nystrom-ncut 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,241 +0,0 @@
1
- import logging
2
- from typing import Literal, Tuple
3
-
4
- import torch
5
-
6
- from .nystrom import (
7
- EigSolverOptions,
8
- OnlineKernel,
9
- OnlineNystrom,
10
- solve_eig,
11
- )
12
- from .propagation_utils import (
13
- affinity_from_features,
14
- run_subgraph_sampling,
15
- )
16
-
17
-
18
- DistanceOptions = Literal["cosine", "euclidean", "rbf"]
19
-
20
-
21
- class LaplacianKernel(OnlineKernel):
22
- def __init__(
23
- self,
24
- affinity_focal_gamma: float,
25
- distance: DistanceOptions,
26
- eig_solver: EigSolverOptions,
27
- ):
28
- self.affinity_focal_gamma = affinity_focal_gamma
29
- self.distance: DistanceOptions = distance
30
- self.eig_solver: EigSolverOptions = eig_solver
31
-
32
- # Anchor matrices
33
- self.anchor_features: torch.Tensor = None # [n x d]
34
- self.A: torch.Tensor = None # [n x n]
35
- self.Ainv: torch.Tensor = None # [n x n]
36
-
37
- # Updated matrices
38
- self.a_r: torch.Tensor = None # [n]
39
- self.b_r: torch.Tensor = None # [n]
40
-
41
- def fit(self, features: torch.Tensor) -> None:
42
- self.anchor_features = features # [n x d]
43
- self.A = affinity_from_features(
44
- self.anchor_features, # [n x d]
45
- affinity_focal_gamma=self.affinity_focal_gamma,
46
- distance=self.distance,
47
- fill_diagonal=False,
48
- ) # [n x n]
49
- U, L = solve_eig(
50
- self.A,
51
- num_eig=features.shape[-1] + 1,
52
- eig_solver=self.eig_solver,
53
- ) # [n x (d + 1)], [d + 1]
54
- self.Ainv = U @ torch.diag(1 / L) @ U.mT # [n x n]
55
- self.a_r = torch.sum(self.A, dim=-1) # [n]
56
- self.b_r = torch.zeros_like(self.a_r) # [n]
57
-
58
- def update(self, features: torch.Tensor) -> torch.Tensor:
59
- B = affinity_from_features(
60
- self.anchor_features, # [n x d]
61
- features, # [m x d]
62
- affinity_focal_gamma=self.affinity_focal_gamma,
63
- distance=self.distance,
64
- fill_diagonal=False,
65
- ) # [n x m]
66
- b_r = torch.sum(B, dim=-1) # [n]
67
- b_c = torch.sum(B, dim=-2) # [m]
68
- self.b_r = self.b_r + b_r # [n]
69
-
70
- rowscale = self.a_r + self.b_r # [n]
71
- colscale = b_c + B.mT @ self.Ainv @ self.b_r # [m]
72
- scale = (rowscale[:, None] * colscale) ** -0.5 # [n x m]
73
- return (B * scale).mT # [m x n]
74
-
75
- def transform(self, features: torch.Tensor = None) -> torch.Tensor:
76
- rowscale = self.a_r + self.b_r # [n]
77
- if features is None:
78
- B = self.A # [n x n]
79
- colscale = rowscale # [n]
80
- else:
81
- B = affinity_from_features(
82
- self.anchor_features, # [n x d]
83
- features, # [m x d]
84
- affinity_focal_gamma=self.affinity_focal_gamma,
85
- distance=self.distance,
86
- fill_diagonal=False,
87
- ) # [n x m]
88
- b_c = torch.sum(B, dim=-2) # [m]
89
- colscale = b_c + B.mT @ self.Ainv @ self.b_r # [m]
90
- scale = (rowscale[:, None] * colscale) ** -0.5 # [n x m]
91
- return (B * scale).mT # [m x n]
92
-
93
-
94
- class NewNCUT(OnlineNystrom):
95
- """Nystrom Normalized Cut for large scale graph."""
