nystrom-ncut 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nystrom_ncut/__init__.py +4 -4
 - nystrom_ncut/common.py +20 -0
 - nystrom_ncut/ncut_pytorch.py +192 -467
 - nystrom_ncut/nystrom.py +4 -2
 - nystrom_ncut/propagation_utils.py +15 -57
 - nystrom_ncut/visualize_utils.py +9 -98
 - {nystrom_ncut-0.0.1.dist-info → nystrom_ncut-0.0.2.dist-info}/METADATA +1 -1
 - nystrom_ncut-0.0.2.dist-info/RECORD +11 -0
 - nystrom_ncut/new_ncut_pytorch.py +0 -241
 - nystrom_ncut-0.0.1.dist-info/RECORD +0 -11
 - {nystrom_ncut-0.0.1.dist-info → nystrom_ncut-0.0.2.dist-info}/LICENSE +0 -0
 - {nystrom_ncut-0.0.1.dist-info → nystrom_ncut-0.0.2.dist-info}/WHEEL +0 -0
 - {nystrom_ncut-0.0.1.dist-info → nystrom_ncut-0.0.2.dist-info}/top_level.txt +0 -0
 
    
        nystrom_ncut/new_ncut_pytorch.py
    DELETED
    
    | 
         @@ -1,241 +0,0 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            import logging
         
     | 
| 
       2 
     | 
    
         
            -
            from typing import Literal, Tuple
         
     | 
| 
       3 
     | 
    
         
            -
             
     | 
| 
       4 
     | 
    
         
            -
            import torch
         
     | 
| 
       5 
     | 
    
         
            -
             
     | 
| 
       6 
     | 
    
         
            -
            from .nystrom import (
         
     | 
| 
       7 
     | 
    
         
            -
                EigSolverOptions,
         
     | 
| 
       8 
     | 
    
         
            -
                OnlineKernel,
         
     | 
| 
       9 
     | 
    
         
            -
                OnlineNystrom,
         
     | 
| 
       10 
     | 
    
         
            -
                solve_eig,
         
     | 
| 
       11 
     | 
    
         
            -
            )
         
     | 
| 
       12 
     | 
    
         
            -
            from .propagation_utils import (
         
     | 
| 
       13 
     | 
    
         
            -
                affinity_from_features,
         
     | 
| 
       14 
     | 
    
         
            -
                run_subgraph_sampling,
         
     | 
| 
       15 
     | 
    
         
            -
            )
         
     | 
| 
       16 
     | 
    
         
            -
             
     | 
| 
       17 
     | 
    
         
            -
             
     | 
| 
       18 
     | 
    
         
            -
            DistanceOptions = Literal["cosine", "euclidean", "rbf"]
         
     | 
| 
       19 
     | 
    
         
            -
             
     | 
| 
       20 
     | 
    
         
            -
             
     | 
| 
       21 
     | 
    
         
            -
            class LaplacianKernel(OnlineKernel):
         
     | 
| 
       22 
     | 
    
         
            -
                def __init__(
         
     | 
| 
       23 
     | 
    
         
            -
                    self,
         
     | 
| 
       24 
     | 
    
         
            -
                    affinity_focal_gamma: float,
         
     | 
| 
       25 
     | 
    
         
            -
                    distance: DistanceOptions,
         
     | 
| 
       26 
     | 
    
         
            -
                    eig_solver: EigSolverOptions,
         
     | 
| 
       27 
     | 
    
         
            -
                ):
         
     | 
| 
       28 
     | 
    
         
            -
                    self.affinity_focal_gamma = affinity_focal_gamma
         
     | 
| 
       29 
     | 
    
         
            -
                    self.distance: DistanceOptions = distance
         
     | 
| 
       30 
     | 
    
         
            -
                    self.eig_solver: EigSolverOptions = eig_solver
         
     | 
| 
       31 
     | 
    
         
            -
             
     | 
| 
       32 
     | 
    
         
            -
                    # Anchor matrices
         
     | 
| 
       33 
     | 
    
         
            -
                    self.anchor_features: torch.Tensor = None               # [n x d]
         
