nystrom-ncut 0.1.8__py3-none-any.whl → 0.1.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nystrom_ncut/transformer/axis_align.py +26 -10
- nystrom_ncut/transformer/transformer_mixin.py +1 -2
- {nystrom_ncut-0.1.8.dist-info → nystrom_ncut-0.1.10.dist-info}/METADATA +1 -1
- {nystrom_ncut-0.1.8.dist-info → nystrom_ncut-0.1.10.dist-info}/RECORD +7 -7
- {nystrom_ncut-0.1.8.dist-info → nystrom_ncut-0.1.10.dist-info}/LICENSE +0 -0
- {nystrom_ncut-0.1.8.dist-info → nystrom_ncut-0.1.10.dist-info}/WHEEL +0 -0
- {nystrom_ncut-0.1.8.dist-info → nystrom_ncut-0.1.10.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,5 @@
|
|
1
1
|
import random
|
2
|
+
from typing import Literal
|
2
3
|
|
3
4
|
import torch
|
4
5
|
import torch.nn.functional as Fn
|
@@ -13,31 +14,39 @@ class AxisAlign(TorchTransformerMixin):
|
|
13
14
|
Args:
|
14
15
|
max_iter (int, optional): Maximum number of iterations.
|
15
16
|
"""
|
16
|
-
|
17
|
-
|
17
|
+
SortOptions = Literal["count", "norm"]
|
18
|
+
|
19
|
+
def __init__(
|
20
|
+
self,
|
21
|
+
sort_method: SortOptions = "norm",
|
22
|
+
max_iter: int = 100,
|
23
|
+
):
|
24
|
+
self.sort_method: AxisAlign.SortOptions = sort_method
|
25
|
+
self.max_iter: int = max_iter
|
26
|
+
|
18
27
|
self.R: torch.Tensor = None
|
19
28
|
|
20
29
|
def fit(self, X: torch.Tensor) -> "AxisAlign":
|
21
30
|
# Normalize eigenvectors
|
22
31
|
n, d = X.shape
|
23
|
-
|
32
|
+
normalized_X = Fn.normalize(X, p=2, dim=-1)
|
24
33
|
|
25
34
|
# Initialize R matrix with the first column from a random row of EigenVectors
|
26
35
|
self.R = torch.empty((d, d), device=X.device)
|
27
|
-
self.R[0] =
|
36
|
+
self.R[0] = normalized_X[random.randint(0, n - 1)]
|
28
37
|
|
29
38
|
# Loop to populate R with k orthogonal directions
|
30
39
|
c = torch.zeros((n,), device=X.device)
|
31
40
|
for i in range(1, d):
|
32
|
-
c += torch.abs(
|
33
|
-
self.R[i] =
|
41
|
+
c += torch.abs(normalized_X @ self.R[i - 1])
|
42
|
+
self.R[i] = normalized_X[torch.argmin(c, dim=0)]
|
34
43
|
|
35
44
|
# Iterative optimization loop
|
36
45
|
idx, prev_objective = None, torch.inf
|
37
46
|
for _ in range(self.max_iter):
|
38
47
|
# Discretize the projected eigenvectors
|
39
|
-
idx = torch.argmax(
|
40
|
-
M = torch.zeros((d, d)).index_add_(0, idx,
|
48
|
+
idx = torch.argmax(normalized_X @ self.R.mT, dim=-1)
|
49
|
+
M = torch.zeros((d, d)).index_add_(0, idx, normalized_X)
|
41
50
|
|
42
51
|
# Check for convergence
|
43
52
|
objective = torch.norm(M)
|
@@ -49,8 +58,15 @@ class AxisAlign(TorchTransformerMixin):
|
|
49
58
|
U, S, Vh = torch.linalg.svd(M, full_matrices=False)
|
50
59
|
self.R = U @ Vh
|
51
60
|
|
52
|
-
# Permute the rotation matrix so the dimensions are sorted in descending cluster
|
53
|
-
|
61
|
+
# Permute the rotation matrix so the dimensions are sorted in descending cluster significance
|
62
|
+
if self.sort_method == "count":
|
63
|
+
sort_metric = torch.bincount(idx, minlength=d)
|
64
|
+
elif self.sort_method == "norm":
|
65
|
+
sort_metric = torch.linalg.norm(X @ self.R.mT, p=2, dim=0)
|
66
|
+
else:
|
67
|
+
raise ValueError(f"Invalid sort method {self.sort_method}.")
