nystrom-ncut 0.3.5__py3-none-any.whl → 0.3.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,5 +1,10 @@
1
+ from typing import Dict
2
+
1
3
  import torch
2
4
 
5
+ from ..common import (
6
+ lazy_normalize,
7
+ )
3
8
  from ..distance_utils import (
4
9
  AffinityOptions,
5
10
  AFFINITY_TO_DISTANCE,
@@ -29,8 +34,8 @@ class KernelNCutBaseTransformer(OnlineTorchTransformerMixin):
29
34
 
30
35
  # Anchor matrices
31
36
  self.anchor_count: int = None # n
32
- self.W: torch.Tensor = None # [... x d x kernel_dim]
33
37
  self.kernelized_anchor: torch.Tensor = None # [... x n x (2 * kernel_dim)]
38
+ self.store: Dict[str, torch.Tensor] = {}
34
39
 
35
40
  # Updated matrices
36
41
  self.total_count: int = None # m
@@ -38,39 +43,51 @@ class KernelNCutBaseTransformer(OnlineTorchTransformerMixin):
38
43
  self.transform_matrix: torch.Tensor = None # [... x (2 * kernel_dim) x n_components]
39
44
  self.eigenvalues_: torch.Tensor = None # [... x n_components]
40
45
 
46
+ def _kernelize_features(self, features: torch.Tensor) -> torch.Tensor:
47
+ match self.affinity_type:
48
+ case "cosine" | "rbf":
49
+ if self.affinity_type == "cosine":
50
+ features = lazy_normalize(features)
51
+ W_features = features @ self.store["W"] # [... x m x kernel_dim]
52
+ return torch.cat((
53
+ torch.cos(W_features),
54
+ torch.sin(W_features),
55
+ ), dim=-1) / (self.kernel_dim ** 0.5) # [... x m x (2 * kernel_dim)]
56
+
57
+ case _:
58
+ raise ValueError(self.affinity_type)
59
+
41
60
  def _update(self) -> None:
42
61
  row_sum = self.kernelized_anchor @ self.r[..., None] # [... x n x 1]
43
62
  normalized_kernelized_anchor = self.kernelized_anchor / (row_sum ** 0.5) # [... x n x (2 * kernel_dim)]
44
- _, S, V = torch.svd_lowrank(torch.nan_to_num(
45
- normalized_kernelized_anchor, nan=0.0,
46
- ), q=self.n_components) # [... x n_components], [... x (2 * kernel_dim) x n_components]
63
+ _, S, V = torch.svd_lowrank(torch.nan_to_num(normalized_kernelized_anchor, nan=0.0), q=self.n_components) # [... x n_components], [... x (2 * kernel_dim) x n_components]
47
64
  S = S * (self.total_count / self.anchor_count) ** 0.5
48
65
  self.transform_matrix = V * torch.nan_to_num(1 / S, posinf=0.0, neginf=0.0)[..., None, :] # [... x (2 * kernel_dim) x n_components]
49
66
  self.eigenvalues_ = S ** 2
50
67
 
51
68
  def fit(self, features: torch.Tensor) -> "KernelNCutBaseTransformer":
52
69
  self.anchor_count = self.total_count = features.shape[-2]
53
- d = features.shape[-1]
54
- scale = get_normalization_factor(features) * (self.affinity_focal_gamma ** 0.5) # [...]
55
- self.W = torch.randn((*features.shape[:-2], d, self.kernel_dim)) / scale[..., None, None] # [... x d x kernel_dim]
56
-
57
- W_anchor = features @ self.W # [... x n x kernel_dim]
58
- self.kernelized_anchor = torch.cat((
59
- torch.cos(W_anchor),
60
- torch.sin(W_anchor),
61
- ), dim=-1) / (self.kernel_dim ** 0.5) # [... x n * (2 * kernel_dim)]
62
- self.r = torch.sum(torch.nan_to_num(self.kernelized_anchor, nan=0.0), dim=-2) # [... x (2 * kernel_dim)]
70
+ shape, d = features.shape[:-2], features.shape[-1]
71
+
72
+ match self.affinity_type:
73
+ case "cosine" | "rbf":
74
+ scale = self.affinity_focal_gamma ** 0.5
75
+ if self.affinity_type == "rbf":
76
+ scale = get_normalization_factor(features)[..., None, None] * scale # [... x 1 x 1]
77
+ self.store["W"] = torch.randn((*shape, d, self.kernel_dim), device=features.device) / scale # [... x d x kernel_dim]
78
+
79
+ case _:
80
+ raise ValueError(self.affinity_type)
81
+
82
+ self.kernelized_anchor = self._kernelize_features(features) # [... x n * (2 * kernel_dim)]
83
+ self.r = torch.sum(torch.nan_to_num(self.kernelized_anchor, nan=0.0), dim=-2) # [... x (2 * kernel_dim)]
63
84
  self._update()
64
85
  return self
65
86
 
