oafuncs 0.0.80__py2.py3-none-any.whl → 0.0.81__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
oafuncs/__init__.py CHANGED
@@ -4,26 +4,41 @@
4
4
  Author: Liu Kun && 16031215@qq.com
5
5
  Date: 2024-09-17 16:09:20
6
6
  LastEditors: Liu Kun && 16031215@qq.com
7
- LastEditTime: 2024-12-13 10:56:43
8
- FilePath: \\Python\\My_Funcs\\OAFuncs\\oafuncs\\__init__.py
7
+ LastEditTime: 2024-12-13 12:31:06
8
+ FilePath: \\Python\\My_Funcs\\OAFuncs\\oafuncs\\oa_s\\__init__.py
9
9
  Description:
10
10
  EditPlatform: vscode
11
11
  ComputerInfo: XPS 15 9510
12
12
  SystemInfo: Windows 11
13
- Python Version: 3.11
13
+ Python Version: 3.12
14
14
  """
15
15
 
16
+
16
17
  # 会导致OAFuncs直接导入所有函数,不符合模块化设计
17
- from oafuncs.oa_s import (
18
- oa_cmap,
19
- oa_data,
20
- oa_draw,
21
- oa_file,
22
- oa_help,
23
- oa_nc,
24
- oa_python,
25
- )
18
+ # from oafuncs.oa_s.oa_cmap import *
19
+ # from oafuncs.oa_s.oa_data import *
20
+ # from oafuncs.oa_s.oa_draw import *
21
+ # from oafuncs.oa_s.oa_file import *
22
+ # from oafuncs.oa_s.oa_help import *
23
+ # from oafuncs.oa_s.oa_nc import *
24
+ # from oafuncs.oa_s.oa_python import *
26
25
 
26
+ # ------------------- 2024-12-13 12:31:06 -------------------
27
+ # path: My_Funcs/OAFuncs/oafuncs/
28
+ from .oa_cmap import *
29
+ from .oa_data import *
30
+ from .oa_draw import *
31
+ from .oa_file import *
32
+ from .oa_help import *
33
+ from .oa_nc import *
34
+ from .oa_python import *
35
+ # ------------------- 2024-12-13 12:31:06 -------------------
36
+ # path: My_Funcs/OAFuncs/oafuncs/oa_down/
27
37
  from .oa_down import *
38
+ # ------------------- 2024-12-13 12:31:06 -------------------
39
+ # path: My_Funcs/OAFuncs/oafuncs/oa_sign/
28
40
  from .oa_sign import *
41
+ # ------------------- 2024-12-13 12:31:06 -------------------
42
+ # path: My_Funcs/OAFuncs/oafuncs/oa_tool/
29
43
  from .oa_tool import *
44
+ # ------------------- 2024-12-13 12:31:06 -------------------
oafuncs/oa_cmap.py CHANGED
@@ -17,11 +17,9 @@ import matplotlib as mpl
17
17
  import matplotlib.pyplot as plt
18
18
  import numpy as np
19
19
 
20
- __all__ = ["show", "extract_colors", "create_custom", "create_diverging", "create_5rgb_txt", "my_cmap"]
20
+ __all__ = ["show", "cmap2colors", "create_cmap", "create_cmap_rgbtxt", "choose_cmap"]
21
21
 
22
22
  # ** 将cmap用填色图可视化(官网摘抄函数)
23
-
24
-
25
23
  def show(colormaps: list):
26
24
  """
27
25
  Helper function to plot data with associated colormap.
@@ -40,28 +38,28 @@ def show(colormaps: list):
40
38
 
41
39
 
42
40
  # ** 将cmap转为list,即多个颜色的列表
43
- def extract_colors(cmap, n=256):
41
+ def cmap2colors(cmap, n=256):
44
42
  """
45
43
  cmap : cmap名称
46
44
  n : 提取颜色数量
47
45
  return : 提取的颜色列表
48
- example : out_cmap = extract_colors('viridis', 256)
46
+ example : out_colors = cmap2colors('viridis', 256)
49
47
  """
50
48
  c_map = mpl.colormaps.get_cmap(cmap)
51
- out_cmap = [c_map(i) for i in np.linspace(0, 1, n)]
52
- return out_cmap
49
+ out_colors = [c_map(i) for i in np.linspace(0, 1, n)]
50
+ return out_colors
53
51
 