     | 
| 
       34 
     | 
    
         
            -
                    self.A: torch.Tensor = None                             # [n x n]
         
     | 
| 
       35 
     | 
    
         
            -
                    self.Ainv: torch.Tensor = None                          # [n x n]
         
     | 
| 
       36 
     | 
    
         
            -
             
     | 
| 
       37 
     | 
    
         
            -
                    # Updated matrices
         
     | 
| 
       38 
     | 
    
         
            -
                    self.a_r: torch.Tensor = None                           # [n]
         
     | 
| 
       39 
     | 
    
         
            -
                    self.b_r: torch.Tensor = None                           # [n]
         
     | 
| 
       40 
     | 
    
         
            -
             
     | 
| 
       41 
     | 
    
         
            -
                def fit(self, features: torch.Tensor) -> None:
         
     | 
| 
       42 
     | 
    
         
            -
                    self.anchor_features = features                         # [n x d]
         
     | 
| 
       43 
     | 
    
         
            -
                    self.A = affinity_from_features(
         
     | 
| 
       44 
     | 
    
         
            -
                        self.anchor_features,                               # [n x d]
         
     | 
| 
       45 
     | 
    
         
            -
                        affinity_focal_gamma=self.affinity_focal_gamma,
         
     | 
| 
       46 
     | 
    
         
            -
                        distance=self.distance,
         
     | 
| 
       47 
     | 
    
         
            -
                        fill_diagonal=False,
         
     | 
| 
       48 
     | 
    
         
            -
                    )                                                       # [n x n]
         
     | 
| 
       49 
     | 
    
         
            -
                    U, L = solve_eig(
         
     | 
| 
       50 
     | 
    
         
            -
                        self.A,
         
     | 
| 
       51 
     | 
    
         
            -
                        num_eig=features.shape[-1] + 1,
         
     | 
| 
       52 
     | 
    
         
            -
                        eig_solver=self.eig_solver,
         
     | 
| 
       53 
     | 
    
         
            -
                    )                                                       # [n x (d + 1)], [d + 1]
         
     | 
| 
       54 
     | 
    
         
            -
                    self.Ainv = U @ torch.diag(1 / L) @ U.mT                # [n x n]
         
     | 
| 
       55 
     | 
    
         
            -
                    self.a_r = torch.sum(self.A, dim=-1)                    # [n]
         
     | 
| 
       56 
     | 
    
         
            -
                    self.b_r = torch.zeros_like(self.a_r)                   # [n]
         
     | 
| 
       57 
     | 
    
         
            -
             
     | 
| 
       58 
     | 
    
         
            -
                def update(self, features: torch.Tensor) -> torch.Tensor:
         
     | 
| 
       59 
     | 
    
         
            -
                    B = affinity_from_features(
         
     | 
| 
       60 
     | 
    
         
            -
                        self.anchor_features,                               # [n x d]
         
     | 
| 
       61 
     | 
    
         
            -
                        features,                                           # [m x d]
         
     | 
| 
       62 
     | 
    
         
            -
                        affinity_focal_gamma=self.affinity_focal_gamma,
         
     | 
| 
       63 
     | 
    
         
            -
                        distance=self.distance,
         
     | 
| 
       64 
     | 
    
         
            -
                        fill_diagonal=False,
         
     | 
| 
       65 
     | 
    
         
            -
                    )                                                       # [n x m]
         
     | 
| 
       66 
     | 
    
         
            -
                    b_r = torch.sum(B, dim=-1)                              # [n]
         
     | 
| 
       67 
     | 
    
         
            -
                    b_c = torch.sum(B, dim=-2)                              # [m]
         
     | 
| 
       68 
     | 
    
         
            -
                    self.b_r = self.b_r + b_r                               # [n]
         
     | 
| 
       69 
     | 
    
         
            -
             
     | 
| 
       70 
     | 
    
         
            -
                    rowscale = self.a_r + self.b_r                          # [n]
         
