nystrom-ncut 0.0.6__py3-none-any.whl → 0.0.8__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
nystrom_ncut/__init__.py CHANGED
@@ -4,8 +4,8 @@ from .ncut_pytorch import (
4
4
  )
5
5
  from .propagation_utils import (
6
6
  affinity_from_features,
7
- propagate_eigenvectors,
8
- propagate_knn,
7
+ extrapolate_knn_with_subsampling,
8
+ extrapolate_knn,
9
9
  quantile_normalize,
10
10
  )
11
11
  from .visualize_utils import (
@@ -17,6 +17,5 @@ from .visualize_utils import (
17
17
  rgb_from_cosine_tsne_3d,
18
18
  rotate_rgb_cube,
19
19
  convert_to_lab_color,
20
- propagate_rgb_color,
21
20
  get_mask,
22
21
  )
nystrom_ncut/common.py CHANGED
@@ -1,10 +1,14 @@
1
- from typing import Any
1
+ from typing import Any, Literal
2
2
 
3
3
  import numpy as np
4
4
  import torch
5
5
  import torch.nn.functional as Fn
6
6
 
7
7
 
8
+ DistanceOptions = Literal["cosine", "euclidean", "rbf"]
9
+ SampleOptions = Literal["farthest", "random"]
10
+
11
+
8
12
  def ceildiv(a: int, b: int) -> int:
9
13
  return -(-a // b)
10
14
 
@@ -1,9 +1,13 @@
1
1
  import logging
2
- from typing import Literal, Tuple
2
+ from typing import Tuple
3
3
 
4
4
  import torch
5
5
  import torch.nn.functional as Fn
6
6
 
7
+ from .common import (
8
+ DistanceOptions,
9
+ SampleOptions,
10
+ )
7
11
  from .nystrom import (
8
12
  EigSolverOptions,
9
13
  OnlineKernel,
@@ -16,9 +20,6 @@ from .propagation_utils import (
16
20
  )
17
21
 
18
22
 
19
- DistanceOptions = Literal["cosine", "euclidean", "rbf"]
20
-
21
-
22
23
  class LaplacianKernel(OnlineKernel):
23
24
  def __init__(
24
25
  self,
@@ -46,9 +47,10 @@ class LaplacianKernel(OnlineKernel):
46
47
  affinity_focal_gamma=self.affinity_focal_gamma,
47
48
  distance=self.distance,
48
49
  ) # [n x n]
50
+ d = features.shape[-1]
49
51
  U, L = solve_eig(
50
52
  self.A,
51
- num_eig=features.shape[-1] + 1,
53
+ num_eig=d + 1, # d * (d + 3) // 2 + 1,
52
54
  eig_solver=self.eig_solver,
53
55
  ) # [n x (d + 1)], [d + 1]
54
56
  self.Ainv = U @ torch.diag(1 / L) @ U.mT # [n x n]
@@ -97,11 +99,10 @@ class NCUT(OnlineNystrom):
97
99
  n_components: int = 100,
98
100
  affinity_focal_gamma: float = 1.0,
99
101
  num_sample: int = 10000,
100
- sample_method: Literal["farthest", "random"] = "farthest",
102
+ sample_method: SampleOptions = "farthest",
101
103
  distance: DistanceOptions = "cosine",
102
104
  eig_solver: EigSolverOptions = "svd_lowrank",
103
105
  normalize_features: bool = None,
104
- move_output_to_cpu: bool = False,
105
106
  chunk_size: int = 8192,
106
107
  ):
107
108
  """
@@ -117,7 +118,6 @@ class NCUT(OnlineNystrom):
117
118
  eig_solver (str): eigen decompose solver, ['svd_lowrank', 'lobpcg', 'svd', 'eigh'].
118
119
  normalize_features (bool): normalize input features before computing affinity matrix,
119
120
  default 'None' is True for cosine distance, False for euclidean distance and rbf
120
- move_output_to_cpu (bool): move output to CPU, set to True if you have memory issue
121
121
  chunk_size (int): chunk size for large-scale matrix multiplication
122
122
  """
123
123
  OnlineNystrom.__init__(
@@ -127,18 +127,18 @@ class NCUT(OnlineNystrom):
127
127
  eig_solver=eig_solver,
128
128
  chunk_size=chunk_size,
129
129
  )
130
- self.num_sample = num_sample
131
- self.sample_method = sample_method
132
- self.distance = distance
133
- self.normalize_features = normalize_features
130
+ self.num_sample: int = num_sample
131
+ self.sample_method: SampleOptions = sample_method
132
+ self.anchor_indices: torch.Tensor = None
133
+ self.distance: DistanceOptions = distance
134
+ self.normalize_features: bool = normalize_features
134
135
  if self.normalize_features is None:
135
136
  if distance in ["cosine"]:
136
137
  self.normalize_features = True
137
138
  if distance in ["euclidean", "rbf"]:
138
139
  self.normalize_features = False
139
140
 