96
-
97
- def __init__(
98
- self,
99
- num_eig: int = 100,
100
- affinity_focal_gamma: float = 1.0,
101
- num_sample: int = 10000,
102
- sample_method: Literal["farthest", "random"] = "farthest",
103
- distance: DistanceOptions = "cosine",
104
- eig_solver: EigSolverOptions = "svd_lowrank",
105
- normalize_features: bool = None,
106
- device: str = None,
107
- move_output_to_cpu: bool = False,
108
- matmul_chunk_size: int = 8096,
109
- ):
110
- """
111
- Args:
112
- num_eig (int): number of top eigenvectors to return
113
- affinity_focal_gamma (float): affinity matrix temperature, lower t reduce the not-so-connected edge weights,
114
- smaller t result in more sharp eigenvectors.
115
- num_sample (int): number of samples for Nystrom-like approximation,
116
- reduce only if memory is not enough, increase for better approximation
117
- sample_method (str): subgraph sampling, ['farthest', 'random'].
118
- farthest point sampling is recommended for better Nystrom-approximation accuracy
119
- distance (str): distance metric for affinity matrix, ['cosine', 'euclidean', 'rbf'].
120
- eig_solver (str): eigen decompose solver, ['svd_lowrank', 'lobpcg', 'svd', 'eigh'].
121
- normalize_features (bool): normalize input features before computing affinity matrix,
122
- default 'None' is True for cosine distance, False for euclidean distance and rbf
123
- device (str): device to use for eigen computation,
124
- move to GPU to speeds up a bit (~5x faster)
125
- move_output_to_cpu (bool): move output to CPU, set to True if you have memory issue
126
- matmul_chunk_size (int): chunk size for large-scale matrix multiplication
127
- """
128
- OnlineNystrom.__init__(
129
- self,
130
- n_components=num_eig,
131
- kernel=LaplacianKernel(affinity_focal_gamma, distance, eig_solver),
132
- eig_solver=eig_solver,
133
- chunk_size=matmul_chunk_size,
134
- )
135
- self.num_sample = num_sample
136
- self.sample_method = sample_method
137
- self.distance = distance
138
- self.normalize_features = normalize_features
139
- if self.normalize_features is None:
140
- if distance in ["cosine"]:
141
- self.normalize_features = True
142
- if distance in ["euclidean", "rbf"]:
143
- self.normalize_features = False
144
-
145
- self.device = device
146
- self.move_output_to_cpu = move_output_to_cpu
147
- self.matmul_chunk_size = matmul_chunk_size
148
-
149
- def _fit_helper(
150
- self,
151
- features: torch.Tensor,
152
- precomputed_sampled_indices: torch.Tensor,
153
- ) -> Tuple[torch.Tensor, torch.Tensor]:
154
- # move subgraph gpu to speed up
155
- original_device = features.device
156
- device = original_device if self.device is None else self.device
157
-
158
- _n = features.shape[0]
159
- if self.num_sample >= _n:
160
- logging.info(
161
- f"NCUT nystrom num_sample is larger than number of input samples, nyström approximation is not needed, setting num_sample={_n}"
162
- )
163
- self.num_sample = _n
164
-
165
- # check if features dimension greater than num_eig
166
- if self.eig_solver in ["svd_lowrank", "lobpcg"]:
167
- assert (
168
- _n >= self.n_components * 2
169
- ), "number of nodes should be greater than 2*num_eig"
170
- elif self.eig_solver in ["svd", "eigh"]:
171
- assert (
172
- _n >= self.n_components
173
- ), "number of nodes should be greater than num_eig"
174
-
175
- assert self.distance in ["cosine", "euclidean", "rbf"], "distance should be 'cosine', 'euclidean', 'rbf'"
176
-
177
- if self.normalize_features:
178
- # features need to be normalized for affinity matrix computation (cosine distance)
179
- features = torch.nn.functional.normalize(features, dim=-1)
180
-
181
- if precomputed_sampled_indices is not None:
182
- sampled_indices = precomputed_sampled_indices
183
- else:
184
- sampled_indices = run_subgraph_sampling(
185
- features,
186
- num_sample=self.num_sample,
187
- sample_method=self.sample_method,
188
- )
189
- sampled_features = features[sampled_indices].to(device)
190
- OnlineNystrom.fit(self, sampled_features)
191
-
192
- _n_not_sampled = _n - len(sampled_features)
193
- if _n_not_sampled > 0:
194
- unsampled_indices = torch.full((_n,), True).scatter(0, sampled_indices, False)
195
- unsampled_features = features[unsampled_indices].to(device)
196
- V_unsampled, _ = OnlineNystrom.update(self, unsampled_features)
197
- else:
198
- unsampled_indices = V_unsampled = None
199
- return unsampled_indices, V_unsampled
200
-
201
- def fit(
202
- self,
203
- features: torch.Tensor,
204
- precomputed_sampled_indices: torch.Tensor = None,
205
- ):
206
- """Fit Nystrom Normalized Cut on the input features.