54
52
 
55
53
  # ** 自制cmap,多色,可带位置
56
- def create_custom(colors: list, nodes=None, under=None, over=None): # 利用颜色快速配色
54
+ def create_cmap(colors: list, nodes=None, under=None, over=None): # 利用颜色快速配色
57
55
  """
58
56
  func : 自制cmap,自动确定颜色位置(等比例)
59
57
  description : colors可以是颜色名称,也可以是十六进制颜色代码
60
58
  param {*} colors 颜色
61
59
  param {*} nodes 颜色位置,默认不提供,等间距
62
- return {*} c_map
63
- example : c_map = mk_cmap(['#C2B7F3','#B3BBF2','#B0CBF1','#ACDCF0','#A8EEED'])
64
- c_map = mk_cmap(['aliceblue','skyblue','deepskyblue'],[0.0,0.5,1.0])
60
+ return {*} cmap
61
+ example : cmap = create_cmap(['#C2B7F3','#B3BBF2','#B0CBF1','#ACDCF0','#A8EEED'])
62
+ cmap = create_cmap(['aliceblue','skyblue','deepskyblue'],[0.0,0.5,1.0])
65
63
  """
66
64
  if nodes is None: # 采取自动分配比例
67
65
  cmap_color = mpl.colors.LinearSegmentedColormap.from_list("mycmap", colors)
@@ -74,46 +72,27 @@ def create_custom(colors: list, nodes=None, under=None, over=None): # 利用颜
74
72
  return cmap_color
75
73
 
76
74
 
77
- # ** 自制diverging型cmap,默认中间为白色
78
-
79
-
80
- def create_diverging(colors: list):
81
- """
82
- func : 自制cmap,双色,中间默认为白色;如果输入偶数个颜色,则中间为白,如果奇数个颜色,则中间色为中间色
83
- description : colors可以是颜色名称,也可以是十六进制颜色代码
84
- param {*} colors
85
- return {*}
86
- example : diverging_cmap = mk_cmap_diverging(["#00c0ff", "#a1d3ff", "#DCDCDC", "#FFD39B", "#FF8247"])
87
- """
88
- # 自定义颜色位置
89
- n = len(colors)
90
- nodes = np.linspace(0.0, 1.0, n + 1 if n % 2 == 0 else n)
91
- newcolors = colors
92
- if n % 2 == 0:
93
- newcolors.insert(int(n / 2), "#ffffff") # 偶数个颜色,中间为白色
94
- cmap_color = mpl.colors.LinearSegmentedColormap.from_list("mycmap", list(zip(nodes, newcolors)))
95
- return cmap_color
96
-
97
-
98
75
  # ** 根据RGB的txt文档制作色卡(利用Grads调色盘)
99
-
100
-
101
- def create_5rgb_txt(rgb_txt_filepath: str): # 根据RGB的txt文档制作色卡/根据rgb值制作
76
+ def create_cmap_rgbtxt(rgbtxt_file,split_mark=','): # 根据RGB的txt文档制作色卡/根据rgb值制作
102
77
  """
103
78
  func : 根据RGB的txt文档制作色卡
104
- description : rgb_txt_filepath='E:/python/colorbar/test.txt'
105
- param {*} rgb_txt_filepath txt文件路径
79
+ description : rgbtxt_file='E:/python/colorbar/test.txt'
80
+ param {*} rgbtxt_file txt文件路径
106
81
  return {*} camp
107
- example : cmap_color=dcmap(path)
82
+ example : cmap=create_cmap_rgbtxt(path,split_mark=',') #
83
+
84
+ txt example : 251,251,253
85
+ 225,125,25
86
+ 250,205,255
108
87
  """
109
- with open(rgb_txt_filepath) as fid:
88
+ with open(rgbtxt_file) as fid:
110
89
  data = fid.readlines()
111
90
  n = len(data)
112
91
  rgb = np.zeros((n, 3))
113
92
  for i in np.arange(n):
114
- rgb[i][0] = data[i].split(",")[0]
115
- rgb[i][1] = data[i].split(",")[1]
116
- rgb[i][2] = data[i].split(",")[2]
93
+ rgb[i][0] = data[i].split(split_mark)[0]
94
+ rgb[i][1] = data[i].split(split_mark)[1]
95
+ rgb[i][2] = data[i].split(split_mark)[2]
117
96
  max_rgb = np.max(rgb)
118
97
  if max_rgb > 2: # 如果rgb值大于2,则认为是0-255的值,需要归一化
119
98
  rgb = rgb / 255.0
@@ -121,7 +100,7 @@ def create_5rgb_txt(rgb_txt_filepath: str): # 根据RGB的txt文档制作色卡
121
100
  return icmap
122
101
 