140
- self.move_output_to_cpu = move_output_to_cpu
141
- self.chunk_size = chunk_size
141
+ self.chunk_size: int = chunk_size
142
142
 
143
143
  def _fit_helper(
144
144
  self,
@@ -152,16 +152,6 @@ class NCUT(OnlineNystrom):
152
152
  )
153
153
  self.num_sample = _n
154
154
 
155
- # check if features dimension greater than num_eig
156
- if self.eig_solver in ["svd_lowrank", "lobpcg"]:
157
- assert (
158
- _n >= self.n_components * 2
159
- ), "number of nodes should be greater than 2*num_eig"
160
- elif self.eig_solver in ["svd", "eigh"]:
161
- assert (
162
- _n >= self.n_components
163
- ), "number of nodes should be greater than num_eig"
164
-
165
155
  assert self.distance in ["cosine", "euclidean", "rbf"], "distance should be 'cosine', 'euclidean', 'rbf'"
166
156
 
167
157
  if self.normalize_features:
@@ -169,20 +159,20 @@ class NCUT(OnlineNystrom):
169
159
  features = torch.nn.functional.normalize(features, dim=-1)
170
160
 
171
161
  if precomputed_sampled_indices is not None:
172
- sampled_indices = precomputed_sampled_indices
162
+ _sampled_indices = precomputed_sampled_indices
173
163
  else:
174
- sampled_indices = run_subgraph_sampling(
164
+ _sampled_indices = run_subgraph_sampling(
175
165
  features,
176
166
  self.num_sample,
177
167
  sample_method=self.sample_method,
178
168
  )
179
- sampled_indices = torch.sort(sampled_indices).values
180
- sampled_features = features[sampled_indices]
169
+ self.anchor_indices = torch.sort(_sampled_indices).values
170
+ sampled_features = features[self.anchor_indices]
181
171
  OnlineNystrom.fit(self, sampled_features)
182
172
 
183
173
  _n_not_sampled = _n - len(sampled_features)
184
174
  if _n_not_sampled > 0:
185
- unsampled_indices = torch.full((_n,), True, device=features.device).scatter_(0, sampled_indices, False)
175
+ unsampled_indices = torch.full((_n,), True, device=features.device).scatter_(0, self.anchor_indices, False)
186
176
  unsampled_features = features[unsampled_indices]
187
177
  V_unsampled, _ = OnlineNystrom.update(self, unsampled_features)
188
178
  else:
nystrom_ncut/nystrom.py CHANGED
@@ -72,7 +72,7 @@ class OnlineNystrom:
72
72
  self.anchor_features = features
73
73
 
74
74
  self.kernel.fit(self.anchor_features)
75
- self.inverse_approximation_dim = max(self.n_components, features.shape[-1]) + 1
75
+ self.inverse_approximation_dim = max(self.n_components, features.shape[-1] + 1)
76
76
  U, L = self._update_to_kernel() # [n x (? + 1)], [? + 1]
77
77
 
