43
+ oafuncs-0.0.98.17.dist-info/METADATA,sha256=8-0Gp7bgVD7qR4sfSQtKmoCl5yV8f7YBnEROZV28oJY,4273
44
+ oafuncs-0.0.98.17.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
45
+ oafuncs-0.0.98.17.dist-info/top_level.txt,sha256=bgC35QkXbN4EmPHEveg_xGIZ5i9NNPYWqtJqaKqTPsQ,8
46
+ oafuncs-0.0.98.17.dist-info/RECORD,,