nystrom-ncut 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- nystrom_ncut/__init__.py +4 -4
- nystrom_ncut/common.py +20 -0
- nystrom_ncut/ncut_pytorch.py +190 -473
- nystrom_ncut/nystrom.py +4 -2
- nystrom_ncut/propagation_utils.py +19 -61
- nystrom_ncut/visualize_utils.py +11 -100
- {nystrom_ncut-0.0.1.dist-info → nystrom_ncut-0.0.3.dist-info}/METADATA +1 -1
- nystrom_ncut-0.0.3.dist-info/RECORD +11 -0
- nystrom_ncut/new_ncut_pytorch.py +0 -241
- nystrom_ncut-0.0.1.dist-info/RECORD +0 -11
- {nystrom_ncut-0.0.1.dist-info → nystrom_ncut-0.0.3.dist-info}/LICENSE +0 -0
- {nystrom_ncut-0.0.1.dist-info → nystrom_ncut-0.0.3.dist-info}/WHEEL +0 -0
- {nystrom_ncut-0.0.1.dist-info → nystrom_ncut-0.0.3.dist-info}/top_level.txt +0 -0
nystrom_ncut/new_ncut_pytorch.py
DELETED
@@ -1,241 +0,0 @@
|
|
1
|
-
import logging
|
2
|
-
from typing import Literal, Tuple
|
3
|
-
|
4
|
-
import torch
|
5
|
-
|
6
|
-
from .nystrom import (
|
7
|
-
EigSolverOptions,
|
8
|
-
OnlineKernel,
|
9
|
-
OnlineNystrom,
|
10
|
-
solve_eig,
|
11
|
-
)
|
12
|
-
from .propagation_utils import (
|
13
|
-
affinity_from_features,
|
14
|
-
run_subgraph_sampling,
|
15
|
-
)
|
16
|
-
|
17
|
-
|
18
|
-
DistanceOptions = Literal["cosine", "euclidean", "rbf"]
|
19
|
-
|
20
|
-
|
21
|
-
class LaplacianKernel(OnlineKernel):
|
22
|
-
def __init__(
|
23
|
-
self,
|
24
|
-
affinity_focal_gamma: float,
|
25
|
-
distance: DistanceOptions,
|
26
|
-
eig_solver: EigSolverOptions,
|
27
|
-
):
|
28
|
-
self.affinity_focal_gamma = affinity_focal_gamma
|
29
|
-
self.distance: DistanceOptions = distance
|
30
|
-
self.eig_solver: EigSolverOptions = eig_solver
|
31
|
-
|
32
|
-
# Anchor matrices
|
33
|
-
self.anchor_features: torch.Tensor = None # [n x d]
|
34
|
-
self.A: torch.Tensor = None # [n x n]
|
35
|
-
self.Ainv: torch.Tensor = None # [n x n]
|
36
|
-
|
37
|
-
# Updated matrices
|
38
|
-
self.a_r: torch.Tensor = None # [n]
|
39
|
-
self.b_r: torch.Tensor = None # [n]
|
40
|
-
|
41
|
-
def fit(self, features: torch.Tensor) -> None:
|
42
|
-
self.anchor_features = features # [n x d]
|
43
|
-
self.A = affinity_from_features(
|
44
|
-
self.anchor_features, # [n x d]
|
45
|
-
affinity_focal_gamma=self.affinity_focal_gamma,
|
46
|
-
distance=self.distance,
|
47
|
-
fill_diagonal=False,
|
48
|
-
) # [n x n]
|
49
|
-
U, L = solve_eig(
|
50
|
-
self.A,
|
51
|
-
num_eig=features.shape[-1] + 1,
|
52
|
-
eig_solver=self.eig_solver,
|
53
|
-
) # [n x (d + 1)], [d + 1]
|
54
|
-
self.Ainv = U @ torch.diag(1 / L) @ U.mT # [n x n]
|
55
|
-
self.a_r = torch.sum(self.A, dim=-1) # [n]
|
56
|
-
self.b_r = torch.zeros_like(self.a_r) # [n]
|
57
|
-
|
58
|
-
def update(self, features: torch.Tensor) -> torch.Tensor:
|
59
|
-
B = affinity_from_features(
|
60
|
-
self.anchor_features, # [n x d]
|
61
|
-
features, # [m x d]
|
62
|
-
affinity_focal_gamma=self.affinity_focal_gamma,
|
63
|
-
distance=self.distance,
|
64
|
-
fill_diagonal=False,
|
65
|
-
) # [n x m]
|
66
|
-
b_r = torch.sum(B, dim=-1) # [n]
|
67
|
-
b_c = torch.sum(B, dim=-2) # [m]
|
68
|
-
self.b_r = self.b_r + b_r # [n]
|
69
|
-
|
70
|
-
rowscale = self.a_r + self.b_r # [n]
|
71
|
-
colscale = b_c + B.mT @ self.Ainv @ self.b_r # [m]
|
72
|
-
scale = (rowscale[:, None] * colscale) ** -0.5 # [n x m]
|
73
|
-
return (B * scale).mT # [m x n]
|
74
|
-
|
75
|
-
def transform(self, features: torch.Tensor = None) -> torch.Tensor:
|
76
|
-
rowscale = self.a_r + self.b_r # [n]
|
77
|
-
if features is None:
|
78
|
-
B = self.A # [n x n]
|
79
|
-
colscale = rowscale # [n]
|
80
|
-
else:
|
81
|
-
B = affinity_from_features(
|
82
|
-
self.anchor_features, # [n x d]
|
83
|
-
features, # [m x d]
|
84
|
-
affinity_focal_gamma=self.affinity_focal_gamma,
|
85
|
-
distance=self.distance,
|
86
|
-
fill_diagonal=False,
|
87
|
-
) # [n x m]
|
88
|
-
b_c = torch.sum(B, dim=-2) # [m]
|
89
|
-
colscale = b_c + B.mT @ self.Ainv @ self.b_r # [m]
|
90
|
-
scale = (rowscale[:, None] * colscale) ** -0.5 # [n x m]
|
91
|
-
return (B * scale).mT # [m x n]
|
92
|
-
|
93
|
-
|
94
|
-
class NewNCUT(OnlineNystrom):
|
95
|
-
"""Nystrom Normalized Cut for large scale graph."""
|
96
|
-
|
97
|
-
def __init__(
|
98
|
-
self,
|
99
|
-
num_eig: int = 100,
|
100
|
-
affinity_focal_gamma: float = 1.0,
|
101
|
-
num_sample: int = 10000,
|
102
|
-
sample_method: Literal["farthest", "random"] = "farthest",
|
103
|
-
distance: DistanceOptions = "cosine",
|
104
|
-
eig_solver: EigSolverOptions = "svd_lowrank",
|
105
|
-
normalize_features: bool = None,
|
106
|
-
device: str = None,
|
107
|
-
move_output_to_cpu: bool = False,
|
108
|
-
matmul_chunk_size: int = 8096,
|
109
|
-
):
|
110
|
-
"""
|
111
|
-
Args:
|
112
|
-
num_eig (int): number of top eigenvectors to return
|
113
|
-
affinity_focal_gamma (float): affinity matrix temperature, lower t reduce the not-so-connected edge weights,
|
114
|
-
smaller t result in more sharp eigenvectors.
|
115
|
-
num_sample (int): number of samples for Nystrom-like approximation,
|
116
|
-
reduce only if memory is not enough, increase for better approximation
|
117
|
-
sample_method (str): subgraph sampling, ['farthest', 'random'].
|
118
|
-
farthest point sampling is recommended for better Nystrom-approximation accuracy
|
119
|
-
distance (str): distance metric for affinity matrix, ['cosine', 'euclidean', 'rbf'].
|
120
|
-
eig_solver (str): eigen decompose solver, ['svd_lowrank', 'lobpcg', 'svd', 'eigh'].
