nystrom-ncut 0.0.4__py3-none-any.whl → 0.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -173,9 +173,10 @@ class NCUT(OnlineNystrom):
173
173
  else:
174
174
  sampled_indices = run_subgraph_sampling(
175
175
  features,
176
- num_sample=self.num_sample,
176
+ self.num_sample,
177
177
  sample_method=self.sample_method,
178
178
  )
179
+ sampled_indices = torch.sort(sampled_indices).values
179
180
  sampled_features = features[sampled_indices]
180
181
  OnlineNystrom.fit(self, sampled_features)
181
182
 
@@ -11,7 +11,7 @@ from .common import ceildiv, lazy_normalize
11
11
  @torch.no_grad()
12
12
  def run_subgraph_sampling(
13
13
  features: torch.Tensor,
14
- num_sample: int = 300,
14
+ num_sample: int,
15
15
  max_draw: int = 1000000,
16
16
  sample_method: Literal["farthest", "random"] = "farthest",
17
17
  ):
@@ -272,7 +272,7 @@ def propagate_eigenvectors(
272
272
  # sample subgraph
273
273
  subgraph_indices = run_subgraph_sampling(
274
274
  features,
275
- num_sample=num_sample,
275
+ num_sample,
276
276
  sample_method=sample_method,
277
277
  )
278
278
 
@@ -34,7 +34,7 @@ def _rgb_with_dimensionality_reduction(
34
34
  ) -> Tuple[torch.Tensor, torch.Tensor]:
35
35
  subgraph_indices = run_subgraph_sampling(
36
36
  features,
37
- num_sample=num_sample,
37
+ num_sample,
38
38
  sample_method="farthest",
39
39
  )
40
40
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nystrom_ncut
3
- Version: 0.0.4
3
+ Version: 0.0.5
4
4
  Summary: Normalized Cut and Nyström Approximation
5
5
  Author-email: Huzheng Yang <huze.yann@gmail.com>, Wentinn Liao <wentinn.liao@gmail.com>
6
6
  Project-URL: Documentation, https://github.com/JophiArcana/Nystrom-NCUT/
@@ -0,0 +1,11 @@
1
+ nystrom_ncut/__init__.py,sha256=Cww-_OsyQHLKpgw_Wh28_tUOvIMMr7Ey8w-tH7v99xQ,452
2
+ nystrom_ncut/common.py,sha256=qdR_JwknT9H1Cv5LopwdwZfORFx-O8MLiRI6ZF1Qohc,558
3
+ nystrom_ncut/ncut_pytorch.py,sha256=wRQXUPBOW2_vutocKf0J19HrFVkBYQePAYUEfotLfx4,11701
4
+ nystrom_ncut/nystrom.py,sha256=HbwON9pLW3gEZvOmbDJwkQNHolOo1EBvwBPeh2p2uJE,8833
5
+ nystrom_ncut/propagation_utils.py,sha256=mD6rZ_mwYjYXs1cp5ZaTK0FrJ4YhyCdoIUrdGRP9k-M,12119
6
+ nystrom_ncut/visualize_utils.py,sha256=QmBatlX7Q-ZWF_iJ1zFDnPHFuofz3tCmtoNeeoMPw3U,18558
7
+ nystrom_ncut-0.0.5.dist-info/LICENSE,sha256=2bm9uFabQZ3Ykb_SaSU_uUbAj2-htc6WJQmS_65qD00,1073
8
+ nystrom_ncut-0.0.5.dist-info/METADATA,sha256=n9zlRYBD02k478INScrj9V9rZ1mhXTylcMjkmQDgl1A,6058
9
+ nystrom_ncut-0.0.5.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
10
+ nystrom_ncut-0.0.5.dist-info/top_level.txt,sha256=j7g_j0S048EvguFFnGgD5Ewd3r2H6klsxd5A4dd-wHw,13
11
+ nystrom_ncut-0.0.5.dist-info/RECORD,,
@@ -1,11 +0,0 @@
1
- nystrom_ncut/__init__.py,sha256=Cww-_OsyQHLKpgw_Wh28_tUOvIMMr7Ey8w-tH7v99xQ,452
2
- nystrom_ncut/common.py,sha256=qdR_JwknT9H1Cv5LopwdwZfORFx-O8MLiRI6ZF1Qohc,558
3
- nystrom_ncut/ncut_pytorch.py,sha256=8LfznDwhq-WL_vQxbFBFLSzymg9SEDti_zzf9QQLnrA,11651
4
- nystrom_ncut/nystrom.py,sha256=HbwON9pLW3gEZvOmbDJwkQNHolOo1EBvwBPeh2p2uJE,8833
5
- nystrom_ncut/propagation_utils.py,sha256=pigecB0rAmlbCoMNb8zhCyyNwh3QzkxXEnaBsDRE_ns,12136
6
- nystrom_ncut/visualize_utils.py,sha256=oNaDz_Xn12g3knEZZTb-QWVN-wTrnCNE5gn9cu8Xl_U,18569
7
- nystrom_ncut-0.0.4.dist-info/LICENSE,sha256=2bm9uFabQZ3Ykb_SaSU_uUbAj2-htc6WJQmS_65qD00,1073
8
- nystrom_ncut-0.0.4.dist-info/METADATA,sha256=dog8rG5_vF31_SJS90ruUeJwnrs3bM635m7KSPLht78,6058
9
- nystrom_ncut-0.0.4.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
10
- nystrom_ncut-0.0.4.dist-info/top_level.txt,sha256=j7g_j0S048EvguFFnGgD5Ewd3r2H6klsxd5A4dd-wHw,13
11
- nystrom_ncut-0.0.4.dist-info/RECORD,,