78
78
  self.transform_matrix = (U / L)[:, :self.n_components] # [n x n_components]
@@ -135,7 +135,7 @@ class OnlineNystrom:
135
135
  def solve_eig(
136
136
  A: torch.Tensor,
137
137
  num_eig: int,
138
- eig_solver: Literal["svd_lowrank", "lobpcg", "svd", "eigh"],
138
+ eig_solver: EigSolverOptions,
139
139
  ) -> Tuple[torch.Tensor, torch.Tensor]:
140
140
  """PyTorch implementation of Eigensolver cut without Nystrom-like approximation.
141
141
 
@@ -3,9 +3,14 @@ from typing import Literal
3
3
 
4
4
  import numpy as np
5
5
  import torch
6
- import torch.nn.functional as F
6
+ import torch.nn.functional as Fn
7
7
 
8
- from .common import ceildiv, lazy_normalize
8
+ from .common import (
9
+ DistanceOptions,
10
+ SampleOptions,
11
+ ceildiv,
12
+ lazy_normalize,
13
+ )
9
14
 
10
15
 
11
16
  @torch.no_grad()
@@ -13,7 +18,7 @@ def run_subgraph_sampling(
13
18
  features: torch.Tensor,
14
19
  num_sample: int,
15
20
  max_draw: int = 1000000,
16
- sample_method: Literal["farthest", "random"] = "farthest",
21
+ sample_method: SampleOptions = "farthest",
17
22
  ):
18
23
  if num_sample >= features.shape[0]:
19
24
  # if too many samples, use all samples and bypass Nystrom-like approximation
@@ -74,7 +79,7 @@ def farthest_point_sampling(
74
79
  def distance_from_features(
75
80
  features: torch.Tensor,
76
81
  features_B: torch.Tensor,
77
- distance: Literal["cosine", "euclidean", "rbf"],
82
+ distance: DistanceOptions,
78
83
  ):
79
84
  """Compute affinity matrix from input features.
80
85
  Args:
@@ -93,7 +98,11 @@ def distance_from_features(
93
98
  D = torch.cdist(features, features_B, p=2)
94
99
  elif distance == "rbf":
95
100
  D = torch.cdist(features, features_B, p=2) ** 2
96
- D = D / (2 * features.var(dim=0).sum())
101
+
102
+ # Outlier-robust scale invariance using quantiles to estimate standard deviation
103
+ stds = torch.quantile(features, q=torch.tensor((0.158655, 0.841345), device=features.device), dim=0)
104
+ stds = (stds[1] - stds[0]) / 2
105
+ D = D / (2 * torch.linalg.norm(stds) ** 2)
97
106
  else:
98
107
  raise ValueError("distance should be 'cosine' or 'euclidean', 'rbf'")
99
108
  return D
@@ -103,7 +112,7 @@ def affinity_from_features(
103
112
  features: torch.Tensor,
104
113
  features_B: torch.Tensor = None,
105
114
  affinity_focal_gamma: float = 1.0,
106
- distance: Literal["cosine", "euclidean", "rbf"] = "cosine",
115
+ distance: DistanceOptions = "cosine",
107
116
  ):
108
117
  """Compute affinity matrix from input features.
109
118
 
@@ -131,23 +140,23 @@ def affinity_from_features(
131
140
  return A
132
141
 
133
142
 
134
- def propagate_knn(
135
- subgraph_output: torch.Tensor,
136
- inp_features: torch.Tensor,
137
- subgraph_features: torch.Tensor,
138
- knn: int = 10,
139
- distance: Literal["cosine", "euclidean", "rbf"] = "cosine",
143
+ def extrapolate_knn(
144
+ anchor_features: torch.Tensor, # [n x d]
145
+ anchor_output: torch.Tensor, # [n x d']
146
+ extrapolation_features: torch.Tensor, # [m x d]
147
+ knn: int = 10, # k
148
+ distance: DistanceOptions = "cosine",
140
149
  affinity_focal_gamma: float = 1.0,
141
150
  chunk_size: int = 8192,
142
151
  device: str = None,
143
- move_output_to_cpu: bool = False,
144
- ):
152
+ move_output_to_cpu: bool = False
153
+ ) -> torch.Tensor: # [m x d']
145
154
  """A generic function to propagate new nodes using KNN.
146
155
 