|
121
|
-
normalize_features (bool): normalize input features before computing affinity matrix,
|
122
|
-
default 'None' is True for cosine distance, False for euclidean distance and rbf
|
123
|
-
device (str): device to use for eigen computation,
|
124
|
-
move to GPU to speeds up a bit (~5x faster)
|
125
|
-
move_output_to_cpu (bool): move output to CPU, set to True if you have memory issue
|
126
|
-
matmul_chunk_size (int): chunk size for large-scale matrix multiplication
|
127
|
-
"""
|
128
|
-
OnlineNystrom.__init__(
|
129
|
-
self,
|
130
|
-
n_components=num_eig,
|
131
|
-
kernel=LaplacianKernel(affinity_focal_gamma, distance, eig_solver),
|
132
|
-
eig_solver=eig_solver,
|
133
|
-
chunk_size=matmul_chunk_size,
|
134
|
-
)
|
135
|
-
self.num_sample = num_sample
|
136
|
-
self.sample_method = sample_method
|
137
|
-
self.distance = distance
|
138
|
-
self.normalize_features = normalize_features
|
139
|
-
if self.normalize_features is None:
|
140
|
-
if distance in ["cosine"]:
|
141
|
-
self.normalize_features = True
|
142
|
-
if distance in ["euclidean", "rbf"]:
|
143
|
-
self.normalize_features = False
|
144
|
-
|
145
|
-
self.device = device
|
146
|
-
self.move_output_to_cpu = move_output_to_cpu
|
147
|
-
self.matmul_chunk_size = matmul_chunk_size
|
148
|
-
|
149
|
-
def _fit_helper(
|
150
|
-
self,
|
151
|
-
features: torch.Tensor,
|
152
|
-
precomputed_sampled_indices: torch.Tensor,
|
153
|
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
154
|
-
# move subgraph gpu to speed up
|
155
|
-
original_device = features.device
|
156
|
-
device = original_device if self.device is None else self.device
|
157
|
-
|
158
|
-
_n = features.shape[0]
|
159
|
-
if self.num_sample >= _n:
|
160
|
-
logging.info(
|
161
|
-
f"NCUT nystrom num_sample is larger than number of input samples, nyström approximation is not needed, setting num_sample={_n}"
|
162
|
-
)
|
163
|
-
self.num_sample = _n
|
164
|
-
|
165
|
-
# check if features dimension greater than num_eig
|
166
|
-
if self.eig_solver in ["svd_lowrank", "lobpcg"]:
|
167
|
-
assert (
|
168
|
-
_n >= self.n_components * 2
|
169
|
-
), "number of nodes should be greater than 2*num_eig"
|
170
|
-
elif self.eig_solver in ["svd", "eigh"]:
|
171
|
-
assert (
|
172
|
-
_n >= self.n_components
|
173
|
-
), "number of nodes should be greater than num_eig"
|
174
|
-
|
175
|
-
assert self.distance in ["cosine", "euclidean", "rbf"], "distance should be 'cosine', 'euclidean', 'rbf'"
|
176
|
-
|
177
|
-
if self.normalize_features:
|
178
|
-
# features need to be normalized for affinity matrix computation (cosine distance)
|
179
|
-
features = torch.nn.functional.normalize(features, dim=-1)
|
180
|
-
|
181
|
-
if precomputed_sampled_indices is not None:
|
182
|
-
sampled_indices = precomputed_sampled_indices
|
183
|
-
else:
|
184
|
-
sampled_indices = run_subgraph_sampling(
|
185
|
-
features,
|
186
|
-
num_sample=self.num_sample,
|
187
|
-
sample_method=self.sample_method,
|
188
|
-
)
|
189
|
-
sampled_features = features[sampled_indices].to(device)
|
190
|
-
OnlineNystrom.fit(self, sampled_features)
|
191
|
-
|
192
|
-
_n_not_sampled = _n - len(sampled_features)
|
193
|
-
if _n_not_sampled > 0:
|
194
|
-
unsampled_indices = torch.full((_n,), True).scatter(0, sampled_indices, False)
|
195
|
-
unsampled_features = features[unsampled_indices].to(device)
|
196
|
-
V_unsampled, _ = OnlineNystrom.update(self, unsampled_features)
|
197
|
-
else:
|
198
|
-
unsampled_indices = V_unsampled = None
|
199
|
-
return unsampled_indices, V_unsampled
|
200
|
-
|
201
|
-
def fit(
|
202
|
-
self,
|
203
|
-
features: torch.Tensor,
|
204
|
-
precomputed_sampled_indices: torch.Tensor = None,
|
205
|
-
):
|
206
|
-
"""Fit Nystrom Normalized Cut on the input features.