123
102
 
124
- def my_cmap(cmap_name=None, query=False):
103
+ def choose_cmap(cmap_name=None, query=False):
125
104
  """
126
105
  description: Choosing a colormap from the list of available colormaps or a custom colormap
127
106
  param {*} cmap_name:
@@ -130,9 +109,9 @@ def my_cmap(cmap_name=None, query=False):
130
109
  """
131
110
 
132
111
  my_cmap_dict = {
133
- "diverging_1": create_custom(["#4e00b3", "#0000FF", "#00c0ff", "#a1d3ff", "#DCDCDC", "#FFD39B", "#FF8247", "#FF0000", "#FF5F9E"]),
134
- "cold_1": create_custom(["#4e00b3", "#0000FF", "#00c0ff", "#a1d3ff", "#DCDCDC"]),
135
- "warm_1": create_custom(["#DCDCDC", "#FFD39B", "#FF8247", "#FF0000", "#FF5F9E"]),
112
+ "diverging_1": create_cmap(["#4e00b3", "#0000FF", "#00c0ff", "#a1d3ff", "#DCDCDC", "#FFD39B", "#FF8247", "#FF0000", "#FF5F9E"]),
113
+ "cold_1": create_cmap(["#4e00b3", "#0000FF", "#00c0ff", "#a1d3ff", "#DCDCDC"]),
114
+ "warm_1": create_cmap(["#DCDCDC", "#FFD39B", "#FF8247", "#FF0000", "#FF5F9E"]),
136
115
  # "land_1": create_custom(["#3E6436", "#678A59", "#91A176", "#B8A87D", "#D9CBB2"], under="#A6CEE3", over="#FFFFFF"), # 陆地颜色从深绿到浅棕,表示从植被到沙地的递减
137
116
  # "ocean_1": create_custom(["#126697", "#2D88B3", "#4EA1C9", "#78B9D8", "#A6CEE3"], under="#8470FF", over="#3E6436"), # 海洋颜色从深蓝到浅蓝,表示从深海到浅海的递减
138
117
  # "ocean_land_1": create_custom(
@@ -150,7 +129,7 @@ def my_cmap(cmap_name=None, query=False):
150
129
  # "#3E6436", # 深绿(高山)
151
130
  # ]
152
131
  # ),
153
- "colorful_1": create_custom(["#6d00db", "#9800cb", "#F2003C", "#ff4500", "#ff7f00", "#FE28A2", "#FFC0CB", "#DDA0DD", "#40E0D0", "#1a66f2", "#00f7fb", "#8fff88", "#E3FF00"]),
132
+ "colorful_1": create_cmap(["#6d00db", "#9800cb", "#F2003C", "#ff4500", "#ff7f00", "#FE28A2", "#FFC0CB", "#DDA0DD", "#40E0D0", "#1a66f2", "#00f7fb", "#8fff88", "#E3FF00"]),
154
133
  }
155
134
  if query:
156
135
  for key, _ in my_cmap_dict.items():
@@ -160,7 +139,7 @@ def my_cmap(cmap_name=None, query=False):
160
139
  return my_cmap_dict[cmap_name]
161
140
  else:
162
141
  try:
163
- return mpl.cm.get_cmap(cmap_name)
142
+ return mpl.colormaps.get_cmap(cmap_name)
164
143
  except ValueError:
165
144
  raise ValueError(f"Unknown cmap name: {cmap_name}")
166
145
 
@@ -169,16 +148,16 @@ if __name__ == "__main__":
169
148
  # ** 测试自制cmap
170
149
  colors = ["#C2B7F3", "#B3BBF2", "#B0CBF1", "#ACDCF0", "#A8EEED"]
171
150
  nodes = [0.0, 0.2, 0.4, 0.6, 1.0]
172
- c_map = create_custom(colors, nodes)
151
+ c_map = create_cmap(colors, nodes)
173
152
  show([c_map])
174
153
 