147
156
  Args:
148
- subgraph_output (torch.Tensor): output from subgraph, shape (num_sample, D)
149
- inp_features (torch.Tensor): features from existing nodes, shape (new_num_samples, n_features)
150
- subgraph_features (torch.Tensor): features from subgraph, shape (num_sample, n_features)
157
+ anchor_features (torch.Tensor): features from subgraph, shape (num_sample, n_features)
158
+ anchor_output (torch.Tensor): output from subgraph, shape (num_sample, D)
159
+ extrapolation_features (torch.Tensor): features from existing nodes, shape (new_num_samples, n_features)
151
160
  knn (int): number of KNN to propagate eige nvectors
152
161
  distance (str): distance metric, 'cosine' (default) or 'euclidean', 'rbf'
153
162
  chunk_size (int): chunk size for matrix multiplication
@@ -159,121 +168,55 @@ def propagate_knn(
159
168
  >>> old_eigenvectors = torch.randn(3000, 20)
160
169
  >>> old_features = torch.randn(3000, 100)
161
170
  >>> new_features = torch.randn(200, 100)
162
- >>> new_eigenvectors = propagate_knn(old_eigenvectors, new_features, old_features, knn=3)
171
+ >>> new_eigenvectors = extrapolate_knn(old_features,old_eigenvectors,new_features,knn=3)
163
172
  >>> # new_eigenvectors.shape = (200, 20)
164
173
 
165
174
  """
166
- device = subgraph_output.device if device is None else device
167
-
168
- if knn == 1:
169
- return propagate_nearest(
170
- subgraph_output,
171
- inp_features,
172
- subgraph_features,
173
- chunk_size=chunk_size,
174
- device=device,
175
- move_output_to_cpu=move_output_to_cpu,
176
- )
175
+ device = anchor_output.device if device is None else device
177
176
 
178
177
  # used in nystrom_ncut
179
178
  # propagate eigen_vector from subgraph to full graph
180
- subgraph_output = subgraph_output.to(device)
179
+ anchor_output = anchor_output.to(device)
181
180
 
182
- n_chunks = ceildiv(inp_features.shape[0], chunk_size)
181
+ n_chunks = ceildiv(extrapolation_features.shape[0], chunk_size)
183
182
  V_list = []
184
- for _v in torch.chunk(inp_features, n_chunks, dim=0):
185
- _v = _v.to(device)
186
-
187
- # _A = affinity_from_features(subgraph_features, _v, affinity_focal_gamma, distance).mT
188
- # if knn is not None:
189
- # mask = torch.full_like(_A, True, dtype=torch.bool)
190
- # mask[torch.arange(len(_v))[:, None], _A.topk(knn, dim=-1, largest=True).indices] = False
191
- # _A[mask] = 0.0
192
- # _A = F.normalize(_A, p=1, dim=-1)
193
-
194
- if distance == 'cosine':
195
- _A = _v @ subgraph_features.T
196
- elif distance == 'euclidean':
197
- _A = - torch.cdist(_v, subgraph_features, p=2)
198
- elif distance == 'rbf':
199
- _A = - torch.cdist(_v, subgraph_features, p=2) ** 2
200
- else:
201
- raise ValueError("distance should be 'cosine' or 'euclidean', 'rbf'")
202
-
203
- # keep topk KNN for each row
204
- topk_sim, topk_idx = _A.topk(knn, dim=-1, largest=True)
205
- row_id = torch.arange(topk_idx.shape[0], device=_A.device)[:, None].expand(
206
- -1, topk_idx.shape[1]
207
- )
208
- _A = torch.sparse_coo_tensor(
209
- torch.stack([row_id, topk_idx], dim=-1).reshape(-1, 2).T,
210
- topk_sim.reshape(-1),
211
- size=(_A.shape[0], _A.shape[1]),
212
- device=_A.device,
213
- )
214
- _A = _A.to_dense().to(dtype=subgraph_output.dtype)
215
- _D = _A.sum(-1)
216
- _A /= _D[:, None]
217
-
218
- _V = _A @ subgraph_output
219
- if move_output_to_cpu:
220
- _V = _V.cpu()
221
- V_list.append(_V)
183
+ for _v in torch.chunk(extrapolation_features, n_chunks, dim=0):
184
+ _v = _v.to(device) # [_m x d]
222
185
 