     | 
| 
       71 
     | 
    
         
            -
                    colscale = b_c + B.mT @ self.Ainv @ self.b_r            # [m]
         
     | 
| 
       72 
     | 
    
         
            -
                    scale = (rowscale[:, None] * colscale) ** -0.5          # [n x m]
         
     | 
| 
       73 
     | 
    
         
            -
                    return (B * scale).mT                                   # [m x n]
         
     | 
| 
       74 
     | 
    
         
            -
             
     | 
| 
       75 
     | 
    
         
            -
                def transform(self, features: torch.Tensor = None) -> torch.Tensor:
         
     | 
| 
       76 
     | 
    
         
            -
                    rowscale = self.a_r + self.b_r                          # [n]
         
     | 
| 
       77 
     | 
    
         
            -
                    if features is None:
         
     | 
| 
       78 
     | 
    
         
            -
                        B = self.A                                          # [n x n]
         
     | 
| 
       79 
     | 
    
         
            -
                        colscale = rowscale                                 # [n]
         
     | 
| 
       80 
     | 
    
         
            -
                    else:
         
     | 
| 
       81 
     | 
    
         
            -
                        B = affinity_from_features(
         
     | 
| 
       82 
     | 
    
         
            -
                            self.anchor_features,                           # [n x d]
         
     | 
| 
       83 
     | 
    
         
            -
                            features,                                       # [m x d]
         
     | 
| 
       84 
     | 
    
         
            -
                            affinity_focal_gamma=self.affinity_focal_gamma,
         
     | 
| 
       85 
     | 
    
         
            -
                            distance=self.distance,
         
     | 
| 
       86 
     | 
    
         
            -
                            fill_diagonal=False,
         
     | 
| 
       87 
     | 
    
         
            -
                        )                                                   # [n x m]
         
     | 
| 
       88 
     | 
    
         
            -
                        b_c = torch.sum(B, dim=-2)                          # [m]
         
     | 
| 
       89 
     | 
    
         
            -
                        colscale = b_c + B.mT @ self.Ainv @ self.b_r        # [m]
         
     | 
| 
       90 
     | 
    
         
            -
                    scale = (rowscale[:, None] * colscale) ** -0.5          # [n x m]
         
     | 
| 
       91 
     | 
    
         
            -
                    return (B * scale).mT                                   # [m x n]
         
     | 
| 
       92 
     | 
    
         
            -
             
     | 
| 
       93 
     | 
    
         
            -
             
     | 
| 
       94 
     | 
    
         
            -
            class NewNCUT(OnlineNystrom):
         
     | 
| 
       95 
     | 
    
         
            -
                """Nystrom Normalized Cut for large scale graph."""
         
     | 
| 
       96 
     | 
    
         
            -
             
     | 
| 
       97 
     | 
    
         
            -
                def __init__(
         
     | 
| 
       98 
     | 
    
         
            -
                    self,
         
     | 
| 
       99 
     | 
    
         
            -
                    num_eig: int = 100,
         
     | 
| 
       100 
     | 
    
         
            -
                    affinity_focal_gamma: float = 1.0,
         
     | 
| 
       101 
     | 
    
         
            -
                    num_sample: int = 10000,
         
     | 
| 
       102 
     | 
    
         
            -
                    sample_method: Literal["farthest", "random"] = "farthest",
         
     | 
| 
       103 
     | 
    
         
            -
                    distance: DistanceOptions = "cosine",
         
     | 
| 
       104 
     | 
    
         
            -
                    eig_solver: EigSolverOptions = "svd_lowrank",
         
     | 
| 
       105 
     | 
    
         
            -
                    normalize_features: bool = None,
         
     | 
| 
       106 
     | 
    
         
            -
                    device: str = None,
         
     | 
| 
       107 
     | 
    
         
            -
                    move_output_to_cpu: bool = False,
         
     | 
| 
       108 
     | 
    
         
            -
                    matmul_chunk_size: int = 8096,
         
     | 
| 
       109 
     | 
    
         
            -
                ):
         
