nystrom-ncut 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nystrom_ncut/ncut_pytorch.py +2 -1
- nystrom_ncut/nystrom.py +15 -10
- nystrom_ncut/propagation_utils.py +2 -2
- nystrom_ncut/visualize_utils.py +1 -1
- {nystrom_ncut-0.0.3.dist-info → nystrom_ncut-0.0.5.dist-info}/METADATA +1 -1
- nystrom_ncut-0.0.5.dist-info/RECORD +11 -0
- nystrom_ncut-0.0.3.dist-info/RECORD +0 -11
- {nystrom_ncut-0.0.3.dist-info → nystrom_ncut-0.0.5.dist-info}/LICENSE +0 -0
- {nystrom_ncut-0.0.3.dist-info → nystrom_ncut-0.0.5.dist-info}/WHEEL +0 -0
- {nystrom_ncut-0.0.3.dist-info → nystrom_ncut-0.0.5.dist-info}/top_level.txt +0 -0
nystrom_ncut/ncut_pytorch.py
CHANGED
@@ -173,9 +173,10 @@ class NCUT(OnlineNystrom):
|
|
173
173
|
else:
|
174
174
|
sampled_indices = run_subgraph_sampling(
|
175
175
|
features,
|
176
|
-
|
176
|
+
self.num_sample,
|
177
177
|
sample_method=self.sample_method,
|
178
178
|
)
|
179
|
+
sampled_indices = torch.sort(sampled_indices).values
|
179
180
|
sampled_features = features[sampled_indices]
|
180
181
|
OnlineNystrom.fit(self, sampled_features)
|
181
182
|
|
nystrom_ncut/nystrom.py
CHANGED
@@ -52,6 +52,18 @@ class OnlineNystrom:
|
|
52
52
|
self.transform_matrix: torch.Tensor = None # [n x n_components]
|
53
53
|
self.LS: torch.Tensor = None # [n]
|
54
54
|
|
55
|
+
def _update_to_kernel(self) -> Tuple[torch.Tensor, torch.Tensor]:
|
56
|
+
self.A = self.S = self.kernel.transform()
|
57
|
+
U, L = solve_eig(
|
58
|
+
self.A,
|
59
|
+
num_eig=self.inverse_approximation_dim,
|
60
|
+
eig_solver=self.eig_solver,
|
61
|
+
) # [n x (? + 1)], [? + 1]
|
62
|
+
self.Ahinv_UL = U * (L ** -0.5) # [n x (? + 1)]
|
63
|
+
self.Ahinv_VT = U.mT # [(? + 1) x n]
|
64
|
+
self.Ahinv = self.Ahinv_UL @ self.Ahinv_VT # [n x n]
|
65
|
+
return U, L
|
66
|
+
|
55
67
|
def fit(self, features: torch.Tensor):
|
56
68
|
OnlineNystrom.fit_transform(self, features)
|
57
69
|
return self
|
@@ -60,17 +72,8 @@ class OnlineNystrom:
|
|
60
72
|
self.anchor_features = features
|
61
73
|
|
62
74
|
self.kernel.fit(self.anchor_features)
|
63
|
-
self.A = self.S = self.kernel.transform() # [n x n]
|
64
|
-
|
65
75
|
self.inverse_approximation_dim = max(self.n_components, features.shape[-1]) + 1
|
66
|
-
U, L =
|
67
|
-
self.A,
|
68
|
-
num_eig=self.inverse_approximation_dim,
|
69
|
-
eig_solver=self.eig_solver,
|
70
|
-
) # [n x (? + 1)], [? + 1]
|
71
|
-
self.Ahinv_UL = U * (L ** -0.5) # [n x (? + 1)]
|
72
|
-
self.Ahinv_VT = U.mT # [(? + 1) x n]
|
73
|
-
self.Ahinv = self.Ahinv_UL @ self.Ahinv_VT # [n x n]
|
76
|
+
U, L = self._update_to_kernel() # [n x (? + 1)], [? + 1]
|
74
77
|
|
75
78
|
self.transform_matrix = (U / L)[:, :self.n_components] # [n x n_components]
|
76
79
|
self.LS = L[:self.n_components] # [n_components]
|
@@ -83,6 +86,7 @@ class OnlineNystrom:
|
|
83
86
|
chunks = torch.chunk(features, n_chunks, dim=0)
|
84
87
|
for chunk in chunks:
|
85
88
|
self.kernel.update(chunk)
|
89
|
+
self._update_to_kernel()
|
86
90
|
|
87
91
|
compressed_BBT = torch.zeros((self.inverse_approximation_dim, self.inverse_approximation_dim)) # [(? + 1) x (? + 1))]
|
88
92
|
for i, chunk in enumerate(chunks):
|
@@ -101,6 +105,7 @@ class OnlineNystrom:
|
|
101
105
|
else:
|
102
106
|
""" Unchunked version """
|
103
107
|
B = self.kernel.update(features).mT # [n x m]