223
- subgraph_output = torch.cat(V_list, dim=0)
224
- return subgraph_output
186
+ _A = affinity_from_features(anchor_features, _v, affinity_focal_gamma, distance).mT # [_m x n]
187
+ if knn is not None:
188
+ _A, indices = _A.topk(k=knn, dim=-1, largest=True) # [_m x k], [_m x k]
189
+ _anchor_output = anchor_output[indices] # [_m x k x d]
190
+ else:
191
+ _anchor_output = anchor_output[None] # [1 x n x d]
225
192
 
193
+ _A = Fn.normalize(_A, p=1, dim=-1) # [_m x k]
194
+ _V = (_A[:, None, :] @ _anchor_output).squeeze(1) # [_m x d]
226
195
 
227
- def propagate_nearest(
228
- subgraph_output: torch.Tensor,
229
- inp_features: torch.Tensor,
230
- subgraph_features: torch.Tensor,
231
- distance: Literal["cosine", "euclidean", "rbf"] = "cosine",
232
- chunk_size: int = 8192,
233
- device: str = None,
234
- move_output_to_cpu: bool = False,
235
- ):
236
- device = subgraph_output.device if device is None else device
237
- if distance == 'cosine':
238
- inp_features = lazy_normalize(inp_features, dim=-1)
239
- subgraph_features = lazy_normalize(subgraph_features, dim=-1)
240
-
241
- # used in nystrom_tsne, equivalent to propagate_by_knn with knn=1
242
- # propagate tSNE from subgraph to full graph
243
- V_list = []
244
- subgraph_features = subgraph_features.to(device)
245
- for i in range(0, inp_features.shape[0], chunk_size):
246
- end = min(i + chunk_size, inp_features.shape[0])
247
- _v = inp_features[i:end].to(device)
248
- _A = -distance_from_features(subgraph_features, _v, distance).mT
249
-
250
- # keep top1 for each row
251
- top_idx = _A.argmax(dim=-1).cpu()
252
- _V = subgraph_output[top_idx]
253
196
  if move_output_to_cpu:
254
197
  _V = _V.cpu()
255
198
  V_list.append(_V)
256
199
 
257
- subgraph_output = torch.cat(V_list, dim=0)
258
- return subgraph_output
200
+ anchor_output = torch.cat(V_list, dim=0)
201
+ return anchor_output
259
202
 