175
154
  # ** 测试自制diverging型cmap
176
- diverging_cmap = create_diverging(["#4e00b3", "#0000FF", "#00c0ff", "#a1d3ff", "#DCDCDC", "#FFD39B", "#FF8247", "#FF0000", "#FF5F9E"])
155
+ diverging_cmap = create_cmap(["#4e00b3", "#0000FF", "#00c0ff", "#a1d3ff", "#DCDCDC", "#FFD39B", "#FF8247", "#FF0000", "#FF5F9E"])
177
156
  show([diverging_cmap])
178
157
 
179
158
  # ** 测试根据RGB的txt文档制作色卡
180
159
  file_path = "E:/python/colorbar/test.txt"
181
- cmap_color = create_5rgb_txt(file_path)
160
+ cmap_rgb = create_cmap_rgbtxt(file_path)
182
161
 
183
162
  # ** 测试将cmap转为list
184
- out_cmap = extract_colors("viridis", 256)
163
+ out_colors = cmap2colors("viridis", 256)
oafuncs/oa_nc.py CHANGED
@@ -19,7 +19,7 @@ import netCDF4 as nc
19
19
  import numpy as np
20
20
  import xarray as xr
21
21
 
22
- __all__ = ["get_var", "extract5nc", "write2nc", "merge5nc", "modify_var_value", "modify_var_attr", "rename_var_or_dim", "check_ncfile"]
22
+ __all__ = ["get_var", "extract5nc", "write2nc", "merge5nc", "modify_var_value", "modify_var_attr", "rename_var_or_dim", "check_ncfile", "longitude_change", "nc_isel"]
23
23
 
24
24
 
25
25
  def get_var(file, *vars):
@@ -38,7 +38,7 @@ def get_var(file, *vars):
38
38
  return datas
39
39
 
40
40
 
41
- def extract5nc(file, varname):
41
+ def extract5nc(file, varname, only_value=True):
42
42
  """
43
43
  描述:
44
44
  1、提取nc文件中的变量
@@ -47,16 +47,22 @@ def extract5nc(file, varname):
47
47
  参数:
48
48
  file: 文件路径
49
49
  varname: 变量名
50
+ only_value: 变量和维度是否只保留数值
50
51
  example: data, dimdict = extract5nc(file_ecm, 'h')
51
52
  """
52
53
  ds = xr.open_dataset(file)
53
54
  vardata = ds[varname]
55
+ ds.close()
54
56
  dims = vardata.dims
55
57
  dimdict = {}
56
58
  for dim in dims:
57
- dimdict[dim] = ds[dim].values
58
- ds.close()
59
- return np.array(vardata), dimdict
59
+ if only_value:
60
+ dimdict[dim] = vardata[dim].values
61
+ else:
62
+ dimdict[dim] = ds[dim]
63
+ if only_value:
64
+ vardata = np.array(vardata)
65
+ return vardata, dimdict
60
66
 
61
67
 
62
68
  def _numpy_to_nc_type(numpy_type):
@@ -76,15 +82,27 @@ def _numpy_to_nc_type(numpy_type):
76
82
  return numpy_to_nc.get(str(numpy_type), "f4") # 默认使用 'float32'
77
83
 
78
84
 
79
- def write2nc(file, data, varname, coords, mode):
85
+ def _calculate_scale_and_offset(data, n=16):
86
+ data_min, data_max = np.nanmin(data), np.nanmax(data)
87
+ scale_factor = (data_max - data_min) / (2 ** n - 1)
88
+ add_offset = data_min + 2 ** (n - 1) * scale_factor
89
+ # S = Q * scale_factor + add_offset
90
+ return scale_factor, add_offset
91
+
92
+
93
+ def write2nc(file, data, varname=None, coords=None, mode='w', scale_offset_switch=True, compile_switch=True):
80
94
  """
81
95
  description: 写入数据到nc文件
96
+
82
97
  参数:
83
98
  file: 文件路径
84
99
  data: 数据
85
100
  varname: 变量名
86
101
  coords: 坐标,字典,键为维度名称,值为坐标数据
87
102
  mode: 写入模式,'w'为写入,'a'为追加
103
+ scale_offset_switch: 是否使用scale_factor和add_offset,默认为True
104
+ compile_switch: 是否使用压缩参数,默认为True
105
+
88
106
  example: write2nc(r'test.nc', data, 'data', {'time': np.linspace(0, 120, 100), 'lev': np.linspace(0, 120, 50)}, 'a')
89
107
  """
90
108
  # 判断mode是写入还是追加
@@ -96,6 +114,21 @@ def write2nc(file, data, varname, coords, mode):
96
114
  if not os.path.exists(file):
97
115
  print("Warning: File doesn't exist. Creating a new file.")
98
116
  mode = "w"
117
+
118
+ complete = False
119
+ if varname is None and coords is None:
120
+ try:
121
+ data.to_netcdf(file)
122
+ complete = True
123
+ # 不能在这里return
124
+ except AttributeError:
125
+ raise ValueError("If varname and coords are None, data must be a DataArray.")
126
+
127
+ if complete:
128
+ return
129
+
130
+ kwargs = {'zlib': True, 'complevel': 4} # 压缩参数
131
+ # kwargs = {"compression": 'zlib', "complevel": 4} # 压缩参数
99
132
 