|
108
|
+
self._update_to_kernel()
|
104
109
|
compressed_B = self.Ahinv_VT @ B # [indirect_pca_dim x m]
|
105
110
|
|
106
111
|
self.S = self.S + self.Ahinv_UL @ (compressed_B @ compressed_B.mT) @ self.Ahinv_UL.mT # [n x n]
|
@@ -11,7 +11,7 @@ from .common import ceildiv, lazy_normalize
|
|
11
11
|
@torch.no_grad()
|
12
12
|
def run_subgraph_sampling(
|
13
13
|
features: torch.Tensor,
|
14
|
-
num_sample: int
|
14
|
+
num_sample: int,
|
15
15
|
max_draw: int = 1000000,
|
16
16
|
sample_method: Literal["farthest", "random"] = "farthest",
|
17
17
|
):
|
@@ -272,7 +272,7 @@ def propagate_eigenvectors(
|
|
272
272
|
# sample subgraph
|
273
273
|
subgraph_indices = run_subgraph_sampling(
|
274
274
|
features,
|
275
|
-
num_sample
|
275
|
+
num_sample,
|
276
276
|
sample_method=sample_method,
|
277
277
|
)
|
278
278
|
|
nystrom_ncut/visualize_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nystrom_ncut
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.5
|
4
4
|
Summary: Normalized Cut and Nyström Approximation
|
5
5
|
Author-email: Huzheng Yang <huze.yann@gmail.com>, Wentinn Liao <wentinn.liao@gmail.com>
|
6
6
|
Project-URL: Documentation, https://github.com/JophiArcana/Nystrom-NCUT/
|
@@ -0,0 +1,11 @@
|
|
1
|
+
nystrom_ncut/__init__.py,sha256=Cww-_OsyQHLKpgw_Wh28_tUOvIMMr7Ey8w-tH7v99xQ,452
|
2
|
+
nystrom_ncut/common.py,sha256=qdR_JwknT9H1Cv5LopwdwZfORFx-O8MLiRI6ZF1Qohc,558
|
3
|
+
nystrom_ncut/ncut_pytorch.py,sha256=wRQXUPBOW2_vutocKf0J19HrFVkBYQePAYUEfotLfx4,11701
|
4
|
+
nystrom_ncut/nystrom.py,sha256=HbwON9pLW3gEZvOmbDJwkQNHolOo1EBvwBPeh2p2uJE,8833
|
5
|
+
nystrom_ncut/propagation_utils.py,sha256=mD6rZ_mwYjYXs1cp5ZaTK0FrJ4YhyCdoIUrdGRP9k-M,12119
|
6
|
+
nystrom_ncut/visualize_utils.py,sha256=QmBatlX7Q-ZWF_iJ1zFDnPHFuofz3tCmtoNeeoMPw3U,18558
|
7
|
+
nystrom_ncut-0.0.5.dist-info/LICENSE,sha256=2bm9uFabQZ3Ykb_SaSU_uUbAj2-htc6WJQmS_65qD00,1073
|
8
|
+
nystrom_ncut-0.0.5.dist-info/METADATA,sha256=n9zlRYBD02k478INScrj9V9rZ1mhXTylcMjkmQDgl1A,6058
|
9
|
+
nystrom_ncut-0.0.5.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
|
10
|
+
nystrom_ncut-0.0.5.dist-info/top_level.txt,sha256=j7g_j0S048EvguFFnGgD5Ewd3r2H6klsxd5A4dd-wHw,13
|
11
|
+
nystrom_ncut-0.0.5.dist-info/RECORD,,
|
@@ -1,11 +0,0 @@
|
|
1
|
-
nystrom_ncut/__init__.py,sha256=Cww-_OsyQHLKpgw_Wh28_tUOvIMMr7Ey8w-tH7v99xQ,452
|
2
|
-
nystrom_ncut/common.py,sha256=qdR_JwknT9H1Cv5LopwdwZfORFx-O8MLiRI6ZF1Qohc,558
|
3
|
-
nystrom_ncut/ncut_pytorch.py,sha256=8LfznDwhq-WL_vQxbFBFLSzymg9SEDti_zzf9QQLnrA,11651
|
4
|
-
nystrom_ncut/nystrom.py,sha256=Jo-P-2vnYk8yEZinGZnN3jHMiiB5AueoaLAYK4OmRqE,8604
|
5
|
-
nystrom_ncut/propagation_utils.py,sha256=pigecB0rAmlbCoMNb8zhCyyNwh3QzkxXEnaBsDRE_ns,12136
|
6
|
-
nystrom_ncut/visualize_utils.py,sha256=oNaDz_Xn12g3knEZZTb-QWVN-wTrnCNE5gn9cu8Xl_U,18569
|
7
|
-
nystrom_ncut-0.0.3.dist-info/LICENSE,sha256=2bm9uFabQZ3Ykb_SaSU_uUbAj2-htc6WJQmS_65qD00,1073
|
8
|
-
nystrom_ncut-0.0.3.dist-info/METADATA,sha256=yh1pDFHUL2Z4WPVnuQyeHjgSEokUtpB6OPzPMxEClsM,6058
|
9
|
-
nystrom_ncut-0.0.3.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
|
10
|
-
nystrom_ncut-0.0.3.dist-info/top_level.txt,sha256=j7g_j0S048EvguFFnGgD5Ewd3r2H6klsxd5A4dd-wHw,13
|
11
|
-
nystrom_ncut-0.0.3.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|