     | 
| 
       110 
     | 
    
         
            -
                    """
         
     | 
| 
       111 
     | 
    
         
            -
                    Args:
         
     | 
| 
       112 
     | 
    
         
            -
                        num_eig (int): number of top eigenvectors to return
         
     | 
| 
       113 
     | 
    
         
            -
                        affinity_focal_gamma (float): affinity matrix temperature, lower t reduce the not-so-connected edge weights,
         
     | 
| 
       114 
     | 
    
         
            -
                            smaller t result in more sharp eigenvectors.
         
     | 
| 
       115 
     | 
    
         
            -
                        num_sample (int): number of samples for Nystrom-like approximation,
         
     | 
| 
       116 
     | 
    
         
            -
                            reduce only if memory is not enough, increase for better approximation
         
     | 
| 
       117 
     | 
    
         
            -
                        sample_method (str): subgraph sampling, ['farthest', 'random'].
         
     | 
| 
       118 
     | 
    
         
            -
                            farthest point sampling is recommended for better Nystrom-approximation accuracy
         
     | 
| 
       119 
     | 
    
         
            -
                        distance (str): distance metric for affinity matrix, ['cosine', 'euclidean', 'rbf'].
         
     | 
| 
       120 
     | 
    
         
            -
                        eig_solver (str): eigen decompose solver, ['svd_lowrank', 'lobpcg', 'svd', 'eigh'].
         
     | 
| 
       121 
     | 
    
         
            -
                        normalize_features (bool): normalize input features before computing affinity matrix,
         
     | 
| 
       122 
     | 
    
         
            -
                            default 'None' is True for cosine distance, False for euclidean distance and rbf
         
     | 
| 
       123 
     | 
    
         
            -
                        device (str): device to use for eigen computation,
         
     | 
| 
       124 
     | 
    
         
            -
                            move to GPU to speeds up a bit (~5x faster)
         
     | 
| 
       125 
     | 
    
         
            -
                        move_output_to_cpu (bool): move output to CPU, set to True if you have memory issue
         
     | 
| 
       126 
     | 
    
         
            -
                        matmul_chunk_size (int): chunk size for large-scale matrix multiplication
         
     | 
| 
       127 
     | 
    
         
            -
                    """
         
     | 
| 
       128 
     | 
    
         
            -
                    OnlineNystrom.__init__(
         
     | 
| 
       129 
     | 
    
         
            -
                        self,
         
     | 
| 
       130 
     | 
    
         
            -
                        n_components=num_eig,
         
     | 
| 
       131 
     | 
    
         
            -
                        kernel=LaplacianKernel(affinity_focal_gamma, distance, eig_solver),
         
     | 
| 
       132 
     | 
    
         
            -
                        eig_solver=eig_solver,
         
     | 
| 
       133 
     | 
    
         
            -
                        chunk_size=matmul_chunk_size,
         
     | 
| 
       134 
     | 
    
         
            -
                    )
         
     | 
| 
       135 
     | 
    
         
            -
                    self.num_sample = num_sample
         
     | 
| 
       136 
     | 
    
         
            -
                    self.sample_method = sample_method
         
     | 
| 
       137 
     | 
    
         
            -
                    self.distance = distance
         
     | 
| 
       138 
     | 
    
         
            -
                    self.normalize_features = normalize_features
         
     | 
| 
       139 
     | 
    
         
            -
                    if self.normalize_features is None:
         
     | 
| 
       140 
     | 
    
         
            -
                        if distance in ["cosine"]:
         
     | 
| 
       141 
     | 
    
         
            -
                            self.normalize_features = True
         
     | 
| 
       142 
     | 
    
         
            -
                        if distance in ["euclidean", "rbf"]:
         