260
203
 
261
204
  # wrapper functions for adding new nodes to existing graph
262
- def propagate_eigenvectors(
263
- eigenvectors: torch.Tensor,
264
- features: torch.Tensor,
265
- new_features: torch.Tensor,
205
+ def extrapolate_knn_with_subsampling(
206
+ full_features: torch.Tensor,
207
+ full_output: torch.Tensor,
208
+ extrapolation_features: torch.Tensor,
266
209
  knn: int,
267
210
  num_sample: int,
268
- sample_method: Literal["farthest", "random"],
211
+ sample_method: SampleOptions,
269
212
  chunk_size: int,
270
- device: str,
213
+ device: str
271
214
  ):
272
215
  """Propagate eigenvectors to new nodes using KNN. Note: this is equivalent to the class API `NCUT.tranform(new_features)`, expect for the sampling is re-done in this function.
273
216
  Args:
274
- eigenvectors (torch.Tensor): eigenvectors from existing nodes, shape (num_sample, num_eig)
275
- features (torch.Tensor): features from existing nodes, shape (n_samples, n_features)
276
- new_features (torch.Tensor): features from new nodes, shape (n_new_samples, n_features)
217
+ full_output (torch.Tensor): eigenvectors from existing nodes, shape (num_sample, num_eig)
218
+ full_features (torch.Tensor): features from existing nodes, shape (n_samples, n_features)
219
+ extrapolation_features (torch.Tensor): features from new nodes, shape (n_new_samples, n_features)
277
220
  knn (int): number of KNN to propagate eigenvectors, default 3
278
221
  num_sample (int): number of samples for subgraph sampling, default 50000
279
222
  sample_method (str): sample method, 'farthest' (default) or 'random'
@@ -286,31 +229,31 @@ def propagate_eigenvectors(
286
229
  >>> old_eigenvectors = torch.randn(3000, 20)
287
230
  >>> old_features = torch.randn(3000, 100)
288
231
  >>> new_features = torch.randn(200, 100)
289
- >>> new_eigenvectors = propagate_eigenvectors(old_eigenvectors, new_features, old_features, knn=3)
232
+ >>> new_eigenvectors = extrapolate_knn_with_subsampling(extrapolation_features,old_eigenvectors,old_features,knn=3,num_sample=,sample_method=,chunk_size=,device=)
290
233
  >>> # new_eigenvectors.shape = (200, 20)
291
234
  """
292
235
 
293
- device = eigenvectors.device if device is None else device
236
+ device = full_output.device if device is None else device
294
237
 
295
238
  # sample subgraph
296
- subgraph_indices = run_subgraph_sampling(
297
- features,
239
+ anchor_indices = run_subgraph_sampling(
240
+ full_features,
298
241
  num_sample,
299
242
  sample_method=sample_method,
300
243
  )
301
244
 
302
- subgraph_eigenvectors = eigenvectors[subgraph_indices].to(device)
303
- subgraph_features = features[subgraph_indices].to(device)
304
- new_features = new_features.to(device)
245
+ anchor_output = full_output[anchor_indices].to(device)
246
+ anchor_features = full_features[anchor_indices].to(device)
247
+ extrapolation_features = extrapolation_features.to(device)
305
248
 
306
249
  # propagate eigenvectors from subgraph to new nodes
307
- new_eigenvectors = propagate_knn(
308
- subgraph_eigenvectors,
309
- new_features,
310
- subgraph_features,
250
+ new_eigenvectors = extrapolate_knn(
251
+ anchor_features,
252
+ anchor_output,
253
+ extrapolation_features,
311
254
  knn=knn,
312
255
  chunk_size=chunk_size,
313
- device=device,
256
+ device=device
314
257
  )
315
258
  return new_eigenvectors
316
259
 
@@ -6,11 +6,14 @@ import torch
6
6
  import torch.nn.functional as F
7
7
  from sklearn.base import BaseEstimator
8
8
 
9
- from .common import lazy_normalize
9
+ from .common import (
10
+ DistanceOptions,
11
+ lazy_normalize,
12
+ )
10
13
  from .propagation_utils import (
11
14
  run_subgraph_sampling,
12
- propagate_knn,
13
- propagate_eigenvectors,
15
+ extrapolate_knn,
16
+ extrapolate_knn_with_subsampling,
14
17
  quantile_min_max,
15
18
  quantile_normalize
16
19
  )
@@ -31,14 +34,24 @@ def _rgb_with_dimensionality_reduction(
31
34
  reduction_dim: int,
32
35
  reduction_kwargs: Dict[str, Any],
33
36
  transform_func: Callable[[torch.Tensor], torch.Tensor] = _identity,
37
+ pre_smooth: bool = True,
34
38
  ) -> Tuple[torch.Tensor, torch.Tensor]:
39
+
40
+ if pre_smooth:
41
+ features = extrapolate_knn(
42
+ features,
43
+ features,
44
+ features,
45
+ distance="cosine",
46
+ )
47
+
35
48
  subgraph_indices = run_subgraph_sampling(
36
49
  features,
37
50
  num_sample,
38
51
  sample_method="farthest",
39
52
  )
40
53
 