100
133
  # 打开 NetCDF 文件
101
134
  with nc.Dataset(file, mode, format="NETCDF4") as ncfile:
@@ -116,8 +149,17 @@ def write2nc(file, data, varname, coords, mode):
116
149
  if add_coords:
117
150
  # 创建新坐标
118
151
  ncfile.createDimension(dim, len(coord_data))
119
- ncfile.createVariable(dim, _numpy_to_nc_type(coord_data.dtype), (dim,))
152
+ if compile_switch:
153
+ ncfile.createVariable(dim, _numpy_to_nc_type(coord_data.dtype), (dim,), **kwargs)
154
+ else:
155
+ ncfile.createVariable(dim, _numpy_to_nc_type(coord_data.dtype), (dim,))
120
156
  ncfile.variables[dim][:] = np.array(coord_data)
157
+
158
+ if isinstance(coord_data, xr.DataArray):
159
+ current_var = ncfile.variables[dim]
160
+ if coord_data.attrs:
161
+ for key, value in coord_data.attrs.items():
162
+ current_var.setncattr(key, value)
121
163
 
122
164
  # 判断变量是否存在,若存在,则删除原变量
123
165
  add_var = True
@@ -127,22 +169,48 @@ def write2nc(file, data, varname, coords, mode):
127
169
  raise ValueError("Shape of data does not match the variable shape.")
128
170
  else:
129
171
  # 写入数据
130
- ncfile.variables[varname][:] = data
172
+ ncfile.variables[varname][:] = np.array(data)
131
173
  add_var = False
132
174
  print(f"Warning: Variable '{varname}' already exists. Replacing it.")
133
175
 
134
176
  if add_var:
135
177
  # 创建变量及其维度
136
178
  dim_names = tuple(coords.keys()) # 使用coords传入的维度名称
137
- ncfile.createVariable(varname, _numpy_to_nc_type(data.dtype), dim_names)
179
+ if scale_offset_switch:
180
+ scale_factor, add_offset = _calculate_scale_and_offset(np.array(data))
181
+ _FillValue = -32767
182
+ missing_value = -32767
183
+ dtype = 'i2' # short类型
184
+ else:
185
+ dtype = _numpy_to_nc_type(data.dtype)
186
+
187
+ if compile_switch:
188
+ ncfile.createVariable(varname, dtype, dim_names, **kwargs)
189
+ else:
190
+ ncfile.createVariable(varname, dtype, dim_names)
191
+
192
+ if scale_offset_switch: # 需要在写入数据之前设置scale_factor和add_offset
193
+ ncfile.variables[varname].setncattr('scale_factor', scale_factor)
194
+ ncfile.variables[varname].setncattr('add_offset', add_offset)
195
+ ncfile.variables[varname].setncattr('_FillValue', _FillValue)
196
+ ncfile.variables[varname].setncattr('missing_value', missing_value)
197
+
138
198
  # ncfile.createVariable('data', 'f4', ('time','lev'))
139
199
 
140
200
  # 写入数据
141
- ncfile.variables[varname][:] = data
201
+ ncfile.variables[varname][:] = np.array(data)
142
202
 