     | 
| 
       143 
     | 
    
         
            -
                            self.normalize_features = False
         
     | 
| 
       144 
     | 
    
         
            -
             
     | 
| 
       145 
     | 
    
         
            -
                    self.device = device
         
     | 
| 
       146 
     | 
    
         
            -
                    self.move_output_to_cpu = move_output_to_cpu
         
     | 
| 
       147 
     | 
    
         
            -
                    self.matmul_chunk_size = matmul_chunk_size
         
     | 
| 
       148 
     | 
    
         
            -
             
     | 
| 
       149 
     | 
    
         
            -
                def _fit_helper(
         
     | 
| 
       150 
     | 
    
         
            -
                    self,
         
     | 
| 
       151 
     | 
    
         
            -
                    features: torch.Tensor,
         
     | 
| 
       152 
     | 
    
         
            -
                    precomputed_sampled_indices: torch.Tensor,
         
     | 
| 
       153 
     | 
    
         
            -
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       154 
     | 
    
         
            -
                    # move subgraph gpu to speed up
         
     | 
| 
       155 
     | 
    
         
            -
                    original_device = features.device
         
     | 
| 
       156 
     | 
    
         
            -
                    device = original_device if self.device is None else self.device
         
     | 
| 
       157 
     | 
    
         
            -
             
     | 
| 
       158 
     | 
    
         
            -
                    _n = features.shape[0]
         
     | 
| 
       159 
     | 
    
         
            -
                    if self.num_sample >= _n:
         
     | 
| 
       160 
     | 
    
         
            -
                        logging.info(
         
     | 
| 
       161 
     | 
    
         
            -
                            f"NCUT nystrom num_sample is larger than number of input samples, nyström approximation is not needed, setting num_sample={_n}"
         
     | 
| 
       162 
     | 
    
         
            -
                        )
         
     | 
| 
       163 
     | 
    
         
            -
                        self.num_sample = _n
         
     | 
| 
       164 
     | 
    
         
            -
             
     | 
| 
       165 
     | 
    
         
            -
                    # check if features dimension greater than num_eig
         
     | 
| 
       166 
     | 
    
         
            -
                    if self.eig_solver in ["svd_lowrank", "lobpcg"]:
         
     | 
| 
       167 
     | 
    
         
            -
                        assert (
         
     | 
| 
       168 
     | 
    
         
            -
                            _n >= self.n_components * 2
         
     | 
| 
       169 
     | 
    
         
            -
                        ), "number of nodes should be greater than 2*num_eig"
         
     | 
| 
       170 
     | 
    
         
            -
                    elif self.eig_solver in ["svd", "eigh"]:
         
     | 
| 
       171 
     | 
    
         
            -
                        assert (
         
     | 
| 
       172 
     | 
    
         
            -
                            _n >= self.n_components
         
     | 
| 
       173 
     | 
    
         
            -
                        ), "number of nodes should be greater than num_eig"
         
     | 
| 
       174 
     | 
    
         
            -
             
     | 
| 
       175 
     | 
    
         
            -
                    assert self.distance in ["cosine", "euclidean", "rbf"], "distance should be 'cosine', 'euclidean', 'rbf'"
         
     | 
| 
       176 
     | 
    
         
            -
             
     | 
| 
       177 
     | 
    
         
            -
                    if self.normalize_features:
         
     | 
| 
       178 
     | 
    
         
            -
                        # features need to be normalized for affinity matrix computation (cosine distance)
         
     | 
| 
       179 
     | 
    
         
            -
                        features = torch.nn.functional.normalize(features, dim=-1)
         
     | 
| 
       180 
     | 
    
         
            -
             
     | 
| 
       181 
     | 
    
         
            -
                    if precomputed_sampled_indices is not None:
         
     | 
| 
       182 
     | 
    
         
            -
                        sampled_indices = precomputed_sampled_indices
         
     | 
| 
       183 
     | 
    
         
            -
                    else:
         
     | 
| 
       184 
     | 
    
         
            -
                        sampled_indices = run_subgraph_sampling(
         
     | 
| 
       185 
     | 
    
         
            -
                            features,
         
     | 
| 
       186 
     | 
    
         
            -
                            num_sample=self.num_sample,
         
     | 
| 
       187 
     | 
    
         
            -
                            sample_method=self.sample_method,
         
     | 
| 
       188 
     | 
    
         
            -
                        )
         