|
207
|
-
Args:
|
208
|
-
features (torch.Tensor): input features, shape (n_samples, n_features)
|
209
|
-
precomputed_sampled_indices (torch.Tensor): precomputed sampled indices, shape (num_sample,)
|
210
|
-
override the sample_method, if not None
|
211
|
-
Returns:
|
212
|
-
(NCUT): self
|
213
|
-
"""
|
214
|
-
NewNCUT._fit_helper(self, features, precomputed_sampled_indices)
|
215
|
-
return self
|
216
|
-
|
217
|
-
def fit_transform(
|
218
|
-
self,
|
219
|
-
features: torch.Tensor,
|
220
|
-
precomputed_sampled_indices: torch.Tensor = None,
|
221
|
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
222
|
-
"""
|
223
|
-
Args:
|
224
|
-
features (torch.Tensor): input features, shape (n_samples, n_features)
|
225
|
-
precomputed_sampled_indices (torch.Tensor): precomputed sampled indices, shape (num_sample,)
|
226
|
-
override the sample_method, if not None
|
227
|
-
|
228
|
-
Returns:
|
229
|
-
(torch.Tensor): eigen_vectors, shape (n_samples, num_eig)
|
230
|
-
(torch.Tensor): eigen_values, sorted in descending order, shape (num_eig,)
|
231
|
-
"""
|
232
|
-
unsampled_indices, V_unsampled = NewNCUT._fit_helper(self, features, precomputed_sampled_indices)
|
233
|
-
V_sampled, L = OnlineNystrom.transform(self)
|
234
|
-
|
235
|
-
if unsampled_indices is not None:
|
236
|
-
V = torch.zeros((len(unsampled_indices), self.n_components))
|
237
|
-
V[~unsampled_indices] = V_sampled
|
238
|
-
V[unsampled_indices] = V_unsampled
|
239
|
-
else:
|
240
|
-
V = V_sampled
|
241
|
-
return V, L
|
@@ -1,11 +0,0 @@
|
|
1
|
-
nystrom_ncut/__init__.py,sha256=K8a7o9oP9jhG9auqsAFt1KPQMElRUP3_TFxBmRUz8-o,544
|
2
|
-
nystrom_ncut/ncut_pytorch.py,sha256=f4VHCgOP3tEjn5NIr2wFE4hAGnQIWV6P6W4xuMt0d0I,22426
|
3
|
-
nystrom_ncut/new_ncut_pytorch.py,sha256=wPG-OAcew4kw0mDMLQPJOetz-9sBfvFmexL7n0JVYjc,10419
|
4
|
-
nystrom_ncut/nystrom.py,sha256=UOXfhgz-xB2FtKYfn-cwMDNkgCWrM-3yXHtPxOrgEV4,8569
|
5
|
-
nystrom_ncut/propagation_utils.py,sha256=quykDk1RgFyHEUloRBcapSocq9Wvkk3hG_TYx-Tue6A,13813
|
6
|
-
nystrom_ncut/visualize_utils.py,sha256=3TEdXF_H7sBUQFz1nK3QemmlKqRteo5BKkno1LozVTg,21840
|
7
|
-
nystrom_ncut-0.0.1.dist-info/LICENSE,sha256=2bm9uFabQZ3Ykb_SaSU_uUbAj2-htc6WJQmS_65qD00,1073
|
8
|
-
nystrom_ncut-0.0.1.dist-info/METADATA,sha256=kj900xV7RSfTSW8jyzjhrGV2z1Ttzn5UoTFOlHpfZg8,6058
|
9
|
-
nystrom_ncut-0.0.1.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
|
10
|
-
nystrom_ncut-0.0.1.dist-info/top_level.txt,sha256=j7g_j0S048EvguFFnGgD5Ewd3r2H6klsxd5A4dd-wHw,13
|
11
|
-
nystrom_ncut-0.0.1.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|