41
- _inp = features[subgraph_indices].cpu().numpy()
54
+ _inp = features[subgraph_indices].numpy(force=True)
42
55
  _subgraph_embed = reduction(
43
56
  n_components=reduction_dim,
44
57
  metric=metric,
@@ -47,14 +60,14 @@ def _rgb_with_dimensionality_reduction(
47
60
  ).fit_transform(_inp)
48
61
 
49
62
  _subgraph_embed = torch.tensor(_subgraph_embed, dtype=torch.float32)
50
- X_nd = transform_func(propagate_knn(
63
+ X_nd = transform_func(extrapolate_knn(
64
+ features[subgraph_indices],
51
65
  _subgraph_embed,
52
66
  features,
53
- features[subgraph_indices],
54
- distance=metric,
55
67
  knn=knn,
68
+ distance=metric,
56
69
  device=device,
57
- move_output_to_cpu=True,
70
+ move_output_to_cpu=True
58
71
  ))
59
72
  rgb = rgb_func(X_nd, q)
60
73
  return X_nd, rgb
@@ -413,48 +426,6 @@ def rgb_from_2d_colormap(X_2d, q=0.95):
413
426
  return rgb
414
427
 
415
428
 
416
- def propagate_rgb_color(
417
- rgb: torch.Tensor,
418
- eigenvectors: torch.Tensor,
419
- new_eigenvectors: torch.Tensor,
420
- knn: int = 10,
421
- num_sample: int = 1000,
422
- sample_method: Literal["farthest", "random"] = "farthest",
423
- chunk_size: int = 8192,
424
- device: str = None,
425
- ):
426
- """Propagate RGB color to new nodes using KNN.
427
- Args:
428
- rgb (torch.Tensor): RGB color for each data sample, shape (n_samples, 3)
429
- features (torch.Tensor): features from existing nodes, shape (n_samples, n_features)
430
- new_features (torch.Tensor): features from new nodes, shape (n_new_samples, n_features)
431
- knn (int): number of KNN to propagate RGB color, default 1
432
- num_sample (int): number of samples for subgraph sampling, default 50000
433
- sample_method (str): sample method, 'farthest' (default) or 'random'
434
- chunk_size (int): chunk size for matrix multiplication, default 8192
435
- device (str): device to use for computation, if None, will not change device
436
- Returns:
437
- torch.Tensor: propagated RGB color for each data sample, shape (n_new_samples, 3)
438
-
439
- Examples:
440
- >>> old_rgb = torch.randn(3000, 3)
441
- >>> old_eigenvectors = torch.randn(3000, 20)
442
- >>> new_eigenvectors = torch.randn(200, 20)
443
- >>> new_rgb = propagate_rgb_color(old_rgb, new_eigenvectors, old_eigenvectors)
444
- >>> # new_eigenvectors.shape = (200, 3)
445
- """
446
- return propagate_eigenvectors(
447
- eigenvectors=rgb,
448
- features=eigenvectors,
449
- new_features=new_eigenvectors,
450
- knn=knn,
451
- num_sample=num_sample,
452
- sample_method=sample_method,
453
- chunk_size=chunk_size,