143
203
  # 判断维度是否匹配
144
204
  if len(data.shape) != len(coords):
145
205
  raise ValueError("Number of dimensions does not match the data shape.")
206
+ # 判断data是否带有属性信息,如果有,写入属性信息
207
+ if isinstance(data, xr.DataArray):
208
+ current_var = ncfile.variables[varname]
209
+ if data.attrs:
210
+ for key, value in data.attrs.items():
211
+ if key in ["scale_factor", "add_offset", "_FillValue", "missing_value"] and scale_offset_switch:
212
+ continue
213
+ current_var.setncattr(key, value)
146
214
 
147
215
 
148
216
  def merge5nc(file_list, var_name=None, dim_name=None, target_filename=None):
@@ -330,6 +398,48 @@ def check_ncfile(ncfile, if_delete=False):
330
398
  return False
331
399
 
332
400
 
401
+ def longitude_change(ds, lon_name="longitude", to_which="180"):
402
+ """
403
+ 将经度转换为 -180 到 180 之间
404
+
405
+ 参数:
406
+ lon (numpy.ndarray): 经度数组
407
+
408
+ 返回值:
409
+ numpy.ndarray: 转换后的经度数组
410
+ """
411
+ # return (lon + 180) % 360 - 180
412
+ # ds = ds.assign_coords(longitude=(((ds.longitude + 180) % 360) - 180)).sortby("longitude")
413
+ if to_which == "180":
414
+ # ds = ds.assign_coords(**{lon_name: (((ds[lon_name] + 180) % 360) - 180)}).sortby(lon_name)
415
+ ds = ds.assign_coords(**{lon_name: (ds[lon_name] + 180) % 360 - 180}).sortby(lon_name)
416
+ elif to_which == "360":
417
+ # -180 to 180 to 0 to 360
418
+ ds = ds.assign_coords(**{lon_name: (ds[lon_name] + 360) % 360}).sortby(lon_name)
419
+ return ds
420
+
421
+
422
+ def nc_isel(ncfile, dim_name, slice_list):
423
+ """
424
+ Description: Choose the data by the index of the dimension
425
+
426
+ Parameters:
427
+ ncfile: str, the path of the netCDF file
428
+ dim_name: str, the name of the dimension
429
+ slice_list: list, the index of the dimension
430
+
431
+ slice_list example: slice_list = [[y*12+m for m in range(11,14)] for y in range(84)]
432
+ or
433
+ slice_list = [y * 12 + m for y in range(84) for m in range(11, 14)]
434
+ """
435
+ ds = xr.open_dataset(ncfile)
436
+ slice_list = np.array(slice_list).flatten()
437
+ slice_list = [int(i) for i in slice_list]
438
+ ds_new = ds.isel(**{dim_name: slice_list})
439
+ ds.close()
440
+ return ds_new
441
+
442
+
333
443
  if __name__ == "__main__":
334
444
  data = np.random.rand(100, 50)
335
445
  write2nc(r"test.nc", data, "data", {"time": np.linspace(0, 120, 100), "lev": np.linspace(0, 120, 50)}, "a")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: oafuncs
3
- Version: 0.0.80
3
+ Version: 0.0.81
4
4
  Summary: My short description for my project.
5
5
  Home-page: https://github.com/Industry-Pays/OAFuncs
6
6
  Author: Kun Liu
@@ -13,7 +13,6 @@ Classifier: Programming Language :: Python :: 3.9
13
13
  Classifier: Programming Language :: Python :: 3.10
14
14