|
68
|
+
|
69
|
+
self.R = self.R[torch.argsort(sort_metric, dim=0, descending=True)]
|
54
70
|
return self
|
55
71
|
|
56
72
|
def transform(self, X: torch.Tensor, hard: bool = False) -> torch.Tensor:
|
@@ -2,10 +2,9 @@ from abc import abstractmethod
|
|
2
2
|
from typing import Any
|
3
3
|
|
4
4
|
import torch
|
5
|
-
from sklearn.base import TransformerMixin, BaseEstimator
|
6
5
|
|
7
6
|
|
8
|
-
class TorchTransformerMixin
|
7
|
+
class TorchTransformerMixin:
|
9
8
|
"""Mixin class for all transformers in scikit-learn.
|
10
9
|
|
11
10
|
This mixin defines the following functionality:
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: nystrom_ncut
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.10
|
4
4
|
Summary: Normalized Cut and Nyström Approximation
|
5
5
|
Author-email: Huzheng Yang <huze.yann@gmail.com>, Wentinn Liao <wentinn.liao@gmail.com>
|
6
6
|
Project-URL: Documentation, https://github.com/JophiArcana/Nystrom-NCUT/
|
@@ -9,10 +9,10 @@ nystrom_ncut/nystrom/distance_realization.py,sha256=InajllGtRVnLVlZoipZNbHFTGHaT
|
|
9
9
|
nystrom_ncut/nystrom/normalized_cut.py,sha256=5aR-CbRAWQVOA1FlQCuxSKEik9tR9sNLsJVBA7_LXyE,5905
|
10
10
|
nystrom_ncut/nystrom/nystrom_utils.py,sha256=5w-2GAMb7b6ArZdPEnAnKPFFrsbHSfC-S78cvrR6O20,12806
|
11
11
|
nystrom_ncut/transformer/__init__.py,sha256=jjXjcNp3LrxeF6mqG9VY5k3asrqaY6bXzJz6wTpH78Q,105
|
12
|
-
nystrom_ncut/transformer/axis_align.py,sha256=
|
13
|
-
nystrom_ncut/transformer/transformer_mixin.py,sha256=
|
14
|
-
nystrom_ncut-0.1.
|
15
|
-
nystrom_ncut-0.1.
|
16
|
-
nystrom_ncut-0.1.
|
17
|
-
nystrom_ncut-0.1.
|
18
|
-
nystrom_ncut-0.1.
|
12
|
+
nystrom_ncut/transformer/axis_align.py,sha256=pX7wk4O6fj-CwRv1TYyPYXsTmmXUtQ5q0c5fDQBVE6Q,3068
|
13
|
+
nystrom_ncut/transformer/transformer_mixin.py,sha256=YAjrDWTL5Hjnk9J2OsoxvtwT2N0u8IdgMSx0rRFmZzE,1653
|
14
|
+
nystrom_ncut-0.1.10.dist-info/LICENSE,sha256=2bm9uFabQZ3Ykb_SaSU_uUbAj2-htc6WJQmS_65qD00,1073
|
15
|
+
nystrom_ncut-0.1.10.dist-info/METADATA,sha256=klm6vyp2lsQA82we85bhvK6Xz2pAPhBeJw57lYN0abA,6059
|
16
|
+
nystrom_ncut-0.1.10.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
17
|
+
nystrom_ncut-0.1.10.dist-info/top_level.txt,sha256=gM8IWWHYysIRTCvCTcdS4RShOyl9pxpylgSwPUZR2XM,22
|
18
|
+
nystrom_ncut-0.1.10.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|