     | 
| 
       189 
     | 
    
         
            -
                    sampled_features = features[sampled_indices].to(device)
         
     | 
| 
       190 
     | 
    
         
            -
                    OnlineNystrom.fit(self, sampled_features)
         
     | 
| 
       191 
     | 
    
         
            -
             
     | 
| 
       192 
     | 
    
         
            -
                    _n_not_sampled = _n - len(sampled_features)
         
     | 
| 
       193 
     | 
    
         
            -
                    if _n_not_sampled > 0:
         
     | 
| 
       194 
     | 
    
         
            -
                        unsampled_indices = torch.full((_n,), True).scatter(0, sampled_indices, False)
         
     | 
| 
       195 
     | 
    
         
            -
                        unsampled_features = features[unsampled_indices].to(device)
         
     | 
| 
       196 
     | 
    
         
            -
                        V_unsampled, _ = OnlineNystrom.update(self, unsampled_features)
         
     | 
| 
       197 
     | 
    
         
            -
                    else:
         
     | 
| 
       198 
     | 
    
         
            -
                        unsampled_indices = V_unsampled = None
         
     | 
| 
       199 
     | 
    
         
            -
                    return unsampled_indices, V_unsampled
         
     | 
| 
       200 
     | 
    
         
            -
             
     | 
| 
       201 
     | 
    
         
            -
                def fit(
         
     | 
| 
       202 
     | 
    
         
            -
                    self,
         
     | 
| 
       203 
     | 
    
         
            -
                    features: torch.Tensor,
         
     | 
| 
       204 
     | 
    
         
            -
                    precomputed_sampled_indices: torch.Tensor = None,
         
     | 
| 
       205 
     | 
    
         
            -
                ):
         
     | 
| 
       206 
     | 
    
         
            -
                    """Fit Nystrom Normalized Cut on the input features.
         
     | 
| 
       207 
     | 
    
         
            -
                    Args:
         
     | 
| 
       208 
     | 
    
         
            -
                        features (torch.Tensor): input features, shape (n_samples, n_features)
         
     | 
| 
       209 
     | 
    
         
            -
                        precomputed_sampled_indices (torch.Tensor): precomputed sampled indices, shape (num_sample,)
         
     | 
| 
       210 
     | 
    
         
            -
                            override the sample_method, if not None
         
     | 
| 
       211 
     | 
    
         
            -
                    Returns:
         
     | 
| 
       212 
     | 
    
         
            -
                        (NCUT): self
         
     | 
| 
       213 
     | 
    
         
            -
                    """
         
     | 
| 
       214 
     | 
    
         
            -
                    NewNCUT._fit_helper(self, features, precomputed_sampled_indices)
         
     | 
| 
       215 
     | 
    
         
            -
                    return self
         
     | 
| 
       216 
     | 
    
         
            -
             
     | 
| 
       217 
     | 
    
         
            -
                def fit_transform(
         
     | 
| 
       218 
     | 
    
         
            -
                    self,
         
     | 
| 
       219 
     | 
    
         
            -
                    features: torch.Tensor,
         
     | 
| 
       220 
     | 
    
         
            -
                    precomputed_sampled_indices: torch.Tensor = None,
         
     | 
| 
       221 
     | 
    
         
            -
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       222 
     | 
    
         
            -
                    """
         
     | 
| 
       223 
     | 
    
         
            -
                    Args:
         
     | 
| 
       224 
     | 
    
         
            -
                        features (torch.Tensor): input features, shape (n_samples, n_features)
         
     | 
| 
       225 
     | 
    
         
            -
                        precomputed_sampled_indices (torch.Tensor): precomputed sampled indices, shape (num_sample,)
         
     | 
| 
       226 
     | 
    
         
            -
                            override the sample_method, if not None
         
     | 
| 
       227 
     | 
    
         
            -
             
     | 
| 
       228 
     | 
    
         
            -
                    Returns:
         