66
87
  def update(self, features: torch.Tensor) -> torch.Tensor:
67
88
  self.total_count += features.shape[-2]
68
- W_features = features @ self.W # [... x m x kernel_dim]
69
- kernelized_features = torch.cat((
70
- torch.cos(W_features),
71
- torch.sin(W_features),
72
- ), dim=-1) / (self.kernel_dim ** 0.5) # [... x m x (2 * kernel_dim)]
73
- b_r = torch.sum(torch.nan_to_num(kernelized_features, nan=0.0), dim=-2) # [... x (2 * kernel_dim)]
89
+ kernelized_features = self._kernelize_features(features) # [... x m x (2 * kernel_dim)]
90
+ b_r = torch.sum(torch.nan_to_num(kernelized_features, nan=0.0), dim=-2) # [... x (2 * kernel_dim)]
74
91
  self.r = self.r + b_r
75
92
  self._update()
76
93
 
@@ -82,11 +99,8 @@ class KernelNCutBaseTransformer(OnlineTorchTransformerMixin):
82
99
  if features is None:
83
100
  kernelized_features = self.kernelized_anchor # [... x n x (2 * kernel_dim)]
84
101
  else:
85
- W_features = features @ self.W
86
- kernelized_features = torch.cat((
87
- torch.cos(W_features),
88
- torch.sin(W_features),
89
- ), dim=-1) / (self.kernel_dim ** 0.5) # [... x m x (2 * kernel_dim)]
102
+ kernelized_features = self._kernelize_features(features) # [... x m x (2 * kernel_dim)]
103
+
90
104
  row_sum = kernelized_features @ self.r[..., None] # [... x m x 1]
91
105
  normalized_kernelized_features = kernelized_features / (row_sum ** 0.5) # [... x m x (2 * kernel_dim)]
92
106
  return normalized_kernelized_features @ self.transform_matrix # [... x m x n_components]
@@ -186,6 +186,13 @@ class OnlineTransformerSubsampleFit(TorchTransformerMixin, OnlineTorchTransforme
186
186
  V.scatter_(-2, indices[..., None].expand([-1] * indices.ndim + [V_sampled.shape[-1]]), _V)
187
187
  else:
188
188
  V = V_sampled
189
+ # from .visualize_utils import extrapolate_knn
190
+ # V = extrapolate_knn(
191
+ # anchor_features=self.base_transformer.anchor_features,
192
+ # anchor_output=V_sampled,
193
+ # extrapolation_features=features,
194
+ # affinity_type="rbf",
195
+ # )
189
196
  return V
190
197
 
191
198
  def update(self, features: torch.Tensor) -> torch.Tensor:
@@ -193,3 +200,7 @@ class OnlineTransformerSubsampleFit(TorchTransformerMixin, OnlineTorchTransforme
193
200
 
194
201
  def transform(self, features: torch.Tensor = None, **transform_kwargs) -> torch.Tensor:
195
202
  return self.base_transformer.transform(features)
203
+
204
+ @property
205
+ def eigenvalues_(self) -> torch.Tensor:
206
+ return getattr(self.base_transformer, "eigenvalues_", None)
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: nystrom_ncut
3
- Version: 0.3.5
3
+ Version: 0.3.7
4
4
  Summary: Normalized Cut and Nyström Approximation
5
5
  Author-email: Huzheng Yang <huze.yann@gmail.com>, Wentinn Liao <wentinn.liao@gmail.com>
6
6
  Project-URL: Documentation, https://github.com/JophiArcana/Nystrom-NCUT/
@@ -11,6 +11,7 @@ Classifier: Operating System :: OS Independent
11
11
  Requires-Python: >=3
12
12
  Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
+ Dynamic: license-file
14
15
 