454
- device=device,
455
- )
456
-
457
-
458
429
  # application: get segmentation mask fron a reference eigenvector (point prompt)
459
430
  def _transform_heatmap(heatmap, gamma=1.0):
460
431
  """Transform the heatmap using gamma, normalize and min-max normalization.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: nystrom_ncut
3
- Version: 0.0.6
3
+ Version: 0.0.8
4
4
  Summary: Normalized Cut and Nyström Approximation
5
5
  Author-email: Huzheng Yang <huze.yann@gmail.com>, Wentinn Liao <wentinn.liao@gmail.com>
6
6
  Project-URL: Documentation, https://github.com/JophiArcana/Nystrom-NCUT/
@@ -0,0 +1,11 @@
1
+ nystrom_ncut/__init__.py,sha256=Vlc_iAlfvTNUiJXpZLWUOaL2Q-YqZqgr7WoG6cVnD0g,439
2
+ nystrom_ncut/common.py,sha256=G6w_8_BfBUMc6r8WFgA0NH4K6am7AzZCSdrQEVjra7U,671
3
+ nystrom_ncut/ncut_pytorch.py,sha256=-SKs9AdkafJSGkeYt4LwhbKZr8oq9JA5caAqjiVDAzU,11220
4
+ nystrom_ncut/nystrom.py,sha256=-l26oiJ0oPReSGlMlYV3gftszgFdAAHAi7OFtGPZ4Ic,8802
5
+ nystrom_ncut/propagation_utils.py,sha256=0d2VhT0JrLRurd44hZbnxBvBh-QscPKxtV7VrwYtTdo,11569
6
+ nystrom_ncut/visualize_utils.py,sha256=jDjuyZ9rdd25jqrPObJgK8zCLHc3Oms0fQnaIetHk-U,17112
7
+ nystrom_ncut-0.0.8.dist-info/LICENSE,sha256=2bm9uFabQZ3Ykb_SaSU_uUbAj2-htc6WJQmS_65qD00,1073
8
+ nystrom_ncut-0.0.8.dist-info/METADATA,sha256=zQpx3REOOckpJSuc7N6UNpXZoqgsM5UoFWV6__DuaRQ,6058
9
+ nystrom_ncut-0.0.8.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
10
+ nystrom_ncut-0.0.8.dist-info/top_level.txt,sha256=j7g_j0S048EvguFFnGgD5Ewd3r2H6klsxd5A4dd-wHw,13
11
+ nystrom_ncut-0.0.8.dist-info/RECORD,,
@@ -1,11 +0,0 @@
1
- nystrom_ncut/__init__.py,sha256=Cww-_OsyQHLKpgw_Wh28_tUOvIMMr7Ey8w-tH7v99xQ,452
2
- nystrom_ncut/common.py,sha256=qdR_JwknT9H1Cv5LopwdwZfORFx-O8MLiRI6ZF1Qohc,558
3
- nystrom_ncut/ncut_pytorch.py,sha256=wRQXUPBOW2_vutocKf0J19HrFVkBYQePAYUEfotLfx4,11701
4
- nystrom_ncut/nystrom.py,sha256=HbwON9pLW3gEZvOmbDJwkQNHolOo1EBvwBPeh2p2uJE,8833
5
- nystrom_ncut/propagation_utils.py,sha256=OCqnv7P9kzDlwqeJzNWpJ3TdTEpk7AD0rJhX8MazZYs,13061
6
- nystrom_ncut/visualize_utils.py,sha256=QmBatlX7Q-ZWF_iJ1zFDnPHFuofz3tCmtoNeeoMPw3U,18558
7
- nystrom_ncut-0.0.6.dist-info/LICENSE,sha256=2bm9uFabQZ3Ykb_SaSU_uUbAj2-htc6WJQmS_65qD00,1073
8
- nystrom_ncut-0.0.6.dist-info/METADATA,sha256=FD53Ov3g9u4tbBP_Sxxd2hf1yUdg_Hy3ShWq_xGOZFA,6058
9
- nystrom_ncut-0.0.6.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
10
- nystrom_ncut-0.0.6.dist-info/top_level.txt,sha256=j7g_j0S048EvguFFnGgD5Ewd3r2H6klsxd5A4dd-wHw,13
11
- nystrom_ncut-0.0.6.dist-info/RECORD,,