     | 
| 
       229 
     | 
    
         
            -
                        (torch.Tensor): eigen_vectors, shape (n_samples, num_eig)
         
     | 
| 
       230 
     | 
    
         
            -
                        (torch.Tensor): eigen_values, sorted in descending order, shape (num_eig,)
         
     | 
| 
       231 
     | 
    
         
            -
                    """
         
     | 
| 
       232 
     | 
    
         
            -
                    unsampled_indices, V_unsampled = NewNCUT._fit_helper(self, features, precomputed_sampled_indices)
         
     | 
| 
       233 
     | 
    
         
            -
                    V_sampled, L = OnlineNystrom.transform(self)
         
     | 
| 
       234 
     | 
    
         
            -
             
     | 
| 
       235 
     | 
    
         
            -
                    if unsampled_indices is not None:
         
     | 
| 
       236 
     | 
    
         
            -
                        V = torch.zeros((len(unsampled_indices), self.n_components))
         
     | 
| 
       237 
     | 
    
         
            -
                        V[~unsampled_indices] = V_sampled
         
     | 
| 
       238 
     | 
    
         
            -
                        V[unsampled_indices] = V_unsampled
         
     | 
| 
       239 
     | 
    
         
            -
                    else:
         
     | 
| 
       240 
     | 
    
         
            -
                        V = V_sampled
         
     | 
| 
       241 
     | 
    
         
            -
                    return V, L
         
     | 
| 
         @@ -1,11 +0,0 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            nystrom_ncut/__init__.py,sha256=K8a7o9oP9jhG9auqsAFt1KPQMElRUP3_TFxBmRUz8-o,544
         
     | 
| 
       2 
     | 
    
         
            -
            nystrom_ncut/ncut_pytorch.py,sha256=f4VHCgOP3tEjn5NIr2wFE4hAGnQIWV6P6W4xuMt0d0I,22426
         
     | 
| 
       3 
     | 
    
         
            -
            nystrom_ncut/new_ncut_pytorch.py,sha256=wPG-OAcew4kw0mDMLQPJOetz-9sBfvFmexL7n0JVYjc,10419
         
     | 
| 
       4 
     | 
    
         
            -
            nystrom_ncut/nystrom.py,sha256=UOXfhgz-xB2FtKYfn-cwMDNkgCWrM-3yXHtPxOrgEV4,8569
         
     | 
| 
       5 
     | 
    
         
            -
            nystrom_ncut/propagation_utils.py,sha256=quykDk1RgFyHEUloRBcapSocq9Wvkk3hG_TYx-Tue6A,13813
         
     | 
| 
       6 
     | 
    
         
            -
            nystrom_ncut/visualize_utils.py,sha256=3TEdXF_H7sBUQFz1nK3QemmlKqRteo5BKkno1LozVTg,21840
         
     | 
| 
       7 
     | 
    
         
            -
            nystrom_ncut-0.0.1.dist-info/LICENSE,sha256=2bm9uFabQZ3Ykb_SaSU_uUbAj2-htc6WJQmS_65qD00,1073
         
     | 
| 
       8 
     | 
    
         
            -
            nystrom_ncut-0.0.1.dist-info/METADATA,sha256=kj900xV7RSfTSW8jyzjhrGV2z1Ttzn5UoTFOlHpfZg8,6058
         
     | 
| 
       9 
     | 
    
         
            -
            nystrom_ncut-0.0.1.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
         
     | 
| 
       10 
     | 
    
         
            -
            nystrom_ncut-0.0.1.dist-info/top_level.txt,sha256=j7g_j0S048EvguFFnGgD5Ewd3r2H6klsxd5A4dd-wHw,13
         
     | 
| 
       11 
     | 
    
         
            -
            nystrom_ncut-0.0.1.dist-info/RECORD,,
         
     | 
| 
         
            File without changes
         
     | 
| 
         
            File without changes
         
     | 
| 
         
            File without changes
         
     |