15
16
 
16
17
 
@@ -3,10 +3,10 @@ nystrom_ncut/__init__.py,sha256=4qNyWD5s1Uvd9OpfiMV4mF-3yFCi_K2QVRJIcAOXh70,587
3
3
  nystrom_ncut/common.py,sha256=eie19AHTMk6AGTxNnYq1UcFkHJVimeywAUYryXwaiHk,2428
4
4
  nystrom_ncut/distance_utils.py,sha256=zMI651RlIbd6ygvIxRp6jY5Ilfu7j9WQ5FD4I1wmmeo,4198
5
5
  nystrom_ncut/global_settings.py,sha256=TckHuF8geWM2ofd99jBupHD3TQdeEB583_3pdIVRU34,24
6
- nystrom_ncut/sampling_utils.py,sha256=lPWWNcDMBIvK9MmtNkVUeokeCOH9P1Fm8TZZ4sjlCpM,9037
6
+ nystrom_ncut/sampling_utils.py,sha256=QzafhT9BbYLzAM1OR7OEmKEpYcq-DDHOPHUS-u2jidg,9452
7
7
  nystrom_ncut/visualize_utils.py,sha256=A1qmL8eNZjtvOOlyl9KIeObnpPVUGZVsCB9QBRV7n9I,22762
8
8
  nystrom_ncut/kernel/__init__.py,sha256=pvJ3tFukmlNZqw8VUB_iKPY9gbchUAlNkmnRCZcp0uU,44
9
- nystrom_ncut/kernel/kernel_ncut.py,sha256=fEOKbRoNSAsdWEsUaw2-2SEoscaJcMy0PaxfH6Va3Sg,5567
9
+ nystrom_ncut/kernel/kernel_ncut.py,sha256=QoQ-wRBZmdL9WcuzaHr2A3aPN-iuFL3UIUKpqFmX1_k,5809
10
10
  nystrom_ncut/nystrom/__init__.py,sha256=NHse-dW4nTo9wJUEJ6G4_Gw8uAi2vP6Hxm9aeBWxmqc,49
11
11
  nystrom_ncut/nystrom/distance_realization.py,sha256=kvPS-jGUn85MRJx-Dh2IZJ3IwvavRDCbXq6wh_aEBxc,5684
12
12
  nystrom_ncut/nystrom/normalized_cut.py,sha256=BD1F9Wz1BXbTGC-AVwT4IGmsPp334z-7jE9CuwhpNjY,7415
@@ -14,8 +14,8 @@ nystrom_ncut/nystrom/nystrom_utils.py,sha256=5cMoF8UFgi_N-nEzbSQqVGhuep_eOn-FzEr
14
14
  nystrom_ncut/transformer/__init__.py,sha256=2FJEG9CXavfDDdDk1i9OOGkd8uSOHMkP8LBH49nnPnM,138
15
15
  nystrom_ncut/transformer/axis_align.py,sha256=j3LlAPrp8O_jQAlwZz-gu3D7n_wICEJranye-YK5wvA,4880
16
16
  nystrom_ncut/transformer/transformer_mixin.py,sha256=9wYdWknnJP7jijz70lRAyDn_kpC9aWwYN7Pbt5Mf6gQ,2012
17
- nystrom_ncut-0.3.5.dist-info/LICENSE,sha256=2bm9uFabQZ3Ykb_SaSU_uUbAj2-htc6WJQmS_65qD00,1073
18
- nystrom_ncut-0.3.5.dist-info/METADATA,sha256=h_tVSIbUZdkM2jxFshTodlinpcwKHU0ZIWxnXA-Qy2k,6058
19
- nystrom_ncut-0.3.5.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
20
- nystrom_ncut-0.3.5.dist-info/top_level.txt,sha256=gM8IWWHYysIRTCvCTcdS4RShOyl9pxpylgSwPUZR2XM,22
21
- nystrom_ncut-0.3.5.dist-info/RECORD,,
17
+ nystrom_ncut-0.3.7.dist-info/licenses/LICENSE,sha256=2bm9uFabQZ3Ykb_SaSU_uUbAj2-htc6WJQmS_65qD00,1073
18
+ nystrom_ncut-0.3.7.dist-info/METADATA,sha256=AdVSvMDyC6qB1NeXrpdEjHXtt0iK5k7U024XA5QYmWo,6080
19
+ nystrom_ncut-0.3.7.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
20
+ nystrom_ncut-0.3.7.dist-info/top_level.txt,sha256=gM8IWWHYysIRTCvCTcdS4RShOyl9pxpylgSwPUZR2XM,22
21
+ nystrom_ncut-0.3.7.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (76.0.0)
2
+ Generator: setuptools (78.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5