  Classifier: Programming Language :: Python :: 3.11
15
15
  Classifier: Programming Language :: Python :: 3.12
16
- Classifier: Programming Language :: Python :: 3.13
17
16
  Classifier: Programming Language :: Python :: Implementation :: CPython
18
17
  Classifier: Programming Language :: Python :: Implementation :: PyPy
19
18
  Requires-Python: >=3.9.0
@@ -1,10 +1,10 @@
1
- oafuncs/__init__.py,sha256=tNSm87Oxj8PEnssbSsVMdGKRzrkvuBuJfFBqVSdnt5w,634
2
- oafuncs/oa_cmap.py,sha256=LnHI6vMCoFFkMq4P3RgItmJ01Kx5MjjwwlhnaqhRLKI,7242
1
+ oafuncs/__init__.py,sha256=glcIlhQ9xSK4WtL58dq7Od2S3JPqsuEyhUQ-VWO8hOc,1426
2
+ oafuncs/oa_cmap.py,sha256=N-jt5CjRTXIjur6QAh90L8hAr9n3D-1HRSkKT98hUx8,6449
3
3
  oafuncs/oa_data.py,sha256=H9qZrUziOpc456iIL-1lBwSkBPApl2rlR-ajZg-mDMs,8119
4
4
  oafuncs/oa_draw.py,sha256=R5KONDf3Rp8STXepawtYUTdbcfAK1h6AYh8xiOfac3g,18860
5
5
  oafuncs/oa_file.py,sha256=iHgv0CTH4k_7YUnQ8-qQbLoz_f2lUmVhzGWQ2LkPFP8,11624
6
6
  oafuncs/oa_help.py,sha256=ppNktmtNzs15R20MD1bM7yImlTQ_ngMwvoIglePOKXA,1000
7
- oafuncs/oa_nc.py,sha256=7Fp65BJF_PtyaaxS5PS2apA-KkkQLhqh19Xlw__8XMo,12656
7
+ oafuncs/oa_nc.py,sha256=4JUKM1H2JXhrk7sioUjAjhj1CHcyWHnSzXD8kXG9BFo,17198
8
8
  oafuncs/oa_python.py,sha256=XPTP3o7zTFzfJR_YhsKfQksa3bSYwXsne9YxlJplCEA,3994
9
9
  oafuncs/oa_down/User_Agent-list.txt,sha256=pazxSip8_lphEBOPHG902zmIBUg8sBKXgmqp_g6j_E4,661062
10
10
  oafuncs/oa_down/__init__.py,sha256=nY5X7gM1jw7DJxyooR2UJSq4difkw-flz2Ucr_OuDbA,540
@@ -44,8 +44,8 @@ oafuncs - 副本/oa_sign/ocean.py,sha256=xrW-rWD7xBWsB5PuCyEwQ1Q_RDKq2KCLz-LOONH
44
44
  oafuncs - 副本/oa_sign/scientific.py,sha256=a4JxOBgm9vzNZKpJ_GQIQf7cokkraV5nh23HGbmTYKw,5064
45
45
  oafuncs - 副本/oa_tool/__init__.py,sha256=IKOlqpWlb4cMDCtq2VKR_RTxQHDNqR_vfqqsOsp_lKQ,466
46
46
  oafuncs - 副本/oa_tool/email.py,sha256=4lJxV_KUzhxgLYfVwYTqp0qxRugD7fvsZkXDe5WkUKo,3052
47
- oafuncs-0.0.80.dist-info/LICENSE.txt,sha256=rMtLpVg8sKiSlwClfR9w_Dd_5WubTQgoOzE2PDFxzs4,1074
48
- oafuncs-0.0.80.dist-info/METADATA,sha256=odzNsdzGGET-ZMyZJ0a3GSLuoMIHDfDfT95N7sAejoY,22481
49
- oafuncs-0.0.80.dist-info/WHEEL,sha256=pxeNX5JdtCe58PUSYP9upmc7jdRPgvT0Gm9kb1SHlVw,109
50
- oafuncs-0.0.80.dist-info/top_level.txt,sha256=FDLotvTCkUDJf_mruRCSxCbDzmyLvsHKPriUh-oAKYc,25
51
- oafuncs-0.0.80.dist-info/RECORD,,
47
+ oafuncs-0.0.81.dist-info/LICENSE.txt,sha256=rMtLpVg8sKiSlwClfR9w_Dd_5WubTQgoOzE2PDFxzs4,1074
48
+ oafuncs-0.0.81.dist-info/METADATA,sha256=Kj7RhiA65yX1UsSu0jCJyeDT4XVhfAY2zInl4Rh3Pvc,22429
49
+ oafuncs-0.0.81.dist-info/WHEEL,sha256=pxeNX5JdtCe58PUSYP9upmc7jdRPgvT0Gm9kb1SHlVw,109
50
+ oafuncs-0.0.81.dist-info/top_level.txt,sha256=bgC35QkXbN4EmPHEveg_xGIZ5i9NNPYWqtJqaKqTPsQ,8
51
+ oafuncs-0.0.81.dist-info/RECORD,,
@@ -0,0 +1 @@
1
+ oafuncs
@@ -1,2 +0,0 @@
1
- oafuncs
2
- oafuncs - 副本