207
- Args:
208
- features (torch.Tensor): input features, shape (n_samples, n_features)
209
- precomputed_sampled_indices (torch.Tensor): precomputed sampled indices, shape (num_sample,)
210
- override the sample_method, if not None
211
- Returns:
212
- (NCUT): self
213
- """
214
- NewNCUT._fit_helper(self, features, precomputed_sampled_indices)
215
- return self
216
-
217
- def fit_transform(
218
- self,
219
- features: torch.Tensor,
220
- precomputed_sampled_indices: torch.Tensor = None,
221
- ) -> Tuple[torch.Tensor, torch.Tensor]:
222
- """
223
- Args:
224
- features (torch.Tensor): input features, shape (n_samples, n_features)
225
- precomputed_sampled_indices (torch.Tensor): precomputed sampled indices, shape (num_sample,)
226
- override the sample_method, if not None
227
-
228
- Returns:
229
- (torch.Tensor): eigen_vectors, shape (n_samples, num_eig)
230
- (torch.Tensor): eigen_values, sorted in descending order, shape (num_eig,)
231
- """
232
- unsampled_indices, V_unsampled = NewNCUT._fit_helper(self, features, precomputed_sampled_indices)
233
- V_sampled, L = OnlineNystrom.transform(self)
234
-
235
- if unsampled_indices is not None:
236
- V = torch.zeros((len(unsampled_indices), self.n_components))
237
- V[~unsampled_indices] = V_sampled
238
- V[unsampled_indices] = V_unsampled
239
- else:
240
- V = V_sampled
241
- return V, L
@@ -1,11 +0,0 @@
1
- nystrom_ncut/__init__.py,sha256=K8a7o9oP9jhG9auqsAFt1KPQMElRUP3_TFxBmRUz8-o,544
2
- nystrom_ncut/ncut_pytorch.py,sha256=f4VHCgOP3tEjn5NIr2wFE4hAGnQIWV6P6W4xuMt0d0I,22426
3
- nystrom_ncut/new_ncut_pytorch.py,sha256=wPG-OAcew4kw0mDMLQPJOetz-9sBfvFmexL7n0JVYjc,10419
4
- nystrom_ncut/nystrom.py,sha256=UOXfhgz-xB2FtKYfn-cwMDNkgCWrM-3yXHtPxOrgEV4,8569
5
- nystrom_ncut/propagation_utils.py,sha256=quykDk1RgFyHEUloRBcapSocq9Wvkk3hG_TYx-Tue6A,13813
6
- nystrom_ncut/visualize_utils.py,sha256=3TEdXF_H7sBUQFz1nK3QemmlKqRteo5BKkno1LozVTg,21840
7
- nystrom_ncut-0.0.1.dist-info/LICENSE,sha256=2bm9uFabQZ3Ykb_SaSU_uUbAj2-htc6WJQmS_65qD00,1073
8
- nystrom_ncut-0.0.1.dist-info/METADATA,sha256=kj900xV7RSfTSW8jyzjhrGV2z1Ttzn5UoTFOlHpfZg8,6058
9
- nystrom_ncut-0.0.1.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
10
- nystrom_ncut-0.0.1.dist-info/top_level.txt,sha256=j7g_j0S048EvguFFnGgD5Ewd3r2H6klsxd5A4dd-wHw,13
11
- nystrom_ncut-0.0.1.dist-info/RECORD,,